mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-12-15 04:31:49 +08:00
f6ac5f3d63
I.e., use C++ virtual methods and inheritance instead of tables of function pointers. Unfortunately, there's no way to do a smooth transition. ALL native targets in the tree must be converted at the same time. I've tested all I could with cross compilers and with help from GCC compile farm, but naturally I haven't been able to test many of the ports. Still, I made a best effort to port everything over, and while I expect some build problems due to typos and such, which should be trivial to fix, I don't expect any design problems. * Implementation notes: - The flattened current_target is gone. References to current_target or current_target.beneath are replaced with references to target_stack (the top of the stack) directly. - To keep "set debug target" working, this adds a new debug_stratum layer that sits on top of the stack, prints the debug, and delegates to the target beneath. In addition, this makes the shortname and longname properties of target_ops be virtual methods instead of data fields, and makes the debug target defer those to the target beneath. This is so that debug code sprinkled around that does "if (debugtarget) ..." can transparently print the name of the target beneath. A patch later in the series actually splits out the shortname/longname methods to a separate structure, but I preferred to keep that chance separate as it is associated with changing a bit the design of how targets are registered and open. - Since you can't check whether a C++ virtual method is overridden, the old method of checking whether a target_ops implements a method by comparing the function pointer must be replaced with something else. Some cases are fixed by adding a parallel "can_do_foo" target_ops methods. E.g.,: + for (t = target_stack; t != NULL; t = t->beneath) { - if (t->to_create_inferior != NULL) + if (t->can_create_inferior ()) break; } Others are fixed by changing void return type to bool or int return type, and have the default implementation return false or -1, to indicate lack of support. - make-target-delegates was adjusted to generate C++ classes and methods. It needed tweaks to grok "virtual" in front of the target method name, and for the fact that methods are no longer function pointers. (In particular, the current code parsing the return type was simple because it could simply parse up until the '(' in '(*to_foo)'. It now generates a couple C++ classes that inherit target_ops: dummy_target and debug_target. Since we need to generate the class declarations as well, i.e., we need to emit methods twice, we now generate the code in two passes. - The core_target global is renamed to avoid conflict with the "core_target" class. - ctf/tfile targets init_tracefile_ops is replaced by a base class that is inherited by both ctf and tfile. - bsd-uthread The bsd_uthread_ops_hack hack is gone. It's not needed because nothing was extending a target created by bsd_uthread_target. - remote/extended-remote targets This is a first pass, just enough to C++ify target_ops. A later pass will convert more free functions to methods, and make remote_state be truly per remote instance, allowing multiple simultaneous instances of remote targets. - inf-child/"native" is converted to an actual base class (inf_child_target), that is inherited by all native targets. - GNU/Linux The old weird double-target linux_ops mechanism in linux-nat.c, is gone, replaced by adding a few virtual methods to linux-nat.h's target_ops, called low_XXX, that the concrete linux-nat implementations override. Sort of like gdbserver's linux_target_ops, but simpler, for requiring only one target_ops-like hierarchy, which spares implementing the same method twice when we need to forward the method to a low implementation. The low target simply reimplements the target_ops method directly in that case. There are a few remaining linux-nat.c hooks that would be better converted to low_ methods like above too. E.g.: linux_nat_set_new_thread (t, x86_linux_new_thread); linux_nat_set_new_fork (t, x86_linux_new_fork); linux_nat_set_forget_process That'll be done in a follow up patch. - We can no longer use functions like x86_use_watchpoints to install custom methods on an arbitrary base target. The patch replaces instances of such a pattern with template mixins. For example memory_breakpoint_target defined in target.h, or x86_nat_target in x86-nat.h. - linux_trad_target, MIPS and Alpha GNU/Linux The code in the new linux-nat-trad.h/c files which was split off of inf-ptrace.h/c recently, is converted to a C++ base class, and used by the MIPS and Alpha GNU/Linux ports. - BSD targets The $architecture x NetBSD/OpenBSD/FreeBSD support matrix complicates things a bit. There's common BSD target code, and there's common architecture-specific code shared between the different BSDs. Currently, all that is stiched together to form a final target, via the i386bsd_target, x86bsd_target, fbsd_nat_add_target functions etc. This introduces new fbsd_nat_target, obsd_nat_target and nbsd_nat_target classes that serve as base/prototype target for the corresponding BSD variant. And introduces generic i386/AMD64 BSD targets, to be used as template mixin to build a final target. Similarly, a generic SPARC target is added, used by both BSD and Linux ports. - bsd_kvm_add_target, BSD libkvm target I considered making bsd_kvm_supply_pcb a virtual method, and then have each port inherit bsd_kvm_target and override that method, but that was resulting in lots of unjustified churn, so I left the function pointer mechanism alone. gdb/ChangeLog: 2018-05-02 Pedro Alves <palves@redhat.com> John Baldwin <jhb@freebsd.org> * target.h (enum strata) <debug_stratum>: New. (struct target_ops) <all delegation methods>: Replace by C++ virtual methods, and drop "to_" prefix. All references updated throughout. <to_shortname, to_longname, to_doc, to_data, to_have_steppable_watchpoint, to_have_continuable_watchpoint, to_has_thread_control, to_attach_no_wait>: Delete, replaced by virtual methods. All references updated throughout. <can_attach, supports_terminal_ours, can_create_inferior, get_thread_control_capabilities, attach_no_wait>: New virtual methods. <insert_breakpoint, remove_breakpoint>: Now TARGET_DEFAULT_NORETURN methods. <info_proc>: Now returns bool. <to_magic>: Delete. (OPS_MAGIC): Delete. (current_target): Delete. All references replaced by references to ... (target_stack): ... this. New. (target_shortname, target_longname): Adjust. (target_can_run): Now a function declaration. (default_child_has_all_memory, default_child_has_memory) (default_child_has_stack, default_child_has_registers) (default_child_has_execution): Remove target_ops parameter. (complete_target_initialization): Delete. (memory_breakpoint_target): New template class. (test_target_ops): Refactor as a C++ class with virtual methods. * make-target-delegates (NAME_PART): Tighten. (POINTER_PART, CP_SYMBOL): New. (SIMPLE_RETURN_PART): Reimplement. (VEC_RETURN_PART): Expect less. (RETURN_PART, VIRTUAL_PART): New. (METHOD): Adjust to C++ virtual methods. (scan_target_h): Remove reference to C99. (dname): Output "target_ops::" prefix. (write_function_header): Adjust to output a C++ class method. (write_declaration): New. (write_delegator): Adjust to output a C++ class method. (tdname): Output "dummy_target::" prefix. (write_tdefault, write_debugmethod): Adjust to output a C++ class method. (tdefault_names, debug_names): Delete. (return_types, tdefaults, styles, argtypes_array): New. (top level): All methods are delegators. (print_class): New. (top level): Print dummy_target and debug_target classes. * target-delegates.c: Regenerate. * target-debug.h (target_debug_print_enum_info_proc_what) (target_debug_print_thread_control_capabilities) (target_debug_print_thread_info_p): New. * target.c (dummy_target): Delete. (the_dummy_target, the_debug_target): New. (target_stack): Now extern. (set_targetdebug): Push/unpush debug target. (default_child_has_all_memory, default_child_has_memory) (default_child_has_stack, default_child_has_registers) (default_child_has_execution): Remove target_ops parameter. (complete_target_initialization): Delete. (add_target_with_completer): No longer call complete_target_initialization. (target_supports_terminal_ours): Use regular delegation. (update_current_target): Delete. (push_target): No longer check magic number. Don't call update_current_target. (unpush_target): Don't call update_current_target. (target_is_pushed): No longer check magic number. (target_require_runnable): Skip for all stratums over process_stratum. (target_ops::info_proc): New. (target_info_proc): Use find_target_at and find_default_run_target. (target_supports_disable_randomization): Use regular delegation. (target_get_osdata): Use find_target_at. (target_ops::open, target_ops::close, target_ops::can_attach) (target_ops::attach, target_ops::can_create_inferior) (target_ops::create_inferior, target_ops::can_run) (target_can_run): New. (default_fileio_target): Use regular delegation. (target_ops::fileio_open, target_ops::fileio_pwrite) (target_ops::fileio_pread, target_ops::fileio_fstat) (target_ops::fileio_close, target_ops::fileio_unlink) (target_ops::fileio_readlink): New. (target_fileio_open_1, target_fileio_unlink) (target_fileio_readlink): Always call the target method. Handle FILEIO_ENOSYS. (return_zero, return_zero_has_execution): Delete. (init_dummy_target): Delete. (dummy_target::dummy_target, dummy_target::shortname) (dummy_target::longname, dummy_target::doc) (debug_target::debug_target, debug_target::shortname) (debug_target::longname, debug_target::doc): New. (target_supports_delete_record): Use regular delegation. (setup_target_debug): Delete. (maintenance_print_target_stack): Skip debug_stratum. (initialize_targets): Instantiate the_dummy_target and the_debug_target. * auxv.c (target_auxv_parse): Remove 'ops' parameter. Adjust to use target_stack. (target_auxv_search, fprint_target_auxv): Adjust. (info_auxv_command): Adjust to use target_stack. * auxv.h (target_auxv_parse): Remove 'ops' parameter. * exceptions.c (print_flush): Handle a NULL target_stack. * regcache.c (target_ops_no_register): Refactor as class with virtual methods. * exec.c (exec_target): New class. (exec_ops): Now an exec_target. (exec_open, exec_close_1, exec_get_section_table) (exec_xfer_partial, exec_files_info, exec_has_memory) (exec_make_note_section): Refactor as exec_target methods. (exec_file_clear, ignore, exec_remove_breakpoint, init_exec_ops): Delete. (exec_target::find_memory_regions): New. (_initialize_exec): Don't call init_exec_ops. * gdbcore.h (exec_file_clear): Delete. * corefile.c (core_target): Delete. (core_file_command): Adjust. * corelow.c (core_target): New class. (the_core_target): New. (core_close): Remove target_ops parameter. (core_close_cleanup): Adjust. (core_target::close): New. (core_open, core_detach, get_core_registers, core_files_info) (core_xfer_partial, core_thread_alive, core_read_description) (core_pid_to_str, core_thread_name, core_has_memory) (core_has_stack, core_has_registers, core_info_proc): Rework as core_target methods. (ignore, core_remove_breakpoint, init_core_ops): Delete. (_initialize_corelow): Initialize the_core_target. * gdbcore.h (core_target): Delete. (the_core_target): New. * ctf.c: (ctf_target): New class. (ctf_ops): Now a ctf_target. (ctf_open, ctf_close, ctf_files_info, ctf_fetch_registers) (ctf_xfer_partial, ctf_get_trace_state_variable_value) (ctf_trace_find, ctf_traceframe_info): Refactor as ctf_target methods. (init_ctf_ops): Delete. (_initialize_ctf): Don't call it. * tracefile-tfile.c (tfile_target): New class. (tfile_ops): Now a tfile_target. (tfile_open, tfile_close, tfile_files_info) (tfile_get_tracepoint_status, tfile_trace_find) (tfile_fetch_registers, tfile_xfer_partial) (tfile_get_trace_state_variable_value, tfile_traceframe_info): Refactor as tfile_target methods. (tfile_xfer_partial_features): Remove target_ops parameter. (init_tfile_ops): Delete. (_initialize_tracefile_tfile): Don't call it. * tracefile.c (tracefile_has_all_memory, tracefile_has_memory) (tracefile_has_stack, tracefile_has_registers) (tracefile_thread_alive, tracefile_get_trace_status): Refactor as tracefile_target methods. (init_tracefile_ops): Delete. (tracefile_target::tracefile_target): New. * tracefile.h: Include "target.h". (tracefile_target): New class. (init_tracefile_ops): Delete. * spu-multiarch.c (spu_multiarch_target): New class. (spu_ops): Now a spu_multiarch_target. (spu_thread_architecture, spu_region_ok_for_hw_watchpoint) (spu_fetch_registers, spu_store_registers, spu_xfer_partial) (spu_search_memory, spu_mourn_inferior): Refactor as spu_multiarch_target methods. (init_spu_ops): Delete. (_initialize_spu_multiarch): Remove references to init_spu_ops, complete_target_initialization. * ravenscar-thread.c (ravenscar_thread_target): New class. (ravenscar_ops): Now a ravenscar_thread_target. (ravenscar_resume, ravenscar_wait, ravenscar_update_thread_list) (ravenscar_thread_alive, ravenscar_pid_to_str) (ravenscar_fetch_registers, ravenscar_store_registers) (ravenscar_prepare_to_store, ravenscar_stopped_by_sw_breakpoint) (ravenscar_stopped_by_hw_breakpoint) (ravenscar_stopped_by_watchpoint, ravenscar_stopped_data_address) (ravenscar_mourn_inferior, ravenscar_core_of_thread) (ravenscar_get_ada_task_ptid): Refactor as ravenscar_thread_target methods. (init_ravenscar_thread_ops): Delete. (_initialize_ravenscar): Remove references to init_ravenscar_thread_ops and complete_target_initialization. * bsd-uthread.c (bsd_uthread_ops_hack): Delete. (bsd_uthread_target): New