mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2025-01-18 12:24:38 +08:00
460e6ec384
* z8k-tdep.c: Do not include "obstack.h". * h8300-tdep.c, h8500-tdep.c: Ditto. * m68hc11-tdep.c, sh-tdep.c: Ditto. * valprint.c, v850-tdep.c: Ditto. * d10v-tdep.c, mn10300-tdep.c: Ditto. * mn10200-tdep.c: Ditto. * Makefile.in (z8k-tdep.o): Update dependencies. (m68hc11-tdep.o, valprint.o): Ditto. (v850-tdep.o, d10v-tdep.o): Ditto. (mn10300-tdep.o, sparc-tdep.o): Ditto. (sh-tdep.o, h8500-tdep.o, h8300-tdep.o): Ditto. (m32r-tdep.o, mn10200-tdep.o): Specify dependencies. (sh_opc_h, gdb_sim_sh_h): Define. (elf_sh_h, elf_bfd_h): Define. (opcode_m68hc11_h): Define. (OPCODES_SRC, OPCODES_DIR): define. (OPCODES): Use $(OPCODES_DIR). (gdb_sim_d10v_h): Rename sim_d10v_h. (gdb_sim_arm_h): Rename sim_arm_h.
4654 lines
146 KiB
C
4654 lines
146 KiB
C
/* Target-dependent code for Hitachi Super-H, for GDB.
|
||
Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002
|
||
Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 59 Temple Place - Suite 330,
|
||
Boston, MA 02111-1307, USA. */
|
||
|
||
/*
|
||
Contributed by Steve Chamberlain
|
||
sac@cygnus.com
|
||
*/
|
||
|
||
#include "defs.h"
|
||
#include "frame.h"
|
||
#include "symtab.h"
|
||
#include "symfile.h"
|
||
#include "gdbtypes.h"
|
||
#include "gdbcmd.h"
|
||
#include "gdbcore.h"
|
||
#include "value.h"
|
||
#include "dis-asm.h"
|
||
#include "inferior.h" /* for BEFORE_TEXT_END etc. */
|
||
#include "gdb_string.h"
|
||
#include "arch-utils.h"
|
||
#include "floatformat.h"
|
||
#include "regcache.h"
|
||
#include "doublest.h"
|
||
|
||
#include "sh-tdep.h"
|
||
|
||
#include "elf-bfd.h"
|
||
#include "solib-svr4.h"
|
||
|
||
/* sh64 flags */
|
||
#include "elf/sh.h"
|
||
/* registers numbers shared with the simulator */
|
||
#include "gdb/sim-sh.h"
|
||
|
||
void (*sh_show_regs) (void);
|
||
CORE_ADDR (*skip_prologue_hard_way) (CORE_ADDR);
|
||
void (*do_pseudo_register) (int);
|
||
|
||
#define SH_DEFAULT_NUM_REGS 59
|
||
|
||
/* Define other aspects of the stack frame.
|
||
we keep a copy of the worked out return pc lying around, since it
|
||
is a useful bit of info */
|
||
|
||
struct frame_extra_info
|
||
{
|
||
CORE_ADDR return_pc;
|
||
int leaf_function;
|
||
int f_offset;
|
||
};
|
||
|
||
static const char *
|
||
sh_generic_register_name (int reg_nr)
|
||
{
|
||
static char *register_names[] =
|
||
{
|
||
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
||
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
|
||
"pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
|
||
"fpul", "fpscr",
|
||
"fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
|
||
"fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
|
||
"ssr", "spc",
|
||
"r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
|
||
"r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
|
||
};
|
||
if (reg_nr < 0)
|
||
return NULL;
|
||
if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
|
||
return NULL;
|
||
return register_names[reg_nr];
|
||
}
|
||
|
||
static const char *
|
||
sh_sh_register_name (int reg_nr)
|
||
{
|
||
static char *register_names[] =
|
||
{
|
||
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
||
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
|
||
"pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
|
||
"", "",
|
||
"", "", "", "", "", "", "", "",
|
||
"", "", "", "", "", "", "", "",
|
||
"", "",
|
||
"", "", "", "", "", "", "", "",
|
||
"", "", "", "", "", "", "", "",
|
||
};
|
||
if (reg_nr < 0)
|
||
return NULL;
|
||
if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
|
||
return NULL;
|
||
return register_names[reg_nr];
|
||
}
|
||
|
||
static const char *
|
||
sh_sh3_register_name (int reg_nr)
|
||
{
|
||
static char *register_names[] =
|
||
{
|
||
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
||
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
|
||
"pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
|
||
"", "",
|
||
"", "", "", "", "", "", "", "",
|
||
"", "", "", "", "", "", "", "",
|
||
"ssr", "spc",
|
||
"r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
|
||
"r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1"
|
||
};
|
||
if (reg_nr < 0)
|
||
return NULL;
|
||
if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
|
||
return NULL;
|
||
return register_names[reg_nr];
|
||
}
|
||
|
||
static const char *
|
||
sh_sh3e_register_name (int reg_nr)
|
||
{
|
||
static char *register_names[] =
|
||
{
|
||
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
||
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
|
||
"pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
|
||
"fpul", "fpscr",
|
||
"fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
|
||
"fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
|
||
"ssr", "spc",
|
||
"r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
|
||
"r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
|
||
};
|
||
if (reg_nr < 0)
|
||
return NULL;
|
||
if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
|
||
return NULL;
|
||
return register_names[reg_nr];
|
||
}
|
||
|
||
static const char *
|
||
sh_sh_dsp_register_name (int reg_nr)
|
||
{
|
||
static char *register_names[] =
|
||
{
|
||
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
||
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
|
||
"pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
|
||
"", "dsr",
|
||
"a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
|
||
"y0", "y1", "", "", "", "", "", "mod",
|
||
"", "",
|
||
"rs", "re", "", "", "", "", "", "",
|
||
"", "", "", "", "", "", "", "",
|
||
};
|
||
if (reg_nr < 0)
|
||
return NULL;
|
||
if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
|
||
return NULL;
|
||
return register_names[reg_nr];
|
||
}
|
||
|
||
static const char *
|
||
sh_sh3_dsp_register_name (int reg_nr)
|
||
{
|
||
static char *register_names[] =
|
||
{
|
||
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
||
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
|
||
"pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
|
||
"", "dsr",
|
||
"a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
|
||
"y0", "y1", "", "", "", "", "", "mod",
|
||
"ssr", "spc",
|
||
"rs", "re", "", "", "", "", "", "",
|
||
"r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b"
|
||
"", "", "", "", "", "", "", "",
|
||
};
|
||
if (reg_nr < 0)
|
||
return NULL;
|
||
if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
|
||
return NULL;
|
||
return register_names[reg_nr];
|
||
}
|
||
|
||
static const char *
|
||
sh_sh4_register_name (int reg_nr)
|
||
{
|
||
static char *register_names[] =
|
||
{
|
||
/* general registers 0-15 */
|
||
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
||
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
|
||
/* 16 - 22 */
|
||
"pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
|
||
/* 23, 24 */
|
||
"fpul", "fpscr",
|
||
/* floating point registers 25 - 40 */
|
||
"fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
|
||
"fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
|
||
/* 41, 42 */
|
||
"ssr", "spc",
|
||
/* bank 0 43 - 50 */
|
||
"r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
|
||
/* bank 1 51 - 58 */
|
||
"r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
|
||
/* double precision (pseudo) 59 - 66 */
|
||
"dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
|
||
/* vectors (pseudo) 67 - 70 */
|
||
"fv0", "fv4", "fv8", "fv12",
|
||
/* FIXME: missing XF 71 - 86 */
|
||
/* FIXME: missing XD 87 - 94 */
|
||
};
|
||
if (reg_nr < 0)
|
||
return NULL;
|
||
if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
|
||
return NULL;
|
||
return register_names[reg_nr];
|
||
}
|
||
|
||
static const char *
|
||
sh_sh64_register_name (int reg_nr)
|
||
{
|
||
static char *register_names[] =
|
||
{
|
||
/* SH MEDIA MODE (ISA 32) */
|
||
/* general registers (64-bit) 0-63 */
|
||
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
||
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
|
||
"r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
|
||
"r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
|
||
"r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
|
||
"r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
|
||
"r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
|
||
"r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
|
||
|
||
/* pc (64-bit) 64 */
|
||
"pc",
|
||
|
||
/* status reg., saved status reg., saved pc reg. (64-bit) 65-67 */
|
||
"sr", "ssr", "spc",
|
||
|
||
/* target registers (64-bit) 68-75*/
|
||
"tr0", "tr1", "tr2", "tr3", "tr4", "tr5", "tr6", "tr7",
|
||
|
||
/* floating point state control register (32-bit) 76 */
|
||
"fpscr",
|
||
|
||
/* single precision floating point registers (32-bit) 77-140*/
|
||
"fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
|
||
"fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
|
||
"fr16", "fr17", "fr18", "fr19", "fr20", "fr21", "fr22", "fr23",
|
||
"fr24", "fr25", "fr26", "fr27", "fr28", "fr29", "fr30", "fr31",
|
||
"fr32", "fr33", "fr34", "fr35", "fr36", "fr37", "fr38", "fr39",
|
||
"fr40", "fr41", "fr42", "fr43", "fr44", "fr45", "fr46", "fr47",
|
||
"fr48", "fr49", "fr50", "fr51", "fr52", "fr53", "fr54", "fr55",
|
||
"fr56", "fr57", "fr58", "fr59", "fr60", "fr61", "fr62", "fr63",
|
||
|
||
/* double precision registers (pseudo) 141-172 */
|
||
"dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
|
||
"dr16", "dr18", "dr20", "dr22", "dr24", "dr26", "dr28", "dr30",
|
||
"dr32", "dr34", "dr36", "dr38", "dr40", "dr42", "dr44", "dr46",
|
||
"dr48", "dr50", "dr52", "dr54", "dr56", "dr58", "dr60", "dr62",
|
||
|
||
/* floating point pairs (pseudo) 173-204*/
|
||
"fp0", "fp2", "fp4", "fp6", "fp8", "fp10", "fp12", "fp14",
|
||
"fp16", "fp18", "fp20", "fp22", "fp24", "fp26", "fp28", "fp30",
|
||
"fp32", "fp34", "fp36", "fp38", "fp40", "fp42", "fp44", "fp46",
|
||
"fp48", "fp50", "fp52", "fp54", "fp56", "fp58", "fp60", "fp62",
|
||
|
||
/* floating point vectors (4 floating point regs) (pseudo) 205-220*/
|
||
"fv0", "fv4", "fv8", "fv12", "fv16", "fv20", "fv24", "fv28",
|
||
"fv32", "fv36", "fv40", "fv44", "fv48", "fv52", "fv56", "fv60",
|
||
|
||
/* SH COMPACT MODE (ISA 16) (all pseudo) 221-272*/
|
||
"r0_c", "r1_c", "r2_c", "r3_c", "r4_c", "r5_c", "r6_c", "r7_c",
|
||
"r8_c", "r9_c", "r10_c", "r11_c", "r12_c", "r13_c", "r14_c", "r15_c",
|
||
"pc_c",
|
||
"gbr_c", "mach_c", "macl_c", "pr_c", "t_c",
|
||
"fpscr_c", "fpul_c",
|
||
"fr0_c", "fr1_c", "fr2_c", "fr3_c", "fr4_c", "fr5_c", "fr6_c", "fr7_c",
|
||
"fr8_c", "fr9_c", "fr10_c", "fr11_c", "fr12_c", "fr13_c", "fr14_c", "fr15_c",
|
||
"dr0_c", "dr2_c", "dr4_c", "dr6_c", "dr8_c", "dr10_c", "dr12_c", "dr14_c",
|
||
"fv0_c", "fv4_c", "fv8_c", "fv12_c",
|
||
/* FIXME!!!! XF0 XF15, XD0 XD14 ?????*/
|
||
};
|
||
|
||
if (reg_nr < 0)
|
||
return NULL;
|
||
if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
|
||
return NULL;
|
||
return register_names[reg_nr];
|
||
}
|
||
|
||
#define NUM_PSEUDO_REGS_SH_MEDIA 80
|
||
#define NUM_PSEUDO_REGS_SH_COMPACT 51
|
||
|
||
static const unsigned char *
|
||
sh_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
|
||
{
|
||
/* 0xc3c3 is trapa #c3, and it works in big and little endian modes */
|
||
static unsigned char breakpoint[] = {0xc3, 0xc3};
|
||
|
||
*lenptr = sizeof (breakpoint);
|
||
return breakpoint;
|
||
}
|
||
|
||
/* Macros and functions for setting and testing a bit in a minimal
|
||
symbol that marks it as 32-bit function. The MSB of the minimal
|
||
symbol's "info" field is used for this purpose. This field is
|
||
already being used to store the symbol size, so the assumption is
|
||
that the symbol size cannot exceed 2^31.
|
||
|
||
ELF_MAKE_MSYMBOL_SPECIAL
|
||
tests whether an ELF symbol is "special", i.e. refers
|
||
to a 32-bit function, and sets a "special" bit in a
|
||
minimal symbol to mark it as a 32-bit function
|
||
MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol
|
||
MSYMBOL_SIZE returns the size of the minimal symbol, i.e.
|
||
the "info" field with the "special" bit masked out */
|
||
|
||
#define MSYMBOL_IS_SPECIAL(msym) \
|
||
(((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
|
||
|
||
void
|
||
sh64_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
|
||
{
|
||
if (msym == NULL)
|
||
return;
|
||
|
||
if (((elf_symbol_type *)(sym))->internal_elf_sym.st_other == STO_SH5_ISA32)
|
||
{
|
||
MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) | 0x80000000);
|
||
SYMBOL_VALUE_ADDRESS (msym) |= 1;
|
||
}
|
||
}
|
||
|
||
/* ISA32 (shmedia) function addresses are odd (bit 0 is set). Here
|
||
are some macros to test, set, or clear bit 0 of addresses. */
|
||
#define IS_ISA32_ADDR(addr) ((addr) & 1)
|
||
#define MAKE_ISA32_ADDR(addr) ((addr) | 1)
|
||
#define UNMAKE_ISA32_ADDR(addr) ((addr) & ~1)
|
||
|
||
static int
|
||
pc_is_isa32 (bfd_vma memaddr)
|
||
{
|
||
struct minimal_symbol *sym;
|
||
|
||
/* If bit 0 of the address is set, assume this is a
|
||
ISA32 (shmedia) address. */
|
||
if (IS_ISA32_ADDR (memaddr))
|
||
return 1;
|
||
|
||
/* A flag indicating that this is a ISA32 function is stored by elfread.c in
|
||
the high bit of the info field. Use this to decide if the function is
|
||
ISA16 or ISA32. */
|
||
sym = lookup_minimal_symbol_by_pc (memaddr);
|
||
if (sym)
|
||
return MSYMBOL_IS_SPECIAL (sym);
|
||
else
|
||
return 0;
|
||
}
|
||
|
||
static const unsigned char *
|
||
sh_sh64_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
|
||
{
|
||
/* The BRK instruction for shmedia is
|
||
01101111 11110101 11111111 11110000
|
||
which translates in big endian mode to 0x6f, 0xf5, 0xff, 0xf0
|
||
and in little endian mode to 0xf0, 0xff, 0xf5, 0x6f */
|
||
|
||
/* The BRK instruction for shcompact is
|
||
00000000 00111011
|
||
which translates in big endian mode to 0x0, 0x3b
|
||
and in little endian mode to 0x3b, 0x0*/
|
||
|
||
if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
|
||
{
|
||
if (pc_is_isa32 (*pcptr))
|
||
{
|
||
static unsigned char big_breakpoint_media[] = {0x6f, 0xf5, 0xff, 0xf0};
|
||
*pcptr = UNMAKE_ISA32_ADDR (*pcptr);
|
||
*lenptr = sizeof (big_breakpoint_media);
|
||
return big_breakpoint_media;
|
||
}
|
||
else
|
||
{
|
||
static unsigned char big_breakpoint_compact[] = {0x0, 0x3b};
|
||
*lenptr = sizeof (big_breakpoint_compact);
|
||
return big_breakpoint_compact;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (pc_is_isa32 (*pcptr))
|
||
{
|
||
static unsigned char little_breakpoint_media[] = {0xf0, 0xff, 0xf5, 0x6f};
|
||
*pcptr = UNMAKE_ISA32_ADDR (*pcptr);
|
||
*lenptr = sizeof (little_breakpoint_media);
|
||
return little_breakpoint_media;
|
||
}
|
||
else
|
||
{
|
||
static unsigned char little_breakpoint_compact[] = {0x3b, 0x0};
|
||
*lenptr = sizeof (little_breakpoint_compact);
|
||
return little_breakpoint_compact;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Prologue looks like
|
||
[mov.l <regs>,@-r15]...
|
||
[sts.l pr,@-r15]
|
||
[mov.l r14,@-r15]
|
||
[mov r15,r14]
|
||
|
||
Actually it can be more complicated than this. For instance, with
|
||
newer gcc's:
|
||
|
||
mov.l r14,@-r15
|
||
add #-12,r15
|
||
mov r15,r14
|
||
mov r4,r1
|
||
mov r5,r2
|
||
mov.l r6,@(4,r14)
|
||
mov.l r7,@(8,r14)
|
||
mov.b r1,@r14
|
||
mov r14,r1
|
||
mov r14,r1
|
||
add #2,r1
|
||
mov.w r2,@r1
|
||
|
||
*/
|
||
|
||
/* PTABS/L Rn, TRa 0110101111110001nnnnnnl00aaa0000
|
||
with l=1 and n = 18 0110101111110001010010100aaa0000 */
|
||
#define IS_PTABSL_R18(x) (((x) & 0xffffff8f) == 0x6bf14a00)
|
||
|
||
/* STS.L PR,@-r0 0100000000100010
|
||
r0-4-->r0, PR-->(r0) */
|
||
#define IS_STS_R0(x) ((x) == 0x4022)
|
||
|
||
/* STS PR, Rm 0000mmmm00101010
|
||
PR-->Rm */
|
||
#define IS_STS_PR(x) (((x) & 0xf0ff) == 0x2a)
|
||
|
||
/* MOV.L Rm,@(disp,r15) 00011111mmmmdddd
|
||
Rm-->(dispx4+r15) */
|
||
#define IS_MOV_TO_R15(x) (((x) & 0xff00) == 0x1f00)
|
||
|
||
/* MOV.L R14,@(disp,r15) 000111111110dddd
|
||
R14-->(dispx4+r15) */
|
||
#define IS_MOV_R14(x) (((x) & 0xfff0) == 0x1fe0)
|
||
|
||
/* ST.Q R14, disp, R18 101011001110dddddddddd0100100000
|
||
R18-->(dispx8+R14) */
|
||
#define IS_STQ_R18_R14(x) (((x) & 0xfff003ff) == 0xace00120)
|
||
|
||
/* ST.Q R15, disp, R18 101011001111dddddddddd0100100000
|
||
R18-->(dispx8+R15) */
|
||
#define IS_STQ_R18_R15(x) (((x) & 0xfff003ff) == 0xacf00120)
|
||
|
||
/* ST.L R15, disp, R18 101010001111dddddddddd0100100000
|
||
R18-->(dispx4+R15) */
|
||
#define IS_STL_R18_R15(x) (((x) & 0xfff003ff) == 0xa8f00120)
|
||
|
||
/* ST.Q R15, disp, R14 1010 1100 1111 dddd dddd dd00 1110 0000
|
||
R14-->(dispx8+R15) */
|
||
#define IS_STQ_R14_R15(x) (((x) & 0xfff003ff) == 0xacf000e0)
|
||
|
||
/* ST.L R15, disp, R14 1010 1000 1111 dddd dddd dd00 1110 0000
|
||
R14-->(dispx4+R15) */
|
||
#define IS_STL_R14_R15(x) (((x) & 0xfff003ff) == 0xa8f000e0)
|
||
|
||
/* ADDI.L R15,imm,R15 1101 0100 1111 ssss ssss ss00 1111 0000
|
||
R15 + imm --> R15 */
|
||
#define IS_ADDIL_SP_MEDIA(x) (((x) & 0xfff003ff) == 0xd4f000f0)
|
||
|
||
/* ADDI R15,imm,R15 1101 0000 1111 ssss ssss ss00 1111 0000
|
||
R15 + imm --> R15 */
|
||
#define IS_ADDI_SP_MEDIA(x) (((x) & 0xfff003ff) == 0xd0f000f0)
|
||
|
||
/* ADD.L R15,R63,R14 0000 0000 1111 1000 1111 1100 1110 0000
|
||
R15 + R63 --> R14 */
|
||
#define IS_ADDL_SP_FP_MEDIA(x) ((x) == 0x00f8fce0)
|
||
|
||
/* ADD R15,R63,R14 0000 0000 1111 1001 1111 1100 1110 0000
|
||
R15 + R63 --> R14 */
|
||
#define IS_ADD_SP_FP_MEDIA(x) ((x) == 0x00f9fce0)
|
||
|
||
#define IS_MOV_SP_FP_MEDIA(x) (IS_ADDL_SP_FP_MEDIA(x) || IS_ADD_SP_FP_MEDIA(x))
|
||
|
||
/* MOV #imm, R0 1110 0000 ssss ssss
|
||
#imm-->R0 */
|
||
#define IS_MOV_R0(x) (((x) & 0xff00) == 0xe000)
|
||
|
||
/* MOV.L @(disp,PC), R0 1101 0000 iiii iiii */
|
||
#define IS_MOVL_R0(x) (((x) & 0xff00) == 0xd000)
|
||
|
||
/* ADD r15,r0 0011 0000 1111 1100
|
||
r15+r0-->r0 */
|
||
#define IS_ADD_SP_R0(x) ((x) == 0x30fc)
|
||
|
||
/* MOV.L R14 @-R0 0010 0000 1110 0110
|
||
R14-->(R0-4), R0-4-->R0 */
|
||
#define IS_MOV_R14_R0(x) ((x) == 0x20e6)
|
||
|
||
/* ADD Rm,R63,Rn Rm+R63-->Rn 0000 00mm mmmm 1001 1111 11nn nnnn 0000
|
||
where Rm is one of r2-r9 which are the argument registers. */
|
||
/* FIXME: Recognize the float and double register moves too! */
|
||
#define IS_MEDIA_IND_ARG_MOV(x) \
|
||
((((x) & 0xfc0ffc0f) == 0x0009fc00) && (((x) & 0x03f00000) >= 0x00200000 && ((x) & 0x03f00000) <= 0x00900000))
|
||
|
||
/* ST.Q Rn,0,Rm Rm-->Rn+0 1010 11nn nnnn 0000 0000 00mm mmmm 0000
|
||
or ST.L Rn,0,Rm Rm-->Rn+0 1010 10nn nnnn 0000 0000 00mm mmmm 0000
|
||
where Rm is one of r2-r9 which are the argument registers. */
|
||
#define IS_MEDIA_ARG_MOV(x) \
|
||
(((((x) & 0xfc0ffc0f) == 0xac000000) || (((x) & 0xfc0ffc0f) == 0xa8000000)) \
|
||
&& (((x) & 0x000003f0) >= 0x00000020 && ((x) & 0x000003f0) <= 0x00000090))
|
||
|
||
/* ST.B R14,0,Rn Rn-->(R14+0) 1010 0000 1110 0000 0000 00nn nnnn 0000*/
|
||
/* ST.W R14,0,Rn Rn-->(R14+0) 1010 0100 1110 0000 0000 00nn nnnn 0000*/
|
||
/* ST.L R14,0,Rn Rn-->(R14+0) 1010 1000 1110 0000 0000 00nn nnnn 0000*/
|
||
/* FST.S R14,0,FRn Rn-->(R14+0) 1011 0100 1110 0000 0000 00nn nnnn 0000*/
|
||
/* FST.D R14,0,DRn Rn-->(R14+0) 1011 1100 1110 0000 0000 00nn nnnn 0000*/
|
||
#define IS_MEDIA_MOV_TO_R14(x) \
|
||
((((x) & 0xfffffc0f) == 0xa0e00000) \
|
||
|| (((x) & 0xfffffc0f) == 0xa4e00000) \
|
||
|| (((x) & 0xfffffc0f) == 0xa8e00000) \
|
||
|| (((x) & 0xfffffc0f) == 0xb4e00000) \
|
||
|| (((x) & 0xfffffc0f) == 0xbce00000))
|
||
|
||
/* MOV Rm, Rn Rm-->Rn 0110 nnnn mmmm 0011
|
||
where Rm is r2-r9 */
|
||
#define IS_COMPACT_IND_ARG_MOV(x) \
|
||
((((x) & 0xf00f) == 0x6003) && (((x) & 0x00f0) >= 0x0020) && (((x) & 0x00f0) <= 0x0090))
|
||
|
||
/* compact direct arg move!
