mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2025-01-12 12:16:04 +08:00
a2c5833233
The result of running etc/update-copyright.py --this-year, fixing all the files whose mode is changed by the script, plus a build with --enable-maintainer-mode --enable-cgen-maint=yes, then checking out */po/*.pot which we don't update frequently. The copy of cgen was with commit d1dd5fcc38ead reverted as that commit breaks building of bfp opcodes files.
922 lines
29 KiB
Plaintext
922 lines
29 KiB
Plaintext
@c Copyright (C) 1991-2022 Free Software Foundation, Inc.
|
|
@c This is part of the GAS manual.
|
|
@c For copying conditions, see the file as.texinfo.
|
|
@ifset GENERIC
|
|
@page
|
|
@node Sparc-Dependent
|
|
@chapter SPARC Dependent Features
|
|
@end ifset
|
|
@ifclear GENERIC
|
|
@node Machine Dependencies
|
|
@chapter SPARC Dependent Features
|
|
@end ifclear
|
|
|
|
@cindex SPARC support
|
|
@menu
|
|
* Sparc-Opts:: Options
|
|
* Sparc-Aligned-Data:: Option to enforce aligned data
|
|
* Sparc-Syntax:: Syntax
|
|
* Sparc-Float:: Floating Point
|
|
* Sparc-Directives:: Sparc Machine Directives
|
|
@end menu
|
|
|
|
@node Sparc-Opts
|
|
@section Options
|
|
|
|
@cindex options for SPARC
|
|
@cindex SPARC options
|
|
@cindex architectures, SPARC
|
|
@cindex SPARC architectures
|
|
The SPARC chip family includes several successive versions, using the same
|
|
core instruction set, but including a few additional instructions at
|
|
each version. There are exceptions to this however. For details on what
|
|
instructions each variant supports, please see the chip's architecture
|
|
reference manual.
|
|
|
|
By default, @code{@value{AS}} assumes the core instruction set (SPARC
|
|
v6), but ``bumps'' the architecture level as needed: it switches to
|
|
successively higher architectures as it encounters instructions that
|
|
only exist in the higher levels.
|
|
|
|
If not configured for SPARC v9 (@code{sparc64-*-*}) GAS will not bump
|
|
past sparclite by default, an option must be passed to enable the
|
|
v9 instructions.
|
|
|
|
GAS treats sparclite as being compatible with v8, unless an architecture
|
|
is explicitly requested. SPARC v9 is always incompatible with sparclite.
|
|
|
|
@c The order here is the same as the order of enum sparc_opcode_arch_val
|
|
@c to give the user a sense of the order of the "bumping".
|
|
|
|
@table @code
|
|
@kindex -Av6
|
|
@kindex -Av7
|
|
@kindex -Av8
|
|
@kindex -Aleon
|
|
@kindex -Asparclet
|
|
@kindex -Asparclite
|
|
@kindex -Av9
|
|
@kindex -Av9a
|
|
@kindex -Av9b
|
|
@kindex -Av9c
|
|
@kindex -Av9d
|
|
@kindex -Av9e
|
|
@kindex -Av9v
|
|
@kindex -Av9m
|
|
@kindex -Asparc
|
|
@kindex -Asparcvis
|
|
@kindex -Asparcvis2
|
|
@kindex -Asparcfmaf
|
|
@kindex -Asparcima
|
|
@kindex -Asparcvis3
|
|
@kindex -Asparcvis3r
|
|
@item -Av6 | -Av7 | -Av8 | -Aleon | -Asparclet | -Asparclite
|
|
@itemx -Av8plus | -Av8plusa | -Av8plusb | -Av8plusc | -Av8plusd |
|
|
@itemx -Av8plusv | -Av8plusm | -Av8plusm8
|
|
@itemx -Av9 | -Av9a | -Av9b | -Av9c | -Av9d | -Av9e | -Av9v | -Av9m | -Av9m8
|
|
@itemx -Asparc | -Asparcvis | -Asparcvis2 | -Asparcfmaf | -Asparcima
|
|
@itemx -Asparcvis3 | -Asparcvis3r | -Asparc5 | -Asparc6
|
|
Use one of the @samp{-A} options to select one of the SPARC
|
|
architectures explicitly. If you select an architecture explicitly,
|
|
@code{@value{AS}} reports a fatal error if it encounters an instruction
|
|
or feature requiring an incompatible or higher level.