class. (bsd_uthread_ops): Now a bsd_uthread_target. (bsd_uthread_activate): Adjust to refer to bsd_uthread_ops. (bsd_uthread_close, bsd_uthread_mourn_inferior) (bsd_uthread_fetch_registers, bsd_uthread_store_registers) (bsd_uthread_wait, bsd_uthread_resume, bsd_uthread_thread_alive) (bsd_uthread_update_thread_list, bsd_uthread_extra_thread_info) (bsd_uthread_pid_to_str): Refactor as bsd_uthread_target methods. (bsd_uthread_target): Delete function. (_initialize_bsd_uthread): Remove reference to complete_target_initialization. * bfd-target.c (target_bfd_data): Delete. Fields folded into ... (target_bfd): ... this new class. (target_bfd_xfer_partial, target_bfd_get_section_table) (target_bfd_close): Refactor as target_bfd methods. (target_bfd::~target_bfd): New. (target_bfd_reopen): Adjust. (target_bfd::close): New. * record-btrace.c (record_btrace_target): New class. (record_btrace_ops): Now a record_btrace_target. (record_btrace_open, record_btrace_stop_recording) (record_btrace_disconnect, record_btrace_close) (record_btrace_async, record_btrace_info) (record_btrace_insn_history, record_btrace_insn_history_range) (record_btrace_insn_history_from, record_btrace_call_history) (record_btrace_call_history_range) (record_btrace_call_history_from, record_btrace_record_method) (record_btrace_is_replaying, record_btrace_will_replay) (record_btrace_xfer_partial, record_btrace_insert_breakpoint) (record_btrace_remove_breakpoint, record_btrace_fetch_registers) (record_btrace_store_registers, record_btrace_prepare_to_store) (record_btrace_to_get_unwinder) (record_btrace_to_get_tailcall_unwinder, record_btrace_resume) (record_btrace_commit_resume, record_btrace_wait) (record_btrace_stop, record_btrace_can_execute_reverse) (record_btrace_stopped_by_sw_breakpoint) (record_btrace_supports_stopped_by_sw_breakpoint) (record_btrace_stopped_by_hw_breakpoint) (record_btrace_supports_stopped_by_hw_breakpoint) (record_btrace_update_thread_list, record_btrace_thread_alive) (record_btrace_goto_begin, record_btrace_goto_end) (record_btrace_goto, record_btrace_stop_replaying_all) (record_btrace_execution_direction) (record_btrace_prepare_to_generate_core) (record_btrace_done_generating_core): Refactor as record_btrace_target methods. (init_record_btrace_ops): Delete. (_initialize_record_btrace): Remove reference to init_record_btrace_ops. * record-full.c (RECORD_FULL_IS_REPLAY): Adjust to always refer to the execution_direction global. (record_full_base_target, record_full_target) (record_full_core_target): New classes. (record_full_ops): Now a record_full_target. (record_full_core_ops): Now a record_full_core_target. (record_full_target::detach, record_full_target::disconnect) (record_full_core_target::disconnect) (record_full_target::mourn_inferior, record_full_target::kill): New. (record_full_open, record_full_close, record_full_async): Refactor as methods of the record_full_base_target class. (record_full_resume, record_full_commit_resume): Refactor as methods of the record_full_target class. (record_full_wait, record_full_stopped_by_watchpoint) (record_full_stopped_data_address) (record_full_stopped_by_sw_breakpoint) (record_full_supports_stopped_by_sw_breakpoint) (record_full_stopped_by_hw_breakpoint) (record_full_supports_stopped_by_hw_breakpoint): Refactor as methods of the record_full_base_target class. (record_full_store_registers, record_full_xfer_partial) (record_full_insert_breakpoint, record_full_remove_breakpoint): Refactor as methods of the record_full_target class. (record_full_can_execute_reverse, record_full_get_bookmark) (record_full_goto_bookmark, record_full_execution_direction) (record_full_record_method, record_full_info, record_full_delete) (record_full_is_replaying, record_full_will_replay) (record_full_goto_begin, record_full_goto_end, record_full_goto) (record_full_stop_replaying): Refactor as methods of the record_full_base_target class. (record_full_core_resume, record_full_core_kill) (record_full_core_fetch_registers) (record_full_core_prepare_to_store) (record_full_core_store_registers, record_full_core_xfer_partial) (record_full_core_insert_breakpoint) (record_full_core_remove_breakpoint) (record_full_core_has_execution): Refactor as methods of the record_full_core_target class. (record_full_base_target::supports_delete_record): New. (init_record_full_ops): Delete. (init_record_full_core_ops): Delete. (record_full_save): Refactor as method of the record_full_base_target class. (_initialize_record_full): Remove references to init_record_full_ops and init_record_full_core_ops. * remote.c (remote_target, extended_remote_target): New classes. (remote_ops): Now a remote_target. (extended_remote_ops): Now an extended_remote_target. (remote_insert_fork_catchpoint, remote_remove_fork_catchpoint) (remote_insert_vfork_catchpoint, remote_remove_vfork_catchpoint) (remote_insert_exec_catchpoint, remote_remove_exec_catchpoint) (remote_pass_signals, remote_set_syscall_catchpoint) (remote_program_signals, ) (remote_thread_always_alive): Remove target_ops parameter. (remote_thread_alive, remote_thread_name) (remote_update_thread_list, remote_threads_extra_info) (remote_static_tracepoint_marker_at) (remote_static_tracepoint_markers_by_strid) (remote_get_ada_task_ptid, remote_close, remote_start_remote) (remote_open): Refactor as methods of remote_target. (extended_remote_open, extended_remote_detach) (extended_remote_attach, extended_remote_post_attach): (extended_remote_supports_disable_randomization) (extended_remote_create_inferior): : Refactor as method of extended_remote_target. (remote_set_permissions, remote_open_1, remote_detach) (remote_follow_fork, remote_follow_exec, remote_disconnect) (remote_resume, remote_commit_resume, remote_stop) (remote_interrupt, remote_pass_ctrlc, remote_terminal_inferior) (remote_terminal_ours, remote_wait, remote_fetch_registers) (remote_prepare_to_store, remote_store_registers) (remote_flash_erase, remote_flash_done, remote_files_info) (remote_kill, remote_mourn, remote_insert_breakpoint) (remote_remove_breakpoint, remote_insert_watchpoint) (remote_watchpoint_addr_within_range) (remote_remove_watchpoint, remote_region_ok_for_hw_watchpoint) (remote_check_watch_resources, remote_stopped_by_sw_breakpoint) (remote_supports_stopped_by_sw_breakpoint) (remote_stopped_by_hw_breakpoint) (remote_supports_stopped_by_hw_breakpoint) (remote_stopped_by_watchpoint, remote_stopped_data_address) (remote_insert_hw_breakpoint, remote_remove_hw_breakpoint) (remote_verify_memory): Refactor as methods of remote_target. (remote_write_qxfer, remote_read_qxfer): Remove target_ops parameter. (remote_xfer_partial, remote_get_memory_xfer_limit) (remote_search_memory, remote_rcmd, remote_memory_map) (remote_pid_to_str, remote_get_thread_local_address) (remote_get_tib_address, remote_read_description): Refactor as methods of remote_target. (remote_target::fileio_open, remote_target::fileio_pwrite) (remote_target::fileio_pread, remote_target::fileio_close): New. (remote_hostio_readlink, remote_hostio_fstat) (remote_filesystem_is_local, remote_can_execute_reverse) (remote_supports_non_stop, remote_supports_disable_randomization) (remote_supports_multi_process, remote_supports_cond_breakpoints) (remote_supports_enable_disable_tracepoint) (remote_supports_string_tracing) (remote_can_run_breakpoint_commands, remote_trace_init) (remote_download_tracepoint, remote_can_download_tracepoint) (remote_download_trace_state_variable, remote_enable_tracepoint) (remote_disable_tracepoint, remote_trace_set_readonly_regions) (remote_trace_start, remote_get_trace_status) (remote_get_tracepoint_status, remote_trace_stop) (remote_trace_find, remote_get_trace_state_variable_value) (remote_save_trace_data, remote_get_raw_trace_data) (remote_set_disconnected_tracing, remote_core_of_thread) (remote_set_circular_trace_buffer, remote_traceframe_info) (remote_get_min_fast_tracepoint_insn_len) (remote_set_trace_buffer_size, remote_set_trace_notes) (remote_use_agent, remote_can_use_agent, remote_enable_btrace) (remote_disable_btrace, remote_teardown_btrace) (remote_read_btrace, remote_btrace_conf) (remote_augmented_libraries_svr4_read, remote_load) (remote_pid_to_exec_file, remote_can_do_single_step) (remote_execution_direction, remote_thread_handle_to_thread_info): Refactor as methods of remote_target. (init_remote_ops, init_extended_remote_ops): Delete. (remote_can_async_p, remote_is_async_p, remote_async) (remote_thread_events, remote_upload_tracepoints) (remote_upload_trace_state_variables): Refactor as methods of remote_target. (_initialize_remote): Remove references to init_remote_ops and init_extended_remote_ops. * remote-sim.c (gdbsim_target): New class. (gdbsim_fetch_register, gdbsim_store_register, gdbsim_kill) (gdbsim_load, gdbsim_create_inferior, gdbsim_open, gdbsim_close) (gdbsim_detach, gdbsim_resume, gdbsim_interrupt) (gdbsim_wait, gdbsim_prepare_to_store, gdbsim_xfer_partial) (gdbsim_files_info, gdbsim_mourn_inferior, gdbsim_thread_alive) (gdbsim_pid_to_str, gdbsim_has_all_memory, gdbsim_has_memory): Refactor as methods of gdbsim_target. (gdbsim_ops): Now a gdbsim_target. (init_gdbsim_ops): Delete. (gdbsim_cntrl_c): Adjust. (_initialize_remote_sim): Remove reference to init_gdbsim_ops. * amd64-linux-nat.c (amd64_linux_nat_target): New class. (the_amd64_linux_nat_target): New. (amd64_linux_fetch_inferior_registers) (amd64_linux_store_inferior_registers): Refactor as methods of amd64_linux_nat_target. (_initialize_amd64_linux_nat): Adjust. Set linux_target. * i386-linux-nat.c: Don't include "linux-nat.h". (i386_linux_nat_target): New class. (the_i386_linux_nat_target): New. (i386_linux_fetch_inferior_registers) (i386_linux_store_inferior_registers, i386_linux_resume): Refactor as methods of i386_linux_nat_target. (_initialize_i386_linux_nat): Adjust. Set linux_target. * inf-child.c (inf_child_ops): Delete. (inf_child_fetch_inferior_registers) (inf_child_store_inferior_registers): Delete. (inf_child_post_attach, inf_child_prepare_to_store): Refactor as methods of inf_child_target. (inf_child_target::supports_terminal_ours) (inf_child_target::terminal_init) (inf_child_target::terminal_inferior) (inf_child_target::terminal_ours_for_output) (inf_child_target::terminal_ours, inf_child_target::interrupt) (inf_child_target::pass_ctrlc, inf_child_target::terminal_info): New. (inf_child_open, inf_child_disconnect, inf_child_close) (inf_child_mourn_inferior, inf_child_maybe_unpush_target) (inf_child_post_startup_inferior, inf_child_can_run) (inf_child_pid_to_exec_file): Refactor as methods of inf_child_target. (inf_child_follow_fork): Delete. (inf_child_target::can_create_inferior) (inf_child_target::can_attach): New. (inf_child_target::has_all_memory, inf_child_target::has_memory) (inf_child_target::has_stack, inf_child_target::has_registers) (inf_child_target::has_execution): New. (inf_child_fileio_open, inf_child_fileio_pwrite) (inf_child_fileio_pread, inf_child_fileio_fstat) (inf_child_fileio_close, inf_child_fileio_unlink) (inf_child_fileio_readlink, inf_child_use_agent) (inf_child_can_use_agent): Refactor as methods of inf_child_target. (return_zero, inf_child_target): Delete. (inf_child_target::inf_child_target): New. * inf-child.h: Include "target.h". (inf_child_target): Delete function prototype. (inf_child_target): New class. (inf_child_open_target, inf_child_mourn_inferior) (inf_child_maybe_unpush_target): Delete. * inf-ptrace.c (inf_ptrace_target::~inf_ptrace_target): New. (inf_ptrace_follow_fork, inf_ptrace_insert_fork_catchpoint) (inf_ptrace_remove_fork_catchpoint, inf_ptrace_create_inferior) (inf_ptrace_post_startup_inferior, inf_ptrace_mourn_inferior) (inf_ptrace_attach, inf_ptrace_post_attach, inf_ptrace_detach) (inf_ptrace_detach_success, inf_ptrace_kill, inf_ptrace_resume) (inf_ptrace_wait, inf_ptrace_xfer_partial) (inf_ptrace_thread_alive, inf_ptrace_files_info) (inf_ptrace_pid_to_str, inf_ptrace_auxv_parse): Refactor as methods of inf_ptrace_target. (inf_ptrace_target): Delete function. * inf-ptrace.h: Include "inf-child.h". (inf_ptrace_target): Delete function declaration. (inf_ptrace_target): New class. (inf_ptrace_trad_target, inf_ptrace_detach_success): Delete. * linux-nat.c (linux_target): New. (linux_ops, linux_ops_saved, super_xfer_partial): Delete. (linux_nat_target::~linux_nat_target): New. (linux_child_post_attach, linux_child_post_startup_inferior) (linux_child_follow_fork, linux_child_insert_fork_catchpoint) (linux_child_remove_fork_catchpoint) (linux_child_insert_vfork_catchpoint) (linux_child_remove_vfork_catchpoint) (linux_child_insert_exec_catchpoint) (linux_child_remove_exec_catchpoint) (linux_child_set_syscall_catchpoint, linux_nat_pass_signals) (linux_nat_create_inferior, linux_nat_attach, linux_nat_detach) (linux_nat_resume, linux_nat_stopped_by_watchpoint) (linux_nat_stopped_data_address) (linux_nat_stopped_by_sw_breakpoint) (linux_nat_supports_stopped_by_sw_breakpoint) (linux_nat_stopped_by_hw_breakpoint) (linux_nat_supports_stopped_by_hw_breakpoint, linux_nat_wait) (linux_nat_kill, linux_nat_mourn_inferior) (linux_nat_xfer_partial, linux_nat_thread_alive) (linux_nat_update_thread_list, linux_nat_pid_to_str) (linux_nat_thread_name, linux_child_pid_to_exec_file) (linux_child_static_tracepoint_markers_by_strid) (linux_nat_is_async_p, linux_nat_can_async_p) (linux_nat_supports_non_stop, linux_nat_always_non_stop_p) (linux_nat_supports_multi_process) (linux_nat_supports_disable_randomization, linux_nat_async) (linux_nat_stop, linux_nat_close, linux_nat_thread_address_space) (linux_nat_core_of_thread, linux_nat_filesystem_is_local) (linux_nat_fileio_open, linux_nat_fileio_readlink) (linux_nat_fileio_unlink, linux_nat_thread_events): Refactor