|
||
MOV.L Rn, @r14 0010 1110 mmmm 0010 */
|
||
#define IS_COMPACT_ARG_MOV(x) \
|
||
(((((x) & 0xff0f) == 0x2e02) && (((x) & 0x00f0) >= 0x0020) && ((x) & 0x00f0) <= 0x0090))
|
||
|
||
/* MOV.B Rm, @R14 0010 1110 mmmm 0000
|
||
MOV.W Rm, @R14 0010 1110 mmmm 0001 */
|
||
#define IS_COMPACT_MOV_TO_R14(x) \
|
||
((((x) & 0xff0f) == 0x2e00) || (((x) & 0xff0f) == 0x2e01))
|
||
|
||
#define IS_JSR_R0(x) ((x) == 0x400b)
|
||
#define IS_NOP(x) ((x) == 0x0009)
|
||
|
||
|
||
/* STS.L PR,@-r15 0100111100100010
|
||
r15-4-->r15, PR-->(r15) */
|
||
#define IS_STS(x) ((x) == 0x4f22)
|
||
|
||
/* MOV.L Rm,@-r15 00101111mmmm0110
|
||
r15-4-->r15, Rm-->(R15) */
|
||
#define IS_PUSH(x) (((x) & 0xff0f) == 0x2f06)
|
||
|
||
#define GET_PUSHED_REG(x) (((x) >> 4) & 0xf)
|
||
|
||
/* MOV r15,r14 0110111011110011
|
||
r15-->r14 */
|
||
#define IS_MOV_SP_FP(x) ((x) == 0x6ef3)
|
||
|
||
/* ADD #imm,r15 01111111iiiiiiii
|
||
r15+imm-->r15 */
|
||
#define IS_ADD_SP(x) (((x) & 0xff00) == 0x7f00)
|
||
|
||
#define IS_MOV_R3(x) (((x) & 0xff00) == 0x1a00)
|
||
#define IS_SHLL_R3(x) ((x) == 0x4300)
|
||
|
||
/* ADD r3,r15 0011111100111100
|
||
r15+r3-->r15 */
|
||
#define IS_ADD_R3SP(x) ((x) == 0x3f3c)
|
||
|
||
/* FMOV.S FRm,@-Rn Rn-4-->Rn, FRm-->(Rn) 1111nnnnmmmm1011
|
||
FMOV DRm,@-Rn Rn-8-->Rn, DRm-->(Rn) 1111nnnnmmm01011
|
||
FMOV XDm,@-Rn Rn-8-->Rn, XDm-->(Rn) 1111nnnnmmm11011 */
|
||
#define IS_FMOV(x) (((x) & 0xf00f) == 0xf00b)
|
||
|
||
/* MOV Rm,Rn Rm-->Rn 0110nnnnmmmm0011
|
||
MOV.L Rm,@(disp,Rn) Rm-->(dispx4+Rn) 0001nnnnmmmmdddd
|
||
MOV.L Rm,@Rn Rm-->(Rn) 0010nnnnmmmm0010
|
||
where Rm is one of r4,r5,r6,r7 which are the argument registers. */
|
||
#define IS_ARG_MOV(x) \
|
||
(((((x) & 0xf00f) == 0x6003) && (((x) & 0x00f0) >= 0x0040 && ((x) & 0x00f0) <= 0x0070)) \
|
||
|| ((((x) & 0xf000) == 0x1000) && (((x) & 0x00f0) >= 0x0040 && ((x) & 0x00f0) <= 0x0070)) \
|
||
|| ((((x) & 0xf00f) == 0x2002) && (((x) & 0x00f0) >= 0x0040 && ((x) & 0x00f0) <= 0x0070)))
|
||
|
||
/* MOV.L Rm,@(disp,r14) 00011110mmmmdddd
|
||
Rm-->(dispx4+r14) where Rm is one of r4,r5,r6,r7 */
|
||
#define IS_MOV_TO_R14(x) \
|
||
((((x) & 0xff00) == 0x1e) && (((x) & 0x00f0) >= 0x0040 && ((x) & 0x00f0) <= 0x0070))
|
||
|
||
#define FPSCR_SZ (1 << 20)
|
||
|
||
/* Skip any prologue before the guts of a function */
|
||
|
||
/* Skip the prologue using the debug information. If this fails we'll
|
||
fall back on the 'guess' method below. */
|
||
static CORE_ADDR
|
||
after_prologue (CORE_ADDR pc)
|
||
{
|
||
struct symtab_and_line sal;
|
||
CORE_ADDR func_addr, func_end;
|
||
|
||
/* If we can not find the symbol in the partial symbol table, then
|
||
there is no hope we can determine the function's start address
|
||
with this code. */
|
||
if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
|
||
return 0;
|
||
|
||
/* Get the line associated with FUNC_ADDR. */
|
||
sal = find_pc_line (func_addr, 0);
|
||
|
||
/* There are only two cases to consider. First, the end of the source line
|
||
is within the function bounds. In that case we return the end of the
|
||
source line. Second is the end of the source line extends beyond the
|
||
bounds of the current function. We need to use the slow code to
|
||
examine instructions in that case. */
|
||
if (sal.end < func_end)
|
||
return sal.end;
|
||
else
|
||
return 0;
|
||
}
|
||
|
||
/* Here we look at each instruction in the function, and try to guess
|
||
where the prologue ends. Unfortunately this is not always
|
||
accurate. */
|
||
static CORE_ADDR
|
||
sh_skip_prologue_hard_way (CORE_ADDR start_pc)
|
||
{
|
||
CORE_ADDR here, end;
|
||
int updated_fp = 0;
|
||
|
||
if (!start_pc)
|
||
return 0;
|
||
|
||
for (here = start_pc, end = start_pc + (2 * 28); here < end;)
|
||
{
|
||
int w = read_memory_integer (here, 2);
|
||
here += 2;
|
||
if (IS_FMOV (w) || IS_PUSH (w) || IS_STS (w) || IS_MOV_R3 (w)
|
||
|| IS_ADD_R3SP (w) || IS_ADD_SP (w) || IS_SHLL_R3 (w)
|
||
|| IS_ARG_MOV (w) || IS_MOV_TO_R14 (w))
|
||
{
|
||
start_pc = here;
|
||
}
|
||
else if (IS_MOV_SP_FP (w))
|
||
{
|
||
start_pc = here;
|
||
updated_fp = 1;
|
||
}
|
||
else
|
||
/* Don't bail out yet, if we are before the copy of sp. */
|
||
if (updated_fp)
|
||
break;
|
||
}
|
||
|
||
return start_pc;
|
||
}
|
||
|
||
static CORE_ADDR
|
||
look_for_args_moves (CORE_ADDR start_pc, int media_mode)
|
||
{
|
||
CORE_ADDR here, end;
|
||
int w;
|
||
int insn_size = (media_mode ? 4 : 2);
|
||
|
||
for (here = start_pc, end = start_pc + (insn_size * 28); here < end;)
|
||
{
|
||
if (media_mode)
|
||
{
|
||
w = read_memory_integer (UNMAKE_ISA32_ADDR (here), insn_size);
|
||
here += insn_size;
|
||
if (IS_MEDIA_IND_ARG_MOV (w))
|
||
{
|
||
/* This must be followed by a store to r14, so the argument
|
||
is where the debug info says it is. This can happen after
|
||
the SP has been saved, unfortunately. */
|
||
|
||
int next_insn = read_memory_integer (UNMAKE_ISA32_ADDR (here),
|
||
insn_size);
|
||
here += insn_size;
|
||
if (IS_MEDIA_MOV_TO_R14 (next_insn))
|
||
start_pc = here;
|
||
}
|
||
else if (IS_MEDIA_ARG_MOV (w))
|
||
{
|
||
/* These instructions store directly the argument in r14. */
|
||
start_pc = here;
|
||
}
|
||
else
|
||
break;
|
||
}
|
||
else
|
||
{
|
||
w = read_memory_integer (here, insn_size);
|
||
w = w & 0xffff;
|
||
here += insn_size;
|
||
if (IS_COMPACT_IND_ARG_MOV (w))
|
||
{
|
||
/* This must be followed by a store to r14, so the argument
|
||
is where the debug info says it is. This can happen after
|
||
the SP has been saved, unfortunately. */
|
||
|
||
int next_insn = 0xffff & read_memory_integer (here, insn_size);
|
||
here += insn_size;
|
||
if (IS_COMPACT_MOV_TO_R14 (next_insn))
|
||
start_pc = here;
|
||
}
|
||
else if (IS_COMPACT_ARG_MOV (w))
|
||
{
|
||
/* These instructions store directly the argument in r14. */
|
||
start_pc = here;
|
||
}
|
||
else if (IS_MOVL_R0 (w))
|
||
{
|
||
/* There is a function that gcc calls to get the arguments
|
||
passed correctly to the function. Only after this
|
||
function call the arguments will be found at the place
|
||
where they are supposed to be. This happens in case the
|
||
argument has to be stored into a 64-bit register (for
|
||
instance doubles, long longs). SHcompact doesn't have
|
||
access to the full 64-bits, so we store the register in
|
||
stack slot and store the address of the stack slot in
|
||
the register, then do a call through a wrapper that
|
||
loads the memory value into the register. A SHcompact
|
||
callee calls an argument decoder
|
||
(GCC_shcompact_incoming_args) that stores the 64-bit
|
||
value in a stack slot and stores the address of the
|
||
stack slot in the register. GCC thinks the argument is
|
||
just passed by transparent reference, but this is only
|
||
true after the argument decoder is called. Such a call
|
||
needs to be considered part of the prologue. */
|
||
|
||
/* This must be followed by a JSR @r0 instruction and by
|
||
a NOP instruction. After these, the prologue is over! */
|
||
|
||
int next_insn = 0xffff & read_memory_integer (here, insn_size);
|
||
here += insn_size;
|
||
if (IS_JSR_R0 (next_insn))
|
||
{
|
||
next_insn = 0xffff & read_memory_integer (here, insn_size);
|
||
here += insn_size;
|
||
|
||
if (IS_NOP (next_insn))
|
||
start_pc = here;
|
||
}
|
||
}
|
||
else
|
||
break;
|
||
}
|
||
}
|
||
|
||
return start_pc;
|
||
}
|
||
|
||
static CORE_ADDR
|
||
sh64_skip_prologue_hard_way (CORE_ADDR start_pc)
|
||
{
|
||
CORE_ADDR here, end;
|
||
int updated_fp = 0;
|
||
int insn_size = 4;
|
||
int media_mode = 1;
|
||
|
||
if (!start_pc)
|
||
return 0;
|
||
|
||
if (pc_is_isa32 (start_pc) == 0)
|
||
{
|
||
insn_size = 2;
|
||
media_mode = 0;
|
||
}
|
||
|
||
for (here = start_pc, end = start_pc + (insn_size * 28); here < end;)
|
||
{
|
||
|
||
if (media_mode)
|
||
{
|
||
int w = read_memory_integer (UNMAKE_ISA32_ADDR (here), insn_size);
|
||
here += insn_size;
|
||
if (IS_STQ_R18_R14 (w) || IS_STQ_R18_R15 (w) || IS_STQ_R14_R15 (w)
|
||
|| IS_STL_R14_R15 (w) || IS_STL_R18_R15 (w)
|
||
|| IS_ADDIL_SP_MEDIA (w) || IS_ADDI_SP_MEDIA (w) || IS_PTABSL_R18 (w))
|
||
{
|
||
start_pc = here;
|
||
}
|
||
else if (IS_MOV_SP_FP (w) || IS_MOV_SP_FP_MEDIA(w))
|
||
{
|
||
start_pc = here;
|
||
updated_fp = 1;
|
||
}
|
||
else
|
||
if (updated_fp)
|
||
{
|
||
/* Don't bail out yet, we may have arguments stored in
|
||
registers here, according to the debug info, so that
|
||
gdb can print the frames correctly. */
|
||
start_pc = look_for_args_moves (here - insn_size, media_mode);
|
||
break;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
int w = 0xffff & read_memory_integer (here, insn_size);
|
||
here += insn_size;
|
||
|
||
if (IS_STS_R0 (w) || IS_STS_PR (w)
|
||
|| IS_MOV_TO_R15 (w) || IS_MOV_R14 (w)
|
||
|| IS_MOV_R0 (w) || IS_ADD_SP_R0 (w) || IS_MOV_R14_R0 (w))
|
||
{
|
||
start_pc = here;
|
||
}
|
||
else if (IS_MOV_SP_FP (w))
|
||
{
|
||
start_pc = here;
|
||
updated_fp = 1;
|
||
}
|
||
else
|
||
if (updated_fp)
|
||
{
|
||
/* Don't bail out yet, we may have arguments stored in
|
||
registers here, according to the debug info, so that
|
||
gdb can print the frames correctly. */
|
||
start_pc = look_for_args_moves (here - insn_size, media_mode);
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
return start_pc;
|
||
}
|
||
|
||
static CORE_ADDR
|
||
sh_skip_prologue (CORE_ADDR pc)
|
||
{
|
||
CORE_ADDR post_prologue_pc;
|
||
|
||
/* See if we can determine the end of the prologue via the symbol table.
|
||
If so, then return either PC, or the PC after the prologue, whichever
|
||
is greater. */
|
||
post_prologue_pc = after_prologue (pc);
|
||
|
||
/* If after_prologue returned a useful address, then use it. Else
|
||
fall back on the instruction skipping code. */
|
||
if (post_prologue_pc != 0)
|
||
return max (pc, post_prologue_pc);
|
||
else
|
||
return (skip_prologue_hard_way (pc));
|
||
}
|
||
|
||
/* Immediately after a function call, return the saved pc.
|
||
Can't always go through the frames for this because on some machines
|
||
the new frame is not set up until the new function executes
|
||
some instructions.
|
||
|
||
The return address is the value saved in the PR register + 4 */
|
||
static CORE_ADDR
|
||
sh_saved_pc_after_call (struct frame_info *frame)
|
||
{
|
||
return (ADDR_BITS_REMOVE (read_register (gdbarch_tdep (current_gdbarch)->PR_REGNUM)));
|
||
}
|
||
|
||
/* Should call_function allocate stack space for a struct return? */
|
||
static int
|
||
sh_use_struct_convention (int gcc_p, struct type *type)
|
||
{
|
||
return (TYPE_LENGTH (type) > 1);
|
||
}
|
||
|
||
static int
|
||
sh64_use_struct_convention (int gcc_p, struct type *type)
|
||
{
|
||
return (TYPE_LENGTH (type) > 8);
|
||
}
|
||
|
||
/* Store the address of the place in which to copy the structure the
|
||
subroutine will return. This is called from call_function.
|
||
|
||
We store structs through a pointer passed in R2 */
|
||
static void
|
||
sh_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
|
||
{
|
||
write_register (STRUCT_RETURN_REGNUM, (addr));
|
||
}
|
||
|
||
/* Disassemble an instruction. */
|
||
static int
|
||
gdb_print_insn_sh (bfd_vma memaddr, disassemble_info *info)
|
||
{
|
||
info->endian = TARGET_BYTE_ORDER;
|
||
return print_insn_sh (memaddr, info);
|
||
}
|
||
|
||
/* Given a GDB frame, determine the address of the calling function's frame.
|
||
This will be used to create a new GDB frame struct, and then
|
||
INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
|
||
|
||
For us, the frame address is its stack pointer value, so we look up
|
||
the function prologue to determine the caller's sp value, and return it. */
|
||
static CORE_ADDR
|
||
sh_frame_chain (struct frame_info *frame)
|
||
{
|
||
if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
|
||
return frame->frame; /* dummy frame same as caller's frame */
|
||
if (frame->pc && !inside_entry_file (frame->pc))
|
||
return read_memory_integer (FRAME_FP (frame) + frame->extra_info->f_offset, 4);
|
||
else
|
||
return 0;
|
||
}
|
||
|
||
/* Given a register number RN as it appears in an assembly
|
||
instruction, find the corresponding register number in the GDB
|
||
scheme. */
|
||
static int
|
||
translate_insn_rn (int rn, int media_mode)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
||
|
||
/* FIXME: this assumes that the number rn is for a not pseudo
|
||
register only. */
|
||
if (media_mode)
|
||
return rn;
|
||
else
|
||
{
|
||
/* These registers don't have a corresponding compact one. */
|
||
/* FIXME: This is probably not enough. */
|
||
#if 0
|
||
if ((rn >= 16 && rn <= 63) || (rn >= 93 && rn <= 140))
|
||
return rn;
|
||
#endif
|
||
if (rn >= 0 && rn <= tdep->R0_C_REGNUM)
|
||
return tdep->R0_C_REGNUM + rn;
|
||
else
|
||
return rn;
|
||
}
|
||
}
|
||
|
||
static CORE_ADDR
|
||
sh64_frame_chain (struct frame_info *frame)
|
||
{
|
||
if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
|
||
return frame->frame; /* dummy frame same as caller's frame */
|
||
if (frame->pc && !inside_entry_file (frame->pc))
|
||
{
|
||
int media_mode = pc_is_isa32 (frame->pc);
|
||
int size;
|
||
if (gdbarch_tdep (current_gdbarch)->sh_abi == SH_ABI_32)
|
||
size = 4;
|
||
else
|
||
size = REGISTER_RAW_SIZE (translate_insn_rn (FP_REGNUM, media_mode));
|
||
return read_memory_integer (FRAME_FP (frame) + frame->extra_info->f_offset, size);
|
||
}
|
||
else
|
||
return 0;
|
||
}
|
||
|
||
/* Find REGNUM on the stack. Otherwise, it's in an active register. One thing
|
||
we might want to do here is to check REGNUM against the clobber mask, and
|
||
somehow flag it as invalid if it isn't saved on the stack somewhere. This
|
||
would provide a graceful failure mode when trying to get the value of
|
||
caller-saves registers for an inner frame. */
|
||
static CORE_ADDR
|
||
sh_find_callers_reg (struct frame_info *fi, int regnum)
|
||
{
|
||
for (; fi; fi = fi->next)
|
||
if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
|
||
/* When the caller requests PR from the dummy frame, we return PC because
|
||
that's where the previous routine appears to have done a call from. */
|
||
return generic_read_register_dummy (fi->pc, fi->frame, regnum);
|
||
else
|
||
{
|
||
FRAME_INIT_SAVED_REGS (fi);
|
||
if (!fi->pc)
|
||
return 0;
|
||
if (fi->saved_regs[regnum] != 0)
|
||
return read_memory_integer (fi->saved_regs[regnum],
|
||
REGISTER_RAW_SIZE (regnum));
|
||
}
|
||
return read_register (regnum);
|
||
}
|
||
|
||
static CORE_ADDR
|
||
sh64_get_saved_pr (struct frame_info *fi, int pr_regnum)
|
||
{
|
||
int media_mode = 0;
|
||
|
||
for (; fi; fi = fi->next)
|
||
if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
|
||
/* When the caller requests PR from the dummy frame, we return PC because
|
||
that's where the previous routine appears to have done a call from. */
|
||
return generic_read_register_dummy (fi->pc, fi->frame, pr_regnum);
|
||
else
|
||
{
|
||
FRAME_INIT_SAVED_REGS (fi);
|
||
if (!fi->pc)
|
||
return 0;
|
||
|
||
media_mode = pc_is_isa32 (fi->pc);
|
||
|
||
if (fi->saved_regs[pr_regnum] != 0)
|
||
{
|
||
int gdb_reg_num = translate_insn_rn (pr_regnum, media_mode);
|
||
int size = ((gdbarch_tdep (current_gdbarch)->sh_abi == SH_ABI_32)
|
||
? 4
|
||
: REGISTER_RAW_SIZE (gdb_reg_num));
|
||
return read_memory_integer (fi->saved_regs[pr_regnum], size);
|
||
}
|
||
}
|
||
return read_register (pr_regnum);
|
||
}
|
||
|
||
/* Put here the code to store, into a struct frame_saved_regs, the
|
||
addresses of the saved registers of frame described by FRAME_INFO.