|
|
|
|
@samp{-Av8plus}, @samp{-Av8plusa}, @samp{-Av8plusb}, @samp{-Av8plusc},
|
|
@samp{-Av8plusd}, and @samp{-Av8plusv} select a 32 bit environment.
|
|
|
|
@samp{-Av9}, @samp{-Av9a}, @samp{-Av9b}, @samp{-Av9c}, @samp{-Av9d},
|
|
@samp{-Av9e}, @samp{-Av9v} and @samp{-Av9m} select a 64 bit
|
|
environment and are not available unless GAS is explicitly configured
|
|
with 64 bit environment support.
|
|
|
|
@samp{-Av8plusa} and @samp{-Av9a} enable the SPARC V9 instruction set with
|
|
UltraSPARC VIS 1.0 extensions.
|
|
|
|
@samp{-Av8plusb} and @samp{-Av9b} enable the UltraSPARC VIS 2.0 instructions,
|
|
as well as the instructions enabled by @samp{-Av8plusa} and @samp{-Av9a}.
|
|
|
|
@samp{-Av8plusc} and @samp{-Av9c} enable the UltraSPARC Niagara instructions,
|
|
as well as the instructions enabled by @samp{-Av8plusb} and @samp{-Av9b}.
|
|
|
|
@samp{-Av8plusd} and @samp{-Av9d} enable the floating point fused
|
|
multiply-add, VIS 3.0, and HPC extension instructions, as well as the
|
|
instructions enabled by @samp{-Av8plusc} and @samp{-Av9c}.
|
|
|
|
@samp{-Av8pluse} and @samp{-Av9e} enable the cryptographic
|
|
instructions, as well as the instructions enabled by @samp{-Av8plusd}
|
|
and @samp{-Av9d}.
|
|
|
|
@samp{-Av8plusv} and @samp{-Av9v} enable floating point unfused
|
|
multiply-add, and integer multiply-add, as well as the instructions
|
|
enabled by @samp{-Av8pluse} and @samp{-Av9e}.
|
|
|
|
@samp{-Av8plusm} and @samp{-Av9m} enable the VIS 4.0, subtract extended,
|
|
xmpmul, xmontmul and xmontsqr instructions, as well as the instructions
|
|
enabled by @samp{-Av8plusv} and @samp{-Av9v}.
|
|
|
|
@samp{-Av8plusm8} and @samp{-Av9m8} enable the instructions introduced
|
|
in the Oracle SPARC Architecture 2017 and the M8 processor, as
|
|
well as the instructions enabled by @samp{-Av8plusm} and @samp{-Av9m}.
|
|
|
|
@samp{-Asparc} specifies a v9 environment. It is equivalent to
|
|
@samp{-Av9} if the word size is 64-bit, and @samp{-Av8plus} otherwise.
|
|
|
|
@samp{-Asparcvis} specifies a v9a environment. It is equivalent to
|
|
@samp{-Av9a} if the word size is 64-bit, and @samp{-Av8plusa} otherwise.
|
|
|
|
@samp{-Asparcvis2} specifies a v9b environment. It is equivalent to
|
|
@samp{-Av9b} if the word size is 64-bit, and @samp{-Av8plusb} otherwise.
|
|
|
|
@samp{-Asparcfmaf} specifies a v9b environment with the floating point
|
|
fused multiply-add instructions enabled.
|
|
|
|
@samp{-Asparcima} specifies a v9b environment with the integer
|
|
multiply-add instructions enabled.
|
|
|
|
@samp{-Asparcvis3} specifies a v9b environment with the VIS 3.0,
|
|
HPC , and floating point fused multiply-add instructions enabled.
|
|
|
|
@samp{-Asparcvis3r} specifies a v9b environment with the VIS 3.0, HPC,
|
|
and floating point unfused multiply-add instructions enabled.