as methods of linux_nat_target. (linux_nat_wait_1, linux_xfer_siginfo, linux_proc_xfer_partial) (linux_proc_xfer_spu, linux_nat_xfer_osdata): Remove target_ops parameter. (check_stopped_by_watchpoint): Adjust. (linux_xfer_partial): Delete. (linux_target_install_ops, linux_target, linux_nat_add_target): Delete. (linux_nat_target::linux_nat_target): New. * linux-nat.h: Include "inf-ptrace.h". (linux_nat_target): New. (linux_target, linux_target_install_ops, linux_nat_add_target): Delete function declarations. (linux_target): Declare global. * linux-thread-db.c (thread_db_target): New. (thread_db_target::thread_db_target): New. (thread_db_ops): Delete. (the_thread_db_target): New. (thread_db_detach, thread_db_wait, thread_db_mourn_inferior) (thread_db_update_thread_list, thread_db_pid_to_str) (thread_db_extra_thread_info) (thread_db_thread_handle_to_thread_info) (thread_db_get_thread_local_address, thread_db_get_ada_task_ptid) (thread_db_resume): Refactor as methods of thread_db_target. (init_thread_db_ops): Delete. (_initialize_thread_db): Remove reference to init_thread_db_ops. * x86-linux-nat.c: Don't include "linux-nat.h". (super_post_startup_inferior): Delete. (x86_linux_nat_target::~x86_linux_nat_target): New. (x86_linux_child_post_startup_inferior) (x86_linux_read_description, x86_linux_enable_btrace) (x86_linux_disable_btrace, x86_linux_teardown_btrace) (x86_linux_read_btrace, x86_linux_btrace_conf): Refactor as methods of x86_linux_nat_target. (x86_linux_create_target): Delete. Bits folded ... (x86_linux_add_target): ... here. Now takes a linux_nat_target pointer. * x86-linux-nat.h: Include "linux-nat.h" and "x86-nat.h". (x86_linux_nat_target): New class. (x86_linux_create_target): Delete. (x86_linux_add_target): Now takes a linux_nat_target pointer. * x86-nat.c (x86_insert_watchpoint, x86_remove_watchpoint) (x86_region_ok_for_watchpoint, x86_stopped_data_address) (x86_stopped_by_watchpoint, x86_insert_hw_breakpoint) (x86_remove_hw_breakpoint, x86_can_use_hw_breakpoint) (x86_stopped_by_hw_breakpoint): Remove target_ops parameter and make extern. (x86_use_watchpoints): Delete. * x86-nat.h: Include "breakpoint.h" and "target.h". (x86_use_watchpoints): Delete. (x86_can_use_hw_breakpoint, x86_region_ok_for_hw_watchpoint) (x86_stopped_by_watchpoint, x86_stopped_data_address) (x86_insert_watchpoint, x86_remove_watchpoint) (x86_insert_hw_breakpoint, x86_remove_hw_breakpoint) (x86_stopped_by_hw_breakpoint): New declarations. (x86_nat_target): New template class. * ppc-linux-nat.c (ppc_linux_nat_target): New class. (the_ppc_linux_nat_target): New. (ppc_linux_fetch_inferior_registers) (ppc_linux_can_use_hw_breakpoint) (ppc_linux_region_ok_for_hw_watchpoint) (ppc_linux_ranged_break_num_registers) (ppc_linux_insert_hw_breakpoint, ppc_linux_remove_hw_breakpoint) (ppc_linux_insert_mask_watchpoint) (ppc_linux_remove_mask_watchpoint) (ppc_linux_can_accel_watchpoint_condition) (ppc_linux_insert_watchpoint, ppc_linux_remove_watchpoint) (ppc_linux_stopped_data_address, ppc_linux_stopped_by_watchpoint) (ppc_linux_watchpoint_addr_within_range) (ppc_linux_masked_watch_num_registers) (ppc_linux_store_inferior_registers, ppc_linux_auxv_parse) (ppc_linux_read_description): Refactor as methods of ppc_linux_nat_target. (_initialize_ppc_linux_nat): Adjust. Set linux_target. * procfs.c (procfs_xfer_partial): Delete forward declaration. (procfs_target): New class. (the_procfs_target): New. (procfs_target): Delete function. (procfs_auxv_parse, procfs_attach, procfs_detach) (procfs_fetch_registers, procfs_store_registers, procfs_wait) (procfs_xfer_partial, procfs_resume, procfs_pass_signals) (procfs_files_info, procfs_kill_inferior, procfs_mourn_inferior) (procfs_create_inferior, procfs_update_thread_list) (procfs_thread_alive, procfs_pid_to_str) (procfs_can_use_hw_breakpoint, procfs_stopped_by_watchpoint) (procfs_stopped_data_address, procfs_insert_watchpoint) (procfs_remove_watchpoint, procfs_region_ok_for_hw_watchpoint) (proc_find_memory_regions, procfs_info_proc) (procfs_make_note_section): Refactor as methods of procfs_target. (_initialize_procfs): Adjust. * sol-thread.c (sol_thread_target): New class. (sol_thread_ops): Now a sol_thread_target. (sol_thread_detach, sol_thread_resume, sol_thread_wait) (sol_thread_fetch_registers, sol_thread_store_registers) (sol_thread_xfer_partial, sol_thread_mourn_inferior) (sol_thread_alive, solaris_pid_to_str, sol_update_thread_list) (sol_get_ada_task_ptid): Refactor as methods of sol_thread_target. (init_sol_thread_ops): Delete. (_initialize_sol_thread): Adjust. Remove references to init_sol_thread_ops and complete_target_initialization. * windows-nat.c (windows_nat_target): New class. (windows_fetch_inferior_registers) (windows_store_inferior_registers, windows_resume, windows_wait) (windows_attach, windows_detach, windows_pid_to_exec_file) (windows_files_info, windows_create_inferior) (windows_mourn_inferior, windows_interrupt, windows_kill_inferior) (windows_close, windows_pid_to_str, windows_xfer_partial) (windows_get_tib_address, windows_get_ada_task_ptid) (windows_thread_name, windows_thread_alive): Refactor as windows_nat_target methods. (do_initial_windows_stuff): Adjust. (windows_target): Delete function. (_initialize_windows_nat): Adjust. * darwin-nat.c (darwin_resume, darwin_wait_to, darwin_interrupt) (darwin_mourn_inferior, darwin_kill_inferior) (darwin_create_inferior, darwin_attach, darwin_detach) (darwin_pid_to_str, darwin_thread_alive, darwin_xfer_partial) (darwin_pid_to_exec_file, darwin_get_ada_task_ptid) (darwin_supports_multi_process): Refactor as darwin_nat_target methods. (darwin_resume_to, darwin_files_info): Delete. (_initialize_darwin_inferior): Rename to ... (_initialize_darwin_nat): ... this. Adjust to C++ification. * darwin-nat.h: Include "inf-child.h". (darwin_nat_target): New class. (darwin_complete_target): Delete. * i386-darwin-nat.c (i386_darwin_nat_target): New class. (darwin_target): New. (i386_darwin_fetch_inferior_registers) (i386_darwin_store_inferior_registers): Refactor as methods of darwin_nat_target. (darwin_complete_target): Delete, with ... (_initialize_i386_darwin_nat): ... bits factored out here. * alpha-linux-nat.c (alpha_linux_nat_target): New class. (the_alpha_linux_nat_target): New. (alpha_linux_register_u_offset): Refactor as alpha_linux_nat_target method. (_initialize_alpha_linux_nat): Adjust. * linux-nat-trad.c (inf_ptrace_register_u_offset): Delete. (inf_ptrace_fetch_register, inf_ptrace_fetch_registers) (inf_ptrace_store_register, inf_ptrace_store_registers): Refact as methods of linux_nat_trad_target. (linux_trad_target): Delete. * linux-nat-trad.h (linux_trad_target): Delete function. (linux_nat_trad_target): New class. * mips-linux-nat.c (mips_linux_nat_target): New class. (super_fetch_registers, super_store_registers, super_close): Delete. (the_mips_linux_nat_target): New. (mips64_linux_regsets_fetch_registers) (mips64_linux_regsets_store_registers) (mips64_linux_fetch_registers, mips64_linux_store_registers) (mips_linux_register_u_offset, mips_linux_read_description) (mips_linux_can_use_hw_breakpoint) (mips_linux_stopped_by_watchpoint) (mips_linux_stopped_data_address) (mips_linux_region_ok_for_hw_watchpoint) (mips_linux_insert_watchpoint, mips_linux_remove_watchpoint) (mips_linux_close): Refactor as methods of mips_linux_nat. (_initialize_mips_linux_nat): Adjust to C++ification. * aix-thread.c (aix_thread_target): New class. (aix_thread_ops): Now an aix_thread_target. (aix_thread_detach, aix_thread_resume, aix_thread_wait) (aix_thread_fetch_registers, aix_thread_store_registers) (aix_thread_xfer_partial, aix_thread_mourn_inferior) (aix_thread_thread_alive, aix_thread_pid_to_str) (aix_thread_extra_thread_info, aix_thread_get_ada_task_ptid): Refactor as methods of aix_thread_target. (init_aix_thread_ops): Delete. (_initialize_aix_thread): Remove references to init_aix_thread_ops and complete_target_initialization. * rs6000-nat.c (rs6000_xfer_shared_libraries): Delete. (rs6000_nat_target): New class. (the_rs6000_nat_target): New. (rs6000_fetch_inferior_registers, rs6000_store_inferior_registers) (rs6000_xfer_partial, rs6000_wait, rs6000_create_inferior) (rs6000_xfer_shared_libraries): Refactor as rs6000_nat_target methods. (super_create_inferior): Delete. (_initialize_rs6000_nat): Adjust to C++ification. * arm-linux-nat.c (arm_linux_nat_target): New class. (the_arm_linux_nat_target): New. (arm_linux_fetch_inferior_registers) (arm_linux_store_inferior_registers, arm_linux_read_description) (arm_linux_can_use_hw_breakpoint, arm_linux_insert_hw_breakpoint) (arm_linux_remove_hw_breakpoint) (arm_linux_region_ok_for_hw_watchpoint) (arm_linux_insert_watchpoint, arm_linux_remove_watchpoint) (arm_linux_stopped_data_address, arm_linux_stopped_by_watchpoint) (arm_linux_watchpoint_addr_within_range): Refactor as methods of arm_linux_nat_target. (_initialize_arm_linux_nat): Adjust to C++ification. * aarch64-linux-nat.c (aarch64_linux_nat_target): New class. (the_aarch64_linux_nat_target): New. (aarch64_linux_fetch_inferior_registers) (aarch64_linux_store_inferior_registers) (aarch64_linux_child_post_startup_inferior) (aarch64_linux_read_description) (aarch64_linux_can_use_hw_breakpoint) (aarch64_linux_insert_hw_breakpoint) (aarch64_linux_remove_hw_breakpoint) (aarch64_linux_insert_watchpoint, aarch64_linux_remove_watchpoint) (aarch64_linux_region_ok_for_hw_watchpoint) (aarch64_linux_stopped_data_address) (aarch64_linux_stopped_by_watchpoint) (aarch64_linux_watchpoint_addr_within_range) (aarch64_linux_can_do_single_step): Refactor as methods of aarch64_linux_nat_target. (super_post_startup_inferior): Delete. (_initialize_aarch64_linux_nat): Adjust to C++ification. * hppa-linux-nat.c (hppa_linux_nat_target): New class. (the_hppa_linux_nat_target): New. (hppa_linux_fetch_inferior_registers) (hppa_linux_store_inferior_registers): Refactor as methods of hppa_linux_nat_target. (_initialize_hppa_linux_nat): Adjust to C++ification. * ia64-linux-nat.c (ia64_linux_nat_target): New class. (the_ia64_linux_nat_target): New. (ia64_linux_insert_watchpoint, ia64_linux_remove_watchpoint) (ia64_linux_stopped_data_address) (ia64_linux_stopped_by_watchpoint, ia64_linux_fetch_registers) (ia64_linux_store_registers, ia64_linux_xfer_partial): Refactor as ia64_linux_nat_target methods. (super_xfer_partial): Delete. (_initialize_ia64_linux_nat): Adjust to C++ification. * m32r-linux-nat.c (m32r_linux_nat_target): New class. (the_m32r_linux_nat_target): New. (m32r_linux_fetch_inferior_registers) (m32r_linux_store_inferior_registers): Refactor as m32r_linux_nat_target methods. (_initialize_m32r_linux_nat): Adjust to C++ification. * m68k-linux-nat.c (m68k_linux_nat_target): New class. (the_m68k_linux_nat_target): New. (m68k_linux_fetch_inferior_registers) (m68k_linux_store_inferior_registers): Refactor as m68k_linux_nat_target methods. (_initialize_m68k_linux_nat): Adjust to C++ification. * s390-linux-nat.c (s390_linux_nat_target): New class. (the_s390_linux_nat_target): New. (s390_linux_fetch_inferior_registers) (s390_linux_store_inferior_registers, s390_stopped_by_watchpoint) (s390_insert_watchpoint, s390_remove_watchpoint) (s390_can_use_hw_breakpoint, s390_insert_hw_breakpoint) (s390_remove_hw_breakpoint, s390_region_ok_for_hw_watchpoint) (s390_auxv_parse, s390_read_description): Refactor as methods of s390_linux_nat_target. (_initialize_s390_nat): Adjust to C++ification. * sparc-linux-nat.c (sparc_linux_nat_target): New class. (the_sparc_linux_nat_target): New. (_initialize_sparc_linux_nat): Adjust to C++ification. * sparc-nat.c (sparc_fetch_inferior_registers) (sparc_store_inferior_registers): Remove target_ops parameter. * sparc-nat.h (sparc_fetch_inferior_registers) (sparc_store_inferior_registers): Remove target_ops parameter. * sparc64-linux-nat.c (sparc64_linux_nat_target): New class. (the_sparc64_linux_nat_target): New. (_initialize_sparc64_linux_nat): Adjust to C++ification. * spu-linux-nat.c (spu_linux_nat_target): New class. (the_spu_linux_nat_target): New. (spu_child_post_startup_inferior, spu_child_post_attach) (spu_child_wait, spu_fetch_inferior_registers) (spu_store_inferior_registers, spu_xfer_partial) (spu_can_use_hw_breakpoint): Refactor as spu_linux_nat_target methods. (_initialize_spu_nat): Adjust to C++ification. * tilegx-linux-nat.c (tilegx_linux_nat_target): New class. (the_tilegx_linux_nat_target): New. (fetch_inferior_registers, store_inferior_registers): Refactor as methods. (_initialize_tile_linux_nat): Adjust to C++ification. * xtensa-linux-nat.c (xtensa_linux_nat_target): New class. (the_xtensa_linux_nat_target): New. (xtensa_linux_fetch_inferior_registers) (xtensa_linux_store_inferior_registers): Refactor as xtensa_linux_nat_target methods. (_initialize_xtensa_linux_nat): Adjust to C++ification. * fbsd-nat.c (USE_SIGTRAP_SIGINFO): Delete. (fbsd_pid_to_exec_file, fbsd_find_memory_regions) (fbsd_find_memory_regions, fbsd_info_proc, fbsd_xfer_partial) (fbsd_thread_alive, fbsd_pid_to_str, fbsd_thread_name) (fbsd_update_thread_list, fbsd_resume, fbsd_wait) (fbsd_stopped_by_sw_breakpoint) (fbsd_supports_stopped_by_sw_breakpoint, fbsd_follow_fork) (fbsd_insert_fork_catchpoint, fbsd_remove_fork_catchpoint) (fbsd_insert_vfork_catchpoint, fbsd_remove_vfork_catchpoint) (fbsd_post_startup_inferior, fbsd_post_attach) (fbsd_insert_exec_catchpoint, fbsd_remove_exec_catchpoint) (fbsd_set_syscall_catchpoint) (super_xfer_partial, super_resume, super_wait) (fbsd_supports_stopped_by_hw_breakpoint): Delete. (fbsd_handle_debug_trap): Remove target_ops parameter. (fbsd_nat_add_target): Delete. * fbsd-nat.h: Include "inf-ptrace.h". (fbsd_nat_add_target): Delete. (USE_SIGTRAP_SIGINFO): Define. (fbsd_nat_target): New class. * amd64-bsd-nat.c (amd64bsd_fetch_inferior_registers) (amd64bsd_store_inferior_registers): Remove target_ops parameter. (amd64bsd_target): Delete. * amd64-bsd-nat.h: New file. * amd64-fbsd-nat.c: Include "amd64-bsd-nat.h" instead of "x86-bsd-nat.h". (amd64_fbsd_nat_target): New class. (the_amd64_fbsd_nat_target): New. (amd64fbsd_read_description): Refactor as method of amd64_fbsd_nat_target. (amd64_fbsd_nat_target::supports_stopped_by_hw_breakpoint): New. (_initialize_amd64fbsd_nat): Adjust to C++ification. * amd64-nat.h (amd64bsd_target): Delete function declaration. * i386-bsd-nat.c (i386bsd_fetch_inferior_registers) (i386bsd_store_inferior_registers): Remove target_ops parameter. (i386bsd_target): Delete. * i386-bsd-nat.h (i386bsd_target): Delete function declaration. (i386bsd_fetch_inferior_registers) (i386bsd_store_inferior_registers): Declare. (i386_bsd_nat_target): New class. * i386-fbsd-nat.c (i386_fbsd_nat_target): New class. (the_i386_fbsd_nat_target): New. (i386fbsd_resume, i386fbsd_read_description): Refactor as i386_fbsd_nat_target methods. (i386_fbsd_nat_target::supports_stopped_by_hw_breakpoint): New. (_initialize_i386fbsd_nat): Adjust to C++ification. * x86-bsd-nat.c (super_mourn_inferior): Delete. (x86bsd_mourn_inferior, x86bsd_target): Delete. (_initialize_x86_bsd_nat): Adjust to C++ification. * x86-bsd-nat.h: Include "x86-nat.h". (x86bsd_target): Delete declaration. (x86bsd_nat_target): New class. * aarch64-fbsd-nat.c (aarch64_fbsd_nat_target): New class. (the_aarch64_fbsd_nat_target): New. (aarch64_fbsd_fetch_inferior_registers) (aarch64_fbsd_store_inferior_registers): Refactor as methods of aarch64_fbsd_nat_target. (_initialize_aarch64_fbsd_nat): Adjust to C++ification. * alpha-bsd-nat.c (alpha_bsd_nat_target): New class. (the_alpha_bsd_nat_target): New. (alphabsd_fetch_inferior_registers) (alphabsd_store_inferior_registers): Refactor as alpha_bsd_nat_target methods. (_initialize_alphabsd_nat): Refactor as methods of alpha_bsd_nat_target. * amd64-nbsd-nat.c: Include "amd64-bsd-nat.h". (the_amd64_nbsd_nat_target): New. (_initialize_amd64nbsd_nat): Adjust to C++ification. * amd64-obsd-nat.c: Include "amd64-bsd-nat.h". (the_amd64_obsd_nat_target): New. (_initialize_amd64obsd_nat): Adjust to C++ification. * arm-fbsd-nat.c (arm_fbsd_nat_target): New. (the_arm_fbsd_nat_target): New. (arm_fbsd_fetch_inferior_registers) (arm_fbsd_store_inferior_registers, arm_fbsd_read_description): (_initialize_arm_fbsd_nat): Refactor as methods of arm_fbsd_nat_target. (_initialize_arm_fbsd_nat): Adjust to C++ification. * arm-nbsd-nat.c (arm_netbsd_nat_target): New class. (the_arm_netbsd_nat_target): New. (armnbsd_fetch_registers, armnbsd_store_registers): Refactor as arm_netbsd_nat_target. (_initialize_arm_netbsd_nat): Adjust to C++ification. * hppa-nbsd-nat.c (hppa_nbsd_nat_target): New class. (the_hppa_nbsd_nat_target): New. (hppanbsd_fetch_registers, hppanbsd_store_registers): Refactor as hppa_nbsd_nat_target methods. (_initialize_hppanbsd_nat): Adjust to C++ification. * hppa-obsd-nat.c (hppa_obsd_nat_target): New class. (the_hppa_obsd_nat_target): New. (hppaobsd_fetch_registers, hppaobsd_store_registers): Refactor as methods of hppa_obsd_nat_target. (_initialize_hppaobsd_nat): Adjust to C++ification. Use add_target. * i386-nbsd-nat.c (the_i386_nbsd_nat_target): New. (_initialize_i386nbsd_nat): Adjust to C++ification. Use add_target. * i386-obsd-nat.c (the_i386_obsd_nat_target): New. (_initialize_i386obsd_nat): Use add_target. * m68k-bsd-nat.c (m68k_bsd_nat_target): New class. (the_m68k_bsd_nat_target): New. (m68kbsd_fetch_inferior_registers) (m68kbsd_store_inferior_registers): Refactor as methods of m68k_bsd_nat_target. (_initialize_m68kbsd_nat): Adjust to C++ification. * mips-fbsd-nat.c (mips_fbsd_nat_target): New class. (the_mips_fbsd_nat_target): New. (mips_fbsd_fetch_inferior_registers) (mips_fbsd_store_inferior_registers): Refactor as methods of mips_fbsd_nat_target. (_initialize_mips_fbsd_nat): Adjust to C++ification. Use add_target. * mips-nbsd-nat.c (mips_nbsd_nat_target): New class. (the_mips_nbsd_nat_target): New. (mipsnbsd_fetch_inferior_registers) (mipsnbsd_store_inferior_registers): Refactor as methods of mips_nbsd_nat_target. (_initialize_mipsnbsd_nat): Adjust to C++ification. * mips64-obsd-nat.c (mips64_obsd_nat_target): New class. (the_mips64_obsd_nat_target): New. (mips64obsd_fetch_inferior_registers) (mips64obsd_store_inferior_registers): Refactor as methods of mips64_obsd_nat_target. (_initialize_mips64obsd_nat): Adjust to C++ification. Use add_target. * nbsd-nat.c (nbsd_pid_to_exec_file): Refactor as method of nbsd_nat_target. * nbsd-nat.h: Include "inf-ptrace.h". (nbsd_nat_target): New class. * obsd-nat.c (obsd_pid_to_str, obsd_update_thread_list) (obsd_wait): Refactor as methods of obsd_nat_target. (obsd_add_target): Delete. * obsd-nat.h: Include "inf-ptrace.h". (obsd_nat_target): New class. * ppc-fbsd-nat.c (ppc_fbsd_nat_target): New class. (the_ppc_fbsd_nat_target): New. (ppcfbsd_fetch_inferior_registers) (ppcfbsd_store_inferior_registers): Refactor as methods of ppc_fbsd_nat_target. (_initialize_ppcfbsd_nat): Adjust to C++ification. Use add_target. * ppc-nbsd-nat.c (ppc_nbsd_nat_target): New class. (the_ppc_nbsd_nat_target): New. (ppcnbsd_fetch_inferior_registers) (ppcnbsd_store_inferior_registers): Refactor as methods of ppc_nbsd_nat_target. (_initialize_ppcnbsd_nat): Adjust to C++ification. * ppc-obsd-nat.c (ppc_obsd_nat_target): New class. (the_ppc_obsd_nat_target): New. (ppcobsd_fetch_registers, ppcobsd_store_registers): Refactor as methods of ppc_obsd_nat_target. (_initialize_ppcobsd_nat): Adjust to C++ification. Use add_target. * sh-nbsd-nat.c (sh_nbsd_nat_target): New class. (the_sh_nbsd_nat_target): New. (shnbsd_fetch_inferior_registers) (shnbsd_store_inferior_registers): Refactor as methods of sh_nbsd_nat_target. (_initialize_shnbsd_nat): Adjust to C++ification. * sparc-nat.c (sparc_xfer_wcookie): Make extern. (inf_ptrace_xfer_partial): Delete. (sparc_xfer_partial, sparc_target): Delete. * sparc-nat.h (sparc_fetch_inferior_registers) (sparc_store_inferior_registers, sparc_xfer_wcookie): Declare. (sparc_target): Delete function declaration. (sparc_target): New template class. * sparc-nbsd-nat.c (the_sparc_nbsd_nat_target): New. (_initialize_sparcnbsd_nat): Adjust to C++ification. * sparc64-fbsd-nat.c (the_sparc64_fbsd_nat_target): New. (_initialize_sparc64fbsd_nat): Adjust to C++ification. Use add_target. * sparc64-nbsd-nat.c (the_sparc64_nbsd_nat_target): New. (_initialize_sparc64nbsd_nat): Adjust to C++ification. * sparc64-obsd-nat.c (the_sparc64_obsd_nat_target): New. (_initialize_sparc64obsd_nat): Adjust to C++ification. Use add_target. * vax-bsd-nat.c (vax_bsd_nat_target): New class. (the_vax_bsd_nat_target): New. (vaxbsd_fetch_inferior_registers) (vaxbsd_store_inferior_registers): Refactor as vax_bsd_nat_target methods. (_initialize_vaxbsd_nat): Adjust to C++ification. * bsd-kvm.c (bsd_kvm_target): New class. (bsd_kvm_ops): Now a bsd_kvm_target. (bsd_kvm_open, bsd_kvm_close, bsd_kvm_xfer_partial) (bsd_kvm_files_info, bsd_kvm_fetch_registers) (bsd_kvm_thread_alive, bsd_kvm_pid_to_str): Refactor as methods of bsd_kvm_target. (bsd_kvm_return_one): Delete. (bsd_kvm_add_target): Adjust to C++ification. * nto-procfs.c (nto_procfs_target, nto_procfs_target_native) (nto_procfs_target_procfs): New classes. (procfs_open_1, procfs_thread_alive, procfs_update_thread_list) (procfs_files_info, procfs_pid_to_exec_file, procfs_attach) (procfs_post_attach, procfs_wait, procfs_fetch_registers) (procfs_xfer_partial, procfs_detach, procfs_insert_breakpoint) (procfs_remove_breakpoint, procfs_insert_hw_breakpoint) (procfs_remove_hw_breakpoint, procfs_resume) (procfs_mourn_inferior, procfs_create_inferior, procfs_interrupt) (procfs_kill_inferior, procfs_store_registers) (procfs_pass_signals, procfs_pid_to_str, procfs_can_run): Refactor as methods of nto_procfs_target. (nto_procfs_ops): Now an nto_procfs_target_procfs. (nto_native_ops): Delete. (procfs_open, procfs_native_open): Delete. (nto_native_ops): Now an nto_procfs_target_native. (init_procfs_targets): Adjust to C++ification. (procfs_can_use_hw_breakpoint, procfs_remove_hw_watchpoint) (procfs_insert_hw_watchpoint, procfs_stopped_by_watchpoint): Refactor as methods of nto_procfs_target. * go32-nat.c (go32_nat_target): New class. (the_go32_nat_target): New. (go32_attach, go32_resume, go32_wait, go32_fetch_registers) (go32_store_registers, go32_xfer_partial, go32_files_info) (go32_kill_inferior, go32_create_inferior, go32_mourn_inferior) (go32_terminal_init, go32_terminal_info, go32_terminal_inferior) (go32_terminal_ours, go32_pass_ctrlc, go32_thread_alive) (go32_pid_to_str): Refactor as methods of go32_nat_target. (go32_target): Delete. (_initialize_go32_nat): Adjust to C++ification. * gnu-nat.c (gnu_wait, gnu_resume, gnu_kill_inferior) (gnu_mourn_inferior, gnu_create_inferior, gnu_attach, gnu_detach) (gnu_stop, gnu_thread_alive, gnu_xfer_partial) (gnu_find_memory_regions, gnu_pid_to_str): Refactor as methods of gnu_nat_target. (gnu_target): Delete. * gnu-nat.h (gnu_target): Delete. (gnu_nat_target): New class. * i386-gnu-nat.c (gnu_base_target): New. (i386_gnu_nat_target): New class. (the_i386_gnu_nat_target): New. (_initialize_i386gnu_nat): Adjust to C++ification. gdb/testsuite/ChangeLog: 2018-05-02 Pedro Alves <palves@redhat.com> * gdb.base/breakpoint-in-ro-region.exp: Adjust to to_resume and to_log_command renames. * gdb.base/sss-bp-on-user-bp-2.exp: Likewise.
1633 lines
50 KiB
C
1633 lines
50 KiB
C
/* Target-dependent code for Atmel AVR, for GDB.
|
|
|
|
Copyright (C) 1996-2018 Free Software Foundation, Inc.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
|
|
|
/* Contributed by Theodore A. Roth, troth@openavr.org */
|
|
|
|
/* Portions of this file were taken from the original gdb-4.18 patch developed
|
|
by Denis Chertykov, denisc@overta.ru */
|
|
|
|
#include "defs.h"
|
|
#include "frame.h"
|
|
#include "frame-unwind.h"
|
|
#include "frame-base.h"
|
|
#include "trad-frame.h"
|
|
#include "gdbcmd.h"
|
|
#include "gdbcore.h"
|
|
#include "gdbtypes.h"
|
|
#include "inferior.h"
|
|
#include "symfile.h"
|
|
#include "arch-utils.h"
|
|
#include "regcache.h"
|
|
#include "dis-asm.h"
|
|
#include "objfiles.h"
|
|
#include <algorithm>
|
|
|
|
/* AVR Background:
|
|
|
|
(AVR micros are pure Harvard Architecture processors.)
|
|
|
|
The AVR family of microcontrollers have three distinctly different memory
|
|
spaces: flash, sram and eeprom. The flash is 16 bits wide and is used for
|
|
the most part to store program instructions. The sram is 8 bits wide and is
|
|
used for the stack and the heap. Some devices lack sram and some can have
|
|
an additional external sram added on as a peripheral.
|
|
|
|
The eeprom is 8 bits wide and is used to store data when the device is
|
|
powered down. Eeprom is not directly accessible, it can only be accessed
|
|
via io-registers using a special algorithm. Accessing eeprom via gdb's
|
|
remote serial protocol ('m' or 'M' packets) looks difficult to do and is
|
|
not included at this time.
|
|
|
|
[The eeprom could be read manually via ``x/b <eaddr + AVR_EMEM_START>'' or
|
|
written using ``set {unsigned char}<eaddr + AVR_EMEM_START>''. For this to
|
|
work, the remote target must be able to handle eeprom accesses and perform
|
|
the address translation.]
|
|
|
|
All three memory spaces have physical addresses beginning at 0x0. In
|
|
addition, the flash is addressed by gcc/binutils/gdb with respect to 8 bit
|
|
bytes instead of the 16 bit wide words used by the real device for the
|
|
Program Counter.
|
|
|
|
In order for remote targets to work correctly, extra bits must be added to
|
|
addresses before they are send to the target or received from the target
|
|
via the remote serial protocol. The extra bits are the MSBs and are used to
|
|
decode which memory space the address is referring to. */
|
|
|
|
/* Constants: prefixed with AVR_ to avoid name space clashes */
|
|
|
|
/* Address space flags */
|
|
|
|
/* We are assigning the TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 to the flash address
|
|
space. */
|
|
|
|
#define AVR_TYPE_ADDRESS_CLASS_FLASH TYPE_ADDRESS_CLASS_1
|
|
#define AVR_TYPE_INSTANCE_FLAG_ADDRESS_CLASS_FLASH \
|
|
TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1
|
|
|
|
|
|
enum
|
|
{
|
|
AVR_REG_W = 24,
|
|
AVR_REG_X = 26,
|
|
AVR_REG_Y = 28,
|
|
AVR_FP_REGNUM = 28,
|
|
AVR_REG_Z = 30,
|
|
|
|
AVR_SREG_REGNUM = 32,
|
|
AVR_SP_REGNUM = 33,
|
|
AVR_PC_REGNUM = 34,
|
|
|
|
AVR_NUM_REGS = 32 + 1 /*SREG*/ + 1 /*SP*/ + 1 /*PC*/,
|
|
AVR_NUM_REG_BYTES = 32 + 1 /*SREG*/ + 2 /*SP*/ + 4 /*PC*/,
|
|
|
|
/* Pseudo registers. */
|
|
AVR_PSEUDO_PC_REGNUM = 35,
|
|
AVR_NUM_PSEUDO_REGS = 1,
|
|
|
|
AVR_PC_REG_INDEX = 35, /* index into array of registers */
|
|
|
|
AVR_MAX_PROLOGUE_SIZE = 64, /* bytes */
|
|
|
|
/* Count of pushed registers. From r2 to r17 (inclusively), r28, r29 */
|
|
AVR_MAX_PUSHES = 18,
|
|
|
|
/* Number of the last pushed register. r17 for current avr-gcc */
|
|
AVR_LAST_PUSHED_REGNUM = 17,
|
|
|
|
AVR_ARG1_REGNUM = 24, /* Single byte argument */
|
|
AVR_ARGN_REGNUM = 25, /* Multi byte argments */
|
|
AVR_LAST_ARG_REGNUM = 8, /* Last argument register */
|
|
|
|
AVR_RET1_REGNUM = 24, /* Single byte return value */
|
|
AVR_RETN_REGNUM = 25, /* Multi byte return value */
|
|
|
|
/* FIXME: TRoth/2002-01-??: Can we shift all these memory masks left 8
|
|
bits? Do these have to match the bfd vma values? It sure would make
|
|
things easier in the future if they didn't need to match.