|
||
This includes special registers such as pc and fp saved in special
|
||
ways in the stack frame. sp is even more special: the address we
|
||
return for it IS the sp for the next frame. */
|
||
static void
|
||
sh_nofp_frame_init_saved_regs (struct frame_info *fi)
|
||
{
|
||
int *where = (int *) alloca ((NUM_REGS + NUM_PSEUDO_REGS) * sizeof(int));
|
||
int rn;
|
||
int have_fp = 0;
|
||
int depth;
|
||
int pc;
|
||
int opc;
|
||
int insn;
|
||
int r3_val = 0;
|
||
char *dummy_regs = deprecated_generic_find_dummy_frame (fi->pc, fi->frame);
|
||
|
||
if (fi->saved_regs == NULL)
|
||
frame_saved_regs_zalloc (fi);
|
||
else
|
||
memset (fi->saved_regs, 0, SIZEOF_FRAME_SAVED_REGS);
|
||
|
||
if (dummy_regs)
|
||
{
|
||
/* DANGER! This is ONLY going to work if the char buffer format of
|
||
the saved registers is byte-for-byte identical to the
|
||
CORE_ADDR regs[NUM_REGS] format used by struct frame_saved_regs! */
|
||
memcpy (fi->saved_regs, dummy_regs, sizeof (fi->saved_regs));
|
||
return;
|
||
}
|
||
|
||
fi->extra_info->leaf_function = 1;
|
||
fi->extra_info->f_offset = 0;
|
||
|
||
for (rn = 0; rn < NUM_REGS + NUM_PSEUDO_REGS; rn++)
|
||
where[rn] = -1;
|
||
|
||
depth = 0;
|
||
|
||
/* Loop around examining the prologue insns until we find something
|
||
that does not appear to be part of the prologue. But give up
|
||
after 20 of them, since we're getting silly then. */
|
||
|
||
pc = get_pc_function_start (fi->pc);
|
||
if (!pc)
|
||
{
|
||
fi->pc = 0;
|
||
return;
|
||
}
|
||
|
||
for (opc = pc + (2 * 28); pc < opc; pc += 2)
|
||
{
|
||
insn = read_memory_integer (pc, 2);
|
||
/* See where the registers will be saved to */
|
||
if (IS_PUSH (insn))
|
||
{
|
||
rn = GET_PUSHED_REG (insn);
|
||
where[rn] = depth;
|
||
depth += 4;
|
||
}
|
||
else if (IS_STS (insn))
|
||
{
|
||
where[gdbarch_tdep (current_gdbarch)->PR_REGNUM] = depth;
|
||
/* If we're storing the pr then this isn't a leaf */
|
||
fi->extra_info->leaf_function = 0;
|
||
depth += 4;
|
||
}
|
||
else if (IS_MOV_R3 (insn))
|
||
{
|
||
r3_val = ((insn & 0xff) ^ 0x80) - 0x80;
|
||
}
|
||
else if (IS_SHLL_R3 (insn))
|
||
{
|
||
r3_val <<= 1;
|
||
}
|
||
else if (IS_ADD_R3SP (insn))
|
||
{
|
||
depth += -r3_val;
|
||
}
|
||
else if (IS_ADD_SP (insn))
|
||
{
|
||
depth -= ((insn & 0xff) ^ 0x80) - 0x80;
|
||
}
|
||
else if (IS_MOV_SP_FP (insn))
|
||
break;
|
||
#if 0 /* This used to just stop when it found an instruction that
|
||
was not considered part of the prologue. Now, we just
|
||
keep going looking for likely instructions. */
|
||
else
|
||
break;
|
||
#endif
|
||
}
|
||
|
||
/* Now we know how deep things are, we can work out their addresses */
|
||
|
||
for (rn = 0; rn < NUM_REGS + NUM_PSEUDO_REGS; rn++)
|
||
{
|
||
if (where[rn] >= 0)
|
||
{
|
||
if (rn == FP_REGNUM)
|
||
have_fp = 1;
|
||
|
||
fi->saved_regs[rn] = fi->frame - where[rn] + depth - 4;
|
||
}
|
||
else
|
||
{
|
||
fi->saved_regs[rn] = 0;
|
||
}
|
||
}
|
||
|
||
if (have_fp)
|
||
{
|
||
fi->saved_regs[SP_REGNUM] = read_memory_integer (fi->saved_regs[FP_REGNUM], 4);
|
||
}
|
||
else
|
||
{
|
||
fi->saved_regs[SP_REGNUM] = fi->frame - 4;
|
||
}
|
||
|
||
fi->extra_info->f_offset = depth - where[FP_REGNUM] - 4;
|
||
/* Work out the return pc - either from the saved pr or the pr
|
||
value */
|
||
}
|
||
|
||
/* For vectors of 4 floating point registers. */
|
||
static int
|
||
fv_reg_base_num (int fv_regnum)
|
||
{
|
||
int fp_regnum;
|
||
|
||
fp_regnum = FP0_REGNUM +
|
||
(fv_regnum - gdbarch_tdep (current_gdbarch)->FV0_REGNUM) * 4;
|
||
return fp_regnum;
|
||
}
|
||
|
||
/* For double precision floating point registers, i.e 2 fp regs.*/
|
||
static int
|
||
dr_reg_base_num (int dr_regnum)
|
||
{
|
||
int fp_regnum;
|
||
|
||
fp_regnum = FP0_REGNUM +
|
||
(dr_regnum - gdbarch_tdep (current_gdbarch)->DR0_REGNUM) * 2;
|
||
return fp_regnum;
|
||
}
|
||
|
||
/* For pairs of floating point registers */
|
||
static int
|
||
fpp_reg_base_num (int fpp_regnum)
|
||
{
|
||
int fp_regnum;
|
||
|
||
fp_regnum = FP0_REGNUM +
|
||
(fpp_regnum - gdbarch_tdep (current_gdbarch)->FPP0_REGNUM) * 2;
|
||
return fp_regnum;
|
||
}
|
||
|
||
static int
|
||
is_media_pseudo (int rn)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
||
|
||
return (rn >= tdep->DR0_REGNUM
|
||
&& rn <= tdep->FV_LAST_REGNUM);
|
||
}
|
||
|
||
int
|
||
sh64_get_gdb_regnum (int gcc_regnum, CORE_ADDR pc)
|
||
{
|
||
return translate_insn_rn (gcc_regnum, pc_is_isa32 (pc));
|
||
}
|
||
|
||
static int
|
||
sh64_media_reg_base_num (int reg_nr)
|
||
{
|
||
int base_regnum = -1;
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
||
|
||
if (reg_nr >= tdep->DR0_REGNUM
|
||
&& reg_nr <= tdep->DR_LAST_REGNUM)
|
||
base_regnum = dr_reg_base_num (reg_nr);
|
||
|
||
else if (reg_nr >= tdep->FPP0_REGNUM
|
||
&& reg_nr <= tdep->FPP_LAST_REGNUM)
|
||
base_regnum = fpp_reg_base_num (reg_nr);
|
||
|
||
else if (reg_nr >= tdep->FV0_REGNUM
|
||
&& reg_nr <= tdep->FV_LAST_REGNUM)
|
||
base_regnum = fv_reg_base_num (reg_nr);
|
||
|
||
return base_regnum;
|
||
}
|
||
|
||
/* *INDENT-OFF* */
|
||
/*
|
||
SH COMPACT MODE (ISA 16) (all pseudo) 221-272
|
||
GDB_REGNUM BASE_REGNUM
|
||
r0_c 221 0
|
||
r1_c 222 1
|
||
r2_c 223 2
|
||
r3_c 224 3
|
||
r4_c 225 4
|
||
r5_c 226 5
|
||
r6_c 227 6
|
||
r7_c 228 7
|
||
r8_c 229 8
|
||
r9_c 230 9
|
||
r10_c 231 10
|
||
r11_c 232 11
|
||
r12_c 233 12
|
||
r13_c 234 13
|
||
r14_c 235 14
|
||
r15_c 236 15
|
||
|
||
pc_c 237 64
|
||
gbr_c 238 16
|
||
mach_c 239 17
|
||
macl_c 240 17
|
||
pr_c 241 18
|
||
t_c 242 19
|
||
fpscr_c 243 76
|
||
fpul_c 244 109
|
||
|
||
fr0_c 245 77
|
||
fr1_c 246 78
|
||
fr2_c 247 79
|
||
fr3_c 248 80
|
||
fr4_c 249 81
|
||
fr5_c 250 82
|
||
fr6_c 251 83
|
||
fr7_c 252 84
|
||
fr8_c 253 85
|
||
fr9_c 254 86
|
||
fr10_c 255 87
|
||
fr11_c 256 88
|
||
fr12_c 257 89
|
||
fr13_c 258 90
|
||
fr14_c 259 91
|
||
fr15_c 260 92
|
||
|
||
dr0_c 261 77
|
||
dr2_c 262 79
|
||
dr4_c 263 81
|
||
dr6_c 264 83
|
||
dr8_c 265 85
|
||
dr10_c 266 87
|
||
dr12_c 267 89
|
||
dr14_c 268 91
|
||
|
||
fv0_c 269 77
|
||
fv4_c 270 81
|
||
fv8_c 271 85
|
||
fv12_c 272 91
|
||
*/
|
||
/* *INDENT-ON* */
|
||
static int
|
||
sh64_compact_reg_base_num (int reg_nr)
|
||
{
|
||
int base_regnum = -1;
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
||
|
||
/* general register N maps to general register N */
|
||
if (reg_nr >= tdep->R0_C_REGNUM
|
||
&& reg_nr <= tdep->R_LAST_C_REGNUM)
|
||
base_regnum = reg_nr - tdep->R0_C_REGNUM;
|
||
|
||
/* floating point register N maps to floating point register N */
|
||
else if (reg_nr >= tdep->FP0_C_REGNUM
|
||
&& reg_nr <= tdep->FP_LAST_C_REGNUM)
|
||
base_regnum = reg_nr - tdep->FP0_C_REGNUM + FP0_REGNUM;
|
||
|
||
/* double prec register N maps to base regnum for double prec register N */
|
||
else if (reg_nr >= tdep->DR0_C_REGNUM
|
||
&& reg_nr <= tdep->DR_LAST_C_REGNUM)
|
||
base_regnum = dr_reg_base_num (tdep->DR0_REGNUM
|
||
+ reg_nr - tdep->DR0_C_REGNUM);
|
||
|
||
/* vector N maps to base regnum for vector register N */
|
||
else if (reg_nr >= tdep->FV0_C_REGNUM
|
||
&& reg_nr <= tdep->FV_LAST_C_REGNUM)
|
||
base_regnum = fv_reg_base_num (tdep->FV0_REGNUM
|
||
+ reg_nr - tdep->FV0_C_REGNUM);
|
||
|
||
else if (reg_nr == tdep->PC_C_REGNUM)
|
||
base_regnum = PC_REGNUM;
|
||
|
||
else if (reg_nr == tdep->GBR_C_REGNUM)
|
||
base_regnum = 16;
|
||
|
||
else if (reg_nr == tdep->MACH_C_REGNUM
|
||
|| reg_nr == tdep->MACL_C_REGNUM)
|
||
base_regnum = 17;
|
||
|
||
else if (reg_nr == tdep->PR_C_REGNUM)
|
||
base_regnum = 18;
|
||
|
||
else if (reg_nr == tdep->T_C_REGNUM)
|
||
base_regnum = 19;
|
||
|
||
else if (reg_nr == tdep->FPSCR_C_REGNUM)
|
||
base_regnum = tdep->FPSCR_REGNUM; /*???? this register is a mess. */
|
||
|
||
else if (reg_nr == tdep->FPUL_C_REGNUM)
|
||
base_regnum = FP0_REGNUM + 32;
|
||
|
||
return base_regnum;
|
||
}
|
||
|
||
/* Given a register number RN (according to the gdb scheme) , return
|
||
its corresponding architectural register. In media mode, only a
|
||
subset of the registers is pseudo registers. For compact mode, all
|
||
the registers are pseudo. */
|
||
static int
|
||
translate_rn_to_arch_reg_num (int rn, int media_mode)
|
||
{
|
||
|
||
if (media_mode)
|
||
{
|
||
if (!is_media_pseudo (rn))
|
||
return rn;
|
||
else
|
||
return sh64_media_reg_base_num (rn);
|
||
}
|
||
else
|
||
/* All compact registers are pseudo. */
|
||
return sh64_compact_reg_base_num (rn);
|
||
}
|
||
|
||
static int
|
||
sign_extend (int value, int bits)
|
||
{
|
||
value = value & ((1 << bits) - 1);
|
||
return (value & (1 << (bits - 1))
|
||
? value | (~((1 << bits) - 1))
|
||
: value);
|
||
}
|
||
|
||
static void
|
||
sh64_nofp_frame_init_saved_regs (struct frame_info *fi)
|
||
{
|
||
int *where = (int *) alloca ((NUM_REGS + NUM_PSEUDO_REGS) * sizeof (int));
|
||
int rn;
|
||
int have_fp = 0;
|
||
int fp_regnum;
|
||
int sp_regnum;
|
||
int depth;
|
||
int pc;
|
||
int opc;
|
||
int insn;
|
||
int r0_val = 0;
|
||
int media_mode = 0;
|
||
int insn_size;
|
||
int gdb_register_number;
|
||
int register_number;
|
||
char *dummy_regs = deprecated_generic_find_dummy_frame (fi->pc, fi->frame);
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
||
|
||
if (fi->saved_regs == NULL)
|
||
frame_saved_regs_zalloc (fi);
|
||
else
|
||
memset (fi->saved_regs, 0, SIZEOF_FRAME_SAVED_REGS);
|
||
|
||
if (dummy_regs)
|
||
{
|
||
/* DANGER! This is ONLY going to work if the char buffer format of
|
||
the saved registers is byte-for-byte identical to the
|
||
CORE_ADDR regs[NUM_REGS] format used by struct frame_saved_regs! */
|
||
memcpy (fi->saved_regs, dummy_regs, sizeof (fi->saved_regs));
|
||
return;
|
||
}
|
||
|
||
fi->extra_info->leaf_function = 1;
|
||
fi->extra_info->f_offset = 0;
|
||
|
||
for (rn = 0; rn < NUM_REGS + NUM_PSEUDO_REGS; rn++)
|
||
where[rn] = -1;
|
||
|
||
depth = 0;
|
||
|
||
/* Loop around examining the prologue insns until we find something
|
||
that does not appear to be part of the prologue. But give up
|
||
after 20 of them, since we're getting silly then. */
|
||
|
||
pc = get_pc_function_start (fi->pc);
|
||
if (!pc)
|
||
{
|
||
fi->pc = 0;
|
||
return;
|
||
}
|
||
|
||
if (pc_is_isa32 (pc))
|
||
{
|
||
media_mode = 1;
|
||
insn_size = 4;
|
||
}
|
||
else
|
||
{
|
||
media_mode = 0;
|
||
insn_size = 2;
|
||
}
|
||
|
||
/* The frame pointer register is general register 14 in shmedia and
|
||
shcompact modes. In sh compact it is a pseudo register. Same goes
|
||
for the stack pointer register, which is register 15. */
|
||
fp_regnum = translate_insn_rn (FP_REGNUM, media_mode);
|
||
sp_regnum = translate_insn_rn (SP_REGNUM, media_mode);
|
||
|
||
for (opc = pc + (insn_size * 28); pc < opc; pc += insn_size)
|
||
{
|
||
insn = read_memory_integer (media_mode ? UNMAKE_ISA32_ADDR (pc) : pc,
|
||
insn_size);
|
||
|
||
if (media_mode == 0)
|
||
{
|
||
if (IS_STS_PR (insn))
|
||
{
|
||
int next_insn = read_memory_integer (pc + insn_size, insn_size);
|
||
if (IS_MOV_TO_R15 (next_insn))
|
||
{
|
||
int reg_nr = tdep->PR_C_REGNUM;
|
||
|
||
where[reg_nr] = depth - ((((next_insn & 0xf) ^ 0x8) - 0x8) << 2);
|
||
fi->extra_info->leaf_function = 0;
|
||
pc += insn_size;
|
||
}
|
||
}
|
||
else if (IS_MOV_R14 (insn))
|
||
{
|
||
where[fp_regnum] = depth - ((((insn & 0xf) ^ 0x8) - 0x8) << 2);
|
||
}
|
||
|
||
else if (IS_MOV_R0 (insn))
|
||
{
|
||
/* Put in R0 the offset from SP at which to store some
|
||
registers. We are interested in this value, because it
|
||
will tell us where the given registers are stored within
|
||
the frame. */
|
||
r0_val = ((insn & 0xff) ^ 0x80) - 0x80;
|
||
}
|
||
else if (IS_ADD_SP_R0 (insn))
|
||
{
|
||
/* This instruction still prepares r0, but we don't care.
|
||
We already have the offset in r0_val. */
|
||
}
|
||
else if (IS_STS_R0 (insn))
|
||
{
|
||
/* Store PR at r0_val-4 from SP. Decrement r0 by 4*/
|
||
int reg_nr = tdep->PR_C_REGNUM;
|
||
where[reg_nr] = depth - (r0_val - 4);
|
||
r0_val -= 4;
|
||
fi->extra_info->leaf_function = 0;
|
||
}
|
||
else if (IS_MOV_R14_R0 (insn))
|
||
{
|
||
/* Store R14 at r0_val-4 from SP. Decrement r0 by 4 */
|
||
where[fp_regnum] = depth - (r0_val - 4);
|
||
r0_val -= 4;
|
||
}
|
||
|
||
else if (IS_ADD_SP (insn))
|
||
{
|
||
depth -= ((insn & 0xff) ^ 0x80) - 0x80;
|
||
}
|
||
else if (IS_MOV_SP_FP (insn))
|
||
break;
|
||
}
|
||
else
|
||
{
|
||
if (IS_ADDIL_SP_MEDIA (insn)
|
||
|| IS_ADDI_SP_MEDIA (insn))
|
||
{
|
||
depth -= sign_extend ((((insn & 0xffc00) ^ 0x80000) - 0x80000) >> 10, 9);
|
||
}
|
||
|
||
else if (IS_STQ_R18_R15 (insn))
|
||
{
|
||
where[tdep->PR_REGNUM] =
|
||
depth - (sign_extend ((insn & 0xffc00) >> 10, 9) << 3);
|
||
fi->extra_info->leaf_function = 0;
|
||
}
|
||
|
||
else if (IS_STL_R18_R15 (insn))
|
||
{
|
||
where[tdep->PR_REGNUM] =
|
||
depth - (sign_extend ((insn & 0xffc00) >> 10, 9) << 2);
|
||
fi->extra_info->leaf_function = 0;
|
||
}
|
||
|
||
else if (IS_STQ_R14_R15 (insn))
|
||
{
|
||
where[fp_regnum] = depth - (sign_extend ((insn & 0xffc00) >> 10, 9) << 3);
|
||
}
|
||
|
||
else if (IS_STL_R14_R15 (insn))
|
||
{
|
||
where[fp_regnum] = depth - (sign_extend ((insn & 0xffc00) >> 10, 9) << 2);
|
||
}
|
||
|
||
else if (IS_MOV_SP_FP_MEDIA (insn))
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Now we know how deep things are, we can work out their addresses. */
|
||
for (rn = 0; rn < NUM_REGS + NUM_PSEUDO_REGS; rn++)
|
||
{
|
||
register_number = translate_rn_to_arch_reg_num (rn, media_mode);
|
||
|
||
if (where[rn] >= 0)
|
||
{
|
||
if (rn == fp_regnum)
|
||
have_fp = 1;
|
||
|
||
/* Watch out! saved_regs is only for the real registers, and
|
||
doesn't include space for the pseudo registers. */
|
||
fi->saved_regs[register_number]= fi->frame - where[rn] + depth;
|
||
|
||
}
|
||
else
|
||
fi->saved_regs[register_number] = 0;
|
||
}
|
||
|
||
if (have_fp)
|
||
{
|
||
/* SP_REGNUM is 15. For shmedia 15 is the real register. For
|
||
shcompact 15 is the arch register corresponding to the pseudo
|
||
register r15 which still is the SP register. */
|
||
/* The place on the stack where fp is stored contains the sp of
|
||
the caller. */
|
||
/* Again, saved_registers contains only space for the real registers,
|
||
so we store in FP_REGNUM position. */
|
||
int size;
|
||
if (tdep->sh_abi == SH_ABI_32)
|
||
size = 4;
|
||
else
|
||
size = REGISTER_RAW_SIZE (fp_regnum);
|
||
fi->saved_regs[sp_regnum] = read_memory_integer (fi->saved_regs[fp_regnum], size);
|
||
}
|
||
else
|
||
fi->saved_regs[sp_regnum] = fi->frame;
|
||
|
||
fi->extra_info->f_offset = depth - where[fp_regnum];
|
||
}
|
||
|
||
static void
|
||
sh_fp_frame_init_saved_regs (struct frame_info *fi)
|
||
{
|
||
int *where = (int *) alloca ((NUM_REGS + NUM_PSEUDO_REGS) * sizeof (int));
|
||
int rn;
|
||
int have_fp = 0;
|
||
int depth;
|
||
int pc;
|
||
int opc;
|
||
int insn;
|
||
int r3_val = 0;
|
||
char *dummy_regs = deprecated_generic_find_dummy_frame (fi->pc, fi->frame);
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
||
|
||
if (fi->saved_regs == NULL)
|
||
frame_saved_regs_zalloc (fi);
|
||
else
|
||
memset (fi->saved_regs, 0, SIZEOF_FRAME_SAVED_REGS);
|
||
|
||
if (dummy_regs)
|
||
{
|
||
/* DANGER! This is ONLY going to work if the char buffer format of
|
||
the saved registers is byte-for-byte identical to the
|
||
CORE_ADDR regs[NUM_REGS] format used by struct frame_saved_regs! */
|
||
memcpy (fi->saved_regs, dummy_regs, sizeof (fi->saved_regs));
|
||
return;
|
||
}
|
||
|
||
fi->extra_info->leaf_function = 1;
|
||
fi->extra_info->f_offset = 0;
|
||
|
||
for (rn = 0; rn < NUM_REGS + NUM_PSEUDO_REGS; rn++)
|
||
where[rn] = -1;
|
||
|
||
depth = 0;
|
||
|
||
/* Loop around examining the prologue insns until we find something
|
||
that does not appear to be part of the prologue. But give up
|
||
after 20 of them, since we're getting silly then. */
|
||
|
||
pc = get_pc_function_start (fi->pc);
|
||
if (!pc)
|
||
{
|
||
fi->pc = 0;
|
||
return;
|
||
}
|
||
|
||
for (opc = pc + (2 * 28); pc < opc; pc += 2)
|
||
{
|
||
insn = read_memory_integer (pc, 2);
|
||
/* See where the registers will be saved to */
|
||
if (IS_PUSH (insn))
|
||
{
|
||
rn = GET_PUSHED_REG (insn);
|
||
where[rn] = depth;
|
||
depth += 4;
|
||
}
|
||
else if (IS_STS (insn))
|
||
{
|
||
where[tdep->PR_REGNUM] = depth;
|
||
/* If we're storing the pr then this isn't a leaf */
|
||
fi->extra_info->leaf_function = 0;
|
||
depth += 4;
|
||
}
|
||
else if (IS_MOV_R3 (insn))
|
||
{
|
||
r3_val = ((insn & 0xff) ^ 0x80) - 0x80;
|
||
}
|
||
else if (IS_SHLL_R3 (insn))
|
||
{
|
||
r3_val <<= 1;
|
||
}
|
||
else if (IS_ADD_R3SP (insn))
|
||
{
|
||
depth += -r3_val;
|
||
}
|
||
else if (IS_ADD_SP (insn))
|
||
{
|
||
depth -= ((insn & 0xff) ^ 0x80) - 0x80;
|
||
}
|
||
else if (IS_FMOV (insn))
|
||
{
|
||
if (read_register (tdep->FPSCR_REGNUM) & FPSCR_SZ)
|
||
{
|
||
depth += 8;
|
||
}
|
||
else
|
||
{
|
||
depth += 4;
|
||
}
|
||
}
|
||
else if (IS_MOV_SP_FP (insn))
|
||
break;
|
||
#if 0 /* This used to just stop when it found an instruction that
|
||
was not considered part of the prologue. Now, we just
|
||
keep going looking for likely instructions. */
|
||
else
|
||
break;
|
||
#endif
|
||
}
|
||
|
||
/* Now we know how deep things are, we can work out their addresses */
|
||
|
||
for (rn = 0; rn < NUM_REGS + NUM_PSEUDO_REGS; rn++)
|
||
{
|
||
if (where[rn] >= 0)
|
||
{
|
||
if (rn == FP_REGNUM)
|
||
have_fp = 1;
|
||
|
||
fi->saved_regs[rn] = fi->frame - where[rn] + depth - 4;
|
||
}
|
||
else
|
||
{
|
||
fi->saved_regs[rn] = 0;
|
||
}
|
||
}
|
||
|
||
if (have_fp)
|
||
{
|
||
fi->saved_regs[SP_REGNUM] =
|
||
read_memory_integer (fi->saved_regs[FP_REGNUM], 4);
|
||
}
|
||
else
|
||
{
|
||
fi->saved_regs[SP_REGNUM] = fi->frame - 4;
|
||
}
|
||
|
||
fi->extra_info->f_offset = depth - where[FP_REGNUM] - 4;
|
||
/* Work out the return pc - either from the saved pr or the pr
|
||
value */
|
||
}
|
||
|
||
/* Initialize the extra info saved in a FRAME */
|
||
static void
|
||
sh_init_extra_frame_info (int fromleaf, struct frame_info *fi)
|
||
{
|
||
|
||
fi->extra_info = (struct frame_extra_info *)
|
||
frame_obstack_alloc (sizeof (struct frame_extra_info));
|
||
|
||
if (fi->next)
|
||
fi->pc = FRAME_SAVED_PC (fi->next);
|
||
|
||
if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
|
||
{
|
||
/* We need to setup fi->frame here because run_stack_dummy gets it wrong
|
||
by assuming it's always FP. */
|
||
fi->frame = generic_read_register_dummy (fi->pc, fi->frame,
|
||
SP_REGNUM);
|
||
fi->extra_info->return_pc = generic_read_register_dummy (fi->pc,
|
||
fi->frame,
|
||
PC_REGNUM);
|
||
fi->extra_info->f_offset = -(CALL_DUMMY_LENGTH + 4);
|
||
fi->extra_info->leaf_function = 0;
|
||
return;
|
||
}
|
||
else
|
||
{
|
||
FRAME_INIT_SAVED_REGS (fi);
|
||
fi->extra_info->return_pc =
|
||
sh_find_callers_reg (fi, gdbarch_tdep (current_gdbarch)->PR_REGNUM);
|
||
}
|
||
}
|
||
|
||
static void
|
||
sh64_init_extra_frame_info (int fromleaf, struct frame_info *fi)
|
||
{
|
||
int media_mode = pc_is_isa32 (fi->pc);
|
||
|
||
fi->extra_info = (struct frame_extra_info *)
|
||
frame_obstack_alloc (sizeof (struct frame_extra_info));
|
||
|
||
if (fi->next)
|
||
fi->pc = FRAME_SAVED_PC (fi->next);
|
||
|
||
if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
|
||
{
|
||
/* We need to setup fi->frame here because run_stack_dummy gets it wrong
|
||
by assuming it's always FP. */
|
||
fi->frame = generic_read_register_dummy (fi->pc, fi->frame,
|
||
SP_REGNUM);
|
||
fi->extra_info->return_pc =
|
||
generic_read_register_dummy (fi->pc, fi->frame, PC_REGNUM);
|
||
fi->extra_info->f_offset = -(CALL_DUMMY_LENGTH + 4);
|
||
fi->extra_info->leaf_function = 0;
|
||
return;
|
||
}
|
||
else
|
||
{
|
||
FRAME_INIT_SAVED_REGS (fi);
|
||
fi->extra_info->return_pc =
|
||
sh64_get_saved_pr (fi, gdbarch_tdep (current_gdbarch)->PR_REGNUM);
|
||
}
|
||
}
|
||
|
||
void
|
||
sh64_get_saved_register (char *raw_buffer, int *optimized, CORE_ADDR *addrp,
|
||
struct frame_info *frame, int regnum,
|
||
enum lval_type *lval)
|
||
{
|
||
int media_mode;
|
||
int live_regnum = regnum;
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
||
|
||
if (!target_has_registers)
|
||
error ("No registers.");
|
||
|
||
/* Normal systems don't optimize out things with register numbers. */
|
||
if (optimized != NULL)
|
||
*optimized = 0;
|
||
|
||
if (addrp) /* default assumption: not found in memory */
|
||
*addrp = 0;
|
||
|
||
if (raw_buffer)
|
||
memset (raw_buffer, 0, sizeof (raw_buffer));
|
||
|
||
/* We must do this here, before the following while loop changes
|
||
frame, and makes it NULL. If this is a media register number,
|
||
but we are in compact mode, it will become the corresponding
|
||
compact pseudo register. If there is no corresponding compact
|
||
pseudo-register what do we do?*/
|
||
media_mode = pc_is_isa32 (frame->pc);
|
||
live_regnum = translate_insn_rn (regnum, media_mode);
|
||
|
||
/* Note: since the current frame's registers could only have been
|
||
saved by frames INTERIOR TO the current frame, we skip examining
|
||
the current frame itself: otherwise, we would be getting the
|
||
previous frame's registers which were saved by the current frame. */
|
||
|
||
while (frame && ((frame = frame->next) != NULL))
|
||
{
|
||
if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
|
||
{
|
||
if (lval) /* found it in a CALL_DUMMY frame */
|
||
*lval = not_lval;
|
||
if (raw_buffer)
|
||
memcpy (raw_buffer,
|
||
(deprecated_generic_find_dummy_frame (frame->pc, frame->frame)
|
||
+ REGISTER_BYTE (regnum)),
|
||
REGISTER_RAW_SIZE (regnum));
|
||
return;
|
||
}
|
||
|
||
FRAME_INIT_SAVED_REGS (frame);
|
||
if (frame->saved_regs != NULL
|
||
&& frame->saved_regs[regnum] != 0)
|
||
{
|
||
if (lval) /* found it saved on the stack */
|
||
*lval = lval_memory;
|
||
if (regnum == SP_REGNUM)
|
||
{
|
||
if (raw_buffer) /* SP register treated specially */
|
||
store_address (raw_buffer, REGISTER_RAW_SIZE (regnum),
|
||
frame->saved_regs[regnum]);
|
||
}
|
||
else
|
||
{ /* any other register */
|
||
|
||
if (addrp)
|
||
*addrp = frame->saved_regs[regnum];
|
||
if (raw_buffer)
|
||
{
|
||
int size;
|
||
if (tdep->sh_abi == SH_ABI_32
|
||
&& (live_regnum == FP_REGNUM
|
||
|| live_regnum == tdep->PR_REGNUM))
|
||
size = 4;
|
||
else
|
||
size = REGISTER_RAW_SIZE (live_regnum);
|
||
if (TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
|
||
read_memory (frame->saved_regs[regnum], raw_buffer, size);
|
||
else
|
||
read_memory (frame->saved_regs[regnum],
|
||
raw_buffer
|
||
+ REGISTER_RAW_SIZE (live_regnum)
|
||
- size,
|
||
size);
|
||
}
|
||
}
|
||
return;
|
||
}
|
||
}
|
||
|
||
/* If we get thru the loop to this point, it means the register was
|
||
not saved in any frame. Return the actual live-register value. */
|
||
|
||
if (lval) /* found it in a live register */
|
||
*lval = lval_register;
|
||
if (addrp)
|
||
*addrp = REGISTER_BYTE (live_regnum);
|
||
if (raw_buffer)
|
||
read_register_gen (live_regnum, raw_buffer);
|
||
}
|
||
|
||
/* Extract from an array REGBUF containing the (raw) register state
|
||
the address in which a function should return its structure value,
|
||
as a CORE_ADDR (or an expression that can be used as one). */
|
||
static CORE_ADDR
|
||
sh_extract_struct_value_address (char *regbuf)
|
||
{
|
||
return (extract_address ((regbuf), REGISTER_RAW_SIZE (0)));
|
||
}
|
||
|
||
static CORE_ADDR
|
||
sh64_extract_struct_value_address (char *regbuf)
|
||
{
|
||
return (extract_address ((regbuf + REGISTER_BYTE (STRUCT_RETURN_REGNUM)),
|
||
REGISTER_RAW_SIZE (STRUCT_RETURN_REGNUM)));
|
||
}
|
||
|
||
static CORE_ADDR
|
||
sh_frame_saved_pc (struct frame_info *frame)
|
||
{
|
||
return ((frame)->extra_info->return_pc);
|
||
}
|
||
|
||
/* Discard from the stack the innermost frame,
|
||
restoring all saved registers. */
|
||
static void
|
||
sh_pop_frame (void)
|
||
{
|
||
register struct frame_info *frame = get_current_frame ();
|
||
register CORE_ADDR fp;
|
||
register int regnum;
|
||
|
||
if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
|
||
generic_pop_dummy_frame ();
|
||
else
|
||
{
|
||
fp = FRAME_FP (frame);
|
||
FRAME_INIT_SAVED_REGS (frame);
|
||
|
||
/* Copy regs from where they were saved in the frame */
|
||
for (regnum = 0; regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
|
||
if (frame->saved_regs[regnum])
|
||
write_register (regnum,
|
||
read_memory_integer (frame->saved_regs[regnum], 4));
|
||
|
||
write_register (PC_REGNUM, frame->extra_info->return_pc);
|
||
write_register (SP_REGNUM, fp + 4);
|
||
}
|
||
flush_cached_frames ();
|
||
}
|
||
|
||
/* Used in the 'return' command. */
|
||
static void
|
||
sh64_pop_frame (void)
|
||
{
|
||
register struct frame_info *frame = get_current_frame ();
|
||
register CORE_ADDR fp;
|
||
register int regnum;
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
||
|
||
int media_mode = pc_is_isa32 (frame->pc);
|
||
|
||
if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
|
||
generic_pop_dummy_frame ();
|
||
else
|
||
{
|
||
fp = FRAME_FP (frame);
|
||
FRAME_INIT_SAVED_REGS (frame);
|
||
|
||
/* Copy regs from where they were saved in the frame */
|
||
for (regnum = 0; regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
|
||
if (frame->saved_regs[regnum])
|
||
{
|
||
int size;
|
||
if (tdep->sh_abi == SH_ABI_32
|
||
&& (regnum == FP_REGNUM
|
||
|| regnum == tdep->PR_REGNUM))
|
||
size = 4;
|
||
else
|
||
size = REGISTER_RAW_SIZE (translate_insn_rn (regnum,
|
||
media_mode));
|
||
write_register (regnum,
|
||
read_memory_integer (frame->saved_regs[regnum],
|
||
size));
|
||
}
|
||
|
||
write_register (PC_REGNUM, frame->extra_info->return_pc);
|
||
write_register (SP_REGNUM, fp + 8);
|
||
}
|
||
flush_cached_frames ();
|
||
}
|
||
|
||
/* Function: push_arguments
|
||
Setup the function arguments for calling a function in the inferior.