|
|
|
|
@samp{-Asparc5} is equivalent to @samp{-Av9m}.
|
|
|
|
@samp{-Asparc6} is equivalent to @samp{-Av9m8}.
|
|
|
|
@item -xarch=v8plus | -xarch=v8plusa | -xarch=v8plusb | -xarch=v8plusc
|
|
@itemx -xarch=v8plusd | -xarch=v8plusv | -xarch=v8plusm |
|
|
@itemx -xarch=v8plusm8 | -xarch=v9 | -xarch=v9a | -xarch=v9b
|
|
@itemx -xarch=v9c | -xarch=v9d | -xarch=v9e | -xarch=v9v
|
|
@itemx -xarch=v9m | -xarch=v9m8
|
|
@itemx -xarch=sparc | -xarch=sparcvis | -xarch=sparcvis2
|
|
@itemx -xarch=sparcfmaf | -xarch=sparcima | -xarch=sparcvis3
|
|
@itemx -xarch=sparcvis3r | -xarch=sparc5 | -xarch=sparc6
|
|
For compatibility with the SunOS v9 assembler. These options are
|
|
equivalent to -Av8plus, -Av8plusa, -Av8plusb, -Av8plusc, -Av8plusd,
|
|
-Av8plusv, -Av8plusm, -Av8plusm8, -Av9, -Av9a, -Av9b, -Av9c, -Av9d,
|
|
-Av9e, -Av9v, -Av9m, -Av9m8, -Asparc, -Asparcvis, -Asparcvis2,
|
|
-Asparcfmaf, -Asparcima, -Asparcvis3, -Asparcvis3r, -Asparc5 and
|
|
-Asparc6 respectively.
|
|
|
|
@item -bump
|
|
Warn whenever it is necessary to switch to another level.
|
|
If an architecture level is explicitly requested, GAS will not issue
|
|
warnings until that level is reached, and will then bump the level
|
|
as required (except between incompatible levels).
|
|
|
|
@item -32 | -64
|
|
Select the word size, either 32 bits or 64 bits.
|
|
These options are only available with the ELF object file format,
|
|
and require that the necessary BFD support has been included.
|
|
|
|
@item --dcti-couples-detect
|
|
Warn if a DCTI (delayed control transfer instruction) couple is found
|
|
when generating code for a variant of the SPARC architecture in which
|
|
the execution of the couple is unpredictable, or very slow. This is
|
|
disabled by default.
|
|
@end table
|
|
|
|
@node Sparc-Aligned-Data
|
|
@section Enforcing aligned data
|
|
|
|
@cindex data alignment on SPARC
|
|
@cindex SPARC data alignment
|
|
SPARC GAS normally permits data to be misaligned. For example, it
|
|
permits the @code{.long} pseudo-op to be used on a byte boundary.
|
|
However, the native SunOS assemblers issue an error when they see
|
|
misaligned data.
|
|
|
|
@kindex --enforce-aligned-data
|
|
You can use the @code{--enforce-aligned-data} option to make SPARC GAS
|
|
also issue an error about misaligned data, just as the SunOS
|
|
assemblers do.
|
|
|
|
The @code{--enforce-aligned-data} option is not the default because gcc
|
|
issues misaligned data pseudo-ops when it initializes certain packed
|
|
data structures (structures defined using the @code{packed} attribute).
|
|
You may have to assemble with GAS in order to initialize packed data
|
|
structures in your own code.
|
|
|
|
@cindex SPARC syntax
|
|
@cindex syntax, SPARC
|
|
@node Sparc-Syntax
|
|
@section Sparc Syntax
|
|
The assembler syntax closely follows The Sparc Architecture Manual,
|
|
versions 8 and 9, as well as most extensions defined by Sun
|
|
for their UltraSPARC and Niagara line of processors.
|
|
|
|
@menu
|
|
* Sparc-Chars:: Special Characters
|
|
* Sparc-Regs:: Register Names
|
|
* Sparc-Constants:: Constant Names
|
|
* Sparc-Relocs:: Relocations
|
|
* Sparc-Size-Translations:: Size Translations
|
|
@end menu
|
|
|
|
@node Sparc-Chars
|
|
@subsection Special Characters
|
|
|
|
@cindex line comment character, Sparc
|
|
@cindex Sparc line comment character
|
|
A @samp{!} character appearing anywhere on a line indicates the start
|
|
of a comment that extends to the end of that line.