|
|
|
|
Note: I chose these values so as to be consistent with bfd vma
|
|
addresses.
|
|
|
|
TRoth/2002-04-08: There is already a conflict with very large programs
|
|
in the mega128. The mega128 has 128K instruction bytes (64K words),
|
|
thus the Most Significant Bit is 0x10000 which gets masked off my
|
|
AVR_MEM_MASK.
|
|
|
|
The problem manifests itself when trying to set a breakpoint in a
|
|
function which resides in the upper half of the instruction space and
|
|
thus requires a 17-bit address.
|
|
|
|
For now, I've just removed the EEPROM mask and changed AVR_MEM_MASK
|
|
from 0x00ff0000 to 0x00f00000. Eeprom is not accessible from gdb yet,
|
|
but could be for some remote targets by just adding the correct offset
|
|
to the address and letting the remote target handle the low-level
|
|
details of actually accessing the eeprom. */
|
|
|
|
AVR_IMEM_START = 0x00000000, /* INSN memory */
|
|
AVR_SMEM_START = 0x00800000, /* SRAM memory */
|
|
#if 1
|
|
/* No eeprom mask defined */
|
|
AVR_MEM_MASK = 0x00f00000, /* mask to determine memory space */
|
|
#else
|
|
AVR_EMEM_START = 0x00810000, /* EEPROM memory */
|
|
AVR_MEM_MASK = 0x00ff0000, /* mask to determine memory space */
|
|
#endif
|
|
};
|
|
|
|
/* Prologue types:
|
|
|
|
NORMAL and CALL are the typical types (the -mcall-prologues gcc option
|
|
causes the generation of the CALL type prologues). */
|
|
|
|
enum {
|
|
AVR_PROLOGUE_NONE, /* No prologue */
|
|
AVR_PROLOGUE_NORMAL,
|
|
AVR_PROLOGUE_CALL, /* -mcall-prologues */
|
|
AVR_PROLOGUE_MAIN,
|
|
AVR_PROLOGUE_INTR, /* interrupt handler */
|
|
AVR_PROLOGUE_SIG, /* signal handler */
|
|
};
|
|
|
|
/* Any function with a frame looks like this
|
|
....... <-SP POINTS HERE
|
|
LOCALS1 <-FP POINTS HERE
|
|
LOCALS0
|
|
SAVED FP
|
|
SAVED R3
|
|
SAVED R2
|
|
RET PC
|
|
FIRST ARG
|
|
SECOND ARG */
|
|
|
|
struct avr_unwind_cache
|
|
{
|
|
/* The previous frame's inner most stack address. Used as this
|
|
frame ID's stack_addr. */
|
|
CORE_ADDR prev_sp;
|
|
/* The frame's base, optionally used by the high-level debug info. */
|
|
CORE_ADDR base;
|
|
int size;
|
|
int prologue_type;
|
|
/* Table indicating the location of each and every register. */
|
|
struct trad_frame_saved_reg *saved_regs;
|
|
};
|
|
|
|
struct gdbarch_tdep
|
|
{
|
|
/* Number of bytes stored to the stack by call instructions.
|
|
2 bytes for avr1-5 and avrxmega1-5, 3 bytes for avr6 and avrxmega6-7. */
|
|
int call_length;
|
|
|
|
/* Type for void. */
|
|
struct type *void_type;
|
|
/* Type for a function returning void. */
|
|
struct type *func_void_type;
|
|
/* Type for a pointer to a function. Used for the type of PC. */
|
|
struct type *pc_type;
|
|
};
|
|
|
|
/* Lookup the name of a register given it's number. */
|
|
|
|
static const char *
|
|
avr_register_name (struct gdbarch *gdbarch, int regnum)
|
|
{
|
|
static const char * const register_names[] = {
|
|
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
|
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
|
|
"r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
|
|
"r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
|
|
"SREG", "SP", "PC2",
|
|
"pc"
|
|
};
|
|
if (regnum < 0)
|
|
return NULL;
|
|
if (regnum >= (sizeof (register_names) / sizeof (*register_names)))
|
|
return NULL;
|
|
return register_names[regnum];
|
|
}
|
|
|
|
/* Return the GDB type object for the "standard" data type
|
|
of data in register N. */
|
|
|
|
static struct type *
|
|
avr_register_type (struct gdbarch *gdbarch, int reg_nr)
|
|
{
|
|
if (reg_nr == AVR_PC_REGNUM)
|
|
return builtin_type (gdbarch)->builtin_uint32;
|
|
if (reg_nr == AVR_PSEUDO_PC_REGNUM)
|
|
return gdbarch_tdep (gdbarch)->pc_type;
|
|
if (reg_nr == AVR_SP_REGNUM)
|
|
return builtin_type (gdbarch)->builtin_data_ptr;
|
|
return builtin_type (gdbarch)->builtin_uint8;
|
|
}
|
|
|
|
/* Instruction address checks and convertions. */
|
|
|
|
static CORE_ADDR
|
|
avr_make_iaddr (CORE_ADDR x)
|
|
{
|
|
return ((x) | AVR_IMEM_START);
|
|
}
|
|
|
|
/* FIXME: TRoth: Really need to use a larger mask for instructions. Some
|
|
devices are already up to 128KBytes of flash space.
|
|
|
|
TRoth/2002-04-8: See comment above where AVR_IMEM_START is defined. */
|
|
|
|
static CORE_ADDR
|
|
avr_convert_iaddr_to_raw (CORE_ADDR x)
|
|
{
|
|
return ((x) & 0xffffffff);
|
|
}
|
|
|
|
/* SRAM address checks and convertions. */
|
|
|
|
static CORE_ADDR
|
|
avr_make_saddr (CORE_ADDR x)
|
|
{
|
|
/* Return 0 for NULL. */
|
|
if (x == 0)
|
|
return 0;
|
|
|
|
return ((x) | AVR_SMEM_START);
|
|
}
|
|
|
|
static CORE_ADDR
|
|
avr_convert_saddr_to_raw (CORE_ADDR x)
|
|
{
|
|
return ((x) & 0xffffffff);
|
|
}
|
|
|
|
/* EEPROM address checks and convertions. I don't know if these will ever
|
|
actually be used, but I've added them just the same. TRoth */
|
|
|
|
/* TRoth/2002-04-08: Commented out for now to allow fix for problem with large
|
|
programs in the mega128. */
|
|
|
|
/* static CORE_ADDR */
|
|
/* avr_make_eaddr (CORE_ADDR x) */
|
|
/* { */
|
|
/* return ((x) | AVR_EMEM_START); */
|
|
/* } */
|
|
|
|
/* static int */
|
|
/* avr_eaddr_p (CORE_ADDR x) */
|
|
/* { */
|
|
/* return (((x) & AVR_MEM_MASK) == AVR_EMEM_START); */
|
|
/* } */
|
|
|
|
/* static CORE_ADDR */
|
|
/* avr_convert_eaddr_to_raw (CORE_ADDR x) */
|
|
/* { */
|
|
/* return ((x) & 0xffffffff); */
|
|
/* } */
|
|
|
|
/* Convert from address to pointer and vice-versa. */
|
|
|
|
static void
|
|
avr_address_to_pointer (struct gdbarch *gdbarch,
|
|
struct type *type, gdb_byte *buf, CORE_ADDR addr)
|
|
{
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
|
|
/* Is it a data address in flash? */
|
|
if (AVR_TYPE_ADDRESS_CLASS_FLASH (type))
|
|
{
|
|
/* A data pointer in flash is byte addressed. */
|
|
store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
|
|
avr_convert_iaddr_to_raw (addr));
|
|
}
|
|
/* Is it a code address? */
|
|
else if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
|
|
|| TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD)
|
|
{
|
|
/* A code pointer is word (16 bits) addressed. We shift the address down
|
|
by 1 bit to convert it to a pointer. */
|
|
store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
|
|
avr_convert_iaddr_to_raw (addr >> 1));
|
|
}
|
|
else
|
|
{
|
|
/* Strip off any upper segment bits. */
|
|
store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
|
|
avr_convert_saddr_to_raw (addr));
|
|
}
|
|
}
|
|
|
|
static CORE_ADDR
|
|
avr_pointer_to_address (struct gdbarch *gdbarch,
|
|
struct type *type, const gdb_byte *buf)
|
|
{
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
CORE_ADDR addr
|
|
= extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
|
|
|
|
/* Is it a data address in flash? */
|
|
if (AVR_TYPE_ADDRESS_CLASS_FLASH (type))
|
|
{
|
|
/* A data pointer in flash is already byte addressed. */
|
|
return avr_make_iaddr (addr);
|
|
}
|
|
/* Is it a code address? */
|
|
else if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
|
|
|| TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD
|
|
|| TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
|
|
{
|
|
/* A code pointer is word (16 bits) addressed so we shift it up
|
|
by 1 bit to convert it to an address. */
|
|
return avr_make_iaddr (addr << 1);
|
|
}
|
|
else
|
|
return avr_make_saddr (addr);
|
|
}
|
|
|
|
static CORE_ADDR
|
|
avr_integer_to_address (struct gdbarch *gdbarch,
|
|
struct type *type, const gdb_byte *buf)
|
|
{
|
|
ULONGEST addr = unpack_long (type, buf);
|
|
|
|
return avr_make_saddr (addr);
|
|
}
|
|
|
|
static CORE_ADDR
|
|
avr_read_pc (readable_regcache *regcache)
|
|
{
|
|
ULONGEST pc;
|
|
|
|
regcache->cooked_read (AVR_PC_REGNUM, &pc);
|
|
return avr_make_iaddr (pc);
|
|
}
|
|
|
|
static void
|
|
avr_write_pc (struct regcache *regcache, CORE_ADDR val)
|
|
{
|
|
regcache_cooked_write_unsigned (regcache, AVR_PC_REGNUM,
|
|
avr_convert_iaddr_to_raw (val));
|
|
}
|
|
|
|
static enum register_status
|
|
avr_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
|
|
int regnum, gdb_byte *buf)
|
|
{
|
|
ULONGEST val;
|
|
enum register_status status;
|
|
|
|
switch (regnum)
|
|
{
|
|
case AVR_PSEUDO_PC_REGNUM:
|
|
status = regcache->raw_read (AVR_PC_REGNUM, &val);
|
|
if (status != REG_VALID)
|
|
return status;
|
|
val >>= 1;
|
|
store_unsigned_integer (buf, 4, gdbarch_byte_order (gdbarch), val);
|
|
return status;
|
|
default:
|
|
internal_error (__FILE__, __LINE__, _("invalid regnum"));
|
|
}
|
|
}
|
|
|
|
static void
|
|
avr_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
|
|
int regnum, const gdb_byte *buf)
|
|
{
|
|
ULONGEST val;
|
|
|
|
switch (regnum)
|
|
{
|
|
case AVR_PSEUDO_PC_REGNUM:
|
|
val = extract_unsigned_integer (buf, 4, gdbarch_byte_order (gdbarch));
|
|
val <<= 1;
|
|
regcache_raw_write_unsigned (regcache, AVR_PC_REGNUM, val);
|
|
break;
|
|
default:
|
|
internal_error (__FILE__, __LINE__, _("invalid regnum"));
|
|
}
|
|
}
|
|
|
|
/* Function: avr_scan_prologue
|
|
|
|
This function decodes an AVR function prologue to determine:
|
|
1) the size of the stack frame
|
|
2) which registers are saved on it
|
|
3) the offsets of saved regs
|
|
This information is stored in the avr_unwind_cache structure.
|
|
|
|
Some devices lack the sbiw instruction, so on those replace this:
|
|
sbiw r28, XX
|
|
with this:
|
|
subi r28,lo8(XX)
|
|
sbci r29,hi8(XX)
|
|
|
|
A typical AVR function prologue with a frame pointer might look like this:
|
|
push rXX ; saved regs
|
|
...
|
|
push r28
|
|
push r29
|
|
in r28,__SP_L__
|
|
in r29,__SP_H__
|
|
sbiw r28,<LOCALS_SIZE>
|
|
in __tmp_reg__,__SREG__
|
|
cli
|
|
out __SP_H__,r29
|
|
out __SREG__,__tmp_reg__
|
|
out __SP_L__,r28
|
|
|
|
A typical AVR function prologue without a frame pointer might look like
|
|
this:
|
|
push rXX ; saved regs
|
|
...
|
|
|
|
A main function prologue looks like this:
|
|
ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
|
|
ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
|
|
out __SP_H__,r29
|
|
out __SP_L__,r28
|
|
|
|
A signal handler prologue looks like this:
|
|
push __zero_reg__
|
|
push __tmp_reg__
|
|
in __tmp_reg__, __SREG__
|
|
push __tmp_reg__
|
|
clr __zero_reg__
|
|
push rXX ; save registers r18:r27, r30:r31
|
|
...
|
|
push r28 ; save frame pointer
|
|
push r29
|
|
in r28, __SP_L__
|
|
in r29, __SP_H__
|
|
sbiw r28, <LOCALS_SIZE>
|
|
out __SP_H__, r29
|
|
out __SP_L__, r28
|
|
|
|
A interrupt handler prologue looks like this:
|
|
sei
|
|
push __zero_reg__
|
|
push __tmp_reg__
|
|
in __tmp_reg__, __SREG__
|
|
push __tmp_reg__
|
|
clr __zero_reg__
|
|
push rXX ; save registers r18:r27, r30:r31
|
|
...
|
|
push r28 ; save frame pointer
|
|
push r29
|
|
in r28, __SP_L__
|
|
in r29, __SP_H__
|
|
sbiw r28, <LOCALS_SIZE>
|
|
cli
|
|
out __SP_H__, r29
|
|
sei
|
|
out __SP_L__, r28
|
|
|
|
A `-mcall-prologues' prologue looks like this (Note that the megas use a
|
|
jmp instead of a rjmp, thus the prologue is one word larger since jmp is a
|
|
32 bit insn and rjmp is a 16 bit insn):
|
|
ldi r26,lo8(<LOCALS_SIZE>)
|
|
ldi r27,hi8(<LOCALS_SIZE>)
|
|
ldi r30,pm_lo8(.L_foo_body)
|
|
ldi r31,pm_hi8(.L_foo_body)
|
|
rjmp __prologue_saves__+RRR
|
|
.L_foo_body: */
|
|
|
|
/* Not really part of a prologue, but still need to scan for it, is when a
|
|
function prologue moves values passed via registers as arguments to new
|
|
registers. In this case, all local variables live in registers, so there
|
|
may be some register saves. This is what it looks like:
|
|
movw rMM, rNN
|
|
...