|
||
|
||
On the Hitachi SH architecture, there are four registers (R4 to R7)
|
||
which are dedicated for passing function arguments. Up to the first
|
||
four arguments (depending on size) may go into these registers.
|
||
The rest go on the stack.
|
||
|
||
Arguments that are smaller than 4 bytes will still take up a whole
|
||
register or a whole 32-bit word on the stack, and will be
|
||
right-justified in the register or the stack word. This includes
|
||
chars, shorts, and small aggregate types.
|
||
|
||
Arguments that are larger than 4 bytes may be split between two or
|
||
more registers. If there are not enough registers free, an argument
|
||
may be passed partly in a register (or registers), and partly on the
|
||
stack. This includes doubles, long longs, and larger aggregates.
|
||
As far as I know, there is no upper limit to the size of aggregates
|
||
that will be passed in this way; in other words, the convention of
|
||
passing a pointer to a large aggregate instead of a copy is not used.
|
||
|
||
An exceptional case exists for struct arguments (and possibly other
|
||
aggregates such as arrays) if the size is larger than 4 bytes but
|
||
not a multiple of 4 bytes. In this case the argument is never split
|
||
between the registers and the stack, but instead is copied in its
|
||
entirety onto the stack, AND also copied into as many registers as
|
||
there is room for. In other words, space in registers permitting,
|
||
two copies of the same argument are passed in. As far as I can tell,
|
||
only the one on the stack is used, although that may be a function
|
||
of the level of compiler optimization. I suspect this is a compiler
|
||
bug. Arguments of these odd sizes are left-justified within the
|
||
word (as opposed to arguments smaller than 4 bytes, which are
|
||
right-justified).
|
||
|
||
If the function is to return an aggregate type such as a struct, it
|
||
is either returned in the normal return value register R0 (if its
|
||
size is no greater than one byte), or else the caller must allocate
|
||
space into which the callee will copy the return value (if the size
|
||
is greater than one byte). In this case, a pointer to the return
|
||
value location is passed into the callee in register R2, which does
|
||
not displace any of the other arguments passed in via registers R4
|
||
to R7. */
|
||
|
||
static CORE_ADDR
|
||
sh_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
|
||
int struct_return, CORE_ADDR struct_addr)
|
||
{
|
||
int stack_offset, stack_alloc;
|
||
int argreg;
|
||
int argnum;
|
||
struct type *type;
|
||
CORE_ADDR regval;
|
||
char *val;
|
||
char valbuf[4];
|
||
int len;
|
||
int odd_sized_struct;
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
||
|
||
/* first force sp to a 4-byte alignment */
|
||
sp = sp & ~3;
|
||
|
||
/* The "struct return pointer" pseudo-argument has its own dedicated
|
||
register */
|
||
if (struct_return)
|
||
write_register (STRUCT_RETURN_REGNUM, struct_addr);
|
||
|
||
/* Now make sure there's space on the stack */
|
||
for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
|
||
stack_alloc += ((TYPE_LENGTH (VALUE_TYPE (args[argnum])) + 3) & ~3);
|
||
sp -= stack_alloc; /* make room on stack for args */
|
||
|
||
/* Now load as many as possible of the first arguments into
|
||
registers, and push the rest onto the stack. There are 16 bytes
|
||
in four registers available. Loop thru args from first to last. */
|
||
|
||
argreg = tdep->ARG0_REGNUM;
|
||
for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
|
||
{
|
||
type = VALUE_TYPE (args[argnum]);
|
||
len = TYPE_LENGTH (type);
|
||
memset (valbuf, 0, sizeof (valbuf));
|
||
if (len < 4)
|
||
{
|
||
/* value gets right-justified in the register or stack word */
|
||
memcpy (valbuf + (4 - len),
|
||
(char *) VALUE_CONTENTS (args[argnum]), len);
|
||
val = valbuf;
|
||
}
|
||
else
|
||
val = (char *) VALUE_CONTENTS (args[argnum]);
|
||
|
||
if (len > 4 && (len & 3) != 0)
|
||
odd_sized_struct = 1; /* such structs go entirely on stack */
|
||
else
|
||
odd_sized_struct = 0;
|
||
while (len > 0)
|
||
{
|
||
if (argreg > tdep->ARGLAST_REGNUM
|
||
|| odd_sized_struct)
|
||
{
|
||
/* must go on the stack */
|
||
write_memory (sp + stack_offset, val, 4);
|
||
stack_offset += 4;
|
||
}
|
||
/* NOTE WELL!!!!! This is not an "else if" clause!!!
|
||
That's because some *&^%$ things get passed on the stack
|
||
AND in the registers! */
|
||
if (argreg <= tdep->ARGLAST_REGNUM)
|
||
{
|
||
/* there's room in a register */
|
||
regval = extract_address (val, REGISTER_RAW_SIZE (argreg));
|
||
write_register (argreg++, regval);
|
||
}
|
||
/* Store the value 4 bytes at a time. This means that things
|
||
larger than 4 bytes may go partly in registers and partly
|
||
on the stack. */
|
||
len -= REGISTER_RAW_SIZE (argreg);
|
||
val += REGISTER_RAW_SIZE (argreg);
|
||
}
|
||
}
|
||
return sp;
|
||
}
|
||
|
||
/* R2-R9 for integer types and integer equivalent (char, pointers) and
|
||
non-scalar (struct, union) elements (even if the elements are
|
||
floats).
|
||
FR0-FR11 for single precision floating point (float)
|
||
DR0-DR10 for double precision floating point (double)
|
||
|
||
If a float is argument number 3 (for instance) and arguments number
|
||
1,2, and 4 are integer, the mapping will be:
|
||
arg1 -->R2, arg2 --> R3, arg3 -->FR0, arg4 --> R5. I.e. R4 is not used.
|
||
|
||
If a float is argument number 10 (for instance) and arguments number
|
||
1 through 10 are integer, the mapping will be:
|
||
arg1->R2, arg2->R3, arg3->R4, arg4->R5, arg5->R6, arg6->R7, arg7->R8,
|
||
arg8->R9, arg9->(0,SP)stack(8-byte aligned), arg10->FR0, arg11->stack(16,SP).
|
||
I.e. there is hole in the stack.
|
||
|
||
Different rules apply for variable arguments functions, and for functions
|
||
for which the prototype is not known. */
|
||
|
||
static CORE_ADDR
|
||
sh64_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
|
||
int struct_return, CORE_ADDR struct_addr)
|
||
{
|
||
int stack_offset, stack_alloc;
|
||
int int_argreg;
|
||
int float_argreg;
|
||
int double_argreg;
|
||
int float_arg_index = 0;
|
||
int double_arg_index = 0;
|
||
int argnum;
|
||
struct type *type;
|
||
CORE_ADDR regval;
|
||
char *val;
|
||
char valbuf[8];
|
||
char valbuf_tmp[8];
|
||
int len;
|
||
int argreg_size;
|
||
int fp_args[12];
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
||
|
||
memset (fp_args, 0, sizeof (fp_args));
|
||
|
||
/* first force sp to a 8-byte alignment */
|
||
sp = sp & ~7;
|
||
|
||
/* The "struct return pointer" pseudo-argument has its own dedicated
|
||
register */
|
||
|
||
if (struct_return)
|
||
write_register (STRUCT_RETURN_REGNUM, struct_addr);
|
||
|
||
/* Now make sure there's space on the stack */
|
||
for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
|
||
stack_alloc += ((TYPE_LENGTH (VALUE_TYPE (args[argnum])) + 7) & ~7);
|
||
sp -= stack_alloc; /* make room on stack for args */
|
||
|
||
/* Now load as many as possible of the first arguments into
|
||
registers, and push the rest onto the stack. There are 64 bytes
|
||
in eight registers available. Loop thru args from first to last. */
|
||
|
||
int_argreg = tdep->ARG0_REGNUM;
|
||
float_argreg = FP0_REGNUM;
|
||
double_argreg = tdep->DR0_REGNUM;
|
||
|
||
for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
|
||
{
|
||
type = VALUE_TYPE (args[argnum]);
|
||
len = TYPE_LENGTH (type);
|
||
memset (valbuf, 0, sizeof (valbuf));
|
||
|
||
if (TYPE_CODE (type) != TYPE_CODE_FLT)
|
||
{
|
||
argreg_size = REGISTER_RAW_SIZE (int_argreg);
|
||
|
||
if (len < argreg_size)
|
||
{
|
||
/* value gets right-justified in the register or stack word */
|
||
if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
|
||
memcpy (valbuf + argreg_size - len,
|
||
(char *) VALUE_CONTENTS (args[argnum]), len);
|
||
else
|
||
memcpy (valbuf, (char *) VALUE_CONTENTS (args[argnum]), len);
|
||
|
||
val = valbuf;
|
||
}
|
||
else
|
||
val = (char *) VALUE_CONTENTS (args[argnum]);
|
||
|
||
while (len > 0)
|
||
{
|
||
if (int_argreg > tdep->ARGLAST_REGNUM)
|
||
{
|
||
/* must go on the stack */
|
||
write_memory (sp + stack_offset, val, argreg_size);
|
||
stack_offset += 8;/*argreg_size;*/
|
||
}
|
||
/* NOTE WELL!!!!! This is not an "else if" clause!!!
|
||
That's because some *&^%$ things get passed on the stack
|
||
AND in the registers! */
|
||
if (int_argreg <= tdep->ARGLAST_REGNUM)
|
||
{
|
||
/* there's room in a register */
|
||
regval = extract_address (val, argreg_size);
|
||
write_register (int_argreg, regval);
|
||
}
|
||
/* Store the value 8 bytes at a time. This means that
|
||
things larger than 8 bytes may go partly in registers
|
||
and partly on the stack. FIXME: argreg is incremented
|
||
before we use its size. */
|
||
len -= argreg_size;
|
||
val += argreg_size;
|
||
int_argreg++;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
val = (char *) VALUE_CONTENTS (args[argnum]);
|
||
if (len == 4)
|
||
{
|
||
/* Where is it going to be stored? */
|
||
while (fp_args[float_arg_index])
|
||
float_arg_index ++;
|
||
|
||
/* Now float_argreg points to the register where it
|
||
should be stored. Are we still within the allowed
|
||
register set? */
|
||
if (float_arg_index <= tdep->FLOAT_ARGLAST_REGNUM)
|
||
{
|
||
/* Goes in FR0...FR11 */
|
||
write_register_gen (FP0_REGNUM + float_arg_index, val);
|
||
fp_args[float_arg_index] = 1;
|
||
/* Skip the corresponding general argument register. */
|
||
int_argreg ++;
|
||
}
|
||
else
|
||
;
|
||
/* Store it as the integers, 8 bytes at the time, if
|
||
necessary spilling on the stack. */
|
||
|
||
}
|
||
else if (len == 8)
|
||
{
|
||
/* Where is it going to be stored? */
|
||
while (fp_args[double_arg_index])
|
||
double_arg_index += 2;
|
||
/* Now double_argreg points to the register
|
||
where it should be stored.
|
||
Are we still within the allowed register set? */
|
||
if (double_arg_index < tdep->FLOAT_ARGLAST_REGNUM)
|
||
{
|
||
/* Goes in DR0...DR10 */
|
||
/* The numbering of the DRi registers is consecutive,
|
||
i.e. includes odd numbers. */
|
||
int double_register_offset = double_arg_index / 2;
|
||
int regnum = tdep->DR0_REGNUM +
|
||
double_register_offset;
|
||
#if 0
|
||
if (TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
|
||
{
|
||
memset (valbuf_tmp, 0, sizeof (valbuf_tmp));
|
||
REGISTER_CONVERT_TO_VIRTUAL (regnum,
|
||
type, val, valbuf_tmp);
|
||
val = valbuf_tmp;
|
||
}
|
||
#endif
|
||
/* Note: must use write_register_gen here instead
|
||
of regcache_raw_write, because
|
||
regcache_raw_write works only for real
|
||
registers, not pseudo. write_register_gen will
|
||
call the gdbarch function to do register
|
||
writes, and that will properly know how to deal
|
||
with pseudoregs. */
|
||
write_register_gen (regnum, val);
|
||
fp_args[double_arg_index] = 1;
|
||
fp_args[double_arg_index + 1] = 1;
|
||
/* Skip the corresponding general argument register. */
|
||
int_argreg ++;
|
||
}
|
||
else
|
||
;
|
||
/* Store it as the integers, 8 bytes at the time, if
|
||
necessary spilling on the stack. */
|
||
}
|
||
}
|
||
}
|
||
return sp;
|
||
}
|
||
|
||
/* Function: push_return_address (pc)
|
||
Set up the return address for the inferior function call.
|
||
Needed for targets where we don't actually execute a JSR/BSR instruction */
|
||
|
||
static CORE_ADDR
|
||
sh_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
|
||
{
|
||
write_register (gdbarch_tdep (current_gdbarch)->PR_REGNUM,
|
||
CALL_DUMMY_ADDRESS ());
|
||
return sp;
|
||
}
|
||
|
||
/* Function: fix_call_dummy
|
||
Poke the callee function's address into the destination part of
|
||
the CALL_DUMMY. The address is actually stored in a data word
|
||
following the actualy CALL_DUMMY instructions, which will load
|
||
it into a register using PC-relative addressing. This function
|
||
expects the CALL_DUMMY to look like this:
|
||
|
||
mov.w @(2,PC), R8
|
||
jsr @R8
|
||
nop
|
||
trap
|
||
<destination>
|
||
*/
|
||
|
||
#if 0
|
||
void
|
||
sh_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
|
||
struct value **args, struct type *type, int gcc_p)
|
||
{
|
||
*(unsigned long *) (dummy + 8) = fun;
|
||
}
|
||
#endif
|
||
|
||
static int
|
||
sh_coerce_float_to_double (struct type *formal, struct type *actual)
|
||
{
|
||
return 1;
|
||
}
|
||
|
||
/* Find a function's return value in the appropriate registers (in
|
||
regbuf), and copy it into valbuf. Extract from an array REGBUF
|
||
containing the (raw) register state a function return value of type
|
||
TYPE, and copy that, in virtual format, into VALBUF. */
|
||
static void
|
||
sh_extract_return_value (struct type *type, char *regbuf, char *valbuf)
|
||
{
|
||
int len = TYPE_LENGTH (type);
|
||
int return_register = R0_REGNUM;
|
||
int offset;
|
||
|
||
if (len <= 4)
|
||
{
|
||
if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
|
||
offset = REGISTER_BYTE (return_register) + 4 - len;
|
||
else
|
||
offset = REGISTER_BYTE (return_register);
|
||
memcpy (valbuf, regbuf + offset, len);
|
||
}
|
||
else if (len <= 8)
|
||
{
|
||
if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
|
||
offset = REGISTER_BYTE (return_register) + 8 - len;
|
||
else
|
||
offset = REGISTER_BYTE (return_register);
|
||
memcpy (valbuf, regbuf + offset, len);
|
||
}
|
||
else
|
||
error ("bad size for return value");
|
||
}
|
||
|
||
static void
|
||
sh3e_sh4_extract_return_value (struct type *type, char *regbuf, char *valbuf)
|
||
{
|
||
int return_register;
|
||
int offset;
|
||
int len = TYPE_LENGTH (type);
|
||
|
||
if (TYPE_CODE (type) == TYPE_CODE_FLT)
|
||
return_register = FP0_REGNUM;
|
||
else
|
||
return_register = R0_REGNUM;
|
||
|
||
if (len == 8 && TYPE_CODE (type) == TYPE_CODE_FLT)
|
||
{
|
||
DOUBLEST val;
|
||
if (TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
|
||
floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
|
||
(char *) regbuf + REGISTER_BYTE (return_register),
|
||
&val);
|
||
else
|
||
floatformat_to_doublest (&floatformat_ieee_double_big,
|
||
(char *) regbuf + REGISTER_BYTE (return_register),
|
||
&val);
|
||
store_floating (valbuf, len, val);
|
||
}
|
||
else if (len <= 4)
|
||
{
|
||
if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
|
||
offset = REGISTER_BYTE (return_register) + 4 - len;
|
||
else
|
||
offset = REGISTER_BYTE (return_register);
|
||
memcpy (valbuf, regbuf + offset, len);
|
||
}
|
||
else if (len <= 8)
|
||
{
|
||
if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
|
||
offset = REGISTER_BYTE (return_register) + 8 - len;
|
||
else
|
||
offset = REGISTER_BYTE (return_register);
|
||
memcpy (valbuf, regbuf + offset, len);
|
||
}
|
||
else
|
||
error ("bad size for return value");
|
||
}
|
||
|
||
static void
|
||
sh64_extract_return_value (struct type *type, char *regbuf, char *valbuf)
|
||
{
|
||
int offset;
|
||
int return_register;
|
||
int len = TYPE_LENGTH (type);
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
||
|
||
if (TYPE_CODE (type) == TYPE_CODE_FLT)
|
||
{
|
||
if (len == 4)
|
||
{
|
||
/* Return value stored in FP0_REGNUM */
|
||
return_register = FP0_REGNUM;
|
||
offset = REGISTER_BYTE (return_register);
|
||
memcpy (valbuf, (char *) regbuf + offset, len);
|
||
}
|
||
else if (len == 8)
|
||
{
|
||
/* return value stored in DR0_REGNUM */
|
||
DOUBLEST val;
|
||
|
||
return_register = tdep->DR0_REGNUM;
|
||
offset = REGISTER_BYTE (return_register);
|
||
|
||
if (TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
|
||
floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
|
||
(char *) regbuf + offset, &val);
|
||
else
|
||
floatformat_to_doublest (&floatformat_ieee_double_big,
|
||
(char *) regbuf + offset, &val);
|
||
store_floating (valbuf, len, val);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (len <= 8)
|
||
{
|
||
/* Result is in register 2. If smaller than 8 bytes, it is padded
|
||
at the most significant end. */
|
||
return_register = tdep->RETURN_REGNUM;
|
||
if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
|
||
offset = REGISTER_BYTE (return_register) +
|
||
REGISTER_RAW_SIZE (return_register) - len;
|
||
else
|
||
offset = REGISTER_BYTE (return_register);
|
||
memcpy (valbuf, (char *) regbuf + offset, len);
|
||
}
|
||
else
|
||
error ("bad size for return value");
|
||
}
|
||
}
|
||
|
||
/* Write into appropriate registers a function return value
|
||
of type TYPE, given in virtual format.