|
|
|
|
If a @samp{#} appears as the first character of a line then the whole
|
|
line is treated as a comment, but in this case the line could also be
|
|
a logical line number directive (@pxref{Comments}) or a preprocessor
|
|
control command (@pxref{Preprocessing}).
|
|
|
|
@cindex line separator, Sparc
|
|
@cindex statement separator, Sparc
|
|
@cindex Sparc line separator
|
|
@samp{;} can be used instead of a newline to separate statements.
|
|
|
|
@node Sparc-Regs
|
|
@subsection Register Names
|
|
@cindex Sparc registers
|
|
@cindex register names, Sparc
|
|
|
|
The Sparc integer register file is broken down into global,
|
|
outgoing, local, and incoming.
|
|
|
|
@itemize @bullet
|
|
@item
|
|
The 8 global registers are referred to as @samp{%g@var{n}}.
|
|
|
|
@item
|
|
The 8 outgoing registers are referred to as @samp{%o@var{n}}.
|
|
|
|
@item
|
|
The 8 local registers are referred to as @samp{%l@var{n}}.
|
|
|
|
@item
|
|
The 8 incoming registers are referred to as @samp{%i@var{n}}.
|
|
|
|
@item
|
|
The frame pointer register @samp{%i6} can be referenced using
|
|
the alias @samp{%fp}.
|
|
|
|
@item
|
|
The stack pointer register @samp{%o6} can be referenced using
|
|
the alias @samp{%sp}.
|
|
@end itemize
|
|
|
|
Floating point registers are simply referred to as @samp{%f@var{n}}.
|
|
When assembling for pre-V9, only 32 floating point registers
|
|
are available. For V9 and later there are 64, but there are
|
|
restrictions when referencing the upper 32 registers. They
|
|
can only be accessed as double or quad, and thus only even
|
|
or quad numbered accesses are allowed. For example, @samp{%f34}
|
|
is a legal floating point register, but @samp{%f35} is not.
|
|
|
|
Floating point registers accessed as double can also be referred using
|
|
the @samp{%d@var{n}} notation, where @var{n} is even. Similarly,
|
|
floating point registers accessed as quad can be referred using the
|
|
@samp{%q@var{n}} notation, where @var{n} is a multiple of 4. For
|
|
example, @samp{%f4} can be denoted as both @samp{%d4} and @samp{%q4}.
|
|
On the other hand, @samp{%f2} can be denoted as @samp{%d2} but not as
|
|
@samp{%q2}.
|
|
|
|
Certain V9 instructions allow access to ancillary state registers.
|
|
Most simply they can be referred to as @samp{%asr@var{n}} where
|
|
@var{n} can be from 16 to 31. However, there are some aliases
|
|
defined to reference ASR registers defined for various UltraSPARC
|
|
processors:
|
|
|
|
@itemize @bullet
|
|
@item
|
|
The tick compare register is referred to as @samp{%tick_cmpr}.
|
|
|
|
@item
|
|
The system tick register is referred to as @samp{%stick}. An alias,
|
|
@samp{%sys_tick}, exists but is deprecated and should not be used
|
|
by new software.
|
|
|
|
@item
|
|
The system tick compare register is referred to as @samp{%stick_cmpr}.
|
|
An alias, @samp{%sys_tick_cmpr}, exists but is deprecated and should
|
|
not be used by new software.
|
|
|
|
@item
|
|
The software interrupt register is referred to as @samp{%softint}.
|
|
|
|
@item
|
|
The set software interrupt register is referred to as @samp{%set_softint}.
|
|
The mnemonic @samp{%softint_set} is provided as an alias.
|
|
|
|
@item
|
|
The clear software interrupt register is referred to as
|
|
@samp{%clear_softint}. The mnemonic @samp{%softint_clear} is provided
|
|
as an alias.
|
|
|
|
@item
|
|
The performance instrumentation counters register is referred to as
|
|
@samp{%pic}.