|
|
|
|
There could be multiple movw's. If the target doesn't have a movw insn, it
|
|
will use two mov insns. This could be done after any of the above prologue
|
|
types. */
|
|
|
|
static CORE_ADDR
|
|
avr_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR pc_beg, CORE_ADDR pc_end,
|
|
struct avr_unwind_cache *info)
|
|
{
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
int i;
|
|
unsigned short insn;
|
|
int scan_stage = 0;
|
|
struct bound_minimal_symbol msymbol;
|
|
unsigned char prologue[AVR_MAX_PROLOGUE_SIZE];
|
|
int vpc = 0;
|
|
int len;
|
|
|
|
len = pc_end - pc_beg;
|
|
if (len > AVR_MAX_PROLOGUE_SIZE)
|
|
len = AVR_MAX_PROLOGUE_SIZE;
|
|
|
|
/* FIXME: TRoth/2003-06-11: This could be made more efficient by only
|
|
reading in the bytes of the prologue. The problem is that the figuring
|
|
out where the end of the prologue is is a bit difficult. The old code
|
|
tried to do that, but failed quite often. */
|
|
read_memory (pc_beg, prologue, len);
|
|
|
|
/* Scanning main()'s prologue
|
|
ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
|
|
ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
|
|
out __SP_H__,r29
|
|
out __SP_L__,r28 */
|
|
|
|
if (len >= 4)
|
|
{
|
|
CORE_ADDR locals;
|
|
static const unsigned char img[] = {
|
|
0xde, 0xbf, /* out __SP_H__,r29 */
|
|
0xcd, 0xbf /* out __SP_L__,r28 */
|
|
};
|
|
|
|
insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
|
|
/* ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>) */
|
|
if ((insn & 0xf0f0) == 0xe0c0)
|
|
{
|
|
locals = (insn & 0xf) | ((insn & 0x0f00) >> 4);
|
|
insn = extract_unsigned_integer (&prologue[vpc + 2], 2, byte_order);
|
|
/* ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>) */
|
|
if ((insn & 0xf0f0) == 0xe0d0)
|
|
{
|
|
locals |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
|
|
if (vpc + 4 + sizeof (img) < len
|
|
&& memcmp (prologue + vpc + 4, img, sizeof (img)) == 0)
|
|
{
|
|
info->prologue_type = AVR_PROLOGUE_MAIN;
|
|
info->base = locals;
|
|
return pc_beg + 4;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Scanning `-mcall-prologues' prologue
|
|
Classic prologue is 10 bytes, mega prologue is a 12 bytes long */
|
|
|
|
while (1) /* Using a while to avoid many goto's */
|
|
{
|
|
int loc_size;
|
|
int body_addr;
|
|
unsigned num_pushes;
|
|
int pc_offset = 0;
|
|
|
|
/* At least the fifth instruction must have been executed to
|
|
modify frame shape. */
|
|
if (len < 10)
|
|
break;
|
|
|
|
insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
|
|
/* ldi r26,<LOCALS_SIZE> */
|
|
if ((insn & 0xf0f0) != 0xe0a0)
|
|
break;
|
|
loc_size = (insn & 0xf) | ((insn & 0x0f00) >> 4);
|
|
pc_offset += 2;
|
|
|
|
insn = extract_unsigned_integer (&prologue[vpc + 2], 2, byte_order);
|
|
/* ldi r27,<LOCALS_SIZE> / 256 */
|
|
if ((insn & 0xf0f0) != 0xe0b0)
|
|
break;
|
|
loc_size |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
|
|
pc_offset += 2;
|
|
|
|
insn = extract_unsigned_integer (&prologue[vpc + 4], 2, byte_order);
|
|
/* ldi r30,pm_lo8(.L_foo_body) */
|
|
if ((insn & 0xf0f0) != 0xe0e0)
|
|
break;
|
|
body_addr = (insn & 0xf) | ((insn & 0x0f00) >> 4);
|
|
pc_offset += 2;
|
|
|
|
insn = extract_unsigned_integer (&prologue[vpc + 6], 2, byte_order);
|
|
/* ldi r31,pm_hi8(.L_foo_body) */
|
|
if ((insn & 0xf0f0) != 0xe0f0)
|
|
break;
|
|
body_addr |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
|
|
pc_offset += 2;
|
|
|
|
msymbol = lookup_minimal_symbol ("__prologue_saves__", NULL, NULL);
|
|
if (!msymbol.minsym)
|
|
break;
|
|
|
|
insn = extract_unsigned_integer (&prologue[vpc + 8], 2, byte_order);
|
|
/* rjmp __prologue_saves__+RRR */
|
|
if ((insn & 0xf000) == 0xc000)
|
|
{
|
|
/* Extract PC relative offset from RJMP */
|
|
i = (insn & 0xfff) | (insn & 0x800 ? (-1 ^ 0xfff) : 0);
|
|
/* Convert offset to byte addressable mode */
|
|
i *= 2;
|
|
/* Destination address */
|
|
i += pc_beg + 10;
|
|
|
|
if (body_addr != (pc_beg + 10)/2)
|
|
break;
|
|
|
|
pc_offset += 2;
|
|
}
|
|
else if ((insn & 0xfe0e) == 0x940c)
|
|
{
|
|
/* Extract absolute PC address from JMP */
|
|
i = (((insn & 0x1) | ((insn & 0x1f0) >> 3) << 16)
|
|
| (extract_unsigned_integer (&prologue[vpc + 10], 2, byte_order)
|
|
& 0xffff));
|
|
/* Convert address to byte addressable mode */
|
|
i *= 2;
|
|
|
|
if (body_addr != (pc_beg + 12)/2)
|
|
break;
|
|
|
|
pc_offset += 4;
|
|
}
|
|
else
|
|
break;
|
|
|
|
/* Resolve offset (in words) from __prologue_saves__ symbol.
|
|
Which is a pushes count in `-mcall-prologues' mode */
|
|
num_pushes = AVR_MAX_PUSHES - (i - BMSYMBOL_VALUE_ADDRESS (msymbol)) / 2;
|
|
|
|
if (num_pushes > AVR_MAX_PUSHES)
|
|
{
|
|
fprintf_unfiltered (gdb_stderr, _("Num pushes too large: %d\n"),
|
|
num_pushes);
|
|
num_pushes = 0;
|
|
}
|
|
|
|
if (num_pushes)
|
|
{
|
|
int from;
|
|
|
|
info->saved_regs[AVR_FP_REGNUM + 1].addr = num_pushes;
|
|
if (num_pushes >= 2)
|
|
info->saved_regs[AVR_FP_REGNUM].addr = num_pushes - 1;
|
|
|
|
i = 0;
|
|
for (from = AVR_LAST_PUSHED_REGNUM + 1 - (num_pushes - 2);
|
|
from <= AVR_LAST_PUSHED_REGNUM; ++from)
|
|
info->saved_regs [from].addr = ++i;
|
|
}
|
|
info->size = loc_size + num_pushes;
|
|
info->prologue_type = AVR_PROLOGUE_CALL;
|
|
|
|
return pc_beg + pc_offset;
|
|
}
|
|
|
|
/* Scan for the beginning of the prologue for an interrupt or signal
|
|
function. Note that we have to set the prologue type here since the
|
|
third stage of the prologue may not be present (e.g. no saved registered
|
|
or changing of the SP register). */
|
|
|
|
if (1)
|
|
{
|
|
static const unsigned char img[] = {
|
|
0x78, 0x94, /* sei */
|
|
0x1f, 0x92, /* push r1 */
|
|
0x0f, 0x92, /* push r0 */
|
|
0x0f, 0xb6, /* in r0,0x3f SREG */
|
|
0x0f, 0x92, /* push r0 */
|
|
0x11, 0x24 /* clr r1 */
|
|
};
|
|
if (len >= sizeof (img)
|
|
&& memcmp (prologue, img, sizeof (img)) == 0)
|
|
{
|
|
info->prologue_type = AVR_PROLOGUE_INTR;
|
|
vpc += sizeof (img);
|
|
info->saved_regs[AVR_SREG_REGNUM].addr = 3;
|
|
info->saved_regs[0].addr = 2;
|
|
info->saved_regs[1].addr = 1;
|
|
info->size += 3;
|
|
}
|
|
else if (len >= sizeof (img) - 2
|
|
&& memcmp (img + 2, prologue, sizeof (img) - 2) == 0)
|
|
{
|
|
info->prologue_type = AVR_PROLOGUE_SIG;
|
|
vpc += sizeof (img) - 2;
|
|
info->saved_regs[AVR_SREG_REGNUM].addr = 3;
|
|
info->saved_regs[0].addr = 2;
|
|
info->saved_regs[1].addr = 1;
|
|
info->size += 2;
|
|
}
|
|
}
|
|
|
|
/* First stage of the prologue scanning.
|
|
Scan pushes (saved registers) */
|
|
|
|
for (; vpc < len; vpc += 2)
|
|
{
|
|
insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
|
|
if ((insn & 0xfe0f) == 0x920f) /* push rXX */
|
|
{
|
|
/* Bits 4-9 contain a mask for registers R0-R32. */
|
|
int regno = (insn & 0x1f0) >> 4;
|
|
info->size++;
|
|
info->saved_regs[regno].addr = info->size;
|
|
scan_stage = 1;
|
|
}
|
|
else
|
|
break;
|
|
}
|
|
|
|
gdb_assert (vpc < AVR_MAX_PROLOGUE_SIZE);
|
|
|
|
/* Handle static small stack allocation using rcall or push. */
|
|
|
|
while (scan_stage == 1 && vpc < len)
|
|
{
|
|
insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
|
|
if (insn == 0xd000) /* rcall .+0 */
|
|
{
|
|
info->size += gdbarch_tdep (gdbarch)->call_length;
|
|
vpc += 2;
|
|
}
|
|
else if (insn == 0x920f || insn == 0x921f) /* push r0 or push r1 */
|
|
{
|
|
info->size += 1;
|
|
vpc += 2;
|
|
}
|
|
else
|
|
break;
|
|
}
|
|
|
|
/* Second stage of the prologue scanning.
|
|
Scan:
|
|
in r28,__SP_L__
|
|
in r29,__SP_H__ */
|
|
|
|
if (scan_stage == 1 && vpc < len)
|
|
{
|
|
static const unsigned char img[] = {
|
|
0xcd, 0xb7, /* in r28,__SP_L__ */
|
|
0xde, 0xb7 /* in r29,__SP_H__ */
|
|
};
|
|
|
|
if (vpc + sizeof (img) < len
|
|
&& memcmp (prologue + vpc, img, sizeof (img)) == 0)
|
|
{
|
|
vpc += 4;
|
|
scan_stage = 2;
|
|
}
|
|
}
|
|
|
|
/* Third stage of the prologue scanning. (Really two stages).
|
|
Scan for:
|
|
sbiw r28,XX or subi r28,lo8(XX)
|
|
sbci r29,hi8(XX)
|
|
in __tmp_reg__,__SREG__
|
|
cli
|
|
out __SP_H__,r29
|
|
out __SREG__,__tmp_reg__
|
|
out __SP_L__,r28 */
|
|
|
|
if (scan_stage == 2 && vpc < len)
|
|
{
|
|
int locals_size = 0;
|
|
static const unsigned char img[] = {
|
|
0x0f, 0xb6, /* in r0,0x3f */
|
|
0xf8, 0x94, /* cli */
|
|
0xde, 0xbf, /* out 0x3e,r29 ; SPH */
|
|
0x0f, 0xbe, /* out 0x3f,r0 ; SREG */
|
|
0xcd, 0xbf /* out 0x3d,r28 ; SPL */
|
|
};
|
|
static const unsigned char img_sig[] = {
|
|
0xde, 0xbf, /* out 0x3e,r29 ; SPH */
|
|
0xcd, 0xbf /* out 0x3d,r28 ; SPL */
|
|
};
|
|
static const unsigned char img_int[] = {
|
|
0xf8, 0x94, /* cli */
|
|
0xde, 0xbf, /* out 0x3e,r29 ; SPH */
|
|
0x78, 0x94, /* sei */
|
|
0xcd, 0xbf /* out 0x3d,r28 ; SPL */
|
|
};
|
|
|
|
insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
|
|
if ((insn & 0xff30) == 0x9720) /* sbiw r28,XXX */
|
|
{
|
|
locals_size = (insn & 0xf) | ((insn & 0xc0) >> 2);
|
|
vpc += 2;
|
|
}
|
|
else if ((insn & 0xf0f0) == 0x50c0) /* subi r28,lo8(XX) */
|
|
{
|
|
locals_size = (insn & 0xf) | ((insn & 0xf00) >> 4);
|
|
vpc += 2;
|
|
insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
|
|
vpc += 2;
|
|
locals_size += ((insn & 0xf) | ((insn & 0xf00) >> 4)) << 8;
|
|
}
|
|
else
|
|
return pc_beg + vpc;
|
|
|
|
/* Scan the last part of the prologue. May not be present for interrupt
|
|
or signal handler functions, which is why we set the prologue type
|
|
when we saw the beginning of the prologue previously. */
|
|
|
|
if (vpc + sizeof (img_sig) < len
|
|
&& memcmp (prologue + vpc, img_sig, sizeof (img_sig)) == 0)
|
|
{
|
|
vpc += sizeof (img_sig);
|
|
}
|
|
else if (vpc + sizeof (img_int) < len
|
|
&& memcmp (prologue + vpc, img_int, sizeof (img_int)) == 0)
|
|
{
|
|
vpc += sizeof (img_int);
|
|
}
|
|
if (vpc + sizeof (img) < len
|
|
&& memcmp (prologue + vpc, img, sizeof (img)) == 0)
|
|
{
|
|
info->prologue_type = AVR_PROLOGUE_NORMAL;
|
|
vpc += sizeof (img);
|
|
}
|
|
|
|
info->size += locals_size;
|
|
|
|
/* Fall through. */
|
|
}
|
|
|
|
/* If we got this far, we could not scan the prologue, so just return the pc
|
|
of the frame plus an adjustment for argument move insns. */
|
|
|
|
for (; vpc < len; vpc += 2)
|
|
{
|
|
insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
|
|
if ((insn & 0xff00) == 0x0100) /* movw rXX, rYY */
|
|
continue;
|
|
else if ((insn & 0xfc00) == 0x2c00) /* mov rXX, rYY */
|
|
continue;
|
|
else
|
|
break;
|
|
}
|
|
|
|
return pc_beg + vpc;
|
|
}
|
|
|
|
static CORE_ADDR
|
|
avr_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
|
|
{
|
|
CORE_ADDR func_addr, func_end;
|
|
CORE_ADDR post_prologue_pc;
|
|
|
|
/* See what the symbol table says */
|
|
|
|
if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
|
|
return pc;
|
|
|
|
post_prologue_pc = skip_prologue_using_sal (gdbarch, func_addr);
|
|
if (post_prologue_pc != 0)
|
|
return std::max (pc, post_prologue_pc);
|
|
|
|
{
|
|
CORE_ADDR prologue_end = pc;
|
|
struct avr_unwind_cache info = {0};
|
|
struct trad_frame_saved_reg saved_regs[AVR_NUM_REGS];
|
|
|
|
info.saved_regs = saved_regs;
|
|
|
|
/* Need to run the prologue scanner to figure out if the function has a
|
|
prologue and possibly skip over moving arguments passed via registers
|
|
to other registers. */
|
|
|
|
prologue_end = avr_scan_prologue (gdbarch, func_addr, func_end, &info);
|
|
|
|
if (info.prologue_type != AVR_PROLOGUE_NONE)
|
|
return prologue_end;
|
|
}
|
|
|
|
/* Either we didn't find the start of this function (nothing we can do),
|
|
or there's no line info, or the line after the prologue is after
|
|
the end of the function (there probably isn't a prologue). */
|
|
|
|
return pc;
|
|
}
|
|
|
|
/* Not all avr devices support the BREAK insn. Those that don't should treat
|
|
it as a NOP. Thus, it should be ok. Since the avr is currently a remote
|
|
only target, this shouldn't be a problem (I hope). TRoth/2003-05-14 */
|
|
|
|
constexpr gdb_byte avr_break_insn [] = { 0x98, 0x95 };
|
|
|
|
typedef BP_MANIPULATION (avr_break_insn) avr_breakpoint;
|
|
|
|
/* Determine, for architecture GDBARCH, how a return value of TYPE
|
|
should be returned. If it is supposed to be returned in registers,
|
|
and READBUF is non-zero, read the appropriate value from REGCACHE,
|
|
and copy it into READBUF. If WRITEBUF is non-zero, write the value
|
|
from WRITEBUF into REGCACHE. */
|
|
|
|
static enum return_value_convention
|
|
avr_return_value (struct gdbarch *gdbarch, struct value *function,
|
|
struct type *valtype, struct regcache *regcache,
|
|
gdb_byte *readbuf, const gdb_byte *writebuf)
|
|
{
|
|
int i;
|
|
/* Single byte are returned in r24.