|
||
If the architecture is sh4 or sh3e, store a function's return value
|
||
in the R0 general register or in the FP0 floating point register,
|
||
depending on the type of the return value. In all the other cases
|
||
the result is stored in r0, left-justified. */
|
||
static void
|
||
sh_default_store_return_value (struct type *type, char *valbuf)
|
||
{
|
||
char buf[32]; /* more than enough... */
|
||
|
||
if (TYPE_LENGTH (type) < REGISTER_RAW_SIZE (R0_REGNUM))
|
||
{
|
||
/* Add leading zeros to the value. */
|
||
memset (buf, 0, REGISTER_RAW_SIZE (R0_REGNUM));
|
||
memcpy (buf + REGISTER_RAW_SIZE (R0_REGNUM) - TYPE_LENGTH (type),
|
||
valbuf, TYPE_LENGTH (type));
|
||
write_register_bytes (REGISTER_BYTE (R0_REGNUM), buf,
|
||
REGISTER_RAW_SIZE (R0_REGNUM));
|
||
}
|
||
else
|
||
write_register_bytes (REGISTER_BYTE (R0_REGNUM), valbuf,
|
||
TYPE_LENGTH (type));
|
||
}
|
||
|
||
static void
|
||
sh3e_sh4_store_return_value (struct type *type, char *valbuf)
|
||
{
|
||
if (TYPE_CODE (type) == TYPE_CODE_FLT)
|
||
write_register_bytes (REGISTER_BYTE (FP0_REGNUM),
|
||
valbuf, TYPE_LENGTH (type));
|
||
else
|
||
sh_default_store_return_value (type, valbuf);
|
||
}
|
||
|
||
static void
|
||
sh64_store_return_value (struct type *type, char *valbuf)
|
||
{
|
||
char buf[64]; /* more than enough... */
|
||
int len = TYPE_LENGTH (type);
|
||
|
||
if (TYPE_CODE (type) == TYPE_CODE_FLT)
|
||
{
|
||
if (len == 4)
|
||
{
|
||
/* Return value stored in FP0_REGNUM */
|
||
write_register_gen (FP0_REGNUM, valbuf);
|
||
}
|
||
if (len == 8)
|
||
{
|
||
/* return value stored in DR0_REGNUM */
|
||
/* FIXME: Implement */
|
||
}
|
||
}
|
||
else
|
||
{
|
||
int return_register = gdbarch_tdep (current_gdbarch)->RETURN_REGNUM;
|
||
int offset = 0;
|
||
|
||
if (len <= REGISTER_RAW_SIZE (return_register))
|
||
{
|
||
/* Pad with zeros. */
|
||
memset (buf, 0, REGISTER_RAW_SIZE (return_register));
|
||
if (TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
|
||
offset = 0; /*REGISTER_RAW_SIZE (return_register) - len;*/
|
||
else
|
||
offset = REGISTER_RAW_SIZE (return_register) - len;
|
||
|
||
memcpy (buf + offset, valbuf, len);
|
||
write_register_gen (return_register, buf);
|
||
}
|
||
else
|
||
write_register_gen (return_register, valbuf);
|
||
}
|
||
}
|
||
|
||
/* Print the registers in a form similar to the E7000 */
|
||
|
||
static void
|
||
sh_generic_show_regs (void)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
||
|
||
printf_filtered ("PC=%s SR=%08lx PR=%08lx MACH=%08lx MACHL=%08lx\n",
|
||
paddr (read_register (PC_REGNUM)),
|
||
(long) read_register (tdep->SR_REGNUM),
|
||
(long) read_register (tdep->PR_REGNUM),
|
||
(long) read_register (MACH_REGNUM),
|
||
(long) read_register (MACL_REGNUM));
|
||
|
||
printf_filtered ("GBR=%08lx VBR=%08lx",
|
||
(long) read_register (GBR_REGNUM),
|
||
(long) read_register (VBR_REGNUM));
|
||
|
||
printf_filtered ("\nR0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
|
||
(long) read_register (0),
|
||
(long) read_register (1),
|
||
(long) read_register (2),
|
||
(long) read_register (3),
|
||
(long) read_register (4),
|
||
(long) read_register (5),
|
||
(long) read_register (6),
|
||
(long) read_register (7));
|
||
printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
|
||
(long) read_register (8),
|
||
(long) read_register (9),
|
||
(long) read_register (10),
|
||
(long) read_register (11),
|
||
(long) read_register (12),
|
||
(long) read_register (13),
|
||
(long) read_register (14),
|
||
(long) read_register (15));
|
||
}
|
||
|
||
static void
|
||
sh3_show_regs (void)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
||
|
||
printf_filtered ("PC=%s SR=%08lx PR=%08lx MACH=%08lx MACHL=%08lx\n",
|
||
paddr (read_register (PC_REGNUM)),
|
||
(long) read_register (tdep->SR_REGNUM),
|
||
(long) read_register (tdep->PR_REGNUM),
|
||
(long) read_register (MACH_REGNUM),
|
||
(long) read_register (MACL_REGNUM));
|
||
|
||
printf_filtered ("GBR=%08lx VBR=%08lx",
|
||
(long) read_register (GBR_REGNUM),
|
||
(long) read_register (VBR_REGNUM));
|
||
printf_filtered (" SSR=%08lx SPC=%08lx",
|
||
(long) read_register (tdep->SSR_REGNUM),
|
||
(long) read_register (tdep->SPC_REGNUM));
|
||
|
||
printf_filtered ("\nR0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
|
||
(long) read_register (0),
|
||
(long) read_register (1),
|
||
(long) read_register (2),
|
||
(long) read_register (3),
|
||
(long) read_register (4),
|
||
(long) read_register (5),
|
||
(long) read_register (6),
|
||
(long) read_register (7));
|
||
printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
|
||
(long) read_register (8),
|
||
(long) read_register (9),
|
||
(long) read_register (10),
|
||
(long) read_register (11),
|
||
(long) read_register (12),
|
||
(long) read_register (13),
|
||
(long) read_register (14),
|
||
(long) read_register (15));
|
||
}
|
||
|
||
|
||
static void
|
||
sh3e_show_regs (void)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
||
|
||
printf_filtered ("PC=%s SR=%08lx PR=%08lx MACH=%08lx MACHL=%08lx\n",
|
||
paddr (read_register (PC_REGNUM)),
|
||
(long) read_register (tdep->SR_REGNUM),
|
||
(long) read_register (tdep->PR_REGNUM),
|
||
(long) read_register (MACH_REGNUM),
|
||
(long) read_register (MACL_REGNUM));
|
||
|
||
printf_filtered ("GBR=%08lx VBR=%08lx",
|
||
(long) read_register (GBR_REGNUM),
|
||
(long) read_register (VBR_REGNUM));
|
||
printf_filtered (" SSR=%08lx SPC=%08lx",
|
||
(long) read_register (tdep->SSR_REGNUM),
|
||
(long) read_register (tdep->SPC_REGNUM));
|
||
printf_filtered (" FPUL=%08lx FPSCR=%08lx",
|
||
(long) read_register (tdep->FPUL_REGNUM),
|
||
(long) read_register (tdep->FPSCR_REGNUM));
|
||
|
||
printf_filtered ("\nR0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
|
||
(long) read_register (0),
|
||
(long) read_register (1),
|
||
(long) read_register (2),
|
||
(long) read_register (3),
|
||
(long) read_register (4),
|
||
(long) read_register (5),
|
||
(long) read_register (6),
|
||
(long) read_register (7));
|
||
printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
|
||
(long) read_register (8),
|
||
(long) read_register (9),
|
||
(long) read_register (10),
|
||
(long) read_register (11),
|
||
(long) read_register (12),
|
||
(long) read_register (13),
|
||
(long) read_register (14),
|
||
(long) read_register (15));
|
||
|
||
printf_filtered (("FP0-FP7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n"),
|
||
(long) read_register (FP0_REGNUM + 0),
|
||
(long) read_register (FP0_REGNUM + 1),
|
||
(long) read_register (FP0_REGNUM + 2),
|
||
(long) read_register (FP0_REGNUM + 3),
|
||
(long) read_register (FP0_REGNUM + 4),
|
||
(long) read_register (FP0_REGNUM + 5),
|
||
(long) read_register (FP0_REGNUM + 6),
|
||
(long) read_register (FP0_REGNUM + 7));
|
||
printf_filtered (("FP8-FP15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n"),
|
||
(long) read_register (FP0_REGNUM + 8),
|
||
(long) read_register (FP0_REGNUM + 9),
|
||
(long) read_register (FP0_REGNUM + 10),
|
||
(long) read_register (FP0_REGNUM + 11),
|
||
(long) read_register (FP0_REGNUM + 12),
|
||
(long) read_register (FP0_REGNUM + 13),
|
||
(long) read_register (FP0_REGNUM + 14),
|
||
(long) read_register (FP0_REGNUM + 15));
|
||
}
|
||
|
||
static void
|
||
sh3_dsp_show_regs (void)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
||
|
||
printf_filtered ("PC=%s SR=%08lx PR=%08lx MACH=%08lx MACHL=%08lx\n",
|
||
paddr (read_register (PC_REGNUM)),
|
||
(long) read_register (tdep->SR_REGNUM),
|
||
(long) read_register (tdep->PR_REGNUM),
|
||
(long) read_register (MACH_REGNUM),
|
||
(long) read_register (MACL_REGNUM));
|
||
|
||
printf_filtered ("GBR=%08lx VBR=%08lx",
|
||
(long) read_register (GBR_REGNUM),
|
||
(long) read_register (VBR_REGNUM));
|
||
|
||
printf_filtered (" SSR=%08lx SPC=%08lx",
|
||
(long) read_register (tdep->SSR_REGNUM),
|
||
(long) read_register (tdep->SPC_REGNUM));
|
||
|
||
printf_filtered (" DSR=%08lx",
|
||
(long) read_register (tdep->DSR_REGNUM));
|
||
|
||
printf_filtered ("\nR0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
|
||
(long) read_register (0),
|
||
(long) read_register (1),
|
||
(long) read_register (2),
|
||
(long) read_register (3),
|
||
(long) read_register (4),
|
||
(long) read_register (5),
|
||
(long) read_register (6),
|
||
(long) read_register (7));
|
||
printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
|
||
(long) read_register (8),
|
||
(long) read_register (9),
|
||
(long) read_register (10),
|
||
(long) read_register (11),
|
||
(long) read_register (12),
|
||
(long) read_register (13),
|
||
(long) read_register (14),
|
||
(long) read_register (15));
|
||
|
||
printf_filtered ("A0G=%02lx A0=%08lx M0=%08lx X0=%08lx Y0=%08lx RS=%08lx MOD=%08lx\n",
|
||
(long) read_register (tdep->A0G_REGNUM) & 0xff,
|
||
(long) read_register (tdep->A0_REGNUM),
|
||
(long) read_register (tdep->M0_REGNUM),
|
||
(long) read_register (tdep->X0_REGNUM),
|
||
(long) read_register (tdep->Y0_REGNUM),
|
||
(long) read_register (tdep->RS_REGNUM),
|
||
(long) read_register (tdep->MOD_REGNUM));
|
||
printf_filtered ("A1G=%02lx A1=%08lx M1=%08lx X1=%08lx Y1=%08lx RE=%08lx\n",
|
||
(long) read_register (tdep->A1G_REGNUM) & 0xff,
|
||
(long) read_register (tdep->A1_REGNUM),
|
||
(long) read_register (tdep->M1_REGNUM),
|
||
(long) read_register (tdep->X1_REGNUM),
|
||
(long) read_register (tdep->Y1_REGNUM),
|
||
(long) read_register (tdep->RE_REGNUM));
|
||
}
|
||
|
||
static void
|
||
sh4_show_regs (void)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
||
|
||
int pr = read_register (tdep->FPSCR_REGNUM) & 0x80000;
|
||
printf_filtered ("PC=%s SR=%08lx PR=%08lx MACH=%08lx MACHL=%08lx\n",
|
||
paddr (read_register (PC_REGNUM)),
|
||
(long) read_register (tdep->SR_REGNUM),
|
||
(long) read_register (tdep->PR_REGNUM),
|
||
(long) read_register (MACH_REGNUM),
|
||
(long) read_register (MACL_REGNUM));
|
||
|
||
printf_filtered ("GBR=%08lx VBR=%08lx",
|
||
(long) read_register (GBR_REGNUM),
|
||
(long) read_register (VBR_REGNUM));
|
||
printf_filtered (" SSR=%08lx SPC=%08lx",
|
||
(long) read_register (tdep->SSR_REGNUM),
|
||
(long) read_register (tdep->SPC_REGNUM));
|
||
printf_filtered (" FPUL=%08lx FPSCR=%08lx",
|
||
(long) read_register (tdep->FPUL_REGNUM),
|
||
(long) read_register (tdep->FPSCR_REGNUM));
|
||
|
||
printf_filtered ("\nR0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
|
||
(long) read_register (0),
|
||
(long) read_register (1),
|
||
(long) read_register (2),
|
||
(long) read_register (3),
|
||
(long) read_register (4),
|
||
(long) read_register (5),
|
||
(long) read_register (6),
|
||
(long) read_register (7));
|
||
printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
|
||
(long) read_register (8),
|
||
(long) read_register (9),
|
||
(long) read_register (10),
|
||
(long) read_register (11),
|
||
(long) read_register (12),
|
||
(long) read_register (13),
|
||
(long) read_register (14),
|
||
(long) read_register (15));
|
||
|
||
printf_filtered ((pr
|
||
? "DR0-DR6 %08lx%08lx %08lx%08lx %08lx%08lx %08lx%08lx\n"
|
||
: "FP0-FP7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n"),
|
||
(long) read_register (FP0_REGNUM + 0),
|
||
(long) read_register (FP0_REGNUM + 1),
|
||
(long) read_register (FP0_REGNUM + 2),
|
||
(long) read_register (FP0_REGNUM + 3),
|
||
(long) read_register (FP0_REGNUM + 4),
|
||
(long) read_register (FP0_REGNUM + 5),
|
||
(long) read_register (FP0_REGNUM + 6),
|
||
(long) read_register (FP0_REGNUM + 7));
|
||
printf_filtered ((pr
|
||
? "DR8-DR14 %08lx%08lx %08lx%08lx %08lx%08lx %08lx%08lx\n"
|
||
: "FP8-FP15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n"),
|
||
(long) read_register (FP0_REGNUM + 8),
|
||
(long) read_register (FP0_REGNUM + 9),
|
||
(long) read_register (FP0_REGNUM + 10),
|
||
(long) read_register (FP0_REGNUM + 11),
|
||
(long) read_register (FP0_REGNUM + 12),
|
||
(long) read_register (FP0_REGNUM + 13),
|
||
(long) read_register (FP0_REGNUM + 14),
|
||
(long) read_register (FP0_REGNUM + 15));
|
||
}
|
||
|
||
static void
|
||
sh_dsp_show_regs (void)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
||
|
||
printf_filtered ("PC=%s SR=%08lx PR=%08lx MACH=%08lx MACHL=%08lx\n",
|
||
paddr (read_register (PC_REGNUM)),
|
||
(long) read_register (tdep->SR_REGNUM),
|
||
(long) read_register (tdep->PR_REGNUM),
|
||
(long) read_register (MACH_REGNUM),
|
||
(long) read_register (MACL_REGNUM));
|
||
|
||
printf_filtered ("GBR=%08lx VBR=%08lx",
|
||
(long) read_register (GBR_REGNUM),
|
||
(long) read_register (VBR_REGNUM));
|
||
|
||
printf_filtered (" DSR=%08lx",
|
||
(long) read_register (tdep->DSR_REGNUM));
|
||
|
||
printf_filtered ("\nR0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
|
||
(long) read_register (0),
|
||
(long) read_register (1),
|
||
(long) read_register (2),
|
||
(long) read_register (3),
|
||
(long) read_register (4),
|
||
(long) read_register (5),
|
||
(long) read_register (6),
|
||
(long) read_register (7));
|
||
printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
|
||
(long) read_register (8),
|
||
(long) read_register (9),
|
||
(long) read_register (10),
|
||
(long) read_register (11),
|
||
(long) read_register (12),
|
||
(long) read_register (13),
|
||
(long) read_register (14),
|
||
(long) read_register (15));
|
||
|
||
printf_filtered ("A0G=%02lx A0=%08lx M0=%08lx X0=%08lx Y0=%08lx RS=%08lx MOD=%08lx\n",
|
||
(long) read_register (tdep->A0G_REGNUM) & 0xff,
|
||
(long) read_register (tdep->A0_REGNUM),
|
||
(long) read_register (tdep->M0_REGNUM),
|
||
(long) read_register (tdep->X0_REGNUM),
|
||
(long) read_register (tdep->Y0_REGNUM),
|
||
(long) read_register (tdep->RS_REGNUM),
|
||
(long) read_register (tdep->MOD_REGNUM));
|
||
printf_filtered ("A1G=%02lx A1=%08lx M1=%08lx X1=%08lx Y1=%08lx RE=%08lx\n",
|
||
(long) read_register (tdep->A1G_REGNUM) & 0xff,
|
||
(long) read_register (tdep->A1_REGNUM),
|
||
(long) read_register (tdep->M1_REGNUM),
|
||
(long) read_register (tdep->X1_REGNUM),
|
||
(long) read_register (tdep->Y1_REGNUM),
|
||
(long) read_register (tdep->RE_REGNUM));
|
||
}
|
||
|
||
static void
|
||
sh64_show_media_regs (void)
|
||
{
|
||
int i;
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
||
|
||
printf_filtered ("PC=%s SR=%016llx \n",
|
||
paddr (read_register (PC_REGNUM)),
|
||
(long long) read_register (tdep->SR_REGNUM));
|
||
|
||
printf_filtered ("SSR=%016llx SPC=%016llx \n",
|
||
(long long) read_register (tdep->SSR_REGNUM),
|
||
(long long) read_register (tdep->SPC_REGNUM));
|
||
printf_filtered ("FPSCR=%016lx\n ",
|
||
(long) read_register (tdep->FPSCR_REGNUM));
|
||
|
||
for (i = 0; i < 64; i = i + 4)
|
||
printf_filtered ("\nR%d-R%d %016llx %016llx %016llx %016llx\n",
|
||
i, i + 3,
|
||
(long long) read_register (i + 0),
|
||
(long long) read_register (i + 1),
|
||
(long long) read_register (i + 2),
|
||
(long long) read_register (i + 3));
|
||
|
||
printf_filtered ("\n");
|
||
|
||
for (i = 0; i < 64; i = i + 8)
|
||
printf_filtered ("FR%d-FR%d %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
|
||
i, i + 7,
|
||
(long) read_register (FP0_REGNUM + i + 0),
|
||
(long) read_register (FP0_REGNUM + i + 1),
|
||
(long) read_register (FP0_REGNUM + i + 2),
|
||
(long) read_register (FP0_REGNUM + i + 3),
|
||
(long) read_register (FP0_REGNUM + i + 4),
|
||
(long) read_register (FP0_REGNUM + i + 5),
|
||
(long) read_register (FP0_REGNUM + i + 6),
|
||
(long) read_register (FP0_REGNUM + i + 7));
|
||
}
|
||
|
||
static void
|
||
sh64_show_compact_regs (void)
|
||
{
|
||
int i;
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
||
|
||
printf_filtered ("PC=%s \n",
|
||
paddr (read_register (tdep->PC_C_REGNUM)));
|
||
|
||
printf_filtered ("GBR=%08lx MACH=%08lx MACL=%08lx PR=%08lx T=%08lx\n",
|
||
(long) read_register (tdep->GBR_C_REGNUM),
|
||
(long) read_register (tdep->MACH_C_REGNUM),
|
||
(long) read_register (tdep->MACL_C_REGNUM),
|
||
(long) read_register (tdep->PR_C_REGNUM),
|
||
(long) read_register (tdep->T_C_REGNUM));
|
||
printf_filtered ("FPSCR=%08lx FPUL=%08lx\n",
|
||
(long) read_register (tdep->FPSCR_REGNUM),
|
||
(long) read_register (tdep->FPUL_REGNUM));
|
||
|
||
for (i = 0; i < 16; i = i + 4)
|
||
printf_filtered ("\nR%d-R%d %08lx %08lx %08lx %08lx\n",
|
||
i, i + 3,
|
||
(long) read_register (i + 0),
|
||
(long) read_register (i + 1),
|
||
(long) read_register (i + 2),
|
||
(long) read_register (i + 3));
|
||
|
||
printf_filtered ("\n");
|
||
|
||
for (i = 0; i < 16; i = i + 8)
|
||
printf_filtered ("FR%d-FR%d %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
|
||
i, i + 7,
|
||
(long) read_register (FP0_REGNUM + i + 0),
|
||
(long) read_register (FP0_REGNUM + i + 1),
|
||
(long) read_register (FP0_REGNUM + i + 2),
|
||
(long) read_register (FP0_REGNUM + i + 3),
|
||
(long) read_register (FP0_REGNUM + i + 4),
|
||
(long) read_register (FP0_REGNUM + i + 5),
|
||
(long) read_register (FP0_REGNUM + i + 6),
|
||
(long) read_register (FP0_REGNUM + i + 7));
|
||
}
|
||
|
||
/*FIXME!!! This only shows the registers for shmedia, excluding the
|
||
pseudo registers. */
|
||
static void
|
||
sh64_show_regs (void)
|
||
{
|
||
if (pc_is_isa32 (selected_frame->pc))
|
||
sh64_show_media_regs ();
|
||
else
|
||
sh64_show_compact_regs ();
|
||
}
|
||
|
||
void sh_show_regs_command (char *args, int from_tty)
|
||
{
|
||
if (sh_show_regs)
|
||
(*sh_show_regs)();
|
||
}
|
||
|
||
/* Index within `registers' of the first byte of the space for
|
||
register N. */
|
||
static int
|
||
sh_default_register_byte (int reg_nr)
|
||
{
|
||
return (reg_nr * 4);
|
||
}
|
||
|
||
static int
|
||
sh_sh4_register_byte (int reg_nr)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
||
|
||
if (reg_nr >= tdep->DR0_REGNUM
|
||
&& reg_nr <= tdep->DR_LAST_REGNUM)
|
||
return (dr_reg_base_num (reg_nr) * 4);
|
||
else if (reg_nr >= tdep->FV0_REGNUM
|
||
&& reg_nr <= tdep->FV_LAST_REGNUM)
|
||
return (fv_reg_base_num (reg_nr) * 4);
|
||
else
|
||
return (reg_nr * 4);
|
||
}
|
||
|
||
/* *INDENT-OFF* */
|
||
/*
|
||
SH MEDIA MODE (ISA 32)
|
||
general registers (64-bit) 0-63
|
||
0 r0, r1, r2, r3, r4, r5, r6, r7,
|
||
64 r8, r9, r10, r11, r12, r13, r14, r15,
|
||
128 r16, r17, r18, r19, r20, r21, r22, r23,
|
||
192 r24, r25, r26, r27, r28, r29, r30, r31,
|
||
256 r32, r33, r34, r35, r36, r37, r38, r39,
|
||
320 r40, r41, r42, r43, r44, r45, r46, r47,
|
||
384 r48, r49, r50, r51, r52, r53, r54, r55,
|
||
448 r56, r57, r58, r59, r60, r61, r62, r63,
|
||
|
||
pc (64-bit) 64
|
||
512 pc,
|
||
|
||
status reg., saved status reg., saved pc reg. (64-bit) 65-67
|
||
520 sr, ssr, spc,
|
||
|
||
target registers (64-bit) 68-75
|
||
544 tr0, tr1, tr2, tr3, tr4, tr5, tr6, tr7,
|
||
|
||
floating point state control register (32-bit) 76
|
||
608 fpscr,
|
||
|
||
single precision floating point registers (32-bit) 77-140
|
||
612 fr0, fr1, fr2, fr3, fr4, fr5, fr6, fr7,
|
||
644 fr8, fr9, fr10, fr11, fr12, fr13, fr14, fr15,
|
||
676 fr16, fr17, fr18, fr19, fr20, fr21, fr22, fr23,
|
||
708 fr24, fr25, fr26, fr27, fr28, fr29, fr30, fr31,
|
||
740 fr32, fr33, fr34, fr35, fr36, fr37, fr38, fr39,
|
||
772 fr40, fr41, fr42, fr43, fr44, fr45, fr46, fr47,
|
||
804 fr48, fr49, fr50, fr51, fr52, fr53, fr54, fr55,
|
||
836 fr56, fr57, fr58, fr59, fr60, fr61, fr62, fr63,
|
||
|
||
TOTAL SPACE FOR REGISTERS: 868 bytes
|
||
|
||
From here on they are all pseudo registers: no memory allocated.
|
||
REGISTER_BYTE returns the register byte for the base register.