|
|
|
|
@item
|
|
The performance control register is referred to as @samp{%pcr}.
|
|
|
|
@item
|
|
The graphics status register is referred to as @samp{%gsr}.
|
|
|
|
@item
|
|
The V9 dispatch control register is referred to as @samp{%dcr}.
|
|
@end itemize
|
|
|
|
Various V9 branch and conditional move instructions allow
|
|
specification of which set of integer condition codes to
|
|
test. These are referred to as @samp{%xcc} and @samp{%icc}.
|
|
|
|
Additionally, GAS supports the so-called ``natural'' condition codes;
|
|
these are referred to as @samp{%ncc} and reference to @samp{%icc} if
|
|
the word size is 32, @samp{%xcc} if the word size is 64.
|
|
|
|
In V9, there are 4 sets of floating point condition codes
|
|
which are referred to as @samp{%fcc@var{n}}.
|
|
|
|
Several special privileged and non-privileged registers
|
|
exist:
|
|
|
|
@itemize @bullet
|
|
@item
|
|
The V9 address space identifier register is referred to as @samp{%asi}.
|
|
|
|
@item
|
|
The V9 restorable windows register is referred to as @samp{%canrestore}.
|
|
|
|
@item
|
|
The V9 savable windows register is referred to as @samp{%cansave}.
|
|
|
|
@item
|
|
The V9 clean windows register is referred to as @samp{%cleanwin}.
|
|
|
|
@item
|
|
The V9 current window pointer register is referred to as @samp{%cwp}.
|
|
|
|
@item
|
|
The floating-point queue register is referred to as @samp{%fq}.
|
|
|
|
@item
|
|
The V8 co-processor queue register is referred to as @samp{%cq}.
|
|
|
|
@item
|
|
The floating point status register is referred to as @samp{%fsr}.
|
|
|
|
@item
|
|
The other windows register is referred to as @samp{%otherwin}.
|
|
|
|
@item
|
|
The V9 program counter register is referred to as @samp{%pc}.
|
|
|
|
@item
|
|
The V9 next program counter register is referred to as @samp{%npc}.
|
|
|
|
@item
|
|
The V9 processor interrupt level register is referred to as @samp{%pil}.
|
|
|
|
@item
|
|
The V9 processor state register is referred to as @samp{%pstate}.
|
|
|
|
@item
|
|
The trap base address register is referred to as @samp{%tba}.
|
|
|
|
@item
|
|
The V9 tick register is referred to as @samp{%tick}.
|
|
|
|
@item
|
|
The V9 trap level is referred to as @samp{%tl}.
|
|
|
|
@item
|
|
The V9 trap program counter is referred to as @samp{%tpc}.
|
|
|
|
@item
|
|
The V9 trap next program counter is referred to as @samp{%tnpc}.
|
|
|
|
@item
|
|
The V9 trap state is referred to as @samp{%tstate}.
|
|
|
|
@item
|
|
The V9 trap type is referred to as @samp{%tt}.
|
|
|
|
@item
|
|
The V9 condition codes is referred to as @samp{%ccr}.
|
|
|
|
@item
|
|
The V9 floating-point registers state is referred to as @samp{%fprs}.
|
|
|
|
@item
|
|
The V9 version register is referred to as @samp{%ver}.
|
|
|
|
@item
|
|
The V9 window state register is referred to as @samp{%wstate}.
|
|
|
|
@item
|
|
The Y register is referred to as @samp{%y}.
|
|
|
|
@item
|
|
The V8 window invalid mask register is referred to as @samp{%wim}.
|
|
|
|
@item
|
|
The V8 processor state register is referred to as @samp{%psr}.
|
|
|
|
@item
|
|
The V9 global register level register is referred to as @samp{%gl}.
|
|
@end itemize
|
|
|
|
Several special register names exist for hypervisor mode code:
|
|
|
|
@itemize @bullet
|
|
@item
|
|
The hyperprivileged processor state register is referred to as
|
|
@samp{%hpstate}.
|
|
|
|
@item
|
|
The hyperprivileged trap state register is referred to as @samp{%htstate}.