|
|
Otherwise, the MSB of the return value is always in r25, calculate which
|
|
register holds the LSB. */
|
|
int lsb_reg;
|
|
|
|
if ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
|
|
|| TYPE_CODE (valtype) == TYPE_CODE_UNION
|
|
|| TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
|
|
&& TYPE_LENGTH (valtype) > 8)
|
|
return RETURN_VALUE_STRUCT_CONVENTION;
|
|
|
|
if (TYPE_LENGTH (valtype) <= 2)
|
|
lsb_reg = 24;
|
|
else if (TYPE_LENGTH (valtype) <= 4)
|
|
lsb_reg = 22;
|
|
else if (TYPE_LENGTH (valtype) <= 8)
|
|
lsb_reg = 18;
|
|
else
|
|
gdb_assert_not_reached ("unexpected type length");
|
|
|
|
if (writebuf != NULL)
|
|
{
|
|
for (i = 0; i < TYPE_LENGTH (valtype); i++)
|
|
regcache_cooked_write (regcache, lsb_reg + i, writebuf + i);
|
|
}
|
|
|
|
if (readbuf != NULL)
|
|
{
|
|
for (i = 0; i < TYPE_LENGTH (valtype); i++)
|
|
regcache_cooked_read (regcache, lsb_reg + i, readbuf + i);
|
|
}
|
|
|
|
return RETURN_VALUE_REGISTER_CONVENTION;
|
|
}
|
|
|
|
|
|
/* Put here the code to store, into fi->saved_regs, the addresses of
|
|
the saved registers of frame described by FRAME_INFO. This
|
|
includes special registers such as pc and fp saved in special ways
|
|
in the stack frame. sp is even more special: the address we return
|
|
for it IS the sp for the next frame. */
|
|
|
|
static struct avr_unwind_cache *
|
|
avr_frame_unwind_cache (struct frame_info *this_frame,
|
|
void **this_prologue_cache)
|
|
{
|
|
CORE_ADDR start_pc, current_pc;
|
|
ULONGEST prev_sp;
|
|
ULONGEST this_base;
|
|
struct avr_unwind_cache *info;
|
|
struct gdbarch *gdbarch;
|
|
struct gdbarch_tdep *tdep;
|
|
int i;
|
|
|
|
if (*this_prologue_cache)
|
|
return (struct avr_unwind_cache *) *this_prologue_cache;
|
|
|
|
info = FRAME_OBSTACK_ZALLOC (struct avr_unwind_cache);
|
|
*this_prologue_cache = info;
|
|
info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
|
|
|
|
info->size = 0;
|
|
info->prologue_type = AVR_PROLOGUE_NONE;
|
|
|
|
start_pc = get_frame_func (this_frame);
|
|
current_pc = get_frame_pc (this_frame);
|
|
if ((start_pc > 0) && (start_pc <= current_pc))
|
|
avr_scan_prologue (get_frame_arch (this_frame),
|
|
start_pc, current_pc, info);
|
|
|
|
if ((info->prologue_type != AVR_PROLOGUE_NONE)
|
|
&& (info->prologue_type != AVR_PROLOGUE_MAIN))
|
|
{
|
|
ULONGEST high_base; /* High byte of FP */
|
|
|
|
/* The SP was moved to the FP. This indicates that a new frame
|
|
was created. Get THIS frame's FP value by unwinding it from
|
|
the next frame. */
|
|
this_base = get_frame_register_unsigned (this_frame, AVR_FP_REGNUM);
|
|
high_base = get_frame_register_unsigned (this_frame, AVR_FP_REGNUM + 1);
|
|
this_base += (high_base << 8);
|
|
|
|
/* The FP points at the last saved register. Adjust the FP back
|
|
to before the first saved register giving the SP. */
|
|
prev_sp = this_base + info->size;
|
|
}
|
|
else
|
|
{
|
|
/* Assume that the FP is this frame's SP but with that pushed
|
|
stack space added back. */
|
|
this_base = get_frame_register_unsigned (this_frame, AVR_SP_REGNUM);
|
|
prev_sp = this_base + info->size;
|
|
}
|
|
|
|
/* Add 1 here to adjust for the post-decrement nature of the push
|
|
instruction.*/
|
|
info->prev_sp = avr_make_saddr (prev_sp + 1);
|
|
info->base = avr_make_saddr (this_base);
|
|
|
|
gdbarch = get_frame_arch (this_frame);
|
|
|
|
/* Adjust all the saved registers so that they contain addresses and not
|
|
offsets. */
|
|
for (i = 0; i < gdbarch_num_regs (gdbarch) - 1; i++)
|
|
if (info->saved_regs[i].addr > 0)
|
|
info->saved_regs[i].addr = info->prev_sp - info->saved_regs[i].addr;
|
|
|
|
/* Except for the main and startup code, the return PC is always saved on
|
|
the stack and is at the base of the frame. */
|
|
|
|
if (info->prologue_type != AVR_PROLOGUE_MAIN)
|
|
info->saved_regs[AVR_PC_REGNUM].addr = info->prev_sp;
|
|
|
|
/* The previous frame's SP needed to be computed. Save the computed
|
|
value. */
|
|
tdep = gdbarch_tdep (gdbarch);
|
|
trad_frame_set_value (info->saved_regs, AVR_SP_REGNUM,
|
|
info->prev_sp - 1 + tdep->call_length);
|
|
|
|
return info;
|
|
}
|
|
|
|
static CORE_ADDR
|
|
avr_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
|
|
{
|
|
ULONGEST pc;
|
|
|
|
pc = frame_unwind_register_unsigned (next_frame, AVR_PC_REGNUM);
|
|
|
|
return avr_make_iaddr (pc);
|
|
}
|
|
|
|
static CORE_ADDR
|
|
avr_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
|
|
{
|
|
ULONGEST sp;
|
|
|
|
sp = frame_unwind_register_unsigned (next_frame, AVR_SP_REGNUM);
|
|
|
|
return avr_make_saddr (sp);
|
|
}
|
|
|
|
/* Given a GDB frame, determine the address of the calling function's
|
|
frame. This will be used to create a new GDB frame struct. */
|
|
|
|
static void
|
|
avr_frame_this_id (struct frame_info *this_frame,
|
|
void **this_prologue_cache,
|
|
struct frame_id *this_id)
|
|
{
|
|
struct avr_unwind_cache *info
|
|
= avr_frame_unwind_cache (this_frame, this_prologue_cache);
|
|
CORE_ADDR base;
|
|
CORE_ADDR func;
|
|
struct frame_id id;
|
|
|
|
/* The FUNC is easy. */
|
|
func = get_frame_func (this_frame);
|
|
|
|
/* Hopefully the prologue analysis either correctly determined the
|
|
frame's base (which is the SP from the previous frame), or set
|
|
that base to "NULL". */
|
|
base = info->prev_sp;
|
|
if (base == 0)
|
|
return;
|
|
|
|
id = frame_id_build (base, func);
|
|
(*this_id) = id;
|
|
}
|
|
|
|
static struct value *
|
|
avr_frame_prev_register (struct frame_info *this_frame,
|
|
void **this_prologue_cache, int regnum)
|
|
{
|
|
struct avr_unwind_cache *info
|
|
= avr_frame_unwind_cache (this_frame, this_prologue_cache);
|
|
|
|
if (regnum == AVR_PC_REGNUM || regnum == AVR_PSEUDO_PC_REGNUM)
|
|
{
|
|
if (trad_frame_addr_p (info->saved_regs, AVR_PC_REGNUM))
|
|
{
|
|
/* Reading the return PC from the PC register is slightly
|
|
abnormal. register_size(AVR_PC_REGNUM) says it is 4 bytes,
|
|
but in reality, only two bytes (3 in upcoming mega256) are
|
|
stored on the stack.
|
|
|
|
Also, note that the value on the stack is an addr to a word
|
|
not a byte, so we will need to multiply it by two at some
|
|
point.
|
|
|
|
And to confuse matters even more, the return address stored
|
|
on the stack is in big endian byte order, even though most
|
|
everything else about the avr is little endian. Ick! */
|
|
ULONGEST pc;
|
|
int i;
|
|
gdb_byte buf[3];
|
|
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
|
|
read_memory (info->saved_regs[AVR_PC_REGNUM].addr,
|
|
buf, tdep->call_length);
|
|
|
|
/* Extract the PC read from memory as a big-endian. */
|
|
pc = 0;
|
|
for (i = 0; i < tdep->call_length; i++)
|
|
pc = (pc << 8) | buf[i];
|
|
|
|
if (regnum == AVR_PC_REGNUM)
|
|
pc <<= 1;
|
|
|
|
return frame_unwind_got_constant (this_frame, regnum, pc);
|
|
}
|
|
|
|
return frame_unwind_got_optimized (this_frame, regnum);
|
|
}
|
|
|
|
return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
|
|
}
|
|
|
|
static const struct frame_unwind avr_frame_unwind = {
|
|
NORMAL_FRAME,
|
|
default_frame_unwind_stop_reason,
|
|
avr_frame_this_id,
|
|
avr_frame_prev_register,
|
|
NULL,
|
|
default_frame_sniffer
|
|
};
|
|
|
|
static CORE_ADDR
|
|
avr_frame_base_address (struct frame_info *this_frame, void **this_cache)
|
|
{
|
|
struct avr_unwind_cache *info
|
|
= avr_frame_unwind_cache (this_frame, this_cache);
|
|
|
|
return info->base;
|
|
}
|
|
|
|
static const struct frame_base avr_frame_base = {
|
|
&avr_frame_unwind,
|
|
avr_frame_base_address,
|
|
avr_frame_base_address,
|
|
avr_frame_base_address
|
|
};
|
|
|
|
/* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
|
|
frame. The frame ID's base needs to match the TOS value saved by
|
|
save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
|
|
|
|
static struct frame_id
|
|
avr_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
|
|
{
|
|
ULONGEST base;
|
|
|
|
base = get_frame_register_unsigned (this_frame, AVR_SP_REGNUM);
|
|
return frame_id_build (avr_make_saddr (base), get_frame_pc (this_frame));
|
|
}
|
|
|
|
/* When arguments must be pushed onto the stack, they go on in reverse
|
|
order. The below implements a FILO (stack) to do this. */
|
|
|
|
struct stack_item
|
|
{
|
|
int len;
|
|
struct stack_item *prev;
|
|
gdb_byte *data;
|
|
};
|
|
|
|
static struct stack_item *
|
|
push_stack_item (struct stack_item *prev, const bfd_byte *contents, int len)
|
|
{
|
|
struct stack_item *si;
|
|
si = XNEW (struct stack_item);
|
|
si->data = (gdb_byte *) xmalloc (len);
|
|
si->len = len;
|
|
si->prev = prev;
|
|
memcpy (si->data, contents, len);
|
|
return si;
|
|
}
|
|
|
|
static struct stack_item *pop_stack_item (struct stack_item *si);
|
|
static struct stack_item *
|
|
pop_stack_item (struct stack_item *si)
|
|
{
|
|
struct stack_item *dead = si;
|
|
si = si->prev;
|
|
xfree (dead->data);
|
|
xfree (dead);
|
|
return si;
|
|
}
|
|
|
|
/* Setup the function arguments for calling a function in the inferior.
|
|
|
|
On the AVR architecture, there are 18 registers (R25 to R8) which are
|
|
dedicated for passing function arguments. Up to the first 18 arguments
|
|
(depending on size) may go into these registers. The rest go on the stack.
|
|
|
|
All arguments are aligned to start in even-numbered registers (odd-sized
|
|
arguments, including char, have one free register above them). For example,
|
|
an int in arg1 and a char in arg2 would be passed as such:
|
|
|
|
arg1 -> r25:r24
|
|
arg2 -> r22
|
|
|
|
Arguments that are larger than 2 bytes will be split between two or more
|
|
registers as available, but will NOT be split between a register and the
|
|
stack. Arguments that go onto the stack are pushed last arg first (this is
|
|
similar to the d10v). */
|
|
|
|
/* NOTE: TRoth/2003-06-17: The rest of this comment is old looks to be
|
|
inaccurate.
|
|
|
|
An exceptional case exists for struct arguments (and possibly other
|
|
aggregates such as arrays) -- if the size is larger than WORDSIZE bytes but
|
|
not a multiple of WORDSIZE bytes. In this case the argument is never split
|
|
between the registers and the stack, but instead is copied in its entirety
|
|
onto the stack, AND also copied into as many registers as there is room
|
|
for. In other words, space in registers permitting, two copies of the same
|
|
argument are passed in. As far as I can tell, only the one on the stack is
|
|
used, although that may be a function of the level of compiler
|
|
optimization. I suspect this is a compiler bug. Arguments of these odd
|
|
sizes are left-justified within the word (as opposed to arguments smaller
|
|
than WORDSIZE bytes, which are right-justified).