|
||
|
||
double precision registers (pseudo) 141-172
|
||
dr0, dr2, dr4, dr6, dr8, dr10, dr12, dr14,
|
||
dr16, dr18, dr20, dr22, dr24, dr26, dr28, dr30,
|
||
dr32, dr34, dr36, dr38, dr40, dr42, dr44, dr46,
|
||
dr48, dr50, dr52, dr54, dr56, dr58, dr60, dr62,
|
||
|
||
floating point pairs (pseudo) 173-204
|
||
fp0, fp2, fp4, fp6, fp8, fp10, fp12, fp14,
|
||
fp16, fp18, fp20, fp22, fp24, fp26, fp28, fp30,
|
||
fp32, fp34, fp36, fp38, fp40, fp42, fp44, fp46,
|
||
fp48, fp50, fp52, fp54, fp56, fp58, fp60, fp62,
|
||
|
||
floating point vectors (4 floating point regs) (pseudo) 205-220
|
||
fv0, fv4, fv8, fv12, fv16, fv20, fv24, fv28,
|
||
fv32, fv36, fv40, fv44, fv48, fv52, fv56, fv60,
|
||
|
||
SH COMPACT MODE (ISA 16) (all pseudo) 221-272
|
||
r0_c, r1_c, r2_c, r3_c, r4_c, r5_c, r6_c, r7_c,
|
||
r8_c, r9_c, r10_c, r11_c, r12_c, r13_c, r14_c, r15_c,
|
||
pc_c,
|
||
gbr_c, mach_c, macl_c, pr_c, t_c,
|
||
fpscr_c, fpul_c,
|
||
fr0_c, fr1_c, fr2_c, fr3_c, fr4_c, fr5_c, fr6_c, fr7_c,
|
||
fr8_c, fr9_c, fr10_c, fr11_c, fr12_c, fr13_c, fr14_c, fr15_c
|
||
dr0_c, dr2_c, dr4_c, dr6_c, dr8_c, dr10_c, dr12_c, dr14_c
|
||
fv0_c, fv4_c, fv8_c, fv12_c
|
||
*/
|
||
/* *INDENT-ON* */
|
||
static int
|
||
sh_sh64_register_byte (int reg_nr)
|
||
{
|
||
int base_regnum = -1;
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
||
|
||
/* If it is a pseudo register, get the number of the first floating
|
||
point register that is part of it. */
|
||
if (reg_nr >= tdep->DR0_REGNUM
|
||
&& reg_nr <= tdep->DR_LAST_REGNUM)
|
||
base_regnum = dr_reg_base_num (reg_nr);
|
||
|
||
else if (reg_nr >= tdep->FPP0_REGNUM
|
||
&& reg_nr <= tdep->FPP_LAST_REGNUM)
|
||
base_regnum = fpp_reg_base_num (reg_nr);
|
||
|
||
else if (reg_nr >= tdep->FV0_REGNUM
|
||
&& reg_nr <= tdep->FV_LAST_REGNUM)
|
||
base_regnum = fv_reg_base_num (reg_nr);
|
||
|
||
/* sh compact pseudo register. FPSCR is a pathological case, need to
|
||
treat it as special. */
|
||
else if ((reg_nr >= tdep->R0_C_REGNUM
|
||
&& reg_nr <= tdep->FV_LAST_C_REGNUM)
|
||
&& reg_nr != tdep->FPSCR_C_REGNUM)
|
||
base_regnum = sh64_compact_reg_base_num (reg_nr);
|
||
|
||
/* Now return the offset in bytes within the register cache. */
|
||
/* sh media pseudo register, i.e. any of DR, FFP, FV registers. */
|
||
if (reg_nr >= tdep->DR0_REGNUM
|
||
&& reg_nr <= tdep->FV_LAST_REGNUM)
|
||
return (base_regnum - FP0_REGNUM + 1) * 4
|
||
+ (tdep->TR7_REGNUM + 1) * 8;
|
||
|
||
/* sh compact pseudo register: general register */
|
||
if ((reg_nr >= tdep->R0_C_REGNUM
|
||
&& reg_nr <= tdep->R_LAST_C_REGNUM))
|
||
return (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
|
||
? base_regnum * 8 + 4
|
||
: base_regnum * 8);
|
||
|
||
/* sh compact pseudo register: */
|
||
if (reg_nr == tdep->PC_C_REGNUM
|
||
|| reg_nr == tdep->GBR_C_REGNUM
|
||
|| reg_nr == tdep->MACL_C_REGNUM
|
||
|| reg_nr == tdep->PR_C_REGNUM)
|
||
return (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
|
||
? base_regnum * 8 + 4
|
||
: base_regnum * 8);
|
||
|
||
if (reg_nr == tdep->MACH_C_REGNUM)
|
||
return base_regnum * 8;
|
||
|
||
if (reg_nr == tdep->T_C_REGNUM)
|
||
return base_regnum * 8; /* FIXME??? how do we get bit 0? Do we have to? */
|
||
|
||
/* sh compact pseudo register: floating point register */
|
||
else if (reg_nr >=tdep->FP0_C_REGNUM
|
||
&& reg_nr <= tdep->FV_LAST_C_REGNUM)
|
||
return (base_regnum - FP0_REGNUM) * 4
|
||
+ (tdep->TR7_REGNUM + 1) * 8 + 4;
|
||
|
||
else if (reg_nr == tdep->FPSCR_C_REGNUM)
|
||
/* This is complicated, for now return the beginning of the
|
||
architectural FPSCR register. */
|
||
return (tdep->TR7_REGNUM + 1) * 8;
|
||
|
||
else if (reg_nr == tdep->FPUL_C_REGNUM)
|
||
return ((base_regnum - FP0_REGNUM) * 4 +
|
||
(tdep->TR7_REGNUM + 1) * 8 + 4);
|
||
|
||
/* It is not a pseudo register. */
|
||
/* It is a 64 bit register. */
|
||
else if (reg_nr <= tdep->TR7_REGNUM)
|
||
return reg_nr * 8;
|
||
|
||
/* It is a 32 bit register. */
|
||
else
|
||
if (reg_nr == tdep->FPSCR_REGNUM)
|
||
return (tdep->FPSCR_REGNUM * 8);
|
||
|
||
/* It is floating point 32-bit register */
|
||
else
|
||
return ((tdep->TR7_REGNUM + 1) * 8
|
||
+ (reg_nr - FP0_REGNUM + 1) * 4);
|
||
}
|
||
|
||
/* Number of bytes of storage in the actual machine representation for
|
||
register REG_NR. */
|
||
static int
|
||
sh_default_register_raw_size (int reg_nr)
|
||
{
|
||
return 4;
|
||
}
|
||
|
||
static int
|
||
sh_sh4_register_raw_size (int reg_nr)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
||
|
||
if (reg_nr >= tdep->DR0_REGNUM
|
||
&& reg_nr <= tdep->DR_LAST_REGNUM)
|
||
return 8;
|
||
else if (reg_nr >= tdep->FV0_REGNUM
|
||
&& reg_nr <= tdep->FV_LAST_REGNUM)
|
||
return 16;
|
||
else
|
||
return 4;
|
||
}
|
||
|
||
static int
|
||
sh_sh64_register_raw_size (int reg_nr)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
||
|
||
if ((reg_nr >= tdep->DR0_REGNUM
|
||
&& reg_nr <= tdep->DR_LAST_REGNUM)
|
||
|| (reg_nr >= tdep->FPP0_REGNUM
|
||
&& reg_nr <= tdep->FPP_LAST_REGNUM)
|
||
|| (reg_nr >= tdep->DR0_C_REGNUM
|
||
&& reg_nr <= tdep->DR_LAST_C_REGNUM)
|
||
|| (reg_nr <= tdep->TR7_REGNUM))
|
||
return 8;
|
||
|
||
else if ((reg_nr >= tdep->FV0_REGNUM
|
||
&& reg_nr <= tdep->FV_LAST_REGNUM)
|
||
|| (reg_nr >= tdep->FV0_C_REGNUM
|
||
&& reg_nr <= tdep->FV_LAST_C_REGNUM))
|
||
return 16;
|
||
|
||
else /* this covers also the 32-bit SH compact registers. */
|
||
return 4;
|
||
}
|
||
|
||
/* Number of bytes of storage in the program's representation
|
||
for register N. */
|
||
static int
|
||
sh_register_virtual_size (int reg_nr)
|
||
{
|
||
return 4;
|
||
}
|
||
|
||
/* ??????? FIXME */
|
||
static int
|
||
sh_sh64_register_virtual_size (int reg_nr)
|
||
{
|
||
if (reg_nr >= FP0_REGNUM
|
||
&& reg_nr <= gdbarch_tdep (current_gdbarch)->FP_LAST_REGNUM)
|
||
return 4;
|
||
else
|
||
return 8;
|
||
}
|
||
|
||
/* Return the GDB type object for the "standard" data type
|
||
of data in register N. */
|
||
static struct type *
|
||
sh_sh3e_register_virtual_type (int reg_nr)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
||
|
||
if ((reg_nr >= FP0_REGNUM
|
||
&& (reg_nr <= tdep->FP_LAST_REGNUM))
|
||
|| (reg_nr == tdep->FPUL_REGNUM))
|
||
return builtin_type_float;
|
||
else
|
||
return builtin_type_int;
|
||
}
|
||
|
||
static struct type *
|
||
sh_sh4_build_float_register_type (int high)
|
||
{
|
||
struct type *temp;
|
||
|
||
temp = create_range_type (NULL, builtin_type_int, 0, high);
|
||
return create_array_type (NULL, builtin_type_float, temp);
|
||
}
|
||
|
||
static struct type *
|
||
sh_sh4_register_virtual_type (int reg_nr)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
||
|
||
if ((reg_nr >= FP0_REGNUM
|
||
&& (reg_nr <= tdep->FP_LAST_REGNUM))
|
||
|| (reg_nr == tdep->FPUL_REGNUM))
|
||
return builtin_type_float;
|
||
else if (reg_nr >= tdep->DR0_REGNUM
|
||
&& reg_nr <= tdep->DR_LAST_REGNUM)
|
||
return builtin_type_double;
|
||
else if (reg_nr >= tdep->FV0_REGNUM
|
||
&& reg_nr <= tdep->FV_LAST_REGNUM)
|
||
return sh_sh4_build_float_register_type (3);
|
||
else
|
||
return builtin_type_int;
|
||
}
|
||
|
||
static struct type *
|
||
sh_sh64_register_virtual_type (int reg_nr)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
||
|
||
if ((reg_nr >= FP0_REGNUM
|
||
&& reg_nr <= tdep->FP_LAST_REGNUM)
|
||
|| (reg_nr >= tdep->FP0_C_REGNUM
|
||
&& reg_nr <= tdep->FP_LAST_C_REGNUM))
|
||
return builtin_type_float;
|
||
else if ((reg_nr >= tdep->DR0_REGNUM
|
||
&& reg_nr <= tdep->DR_LAST_REGNUM)
|
||
|| (reg_nr >= tdep->DR0_C_REGNUM
|
||
&& reg_nr <= tdep->DR_LAST_C_REGNUM))
|
||
return builtin_type_double;
|
||
else if (reg_nr >= tdep->FPP0_REGNUM
|
||
&& reg_nr <= tdep->FPP_LAST_REGNUM)
|
||
return sh_sh4_build_float_register_type (1);
|
||
else if ((reg_nr >= tdep->FV0_REGNUM
|
||
&& reg_nr <= tdep->FV_LAST_REGNUM)
|
||
||(reg_nr >= tdep->FV0_C_REGNUM
|
||
&& reg_nr <= tdep->FV_LAST_C_REGNUM))
|
||
return sh_sh4_build_float_register_type (3);
|
||
else if (reg_nr == tdep->FPSCR_REGNUM)
|
||
return builtin_type_int;
|
||
else if (reg_nr >= tdep->R0_C_REGNUM
|
||
&& reg_nr < tdep->FP0_C_REGNUM)
|
||
return builtin_type_int;
|
||
else
|
||
return builtin_type_long_long;
|
||
}
|
||
|
||
static struct type *
|
||
sh_default_register_virtual_type (int reg_nr)
|
||
{
|
||
return builtin_type_int;
|
||
}
|
||
|
||
/* On the sh4, the DRi pseudo registers are problematic if the target
|
||
is little endian. When the user writes one of those registers, for
|
||
instance with 'ser var $dr0=1', we want the double to be stored
|
||
like this:
|
||
fr0 = 0x00 0x00 0x00 0x00 0x00 0xf0 0x3f
|
||
fr1 = 0x00 0x00 0x00 0x00 0x00 0x00 0x00
|
||
|
||
This corresponds to little endian byte order & big endian word
|
||
order. However if we let gdb write the register w/o conversion, it
|
||
will write fr0 and fr1 this way:
|
||
fr0 = 0x00 0x00 0x00 0x00 0x00 0x00 0x00
|
||
fr1 = 0x00 0x00 0x00 0x00 0x00 0xf0 0x3f
|
||
because it will consider fr0 and fr1 as a single LE stretch of memory.
|
||
|
||
To achieve what we want we must force gdb to store things in
|
||
floatformat_ieee_double_littlebyte_bigword (which is defined in
|
||
include/floatformat.h and libiberty/floatformat.c.
|
||
|
||
In case the target is big endian, there is no problem, the
|
||
raw bytes will look like:
|
||
fr0 = 0x3f 0xf0 0x00 0x00 0x00 0x00 0x00
|
||
fr1 = 0x00 0x00 0x00 0x00 0x00 0x00 0x00
|
||
|
||
The other pseudo registers (the FVs) also don't pose a problem
|
||
because they are stored as 4 individual FP elements. */
|
||
|
||
static void
|
||
sh_sh4_register_convert_to_virtual (int regnum, struct type *type,
|
||
char *from, char *to)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
||
|
||
if (regnum >= tdep->DR0_REGNUM
|
||
&& regnum <= tdep->DR_LAST_REGNUM)
|
||
{
|
||
DOUBLEST val;
|
||
floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword, from, &val);
|
||
store_floating (to, TYPE_LENGTH (type), val);
|
||
}
|
||
else
|
||
error ("sh_register_convert_to_virtual called with non DR register number");
|
||
}
|
||
|
||
void
|
||
sh_sh64_register_convert_to_virtual (int regnum, struct type *type,
|
||
char *from, char *to)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
||
|
||
if (TARGET_BYTE_ORDER != BFD_ENDIAN_LITTLE)
|
||
{
|
||
/* It is a no-op. */
|
||
memcpy (to, from, REGISTER_RAW_SIZE (regnum));
|
||
return;
|
||
}
|
||
|
||
if ((regnum >= tdep->DR0_REGNUM
|
||
&& regnum <= tdep->DR_LAST_REGNUM)
|
||
|| (regnum >= tdep->DR0_C_REGNUM
|
||
&& regnum <= tdep->DR_LAST_C_REGNUM))
|
||
{
|
||
DOUBLEST val;
|
||
floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword, from, &val);
|
||
store_floating(to, TYPE_LENGTH(type), val);
|
||
}
|
||
else
|
||
error("sh_register_convert_to_virtual called with non DR register number");
|
||
}
|
||
|
||
static void
|
||
sh_sh4_register_convert_to_raw (struct type *type, int regnum,
|
||
char *from, char *to)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
||
|
||
if (regnum >= tdep->DR0_REGNUM
|
||
&& regnum <= tdep->DR_LAST_REGNUM)
|
||
{
|
||
DOUBLEST val = extract_floating (from, TYPE_LENGTH(type));
|
||
floatformat_from_doublest (&floatformat_ieee_double_littlebyte_bigword, &val, to);
|
||
}
|
||
else
|
||
error("sh_register_convert_to_raw called with non DR register number");
|
||
}
|
||
|
||
void
|
||
sh_sh64_register_convert_to_raw (struct type *type, int regnum,
|
||
char *from, char *to)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
||
|
||
if (TARGET_BYTE_ORDER != BFD_ENDIAN_LITTLE)
|
||
{
|
||
/* It is a no-op. */
|
||
memcpy (to, from, REGISTER_RAW_SIZE (regnum));
|
||
return;
|
||
}
|
||
|
||
if ((regnum >= tdep->DR0_REGNUM
|
||
&& regnum <= tdep->DR_LAST_REGNUM)
|
||
|| (regnum >= tdep->DR0_C_REGNUM
|
||
&& regnum <= tdep->DR_LAST_C_REGNUM))
|
||
{
|
||
DOUBLEST val = extract_floating (from, TYPE_LENGTH(type));
|
||
floatformat_from_doublest (&floatformat_ieee_double_littlebyte_bigword, &val, to);
|
||
}
|
||
else
|
||
error("sh_register_convert_to_raw called with non DR register number");
|
||
}
|
||
|
||
void
|
||
sh_pseudo_register_read (int reg_nr, char *buffer)
|
||
{
|
||
int base_regnum, portion;
|
||
char *temp_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
||
|
||
if (reg_nr >= tdep->DR0_REGNUM
|
||
&& reg_nr <= tdep->DR_LAST_REGNUM)
|
||
{
|
||
base_regnum = dr_reg_base_num (reg_nr);
|
||
|
||
/* Build the value in the provided buffer. */
|
||
/* Read the real regs for which this one is an alias. */
|
||
for (portion = 0; portion < 2; portion++)
|
||
regcache_raw_read (current_regcache, base_regnum + portion,
|
||
(temp_buffer
|
||
+ REGISTER_RAW_SIZE (base_regnum) * portion));
|
||
/* We must pay attention to the endiannes. */
|
||
sh_sh4_register_convert_to_virtual (reg_nr,
|
||
REGISTER_VIRTUAL_TYPE (reg_nr),
|
||
temp_buffer, buffer);
|
||
}
|
||
else if (reg_nr >= tdep->FV0_REGNUM
|
||
&& reg_nr <= tdep->FV_LAST_REGNUM)
|
||
{
|
||
base_regnum = fv_reg_base_num (reg_nr);
|
||
|
||
/* Read the real regs for which this one is an alias. */
|
||
for (portion = 0; portion < 4; portion++)
|
||
regcache_raw_read (current_regcache, base_regnum + portion,
|
||
buffer + REGISTER_RAW_SIZE (base_regnum) * portion);
|
||
}
|
||
}
|
||
|
||
static void
|
||
sh4_register_read (struct gdbarch *gdbarch, int reg_nr, char *buffer)
|
||
{
|
||
if (reg_nr >= 0 && reg_nr < gdbarch_tdep (current_gdbarch)->DR0_REGNUM)
|
||
/* It is a regular register. */
|
||
regcache_raw_read (current_regcache, reg_nr, buffer);
|
||
else
|
||
/* It is a pseudo register and we need to construct its value */
|
||
sh_pseudo_register_read (reg_nr, buffer);
|
||
}
|
||
|
||
static void
|
||
sh64_pseudo_register_read (int reg_nr, char *buffer)
|
||
{
|
||
int base_regnum;
|
||
int portion;
|
||
int offset = 0;
|
||
char *temp_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
||
|
||
if (reg_nr >= tdep->DR0_REGNUM
|
||
&& reg_nr <= tdep->DR_LAST_REGNUM)
|
||
{
|
||
base_regnum = dr_reg_base_num (reg_nr);
|
||
|
||
/* Build the value in the provided buffer. */
|
||
/* DR regs are double precision registers obtained by
|
||
concatenating 2 single precision floating point registers. */
|
||
for (portion = 0; portion < 2; portion++)
|
||
regcache_raw_read (current_regcache, base_regnum + portion,
|
||
(temp_buffer
|
||
+ REGISTER_RAW_SIZE (base_regnum) * portion));
|
||
|
||
/* We must pay attention to the endiannes. */
|
||
sh_sh64_register_convert_to_virtual (reg_nr, REGISTER_VIRTUAL_TYPE (reg_nr),
|
||
temp_buffer, buffer);
|
||
|
||
}
|
||
|
||
else if (reg_nr >= tdep->FPP0_REGNUM
|
||
&& reg_nr <= tdep->FPP_LAST_REGNUM)
|
||
{
|
||
base_regnum = fpp_reg_base_num (reg_nr);
|
||
|
||
/* Build the value in the provided buffer. */
|
||
/* FPP regs are pairs of single precision registers obtained by
|
||
concatenating 2 single precision floating point registers. */
|
||
for (portion = 0; portion < 2; portion++)
|
||
regcache_raw_read (current_regcache, base_regnum + portion,
|
||
(buffer
|
||
+ REGISTER_RAW_SIZE (base_regnum) * portion));
|
||
}
|
||
|
||
else if (reg_nr >= tdep->FV0_REGNUM
|
||
&& reg_nr <= tdep->FV_LAST_REGNUM)
|
||
{
|
||
base_regnum = fv_reg_base_num (reg_nr);
|
||
|
||
/* Build the value in the provided buffer. */
|
||
/* FV regs are vectors of single precision registers obtained by
|
||
concatenating 4 single precision floating point registers. */
|
||
for (portion = 0; portion < 4; portion++)
|
||
regcache_raw_read (current_regcache, base_regnum + portion,
|
||
(buffer
|
||
+ REGISTER_RAW_SIZE (base_regnum) * portion));
|
||
}
|
||
|
||
/* sh compact pseudo registers. 1-to-1 with a shmedia register */
|
||
else if (reg_nr >= tdep->R0_C_REGNUM
|
||
&& reg_nr <= tdep->T_C_REGNUM)
|
||
{
|
||
base_regnum = sh64_compact_reg_base_num (reg_nr);
|
||
|
||
/* Build the value in the provided buffer. */
|
||
regcache_raw_read (current_regcache, base_regnum, temp_buffer);
|
||
if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
|
||
offset = 4;
|
||
memcpy (buffer, temp_buffer + offset, 4); /* get LOWER 32 bits only????*/
|
||
}
|
||
|
||
else if (reg_nr >= tdep->FP0_C_REGNUM
|
||
&& reg_nr <= tdep->FP_LAST_C_REGNUM)
|
||
{
|
||
base_regnum = sh64_compact_reg_base_num (reg_nr);
|
||
|
||
/* Build the value in the provided buffer. */
|
||
/* Floating point registers map 1-1 to the media fp regs,
|
||
they have the same size and endienness. */
|
||
regcache_raw_read (current_regcache, base_regnum, buffer);
|
||
}
|
||
|
||
else if (reg_nr >= tdep->DR0_C_REGNUM
|
||
&& reg_nr <= tdep->DR_LAST_C_REGNUM)
|
||
{
|
||
base_regnum = sh64_compact_reg_base_num (reg_nr);
|
||
|
||
/* DR_C regs are double precision registers obtained by
|
||
concatenating 2 single precision floating point registers. */
|
||
for (portion = 0; portion < 2; portion++)
|
||
regcache_raw_read (current_regcache, base_regnum + portion,
|
||
(temp_buffer
|
||
+ REGISTER_RAW_SIZE (base_regnum) * portion));
|
||
|
||
/* We must pay attention to the endiannes. */
|
||
sh_sh64_register_convert_to_virtual (reg_nr, REGISTER_VIRTUAL_TYPE (reg_nr),
|
||
temp_buffer, buffer);
|
||
}
|
||
|
||
else if (reg_nr >= tdep->FV0_C_REGNUM
|
||
&& reg_nr <= tdep->FV_LAST_C_REGNUM)
|
||
{
|
||
base_regnum = sh64_compact_reg_base_num (reg_nr);
|
||
|
||
/* Build the value in the provided buffer. */
|
||
/* FV_C regs are vectors of single precision registers obtained by
|
||
concatenating 4 single precision floating point registers. */
|
||
for (portion = 0; portion < 4; portion++)
|
||
regcache_raw_read (current_regcache, base_regnum + portion,
|
||
(buffer
|
||
+ REGISTER_RAW_SIZE (base_regnum) * portion));
|
||
}
|
||
|
||
else if (reg_nr == tdep->FPSCR_C_REGNUM)
|
||
{
|
||
int fpscr_base_regnum;
|
||
int sr_base_regnum;
|
||
unsigned int fpscr_value;
|
||
unsigned int sr_value;
|
||
unsigned int fpscr_c_value;
|
||
unsigned int fpscr_c_part1_value;
|
||
unsigned int fpscr_c_part2_value;
|
||
|
||
fpscr_base_regnum = tdep->FPSCR_REGNUM;
|
||
sr_base_regnum = tdep->SR_REGNUM;
|
||
|
||
/* Build the value in the provided buffer. */
|
||
/* FPSCR_C is a very weird register that contains sparse bits
|
||
from the FPSCR and the SR architectural registers.