|
|
|
|
@item
|
|
The hyperprivileged interrupt pending register is referred to as
|
|
@samp{%hintp}.
|
|
|
|
@item
|
|
The hyperprivileged trap base address register is referred to as
|
|
@samp{%htba}.
|
|
|
|
@item
|
|
The hyperprivileged implementation version register is referred
|
|
to as @samp{%hver}.
|
|
|
|
@item
|
|
The hyperprivileged system tick offset register is referred to as
|
|
@samp{%hstick_offset}. Note that there is no @samp{%hstick} register,
|
|
the normal @samp{%stick} is used.
|
|
|
|
@item
|
|
The hyperprivileged system tick enable register is referred to as
|
|
@samp{%hstick_enable}.
|
|
|
|
@item
|
|
The hyperprivileged system tick compare register is referred
|
|
to as @samp{%hstick_cmpr}.
|
|
@end itemize
|
|
|
|
@node Sparc-Constants
|
|
@subsection Constants
|
|
@cindex Sparc constants
|
|
@cindex constants, Sparc
|
|
|
|
Several Sparc instructions take an immediate operand field for
|
|
which mnemonic names exist. Two such examples are @samp{membar}
|
|
and @samp{prefetch}. Another example are the set of V9
|
|
memory access instruction that allow specification of an
|
|
address space identifier.
|
|
|
|
The @samp{membar} instruction specifies a memory barrier that is
|
|
the defined by the operand which is a bitmask. The supported
|
|
mask mnemonics are:
|
|
|
|
@itemize @bullet
|
|
@item
|
|
@samp{#Sync} requests that all operations (including nonmemory
|
|
reference operations) appearing prior to the @code{membar} must have
|
|
been performed and the effects of any exceptions become visible before
|
|
any instructions after the @code{membar} may be initiated. This
|
|
corresponds to @code{membar} cmask field bit 2.
|
|
|
|
@item
|
|
@samp{#MemIssue} requests that all memory reference operations
|
|
appearing prior to the @code{membar} must have been performed before
|
|
any memory operation after the @code{membar} may be initiated. This
|
|
corresponds to @code{membar} cmask field bit 1.
|
|
|
|
@item
|
|
@samp{#Lookaside} requests that a store appearing prior to the
|
|
@code{membar} must complete before any load following the
|
|
@code{membar} referencing the same address can be initiated. This
|
|
corresponds to @code{membar} cmask field bit 0.
|
|
|
|
@item
|
|
@samp{#StoreStore} defines that the effects of all stores appearing
|
|
prior to the @code{membar} instruction must be visible to all
|
|
processors before the effect of any stores following the
|
|
@code{membar}. Equivalent to the deprecated @code{stbar} instruction.
|
|
This corresponds to @code{membar} mmask field bit 3.
|
|
|
|
@item
|
|
@samp{#LoadStore} defines all loads appearing prior to the
|
|
@code{membar} instruction must have been performed before the effect
|
|
of any stores following the @code{membar} is visible to any other
|
|
processor. This corresponds to @code{membar} mmask field bit 2.
|
|
|
|
@item
|
|
@samp{#StoreLoad} defines that the effects of all stores appearing
|
|
prior to the @code{membar} instruction must be visible to all
|
|
processors before loads following the @code{membar} may be performed.
|
|
This corresponds to @code{membar} mmask field bit 1.
|
|
|
|
@item
|
|
@samp{#LoadLoad} defines that all loads appearing prior to the
|
|
@code{membar} instruction must have been performed before any loads
|
|
following the @code{membar} may be performed. This corresponds to
|
|
@code{membar} mmask field bit 0.
|
|
|
|
@end itemize
|
|
|
|
These values can be ored together, for example:
|
|
|
|
@example
|
|
membar #Sync
|
|
membar #StoreLoad | #LoadLoad
|
|
membar #StoreLoad | #StoreStore
|
|
@end example
|
|
|
|
The @code{prefetch} and @code{prefetcha} instructions take a prefetch
|
|
function code. The following prefetch function code constant
|
|
mnemonics are available:
|
|
|
|
@itemize @bullet
|
|
@item
|
|
@samp{#n_reads} requests a prefetch for several reads, and corresponds
|
|
to a prefetch function code of 0.