|
|
|
|
If the function is to return an aggregate type such as a struct, the caller
|
|
must allocate space into which the callee will copy the return value. In
|
|
this case, a pointer to the return value location is passed into the callee
|
|
in register R0, which displaces one of the other arguments passed in via
|
|
registers R0 to R2. */
|
|
|
|
static CORE_ADDR
|
|
avr_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
|
|
struct regcache *regcache, CORE_ADDR bp_addr,
|
|
int nargs, struct value **args, CORE_ADDR sp,
|
|
int struct_return, CORE_ADDR struct_addr)
|
|
{
|
|
int i;
|
|
gdb_byte buf[3];
|
|
int call_length = gdbarch_tdep (gdbarch)->call_length;
|
|
CORE_ADDR return_pc = avr_convert_iaddr_to_raw (bp_addr);
|
|
int regnum = AVR_ARGN_REGNUM;
|
|
struct stack_item *si = NULL;
|
|
|
|
if (struct_return)
|
|
{
|
|
regcache_cooked_write_unsigned
|
|
(regcache, regnum--, (struct_addr >> 8) & 0xff);
|
|
regcache_cooked_write_unsigned
|
|
(regcache, regnum--, struct_addr & 0xff);
|
|
/* SP being post decremented, we need to reserve one byte so that the
|
|
return address won't overwrite the result (or vice-versa). */
|
|
if (sp == struct_addr)
|
|
sp--;
|
|
}
|
|
|
|
for (i = 0; i < nargs; i++)
|
|
{
|
|
int last_regnum;
|
|
int j;
|
|
struct value *arg = args[i];
|
|
struct type *type = check_typedef (value_type (arg));
|
|
const bfd_byte *contents = value_contents (arg);
|
|
int len = TYPE_LENGTH (type);
|
|
|
|
/* Calculate the potential last register needed.
|
|
E.g. For length 2, registers regnum and regnum-1 (say 25 and 24)
|
|
shall be used. So, last needed register will be regnum-1(24). */
|
|
last_regnum = regnum - (len + (len & 1)) + 1;
|
|
|
|
/* If there are registers available, use them. Once we start putting
|
|
stuff on the stack, all subsequent args go on stack. */
|
|
if ((si == NULL) && (last_regnum >= AVR_LAST_ARG_REGNUM))
|
|
{
|
|
/* Skip a register for odd length args. */
|
|
if (len & 1)
|
|
regnum--;
|
|
|
|
/* Write MSB of argument into register and subsequent bytes in
|
|
decreasing register numbers. */
|
|
for (j = 0; j < len; j++)
|
|
regcache_cooked_write_unsigned
|
|
(regcache, regnum--, contents[len - j - 1]);
|
|
}
|
|
/* No registers available, push the args onto the stack. */
|
|
else
|
|
{
|
|
/* From here on, we don't care about regnum. */
|
|
si = push_stack_item (si, contents, len);
|
|
}
|
|
}
|
|
|
|
/* Push args onto the stack. */
|
|
while (si)
|
|
{
|
|
sp -= si->len;
|
|
/* Add 1 to sp here to account for post decr nature of pushes. */
|
|
write_memory (sp + 1, si->data, si->len);
|
|
si = pop_stack_item (si);
|
|
}
|
|
|
|
/* Set the return address. For the avr, the return address is the BP_ADDR.
|
|
Need to push the return address onto the stack noting that it needs to be
|
|
in big-endian order on the stack. */
|
|
for (i = 1; i <= call_length; i++)
|
|
{
|
|
buf[call_length - i] = return_pc & 0xff;
|
|
return_pc >>= 8;
|
|
}
|
|
|
|
sp -= call_length;
|
|
/* Use 'sp + 1' since pushes are post decr ops. */
|
|
write_memory (sp + 1, buf, call_length);
|
|
|
|
/* Finally, update the SP register. */
|
|
regcache_cooked_write_unsigned (regcache, AVR_SP_REGNUM,
|
|
avr_convert_saddr_to_raw (sp));
|
|
|
|
/* Return SP value for the dummy frame, where the return address hasn't been
|
|
pushed. */
|
|
return sp + call_length;
|
|
}
|
|
|
|
/* Unfortunately dwarf2 register for SP is 32. */
|
|
|
|
static int
|
|
avr_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
|
|
{
|
|
if (reg >= 0 && reg < 32)
|
|
return reg;
|
|
if (reg == 32)
|
|
return AVR_SP_REGNUM;
|
|
return -1;
|
|
}
|
|
|
|
/* Implementation of `address_class_type_flags' gdbarch method.
|
|
|
|
This method maps DW_AT_address_class attributes to a
|
|
type_instance_flag_value. */
|
|
|
|
static int
|
|
avr_address_class_type_flags (int byte_size, int dwarf2_addr_class)
|
|
{
|
|
/* The value 1 of the DW_AT_address_class attribute corresponds to the
|
|
__flash qualifier. Note that this attribute is only valid with
|
|
pointer types and therefore the flag is set to the pointer type and
|
|
not its target type. */
|
|
if (dwarf2_addr_class == 1 && byte_size == 2)
|
|
return AVR_TYPE_INSTANCE_FLAG_ADDRESS_CLASS_FLASH;
|
|
return 0;
|
|
}
|
|
|
|
/* Implementation of `address_class_type_flags_to_name' gdbarch method.
|
|
|
|
Convert a type_instance_flag_value to an address space qualifier. */
|
|
|
|
static const char*
|
|
avr_address_class_type_flags_to_name (struct gdbarch *gdbarch, int type_flags)
|
|
{
|
|
if (type_flags & AVR_TYPE_INSTANCE_FLAG_ADDRESS_CLASS_FLASH)
|
|
return "flash";
|
|
else
|
|
return NULL;
|
|
}
|
|
|
|
/* Implementation of `address_class_name_to_type_flags' gdbarch method.
|
|
|
|
Convert an address space qualifier to a type_instance_flag_value. */
|
|
|
|
static int
|
|
avr_address_class_name_to_type_flags (struct gdbarch *gdbarch,
|
|
const char* name,
|
|
int *type_flags_ptr)
|
|
{
|
|
if (strcmp (name, "flash") == 0)
|
|
{
|
|
*type_flags_ptr = AVR_TYPE_INSTANCE_FLAG_ADDRESS_CLASS_FLASH;
|
|
return 1;
|
|
}
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
/* Initialize the gdbarch structure for the AVR's. */
|
|
|
|
static struct gdbarch *
|
|
avr_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
|
|
{
|
|
struct gdbarch *gdbarch;
|
|
struct gdbarch_tdep *tdep;
|
|
struct gdbarch_list *best_arch;
|
|
int call_length;
|
|
|
|
/* Avr-6 call instructions save 3 bytes. */
|
|
switch (info.bfd_arch_info->mach)
|
|
{
|
|
case bfd_mach_avr1:
|
|
case bfd_mach_avrxmega1:
|
|
case bfd_mach_avr2:
|
|
case bfd_mach_avrxmega2:
|
|
case bfd_mach_avr3:
|
|
case bfd_mach_avrxmega3:
|
|
case bfd_mach_avr4:
|
|
case bfd_mach_avrxmega4:
|
|
case bfd_mach_avr5:
|
|
case bfd_mach_avrxmega5:
|
|
default:
|
|
call_length = 2;
|
|
break;
|
|
case bfd_mach_avr6:
|
|
case bfd_mach_avrxmega6:
|
|
case bfd_mach_avrxmega7:
|
|
call_length = 3;
|
|
break;
|
|
}
|
|
|
|
/* If there is already a candidate, use it. */
|
|
for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
|
|
best_arch != NULL;
|
|
best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
|
|
{
|
|
if (gdbarch_tdep (best_arch->gdbarch)->call_length == call_length)
|
|
return best_arch->gdbarch;
|
|
}
|
|
|
|
/* None found, create a new architecture from the information provided. */
|
|
tdep = XCNEW (struct gdbarch_tdep);
|
|
gdbarch = gdbarch_alloc (&info, tdep);
|
|
|
|
tdep->call_length = call_length;
|
|
|
|
/* Create a type for PC. We can't use builtin types here, as they may not
|
|
be defined. */
|
|
tdep->void_type = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
|
|
"void");
|
|
tdep->func_void_type = make_function_type (tdep->void_type, NULL);
|
|
tdep->pc_type = arch_pointer_type (gdbarch, 4 * TARGET_CHAR_BIT, NULL,
|
|
tdep->func_void_type);
|
|
|
|
set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
|
|
set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
|
|
set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
|
|
set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
|
|
set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
|
|
set_gdbarch_addr_bit (gdbarch, 32);
|
|
|
|
set_gdbarch_wchar_bit (gdbarch, 2 * TARGET_CHAR_BIT);
|
|
set_gdbarch_wchar_signed (gdbarch, 1);
|
|
|
|
set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
|
|
set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
|
|
set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
|
|
|
|
set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
|
|
set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
|
|
set_gdbarch_long_double_format (gdbarch, floatformats_ieee_single);
|
|
|
|
set_gdbarch_read_pc (gdbarch, avr_read_pc);
|
|
set_gdbarch_write_pc (gdbarch, avr_write_pc);
|
|
|
|
set_gdbarch_num_regs (gdbarch, AVR_NUM_REGS);
|
|
|
|
set_gdbarch_sp_regnum (gdbarch, AVR_SP_REGNUM);
|
|
set_gdbarch_pc_regnum (gdbarch, AVR_PC_REGNUM);
|
|
|
|
set_gdbarch_register_name (gdbarch, avr_register_name);
|
|
set_gdbarch_register_type (gdbarch, avr_register_type);
|
|
|
|
set_gdbarch_num_pseudo_regs (gdbarch, AVR_NUM_PSEUDO_REGS);
|
|
set_gdbarch_pseudo_register_read (gdbarch, avr_pseudo_register_read);
|
|
set_gdbarch_pseudo_register_write (gdbarch, avr_pseudo_register_write);
|
|
|
|
set_gdbarch_return_value (gdbarch, avr_return_value);
|
|
|
|
set_gdbarch_push_dummy_call (gdbarch, avr_push_dummy_call);
|
|
|
|
set_gdbarch_dwarf2_reg_to_regnum (gdbarch, avr_dwarf_reg_to_regnum);
|
|
|
|
set_gdbarch_address_to_pointer (gdbarch, avr_address_to_pointer);
|
|
set_gdbarch_pointer_to_address (gdbarch, avr_pointer_to_address);
|
|
set_gdbarch_integer_to_address (gdbarch, avr_integer_to_address);
|
|
|
|
set_gdbarch_skip_prologue (gdbarch, avr_skip_prologue);
|
|
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
|
|
|
|
set_gdbarch_breakpoint_kind_from_pc (gdbarch, avr_breakpoint::kind_from_pc);
|
|
set_gdbarch_sw_breakpoint_from_kind (gdbarch, avr_breakpoint::bp_from_kind);
|
|
|
|
frame_unwind_append_unwinder (gdbarch, &avr_frame_unwind);
|
|
frame_base_set_default (gdbarch, &avr_frame_base);
|
|
|
|
set_gdbarch_dummy_id (gdbarch, avr_dummy_id);
|
|
|
|
set_gdbarch_unwind_pc (gdbarch, avr_unwind_pc);
|
|
set_gdbarch_unwind_sp (gdbarch, avr_unwind_sp);
|
|
|
|
set_gdbarch_address_class_type_flags (gdbarch, avr_address_class_type_flags);
|
|
set_gdbarch_address_class_name_to_type_flags
|
|
(gdbarch, avr_address_class_name_to_type_flags);
|
|
set_gdbarch_address_class_type_flags_to_name
|
|
(gdbarch, avr_address_class_type_flags_to_name);
|
|
|
|
return gdbarch;
|
|
}
|
|
|
|
/* Send a query request to the avr remote target asking for values of the io
|
|
registers. If args parameter is not NULL, then the user has requested info
|
|
on a specific io register [This still needs implemented and is ignored for
|
|
now]. The query string should be one of these forms:
|
|
|
|
"Ravr.io_reg" -> reply is "NN" number of io registers
|
|
|
|
"Ravr.io_reg:addr,len" where addr is first register and len is number of
|
|
registers to be read. The reply should be "<NAME>,VV;" for each io register
|
|
where, <NAME> is a string, and VV is the hex value of the register.
|
|
|
|
All io registers are 8-bit. */
|
|
|
|
static void
|
|
avr_io_reg_read_command (const char *args, int from_tty)
|
|
{
|
|
char query[400];
|
|
unsigned int nreg = 0;
|
|
unsigned int val;
|
|
|
|
/* Find out how many io registers the target has. */
|
|
gdb::optional<gdb::byte_vector> buf
|
|
= target_read_alloc (target_stack, TARGET_OBJECT_AVR, "avr.io_reg");
|
|
|
|
if (!buf)
|
|
{
|
|
fprintf_unfiltered (gdb_stderr,
|
|
_("ERR: info io_registers NOT supported "
|
|
"by current target\n"));
|
|
return;
|
|
}
|
|
|
|
const char *bufstr = (const char *) buf->data ();
|
|
|
|
if (sscanf (bufstr, "%x", &nreg) != 1)
|
|
{
|
|
fprintf_unfiltered (gdb_stderr,
|
|
_("Error fetching number of io registers\n"));
|
|
return;
|
|
}
|
|
|
|
reinitialize_more_filter ();
|
|
|
|
printf_unfiltered (_("Target has %u io registers:\n\n"), nreg);
|
|
|
|
/* only fetch up to 8 registers at a time to keep the buffer small */
|
|
int step = 8;
|
|
|
|
for (int i = 0; i < nreg; i += step)
|
|
{
|
|
/* how many registers this round? */
|
|
int j = step;
|
|
if ((i+j) >= nreg)
|
|
j = nreg - i; /* last block is less than 8 registers */
|
|
|
|
snprintf (query, sizeof (query) - 1, "avr.io_reg:%x,%x", i, j);
|
|
buf = target_read_alloc (target_stack, TARGET_OBJECT_AVR, query);
|
|
|
|
if (!buf)
|
|
{
|
|
fprintf_unfiltered (gdb_stderr,
|
|
_("ERR: error reading avr.io_reg:%x,%x\n"),
|
|
i, j);
|
|
return;
|
|
}
|
|
|
|
const char *p = (const char *) buf->data ();
|
|
for (int k = i; k < (i + j); k++)
|
|
{
|
|
if (sscanf (p, "%[^,],%x;", query, &val) == 2)
|
|
{
|
|
printf_filtered ("[%02x] %-15s : %02x\n", k, query, val);
|
|
while ((*p != ';') && (*p != '\0'))
|
|
p++;
|
|
p++; /* skip over ';' */
|
|
if (*p == '\0')
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
_initialize_avr_tdep (void)
|
|
{
|
|
register_gdbarch_init (bfd_arch_avr, avr_gdbarch_init);
|
|
|
|
/* Add a new command to allow the user to query the avr remote target for
|
|
the values of the io space registers in a saner way than just using
|
|
`x/NNNb ADDR`. */
|
|
|
|
/* FIXME: TRoth/2002-02-18: This should probably be changed to 'info avr
|
|
io_registers' to signify it is not available on other platforms. */
|
|
|
|
add_info ("io_registers", avr_io_reg_read_command,
|
|
_("query remote avr target for io space register values"));
|
|
}
|