|
||
Specifically: */
|
||
/* *INDENT-OFF* */
|
||
/*
|
||
FPSRC_C bit
|
||
0 Bit 0 of FPSCR
|
||
1 reserved
|
||
2-17 Bit 2-18 of FPSCR
|
||
18-20 Bits 12,13,14 of SR
|
||
21-31 reserved
|
||
*/
|
||
/* *INDENT-ON* */
|
||
/* Get FPSCR into a local buffer */
|
||
regcache_raw_read (current_regcache, fpscr_base_regnum, temp_buffer);
|
||
/* Get value as an int. */
|
||
fpscr_value = extract_unsigned_integer (temp_buffer, 4);
|
||
/* Get SR into a local buffer */
|
||
regcache_raw_read (current_regcache, sr_base_regnum, temp_buffer);
|
||
/* Get value as an int. */
|
||
sr_value = extract_unsigned_integer (temp_buffer, 4);
|
||
/* Build the new value. */
|
||
fpscr_c_part1_value = fpscr_value & 0x3fffd;
|
||
fpscr_c_part2_value = (sr_value & 0x7000) << 6;
|
||
fpscr_c_value = fpscr_c_part1_value | fpscr_c_part2_value;
|
||
/* Store that in out buffer!!! */
|
||
store_unsigned_integer (buffer, 4, fpscr_c_value);
|
||
/* FIXME There is surely an endianness gotcha here. */
|
||
}
|
||
|
||
else if (reg_nr == tdep->FPUL_C_REGNUM)
|
||
{
|
||
base_regnum = sh64_compact_reg_base_num (reg_nr);
|
||
|
||
/* FPUL_C register is floating point register 32,
|
||
same size, same endianness. */
|
||
regcache_raw_read (current_regcache, base_regnum, buffer);
|
||
}
|
||
}
|
||
|
||
static void
|
||
sh64_register_read (struct gdbarch *gdbarch, int reg_nr, char *buffer)
|
||
{
|
||
|
||
if (reg_nr >= 0 && reg_nr < gdbarch_tdep (current_gdbarch)->DR0_REGNUM)
|
||
/* It is a regular register. */
|
||
regcache_raw_read (current_regcache, reg_nr, buffer);
|
||
else
|
||
/* It is a pseudo register and we need to construct its value */
|
||
sh64_pseudo_register_read (reg_nr, buffer);
|
||
}
|
||
|
||
void
|
||
sh_pseudo_register_write (int reg_nr, char *buffer)
|
||
{
|
||
int base_regnum, portion;
|
||
char *temp_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
||
|
||
if (reg_nr >= tdep->DR0_REGNUM
|
||
&& reg_nr <= tdep->DR_LAST_REGNUM)
|
||
{
|
||
base_regnum = dr_reg_base_num (reg_nr);
|
||
|
||
/* We must pay attention to the endiannes. */
|
||
sh_sh4_register_convert_to_raw (REGISTER_VIRTUAL_TYPE (reg_nr), reg_nr,
|
||
buffer, temp_buffer);
|
||
|
||
/* Write the real regs for which this one is an alias. */
|
||
for (portion = 0; portion < 2; portion++)
|
||
regcache_raw_write (current_regcache, base_regnum + portion,
|
||
(temp_buffer
|
||
+ REGISTER_RAW_SIZE (base_regnum) * portion));
|
||
}
|
||
else if (reg_nr >= tdep->FV0_REGNUM
|
||
&& reg_nr <= tdep->FV_LAST_REGNUM)
|
||
{
|
||
base_regnum = fv_reg_base_num (reg_nr);
|
||
|
||
/* Write the real regs for which this one is an alias. */
|
||
for (portion = 0; portion < 4; portion++)
|
||
regcache_raw_write (current_regcache, base_regnum + portion,
|
||
(buffer
|
||
+ REGISTER_RAW_SIZE (base_regnum) * portion));
|
||
}
|
||
}
|
||
|
||
static void
|
||
sh4_register_write (struct gdbarch *gdbarch, int reg_nr, char *buffer)
|
||
{
|
||
if (reg_nr >= 0 && reg_nr < gdbarch_tdep (current_gdbarch)->DR0_REGNUM)
|
||
/* It is a regular register. */
|
||
regcache_raw_write (current_regcache, reg_nr, buffer);
|
||
else
|
||
/* It is a pseudo register and we need to construct its value */
|
||
sh_pseudo_register_write (reg_nr, buffer);
|
||
}
|
||
|
||
void
|
||
sh64_pseudo_register_write (int reg_nr, char *buffer)
|
||
{
|
||
int base_regnum, portion;
|
||
int offset;
|
||
char *temp_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
||
|
||
if (reg_nr >= tdep->DR0_REGNUM
|
||
&& reg_nr <= tdep->DR_LAST_REGNUM)
|
||
{
|
||
base_regnum = dr_reg_base_num (reg_nr);
|
||
/* We must pay attention to the endiannes. */
|
||
sh_sh64_register_convert_to_raw (REGISTER_VIRTUAL_TYPE (reg_nr), reg_nr,
|
||
buffer, temp_buffer);
|
||
|
||
|
||
/* Write the real regs for which this one is an alias. */
|
||
for (portion = 0; portion < 2; portion++)
|
||
regcache_raw_write (current_regcache, base_regnum + portion,
|
||
(temp_buffer
|
||
+ REGISTER_RAW_SIZE (base_regnum) * portion));
|
||
}
|
||
|
||
else if (reg_nr >= tdep->FPP0_REGNUM
|
||
&& reg_nr <= tdep->FPP_LAST_REGNUM)
|
||
{
|
||
base_regnum = fpp_reg_base_num (reg_nr);
|
||
|
||
/* Write the real regs for which this one is an alias. */
|
||
for (portion = 0; portion < 2; portion++)
|
||
regcache_raw_write (current_regcache, base_regnum + portion,
|
||
(buffer
|
||
+ REGISTER_RAW_SIZE (base_regnum) * portion));
|
||
}
|
||
|
||
else if (reg_nr >= tdep->FV0_REGNUM
|
||
&& reg_nr <= tdep->FV_LAST_REGNUM)
|
||
{
|
||
base_regnum = fv_reg_base_num (reg_nr);
|
||
|
||
/* Write the real regs for which this one is an alias. */
|
||
for (portion = 0; portion < 4; portion++)
|
||
regcache_raw_write (current_regcache, base_regnum + portion,
|
||
(buffer
|
||
+ REGISTER_RAW_SIZE (base_regnum) * portion));
|
||
}
|
||
|
||
/* sh compact general pseudo registers. 1-to-1 with a shmedia
|
||
register but only 4 bytes of it. */
|
||
else if (reg_nr >= tdep->R0_C_REGNUM
|
||
&& reg_nr <= tdep->T_C_REGNUM)
|
||
{
|
||
base_regnum = sh64_compact_reg_base_num (reg_nr);
|
||
/* reg_nr is 32 bit here, and base_regnum is 64 bits. */
|
||
if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
|
||
offset = 4;
|
||
else
|
||
offset = 0;
|
||
/* Let's read the value of the base register into a temporary
|
||
buffer, so that overwriting the last four bytes with the new
|
||
value of the pseudo will leave the upper 4 bytes unchanged. */
|
||
regcache_raw_read (current_regcache, base_regnum, temp_buffer);
|
||
/* Write as an 8 byte quantity */
|
||
memcpy (temp_buffer + offset, buffer, 4);
|
||
regcache_raw_write (current_regcache, base_regnum, temp_buffer);
|
||
}
|
||
|
||
/* sh floating point compact pseudo registers. 1-to-1 with a shmedia
|
||
registers. Both are 4 bytes. */
|
||
else if (reg_nr >= tdep->FP0_C_REGNUM
|
||
&& reg_nr <= tdep->FP_LAST_C_REGNUM)
|
||
{
|
||
base_regnum = sh64_compact_reg_base_num (reg_nr);
|
||
regcache_raw_write (current_regcache, base_regnum, buffer);
|
||
}
|
||
|
||
else if (reg_nr >= tdep->DR0_C_REGNUM
|
||
&& reg_nr <= tdep->DR_LAST_C_REGNUM)
|
||
{
|
||
base_regnum = sh64_compact_reg_base_num (reg_nr);
|
||
for (portion = 0; portion < 2; portion++)
|
||
{
|
||
/* We must pay attention to the endiannes. */
|
||
sh_sh64_register_convert_to_raw (REGISTER_VIRTUAL_TYPE (reg_nr), reg_nr,
|
||
buffer, temp_buffer);
|
||
|
||
regcache_raw_write (current_regcache, base_regnum + portion,
|
||
(temp_buffer
|
||
+ REGISTER_RAW_SIZE (base_regnum) * portion));
|
||
}
|
||
}
|
||
|
||
else if (reg_nr >= tdep->FV0_C_REGNUM
|
||
&& reg_nr <= tdep->FV_LAST_C_REGNUM)
|
||
{
|
||
base_regnum = sh64_compact_reg_base_num (reg_nr);
|
||
|
||
for (portion = 0; portion < 4; portion++)
|
||
{
|
||
regcache_raw_write (current_regcache, base_regnum + portion,
|
||
(buffer
|
||
+ REGISTER_RAW_SIZE (base_regnum) * portion));
|
||
}
|
||
}
|
||
|
||
else if (reg_nr == tdep->FPSCR_C_REGNUM)
|
||
{
|
||
int fpscr_base_regnum;
|
||
int sr_base_regnum;
|
||
unsigned int fpscr_value;
|
||
unsigned int sr_value;
|
||
unsigned int old_fpscr_value;
|
||
unsigned int old_sr_value;
|
||
unsigned int fpscr_c_value;
|
||
unsigned int fpscr_mask;
|
||
unsigned int sr_mask;
|
||
|
||
fpscr_base_regnum = tdep->FPSCR_REGNUM;
|
||
sr_base_regnum = tdep->SR_REGNUM;
|
||
|
||
/* FPSCR_C is a very weird register that contains sparse bits
|
||
from the FPSCR and the SR architectural registers.
|
||
Specifically: */
|
||
/* *INDENT-OFF* */
|
||
/*
|
||
FPSRC_C bit
|
||
0 Bit 0 of FPSCR
|
||
1 reserved
|
||
2-17 Bit 2-18 of FPSCR
|
||
18-20 Bits 12,13,14 of SR
|
||
21-31 reserved
|
||
*/
|
||
/* *INDENT-ON* */
|
||
/* Get value as an int. */
|
||
fpscr_c_value = extract_unsigned_integer (buffer, 4);
|
||
|
||
/* Build the new values. */
|
||
fpscr_mask = 0x0003fffd;
|
||
sr_mask = 0x001c0000;
|
||
|
||
fpscr_value = fpscr_c_value & fpscr_mask;
|
||
sr_value = (fpscr_value & sr_mask) >> 6;
|
||
|
||
regcache_raw_read (current_regcache, fpscr_base_regnum, temp_buffer);
|
||
old_fpscr_value = extract_unsigned_integer (temp_buffer, 4);
|
||
old_fpscr_value &= 0xfffc0002;
|
||
fpscr_value |= old_fpscr_value;
|
||
store_unsigned_integer (temp_buffer, 4, fpscr_value);
|
||
regcache_raw_write (current_regcache, fpscr_base_regnum, temp_buffer);
|
||
|
||
regcache_raw_read (current_regcache, sr_base_regnum, temp_buffer);
|
||
old_sr_value = extract_unsigned_integer (temp_buffer, 4);
|
||
old_sr_value &= 0xffff8fff;
|
||
sr_value |= old_sr_value;
|
||
store_unsigned_integer (temp_buffer, 4, sr_value);
|
||
regcache_raw_write (current_regcache, sr_base_regnum, temp_buffer);
|
||
}
|
||
|
||
else if (reg_nr == tdep->FPUL_C_REGNUM)
|
||
{
|
||
base_regnum = sh64_compact_reg_base_num (reg_nr);
|
||
regcache_raw_write (current_regcache, base_regnum, buffer);
|
||
}
|
||
}
|
||
|
||
static void
|
||
sh64_register_write (struct gdbarch *gdbarch, int reg_nr, char *buffer)
|
||
{
|
||
if (reg_nr >= 0 && reg_nr < gdbarch_tdep (current_gdbarch)->DR0_REGNUM)
|
||
/* It is a regular register. */
|
||
regcache_raw_write (current_regcache, reg_nr, buffer);
|
||
else
|
||
/* It is a pseudo register and we need to construct its value */
|
||
sh64_pseudo_register_write (reg_nr, buffer);
|
||
}
|
||
|
||
/* Floating point vector of 4 float registers. */
|
||
static void
|
||
do_fv_register_info (int fv_regnum)
|
||
{
|
||
int first_fp_reg_num = fv_reg_base_num (fv_regnum);
|
||
printf_filtered ("fv%d\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
|
||
fv_regnum - gdbarch_tdep (current_gdbarch)->FV0_REGNUM,
|
||
(int) read_register (first_fp_reg_num),
|
||
(int) read_register (first_fp_reg_num + 1),
|
||
(int) read_register (first_fp_reg_num + 2),
|
||
(int) read_register (first_fp_reg_num + 3));
|
||
}
|
||
|
||
/* Floating point vector of 4 float registers, compact mode. */
|
||
static void
|
||
do_fv_c_register_info (int fv_regnum)
|
||
{
|
||
int first_fp_reg_num = sh64_compact_reg_base_num (fv_regnum);
|
||
printf_filtered ("fv%d_c\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
|
||
fv_regnum - gdbarch_tdep (current_gdbarch)->FV0_C_REGNUM,
|
||
(int) read_register (first_fp_reg_num),
|
||
(int) read_register (first_fp_reg_num + 1),
|
||
(int) read_register (first_fp_reg_num + 2),
|
||
(int) read_register (first_fp_reg_num + 3));
|
||
}
|
||
|
||
/* Pairs of single regs. The DR are instead double precision
|
||
registers. */
|
||
static void
|
||
do_fpp_register_info (int fpp_regnum)
|
||
{
|
||
int first_fp_reg_num = fpp_reg_base_num (fpp_regnum);
|
||
|
||
printf_filtered ("fpp%d\t0x%08x\t0x%08x\n",
|
||
fpp_regnum - gdbarch_tdep (current_gdbarch)->FPP0_REGNUM,
|
||
(int) read_register (first_fp_reg_num),
|
||
(int) read_register (first_fp_reg_num + 1));
|
||
}
|
||
|
||
/* Double precision registers. */
|
||
static void
|
||
do_dr_register_info (int dr_regnum)
|
||
{
|
||
int first_fp_reg_num = dr_reg_base_num (dr_regnum);
|
||
|
||
printf_filtered ("dr%d\t0x%08x%08x\n",
|
||
dr_regnum - gdbarch_tdep (current_gdbarch)->DR0_REGNUM,
|
||
(int) read_register (first_fp_reg_num),
|
||
(int) read_register (first_fp_reg_num + 1));
|
||
}
|
||
|
||
/* Double precision registers, compact mode. */
|
||
static void
|
||
do_dr_c_register_info (int dr_regnum)
|
||
{
|
||
int first_fp_reg_num = sh64_compact_reg_base_num (dr_regnum);
|
||
|
||
printf_filtered ("dr%d_c\t0x%08x%08x\n",
|
||
dr_regnum - gdbarch_tdep (current_gdbarch)->DR0_C_REGNUM,
|
||
(int) read_register (first_fp_reg_num),
|
||
(int) read_register (first_fp_reg_num +1));
|
||
}
|
||
|
||
/* General register in compact mode. */
|
||
static void
|
||
do_r_c_register_info (int r_c_regnum)
|
||
{
|
||
int regnum = sh64_compact_reg_base_num (r_c_regnum);
|
||
|
||
printf_filtered ("r%d_c\t0x%08x\n",
|
||
r_c_regnum - gdbarch_tdep (current_gdbarch)->R0_C_REGNUM,
|
||
/*FIXME!!!*/ (int) read_register (regnum));
|
||
}
|
||
|
||
/* FIXME:!! THIS SHOULD TAKE CARE OF GETTING THE RIGHT PORTION OF THE
|
||
shmedia REGISTERS. */
|
||
/* Control registers, compact mode. */
|
||
static void
|
||
do_cr_c_register_info (int cr_c_regnum)
|
||
{
|
||
switch (cr_c_regnum)
|
||
{
|
||
case 237: printf_filtered ("pc_c\t0x%08x\n", (int) read_register (cr_c_regnum));
|
||
break;
|
||
case 238: printf_filtered ("gbr_c\t0x%08x\n", (int) read_register (cr_c_regnum));
|
||
break;
|
||
case 239: printf_filtered ("mach_c\t0x%08x\n", (int) read_register (cr_c_regnum));
|
||
break;
|
||
case 240: printf_filtered ("macl_c\t0x%08x\n", (int) read_register (cr_c_regnum));
|
||
break;
|
||
case 241: printf_filtered ("pr_c\t0x%08x\n", (int) read_register (cr_c_regnum));
|
||
break;
|
||
case 242: printf_filtered ("t_c\t0x%08x\n", (int) read_register (cr_c_regnum));
|
||
break;
|
||
case 243: printf_filtered ("fpscr_c\t0x%08x\n", (int) read_register (cr_c_regnum));
|
||
break;
|
||
case 244: printf_filtered ("fpul_c\t0x%08x\n", (int)read_register (cr_c_regnum));
|
||
break;
|
||
}
|
||
}
|
||
|
||
static void
|
||
sh_do_pseudo_register (int regnum)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
||
|
||
if (regnum < NUM_REGS || regnum >= NUM_REGS + NUM_PSEUDO_REGS)
|
||
internal_error (__FILE__, __LINE__,
|
||
"Invalid pseudo register number %d\n", regnum);
|
||
else if (regnum >= tdep->DR0_REGNUM
|
||
&& regnum < tdep->DR_LAST_REGNUM)
|
||
do_dr_register_info (regnum);
|
||
else if (regnum >= tdep->FV0_REGNUM
|
||
&& regnum <= tdep->FV_LAST_REGNUM)
|
||
do_fv_register_info (regnum);
|
||
}
|
||
|
||
static void
|
||
sh_do_fp_register (int regnum)
|
||
{ /* do values for FP (float) regs */
|
||
char *raw_buffer;
|
||
double flt; /* double extracted from raw hex data */
|
||
int inv;
|
||
int j;
|
||
|
||
/* Allocate space for the float. */
|
||
raw_buffer = (char *) alloca (REGISTER_RAW_SIZE (FP0_REGNUM));
|
||
|
||
/* Get the data in raw format. */
|
||
if (!frame_register_read (selected_frame, regnum, raw_buffer))
|
||
error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
|
||
|
||
/* Get the register as a number */
|
||
flt = unpack_double (builtin_type_float, raw_buffer, &inv);
|
||
|
||
/* Print the name and some spaces. */
|
||
fputs_filtered (REGISTER_NAME (regnum), gdb_stdout);
|
||
print_spaces_filtered (15 - strlen (REGISTER_NAME (regnum)), gdb_stdout);
|
||
|
||
/* Print the value. */
|
||
if (inv)
|
||
printf_filtered ("<invalid float>");
|
||
else
|
||
printf_filtered ("%-10.9g", flt);
|
||
|
||
/* Print the fp register as hex. */
|
||
printf_filtered ("\t(raw 0x");
|
||
for (j = 0; j < REGISTER_RAW_SIZE (regnum); j++)
|
||
{
|
||
register int idx = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? j
|
||
: REGISTER_RAW_SIZE (regnum) - 1 - j;
|
||
printf_filtered ("%02x", (unsigned char) raw_buffer[idx]);
|
||
}
|
||
printf_filtered (")");
|
||
printf_filtered ("\n");
|
||
}
|
||
|
||
static void
|
||
sh64_do_pseudo_register (int regnum)
|
||
{
|
||
/* All the sh64-compact mode registers are pseudo registers. */
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
||
|
||
if (regnum < NUM_REGS
|
||
|| regnum >= NUM_REGS + NUM_PSEUDO_REGS_SH_MEDIA + NUM_PSEUDO_REGS_SH_COMPACT)
|
||
internal_error (__FILE__, __LINE__,
|
||
"Invalid pseudo register number %d\n", regnum);
|
||
|
||
else if ((regnum >= tdep->DR0_REGNUM
|
||
&& regnum <= tdep->DR_LAST_REGNUM))
|
||
do_dr_register_info (regnum);
|
||
|
||
else if ((regnum >= tdep->DR0_C_REGNUM
|
||
&& regnum <= tdep->DR_LAST_C_REGNUM))
|
||
do_dr_c_register_info (regnum);
|
||
|
||
else if ((regnum >= tdep->FV0_REGNUM
|
||
&& regnum <= tdep->FV_LAST_REGNUM))
|
||
do_fv_register_info (regnum);
|
||
|
||
else if ((regnum >= tdep->FV0_C_REGNUM
|
||
&& regnum <= tdep->FV_LAST_C_REGNUM))
|
||
do_fv_c_register_info (regnum);
|
||
|
||
else if (regnum >= tdep->FPP0_REGNUM
|
||
&& regnum <= tdep->FPP_LAST_REGNUM)
|
||
do_fpp_register_info (regnum);
|
||
|
||
else if (regnum >= tdep->R0_C_REGNUM
|
||
&& regnum <= tdep->R_LAST_C_REGNUM)
|
||
do_r_c_register_info (regnum); /* FIXME, this function will not print the right format */
|
||
|
||
else if (regnum >= tdep->FP0_C_REGNUM
|
||
&& regnum <= tdep->FP_LAST_C_REGNUM)
|
||
sh_do_fp_register (regnum); /* this should work also for pseudoregs */
|
||
|
||
else if (regnum >= tdep->PC_C_REGNUM
|
||
&& regnum <= tdep->FPUL_C_REGNUM)
|
||
do_cr_c_register_info (regnum);
|
||
|
||
}
|
||
|
||
static void
|
||
sh_do_register (int regnum)
|
||
{
|
||
char raw_buffer[MAX_REGISTER_RAW_SIZE];
|
||
|
||
fputs_filtered (REGISTER_NAME (regnum), gdb_stdout);
|
||
print_spaces_filtered (15 - strlen (REGISTER_NAME (regnum)), gdb_stdout);
|
||
|
||
/* Get the data in raw format. */
|
||
if (!frame_register_read (selected_frame, regnum, raw_buffer))
|
||
printf_filtered ("*value not available*\n");
|
||
|
||
val_print (REGISTER_VIRTUAL_TYPE (regnum), raw_buffer, 0, 0,
|
||
gdb_stdout, 'x', 1, 0, Val_pretty_default);
|
||
printf_filtered ("\t");
|
||
val_print (REGISTER_VIRTUAL_TYPE (regnum), raw_buffer, 0, 0,
|
||
gdb_stdout, 0, 1, 0, Val_pretty_default);
|
||
printf_filtered ("\n");
|
||
}
|
||
|
||
static void
|
||
sh_print_register (int regnum)
|
||
{
|
||
if (regnum < 0 || regnum >= NUM_REGS + NUM_PSEUDO_REGS)
|
||
internal_error (__FILE__, __LINE__,
|
||
"Invalid register number %d\n", regnum);
|
||
|
||
else if (regnum >= 0 && regnum < NUM_REGS)
|
||
{
|
||
if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
|
||
sh_do_fp_register (regnum); /* FP regs */
|
||
else
|
||
sh_do_register (regnum); /* All other regs */
|
||
}
|
||
|
||
else if (regnum < NUM_REGS + NUM_PSEUDO_REGS)
|
||
do_pseudo_register (regnum);
|
||
}
|
||
|
||
void
|
||
sh_do_registers_info (int regnum, int fpregs)
|
||
{
|
||
if (regnum != -1) /* do one specified register */
|
||
{
|
||
if (*(REGISTER_NAME (regnum)) == '\0')
|
||
error ("Not a valid register for the current processor type");
|
||
|
||
sh_print_register (regnum);
|
||
}
|
||
else
|
||
/* do all (or most) registers */
|
||
{
|
||
regnum = 0;
|
||
while (regnum < NUM_REGS)
|
||
{
|
||
/* If the register name is empty, it is undefined for this
|
||
processor, so don't display anything. */
|
||
if (REGISTER_NAME (regnum) == NULL
|
||
|| *(REGISTER_NAME (regnum)) == '\0')
|
||
{
|
||
regnum++;
|
||
continue;
|
||
}
|
||
|
||
if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
|
||
{
|
||
if (fpregs)
|
||
{
|
||
/* true for "INFO ALL-REGISTERS" command */
|
||
sh_do_fp_register (regnum); /* FP regs */
|
||
regnum ++;
|
||
}
|
||
else
|
||
regnum += (gdbarch_tdep (current_gdbarch)->FP_LAST_REGNUM - FP0_REGNUM); /* skip FP regs */
|
||
}
|
||
else
|
||
{
|
||
sh_do_register (regnum); /* All other regs */
|
||
regnum++;
|
||
}
|
||
}
|
||
|
||
if (fpregs)
|
||
while (regnum < NUM_REGS + NUM_PSEUDO_REGS)
|
||
{
|
||
do_pseudo_register (regnum);
|
||
regnum++;
|
||
}
|
||
}
|
||
}
|
||
|
||
void
|
||
sh_compact_do_registers_info (int regnum, int fpregs)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
||
if (regnum != -1) /* do one specified register */
|
||
{
|
||
if (*(REGISTER_NAME (regnum)) == '\0')
|
||
error ("Not a valid register for the current processor type");
|
||
|
||
if (regnum >= 0 && regnum < tdep->R0_C_REGNUM)
|
||
error ("Not a valid register for the current processor mode.");
|
||
|
||
sh_print_register (regnum);
|
||
}
|
||
else
|
||
/* do all compact registers */
|
||
{
|
||
regnum = tdep->R0_C_REGNUM;
|
||
while (regnum < NUM_REGS + NUM_PSEUDO_REGS)
|
||
{
|
||
do_pseudo_register (regnum);
|
||
regnum++;
|
||
}
|
||
}
|
||
}
|
||
|
||
void
|
||
sh64_do_registers_info (int regnum, int fpregs)
|
||
{
|
||
if (pc_is_isa32 (selected_frame->pc))
|
||
sh_do_registers_info (regnum, fpregs);
|
||
else
|
||
sh_compact_do_registers_info (regnum, fpregs);
|
||
}
|
||
|
||
#ifdef SVR4_SHARED_LIBS
|
||
|
||
/* Fetch (and possibly build) an appropriate link_map_offsets structure
|
||
for native i386 linux targets using the struct offsets defined in
|
||
link.h (but without actual reference to that file).
|
||
|
||
This makes it possible to access i386-linux shared libraries from
|
||
a gdb that was not built on an i386-linux host (for cross debugging).
|
||
*/
|
||
|
||
struct link_map_offsets *
|
||
sh_linux_svr4_fetch_link_map_offsets (void)
|
||
{
|
||
static struct link_map_offsets lmo;
|
||
static struct link_map_offsets *lmp = 0;
|
||
|
||
if (lmp == 0)
|
||
{
|
||
lmp = &lmo;
|
||
|
||
lmo.r_debug_size = 8; /* 20 not actual size but all we need */
|
||
|
||
lmo.r_map_offset = 4;
|
||
lmo.r_map_size = 4;
|
||
|
||
lmo.link_map_size = 20; /* 552 not actual size but all we need */
|
||
|
||
lmo.l_addr_offset = 0;
|
||
lmo.l_addr_size = 4;
|
||
|
||
lmo.l_name_offset = 4;
|
||
lmo.l_name_size = 4;
|
||
|
||
lmo.l_next_offset = 12;
|
||
lmo.l_next_size = 4;
|
||
|
||
lmo.l_prev_offset = 16;
|
||
lmo.l_prev_size = 4;
|
||
}
|
||
|
||
return lmp;
|
||
}
|
||
#endif /* SVR4_SHARED_LIBS */
|
||
|
||
|
||
enum
|
||
{
|
||
DSP_DSR_REGNUM = 24,
|
||
DSP_A0G_REGNUM,
|
||
DSP_A0_REGNUM,
|
||
DSP_A1G_REGNUM,
|
||
DSP_A1_REGNUM,
|
||
DSP_M0_REGNUM,
|
||
DSP_M1_REGNUM,
|
||
DSP_X0_REGNUM,
|
||
DSP_X1_REGNUM,
|
||
DSP_Y0_REGNUM,
|
||
DSP_Y1_REGNUM,
|
||
|
||
DSP_MOD_REGNUM = 40,
|
||
|
||
DSP_RS_REGNUM = 43,
|
||
DSP_RE_REGNUM,
|
||
|
||
DSP_R0_BANK_REGNUM = 51,
|
||
DSP_R7_BANK_REGNUM = DSP_R0_BANK_REGNUM + 7
|
||
};
|
||
|
||
static int
|
||
sh_dsp_register_sim_regno (int nr)
|
||
{
|
||
if (legacy_register_sim_regno (nr) < 0)
|
||
return legacy_register_sim_regno (nr);
|
||
if (nr >= DSP_DSR_REGNUM && nr < DSP_Y1_REGNUM)
|
||
return nr - DSP_DSR_REGNUM + SIM_SH_DSR_REGNUM;
|
||
if (nr == DSP_MOD_REGNUM)
|
||
return SIM_SH_MOD_REGNUM;
|
||
if (nr == DSP_RS_REGNUM)
|
||
return SIM_SH_RS_REGNUM;
|
||
if (nr == DSP_RE_REGNUM)
|
||
return SIM_SH_RE_REGNUM;
|
||
if (nr >= DSP_R0_BANK_REGNUM && nr <= DSP_R7_BANK_REGNUM)
|
||
return nr - DSP_R0_BANK_REGNUM + SIM_SH_R0_BANK_REGNUM;
|
||
return nr;
|
||
}
|
||
|
||
static gdbarch_init_ftype sh_gdbarch_init;
|
||
|
||
static struct gdbarch *
|
||
sh_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
|
||
{
|
||
static LONGEST sh_call_dummy_words[] = {0};
|
||
struct gdbarch *gdbarch;
|
||
struct gdbarch_tdep *tdep;
|
||
gdbarch_register_name_ftype *sh_register_name;
|
||
gdbarch_store_return_value_ftype *sh_store_return_value;
|
||
gdbarch_register_virtual_type_ftype *sh_register_virtual_type;
|
||
enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
|
||
|
||
/* Try to determine the ABI of the object we are loading. */
|
||
|
||
if (info.abfd != NULL)
|
||
{
|
||
osabi = gdbarch_lookup_osabi (info.abfd);
|
||
/* If we get "unknown" back, just leave it that way. */
|
||
}
|
||
|
||
/* Find a candidate among the list of pre-declared architectures. */
|
||
for (arches = gdbarch_list_lookup_by_info (arches, &info);
|
||
arches != NULL;
|
||
arches = gdbarch_list_lookup_by_info (arches->next, &info))
|
||
{
|
||
/* Make sure the ABI selection matches. */
|
||
tdep = gdbarch_tdep (arches->gdbarch);
|
||
if (tdep && tdep->osabi == osabi)
|
||
return arches->gdbarch;
|
||
}
|
||
|
||
/* None found, create a new architecture from the information
|
||
provided. */
|
||
tdep = XMALLOC (struct gdbarch_tdep);
|
||
gdbarch = gdbarch_alloc (&info, tdep);
|
||
|
||
tdep->osabi = osabi;
|
||
|
||
/* Initialize the register numbers that are not common to all the
|
||
variants to -1, if necessary thse will be overwritten in the case
|
||
statement below. */
|
||
tdep->FPUL_REGNUM = -1;
|
||
tdep->FPSCR_REGNUM = -1;
|
||
tdep->PR_REGNUM = 17;
|
||
tdep->SR_REGNUM = 22;
|
||
tdep->DSR_REGNUM = -1;
|
||
tdep->FP_LAST_REGNUM = -1;
|
||
tdep->A0G_REGNUM = -1;
|
||
tdep->A0_REGNUM = -1;
|
||
tdep->A1G_REGNUM = -1;
|
||
tdep->A1_REGNUM = -1;
|
||
tdep->M0_REGNUM = -1;
|
||
tdep->M1_REGNUM = -1;
|
||
tdep->X0_REGNUM = -1;
|
||
tdep->X1_REGNUM = -1;
|
||
tdep->Y0_REGNUM = -1;
|
||
tdep->Y1_REGNUM = -1;
|
||
tdep->MOD_REGNUM = -1;
|
||
tdep->RS_REGNUM = -1;
|
||
tdep->RE_REGNUM = -1;
|
||
tdep->SSR_REGNUM = -1;
|
||
tdep->SPC_REGNUM = -1;
|
||
tdep->DR0_REGNUM = -1;
|
||
tdep->DR_LAST_REGNUM = -1;
|
||
tdep->FV0_REGNUM = -1;
|
||
tdep->FV_LAST_REGNUM = -1;
|
||
tdep->ARG0_REGNUM = 4;
|
||
tdep->ARGLAST_REGNUM = 7;
|
||
tdep->RETURN_REGNUM = 0;
|
||
tdep->FLOAT_ARGLAST_REGNUM = -1;
|
||
|
||
tdep->sh_abi = SH_ABI_UNKNOWN;
|
||
|
||
set_gdbarch_fp0_regnum (gdbarch, -1);
|
||
set_gdbarch_num_pseudo_regs (gdbarch, 0);
|
||
set_gdbarch_max_register_raw_size (gdbarch, 4);
|
||
set_gdbarch_max_register_virtual_size (gdbarch, 4);
|
||
set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
|
||
set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
|
||
set_gdbarch_num_regs (gdbarch, SH_DEFAULT_NUM_REGS);
|
||
set_gdbarch_sp_regnum (gdbarch, 15);
|
||
set_gdbarch_fp_regnum (gdbarch, 14);
|
||
set_gdbarch_pc_regnum (gdbarch, 16);
|
||
set_gdbarch_register_size (gdbarch, 4);
|
||
set_gdbarch_register_bytes (gdbarch, SH_DEFAULT_NUM_REGS * 4);
|
||
set_gdbarch_do_registers_info (gdbarch, sh_do_registers_info);
|
||
set_gdbarch_breakpoint_from_pc (gdbarch, sh_breakpoint_from_pc);
|
||
set_gdbarch_frame_chain (gdbarch, sh_frame_chain);
|
||
set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register);
|
||
set_gdbarch_init_extra_frame_info (gdbarch, sh_init_extra_frame_info);
|
||
set_gdbarch_deprecated_extract_return_value (gdbarch, sh_extract_return_value);
|
||
set_gdbarch_push_arguments (gdbarch, sh_push_arguments);
|
||
set_gdbarch_store_struct_return (gdbarch, sh_store_struct_return);
|
||
set_gdbarch_use_struct_convention (gdbarch, sh_use_struct_convention);
|
||
set_gdbarch_deprecated_extract_struct_value_address (gdbarch, sh_extract_struct_value_address);
|
||
set_gdbarch_pop_frame (gdbarch, sh_pop_frame);
|
||
set_gdbarch_print_insn (gdbarch, gdb_print_insn_sh);
|
||
set_gdbarch_register_sim_regno (gdbarch, legacy_register_sim_regno);
|
||
skip_prologue_hard_way = sh_skip_prologue_hard_way;
|
||
do_pseudo_register = sh_do_pseudo_register;
|
||
|
||
switch (info.bfd_arch_info->mach)
|
||
{
|
||
case bfd_mach_sh:
|
||
sh_register_name = sh_sh_register_name;
|
||
sh_show_regs = sh_generic_show_regs;
|
||
sh_store_return_value = sh_default_store_return_value;
|
||
sh_register_virtual_type = sh_default_register_virtual_type;
|
||
set_gdbarch_frame_init_saved_regs (gdbarch, sh_nofp_frame_init_saved_regs);
|
||
set_gdbarch_register_raw_size (gdbarch, sh_default_register_raw_size);
|
||
set_gdbarch_register_virtual_size (gdbarch, sh_default_register_raw_size);
|
||
set_gdbarch_register_byte (gdbarch, sh_default_register_byte);
|
||
break;
|
||
case bfd_mach_sh2:
|
||
sh_register_name = sh_sh_register_name;
|
||
sh_show_regs = sh_generic_show_regs;
|
||
sh_store_return_value = sh_default_store_return_value;
|
||
sh_register_virtual_type = sh_default_register_virtual_type;
|
||
set_gdbarch_frame_init_saved_regs (gdbarch, sh_nofp_frame_init_saved_regs);
|
||
set_gdbarch_register_raw_size (gdbarch, sh_default_register_raw_size);
|
||
set_gdbarch_register_virtual_size (gdbarch, sh_default_register_raw_size);
|
||
set_gdbarch_register_byte (gdbarch, sh_default_register_byte);
|
||
break;
|
||
case bfd_mach_sh_dsp:
|
||
sh_register_name = sh_sh_dsp_register_name;
|
||
sh_show_regs = sh_dsp_show_regs;
|
||
sh_store_return_value = sh_default_store_return_value;
|
||
sh_register_virtual_type = sh_default_register_virtual_type;
|
||
set_gdbarch_frame_init_saved_regs (gdbarch, sh_nofp_frame_init_saved_regs);
|
||
set_gdbarch_register_raw_size (gdbarch, sh_default_register_raw_size);
|
||
set_gdbarch_register_virtual_size (gdbarch, sh_default_register_raw_size);
|
||
set_gdbarch_register_byte (gdbarch, sh_default_register_byte);
|
||
set_gdbarch_register_sim_regno (gdbarch, sh_dsp_register_sim_regno);
|
||
tdep->DSR_REGNUM = 24;
|
||
tdep->A0G_REGNUM = 25;
|
||
tdep->A0_REGNUM = 26;
|
||
tdep->A1G_REGNUM = 27;
|
||
tdep->A1_REGNUM = 28;
|
||
tdep->M0_REGNUM = 29;
|
||
tdep->M1_REGNUM = 30;
|
||
tdep->X0_REGNUM = 31;
|
||
tdep->X1_REGNUM = 32;
|
||
tdep->Y0_REGNUM = 33;
|
||
tdep->Y1_REGNUM = 34;
|
||
tdep->MOD_REGNUM = 40;
|
||
tdep->RS_REGNUM = 43;
|
||
tdep->RE_REGNUM = 44;
|
||
break;
|
||
case bfd_mach_sh3:
|
||
sh_register_name = sh_sh3_register_name;
|
||
sh_show_regs = sh3_show_regs;
|
||
sh_store_return_value = sh_default_store_return_value;
|
||
sh_register_virtual_type = sh_default_register_virtual_type;
|
||
set_gdbarch_frame_init_saved_regs (gdbarch, sh_nofp_frame_init_saved_regs);
|
||
set_gdbarch_register_raw_size (gdbarch, sh_default_register_raw_size);
|
||
set_gdbarch_register_virtual_size (gdbarch, sh_default_register_raw_size);
|
||
set_gdbarch_register_byte (gdbarch, sh_default_register_byte);
|
||
tdep->SSR_REGNUM = 41;
|
||
tdep->SPC_REGNUM = 42;
|
||
break;
|
||
case bfd_mach_sh3e:
|
||
sh_register_name = sh_sh3e_register_name;
|
||
sh_show_regs = sh3e_show_regs;
|
||
sh_store_return_value = sh3e_sh4_store_return_value;
|
||
sh_register_virtual_type = sh_sh3e_register_virtual_type;
|
||
set_gdbarch_frame_init_saved_regs (gdbarch, sh_fp_frame_init_saved_regs);
|
||
set_gdbarch_register_raw_size (gdbarch, sh_default_register_raw_size);
|
||
set_gdbarch_register_virtual_size (gdbarch, sh_default_register_raw_size);
|
||
set_gdbarch_register_byte (gdbarch, sh_default_register_byte);
|
||
set_gdbarch_deprecated_extract_return_value (gdbarch, sh3e_sh4_extract_return_value);
|
||
set_gdbarch_fp0_regnum (gdbarch, 25);
|
||
tdep->FPUL_REGNUM = 23;
|
||
tdep->FPSCR_REGNUM = 24;
|
||
tdep->FP_LAST_REGNUM = 40;
|
||
tdep->SSR_REGNUM = 41;
|
||
tdep->SPC_REGNUM = 42;
|
||
break;
|
||
case bfd_mach_sh3_dsp:
|
||
sh_register_name = sh_sh3_dsp_register_name;
|
||
sh_show_regs = sh3_dsp_show_regs;
|
||
sh_store_return_value = sh_default_store_return_value;
|
||
sh_register_virtual_type = sh_default_register_virtual_type;
|
||
set_gdbarch_frame_init_saved_regs (gdbarch, sh_nofp_frame_init_saved_regs);
|
||
set_gdbarch_register_raw_size (gdbarch, sh_default_register_raw_size);
|
||
set_gdbarch_register_virtual_size (gdbarch, sh_default_register_raw_size);
|
||
set_gdbarch_register_byte (gdbarch, sh_default_register_byte);
|
||
tdep->DSR_REGNUM = 24;
|
||
tdep->A0G_REGNUM = 25;
|
||
tdep->A0_REGNUM = 26;
|
||
tdep->A1G_REGNUM = 27;
|
||
tdep->A1_REGNUM = 28;
|
||
tdep->M0_REGNUM = 29;
|
||
tdep->M1_REGNUM = 30;
|
||
tdep->X0_REGNUM = 31;
|
||
tdep->X1_REGNUM = 32;
|
||
tdep->Y0_REGNUM = 33;
|
||
tdep->Y1_REGNUM = 34;
|
||
tdep->MOD_REGNUM = 40;
|
||
tdep->RS_REGNUM = 43;
|
||
tdep->RE_REGNUM = 44;
|
||
tdep->SSR_REGNUM = 41;
|
||
tdep->SPC_REGNUM = 42;
|
||
break;
|
||
case bfd_mach_sh4:
|
||
sh_register_name = sh_sh4_register_name;
|
||
sh_show_regs = sh4_show_regs;
|
||
sh_store_return_value = sh3e_sh4_store_return_value;
|
||
sh_register_virtual_type = sh_sh4_register_virtual_type;
|
||
set_gdbarch_frame_init_saved_regs (gdbarch, sh_fp_frame_init_saved_regs);
|
||
set_gdbarch_deprecated_extract_return_value (gdbarch, sh3e_sh4_extract_return_value);
|
||
set_gdbarch_fp0_regnum (gdbarch, 25);
|
||
set_gdbarch_register_raw_size (gdbarch, sh_sh4_register_raw_size);
|
||
set_gdbarch_register_virtual_size (gdbarch, sh_sh4_register_raw_size);
|
||
set_gdbarch_register_byte (gdbarch, sh_sh4_register_byte);
|
||
set_gdbarch_num_pseudo_regs (gdbarch, 12);
|
||
set_gdbarch_max_register_raw_size (gdbarch, 4 * 4);
|
||
set_gdbarch_max_register_virtual_size (gdbarch, 4 * 4);
|
||
set_gdbarch_register_read (gdbarch, sh4_register_read);
|
||
set_gdbarch_register_write (gdbarch, sh4_register_write);
|
||
tdep->FPUL_REGNUM = 23;
|
||
tdep->FPSCR_REGNUM = 24;
|
||
tdep->FP_LAST_REGNUM = 40;
|
||
tdep->SSR_REGNUM = 41;
|
||
tdep->SPC_REGNUM = 42;
|
||
tdep->DR0_REGNUM = 59;
|
||
tdep->DR_LAST_REGNUM = 66;
|
||
tdep->FV0_REGNUM = 67;
|
||
tdep->FV_LAST_REGNUM = 70;
|
||
break;
|
||
case bfd_mach_sh5:
|
||
tdep->PR_REGNUM = 18;
|
||
tdep->SR_REGNUM = 65;
|
||
tdep->FPSCR_REGNUM = SIM_SH64_FPCSR_REGNUM;
|
||
tdep->FP_LAST_REGNUM = SIM_SH64_FR0_REGNUM + SIM_SH64_NR_FP_REGS - 1;
|
||
tdep->SSR_REGNUM = SIM_SH64_SSR_REGNUM;
|
||
tdep->SPC_REGNUM = SIM_SH64_SPC_REGNUM;
|
||
tdep->TR7_REGNUM = SIM_SH64_TR0_REGNUM + 7;
|
||
tdep->FPP0_REGNUM = 173;
|
||
tdep->FPP_LAST_REGNUM = 204;
|
||
tdep->DR0_REGNUM = 141;
|
||
tdep->DR_LAST_REGNUM = 172;
|
||
tdep->FV0_REGNUM = 205;
|
||
tdep->FV_LAST_REGNUM = 220;
|
||
tdep->R0_C_REGNUM = 221;
|
||
tdep->R_LAST_C_REGNUM = 236;
|
||
tdep->PC_C_REGNUM = 237;
|
||
tdep->GBR_C_REGNUM = 238;
|
||
tdep->MACH_C_REGNUM = 239;
|
||
tdep->MACL_C_REGNUM = 240;
|
||
tdep->PR_C_REGNUM = 241;
|
||
tdep->T_C_REGNUM = 242;
|
||
tdep->FPSCR_C_REGNUM = 243;
|
||
tdep->FPUL_C_REGNUM = 244;
|
||
tdep->FP0_C_REGNUM = 245;
|
||
tdep->FP_LAST_C_REGNUM = 260;
|
||
tdep->DR0_C_REGNUM = 261;
|
||
tdep->DR_LAST_C_REGNUM = 268;
|
||
tdep->FV0_C_REGNUM = 269;
|
||
tdep->FV_LAST_C_REGNUM = 272;
|
||
tdep->ARG0_REGNUM = 2;
|
||
tdep->ARGLAST_REGNUM = 9;
|
||
tdep->RETURN_REGNUM = 2;
|
||
tdep->FLOAT_ARGLAST_REGNUM = 11;
|
||
|
||
set_gdbarch_num_pseudo_regs (gdbarch, NUM_PSEUDO_REGS_SH_MEDIA + NUM_PSEUDO_REGS_SH_COMPACT);
|
||
set_gdbarch_fp0_regnum (gdbarch, SIM_SH64_FR0_REGNUM);
|
||
set_gdbarch_pc_regnum (gdbarch, 64);
|
||
|
||
/* Determine the ABI */
|
||
if (bfd_get_arch_size (info.abfd) == 64)
|
||
{
|
||
/* If the ABI is the 64-bit one, it can only be sh-media. */
|
||
tdep->sh_abi = SH_ABI_64;
|
||
set_gdbarch_ptr_bit (gdbarch, 8 * TARGET_CHAR_BIT);
|
||
set_gdbarch_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
|
||
}
|
||
else
|
||
{
|
||
/* If the ABI is the 32-bit one it could be either media or
|
||
compact. */
|
||
tdep->sh_abi = SH_ABI_32;
|
||
set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
|
||
set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
|
||
}
|
||
|
||
/* the number of real registers is the same whether we are in
|
||
ISA16(compact) or ISA32(media). */
|
||
set_gdbarch_num_regs (gdbarch, SIM_SH64_NR_REGS);
|
||
set_gdbarch_register_size (gdbarch, 8); /*????*/
|
||
set_gdbarch_register_bytes (gdbarch,
|
||
((SIM_SH64_NR_FP_REGS + 1) * 4)
|
||
+ (SIM_SH64_NR_REGS - SIM_SH64_NR_FP_REGS -1) * 8);
|
||
|
||
sh_register_name = sh_sh64_register_name;
|
||
sh_show_regs = sh64_show_regs;
|
||
sh_register_virtual_type = sh_sh64_register_virtual_type;
|
||
sh_store_return_value = sh64_store_return_value;
|
||
skip_prologue_hard_way = sh64_skip_prologue_hard_way;
|
||
do_pseudo_register = sh64_do_pseudo_register;
|
||
set_gdbarch_register_raw_size (gdbarch, sh_sh64_register_raw_size);
|
||
set_gdbarch_register_virtual_size (gdbarch, sh_sh64_register_raw_size);
|
||
set_gdbarch_register_byte (gdbarch, sh_sh64_register_byte);
|
||
/* This seems awfully wrong!*/
|
||
/*set_gdbarch_max_register_raw_size (gdbarch, 8);*/
|
||
/* should include the size of the pseudo regs. */
|
||
set_gdbarch_max_register_raw_size (gdbarch, 4 * 4);
|
||
/* Or should that go in the virtual_size? */
|
||
/*set_gdbarch_max_register_virtual_size (gdbarch, 8);*/
|
||
set_gdbarch_max_register_virtual_size (gdbarch, 4 * 4);
|
||
set_gdbarch_register_read (gdbarch, sh64_register_read);
|
||
set_gdbarch_register_write (gdbarch, sh64_register_write);
|
||
|
||
set_gdbarch_do_registers_info (gdbarch, sh64_do_registers_info);
|
||
set_gdbarch_frame_init_saved_regs (gdbarch, sh64_nofp_frame_init_saved_regs);
|
||
set_gdbarch_breakpoint_from_pc (gdbarch, sh_sh64_breakpoint_from_pc);
|
||
set_gdbarch_init_extra_frame_info (gdbarch, sh64_init_extra_frame_info);
|
||
set_gdbarch_frame_chain (gdbarch, sh64_frame_chain);
|
||
set_gdbarch_get_saved_register (gdbarch, sh64_get_saved_register);
|
||
set_gdbarch_deprecated_extract_return_value (gdbarch, sh64_extract_return_value);
|
||
set_gdbarch_push_arguments (gdbarch, sh64_push_arguments);
|
||
/*set_gdbarch_store_struct_return (gdbarch, sh64_store_struct_return);*/
|
||
set_gdbarch_deprecated_extract_struct_value_address (gdbarch, sh64_extract_struct_value_address);
|
||
set_gdbarch_use_struct_convention (gdbarch, sh64_use_struct_convention);
|
||
set_gdbarch_pop_frame (gdbarch, sh64_pop_frame);
|
||
set_gdbarch_elf_make_msymbol_special (gdbarch,
|
||
sh64_elf_make_msymbol_special);
|
||
break;
|
||
default:
|
||
sh_register_name = sh_generic_register_name;
|
||
sh_show_regs = sh_generic_show_regs;
|
||
sh_store_return_value = sh_default_store_return_value;
|
||
sh_register_virtual_type = sh_default_register_virtual_type;
|
||
set_gdbarch_frame_init_saved_regs (gdbarch, sh_nofp_frame_init_saved_regs);
|
||
set_gdbarch_register_raw_size (gdbarch, sh_default_register_raw_size);
|
||
set_gdbarch_register_virtual_size (gdbarch, sh_default_register_raw_size);
|
||
set_gdbarch_register_byte (gdbarch, sh_default_register_byte);
|
||
break;
|
||
}
|
||
|
||
set_gdbarch_read_pc (gdbarch, generic_target_read_pc);
|
||
set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
|
||
set_gdbarch_read_fp (gdbarch, generic_target_read_fp);
|
||
set_gdbarch_read_sp (gdbarch, generic_target_read_sp);
|
||
set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
|
||
|
||
set_gdbarch_register_name (gdbarch, sh_register_name);
|
||
set_gdbarch_register_virtual_type (gdbarch, sh_register_virtual_type);
|
||
|
||
set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
|
||
set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
|
||
set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
|
||
set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
|
||
set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
|
||
set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);/*??should be 8?*/
|
||
|
||
set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
|
||
set_gdbarch_call_dummy_length (gdbarch, 0);
|
||
set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
|
||
set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
|
||
set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1); /*???*/
|
||
set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
|
||
set_gdbarch_call_dummy_start_offset (gdbarch, 0);
|
||
set_gdbarch_pc_in_call_dummy (gdbarch, generic_pc_in_call_dummy);
|
||
set_gdbarch_call_dummy_words (gdbarch, sh_call_dummy_words);
|
||
set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (sh_call_dummy_words));
|
||
set_gdbarch_call_dummy_p (gdbarch, 1);
|
||
set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
|
||
set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
|
||
set_gdbarch_coerce_float_to_double (gdbarch,
|
||
sh_coerce_float_to_double);
|
||
|
||
set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
|
||
set_gdbarch_push_return_address (gdbarch, sh_push_return_address);
|
||
|
||
set_gdbarch_store_return_value (gdbarch, sh_store_return_value);
|
||
set_gdbarch_skip_prologue (gdbarch, sh_skip_prologue);
|
||
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
|
||
set_gdbarch_decr_pc_after_break (gdbarch, 0);
|
||
set_gdbarch_function_start_offset (gdbarch, 0);
|
||
|
||
set_gdbarch_frame_args_skip (gdbarch, 0);
|
||
set_gdbarch_frameless_function_invocation (gdbarch, frameless_look_for_prologue);
|
||
set_gdbarch_frame_chain_valid (gdbarch, generic_file_frame_chain_valid);
|
||
set_gdbarch_frame_saved_pc (gdbarch, sh_frame_saved_pc);
|
||
set_gdbarch_frame_args_address (gdbarch, default_frame_address);
|
||
set_gdbarch_frame_locals_address (gdbarch, default_frame_address);
|
||
set_gdbarch_saved_pc_after_call (gdbarch, sh_saved_pc_after_call);
|
||
set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
|
||
set_gdbarch_believe_pcc_promotion (gdbarch, 1);
|
||
|
||
/* Hook in ABI-specific overrides, if they have been registered.
|
||
|
||
FIXME: if the ABI is unknown, this is probably an embedded target,
|
||
so we should not warn about this situation. */
|
||
gdbarch_init_osabi (info, gdbarch, osabi);
|
||
|
||
return gdbarch;
|
||
}
|
||
|
||
static void
|
||
sh_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
||
|
||
if (tdep == NULL)
|
||
return;
|
||
|
||
fprintf_unfiltered (file, "sh_dump_tdep: OS ABI = %s\n",
|
||
gdbarch_osabi_name (tdep->osabi));
|
||
}
|
||
|
||
void
|
||
_initialize_sh_tdep (void)
|
||
{
|
||
struct cmd_list_element *c;
|
||
|
||
gdbarch_register (bfd_arch_sh, sh_gdbarch_init, sh_dump_tdep);
|
||
|
||
add_com ("regs", class_vars, sh_show_regs_command, "Print all registers");
|
||
}
|