|
|
|
|
@samp{#one_read} requests a prefetch for one read, and corresponds
|
|
to a prefetch function code of 1.
|
|
|
|
@samp{#n_writes} requests a prefetch for several writes (and possibly
|
|
reads), and corresponds to a prefetch function code of 2.
|
|
|
|
@samp{#one_write} requests a prefetch for one write, and corresponds
|
|
to a prefetch function code of 3.
|
|
|
|
@samp{#page} requests a prefetch page, and corresponds to a prefetch
|
|
function code of 4.
|
|
|
|
@samp{#invalidate} requests a prefetch invalidate, and corresponds to
|
|
a prefetch function code of 16.
|
|
|
|
@samp{#unified} requests a prefetch to the nearest unified cache, and
|
|
corresponds to a prefetch function code of 17.
|
|
|
|
@samp{#n_reads_strong} requests a strong prefetch for several reads,
|
|
and corresponds to a prefetch function code of 20.
|
|
|
|
@samp{#one_read_strong} requests a strong prefetch for one read,
|
|
and corresponds to a prefetch function code of 21.
|
|
|
|
@samp{#n_writes_strong} requests a strong prefetch for several writes,
|
|
and corresponds to a prefetch function code of 22.
|
|
|
|
@samp{#one_write_strong} requests a strong prefetch for one write,
|
|
and corresponds to a prefetch function code of 23.
|
|
|
|
Onle one prefetch code may be specified. Here are some examples:
|
|
|
|
@example
|
|
prefetch [%l0 + %l2], #one_read
|
|
prefetch [%g2 + 8], #n_writes
|
|
prefetcha [%g1] 0x8, #unified
|
|
prefetcha [%o0 + 0x10] %asi, #n_reads
|
|
@end example
|
|
|
|
The actual behavior of a given prefetch function code is processor
|
|
specific. If a processor does not implement a given prefetch
|
|
function code, it will treat the prefetch instruction as a nop.
|
|
|
|
For instructions that accept an immediate address space identifier,
|
|
@code{@value{AS}} provides many mnemonics corresponding to
|
|
V9 defined as well as UltraSPARC and Niagara extended values.
|
|
For example, @samp{#ASI_P} and @samp{#ASI_BLK_INIT_QUAD_LDD_AIUS}.
|
|
See the V9 and processor specific manuals for details.
|
|
|
|
@end itemize
|
|
|
|
@node Sparc-Relocs
|
|
@subsection Relocations
|
|
@cindex Sparc relocations
|
|
@cindex relocations, Sparc
|
|
|
|
ELF relocations are available as defined in the 32-bit and 64-bit
|
|
Sparc ELF specifications.
|
|
|
|
@code{R_SPARC_HI22} is obtained using @samp{%hi} and @code{R_SPARC_LO10}
|
|
is obtained using @samp{%lo}. Likewise @code{R_SPARC_HIX22} is
|
|
obtained from @samp{%hix} and @code{R_SPARC_LOX10} is obtained
|
|
using @samp{%lox}. For example:
|
|
|
|
@example
|
|
sethi %hi(symbol), %g1
|
|
or %g1, %lo(symbol), %g1
|
|
|
|
sethi %hix(symbol), %g1
|
|
xor %g1, %lox(symbol), %g1
|
|
@end example
|
|
|
|
These ``high'' mnemonics extract bits 31:10 of their operand,
|
|
and the ``low'' mnemonics extract bits 9:0 of their operand.
|
|
|
|
V9 code model relocations can be requested as follows:
|
|
|
|
@itemize @bullet
|
|
@item
|
|
@code{R_SPARC_HH22} is requested using @samp{%hh}. It can
|
|
also be generated using @samp{%uhi}.
|
|
@item
|
|
@code{R_SPARC_HM10} is requested using @samp{%hm}. It can
|
|
also be generated using @samp{%ulo}.
|
|
@item
|
|
@code{R_SPARC_LM22} is requested using @samp{%lm}.
|
|
|
|
@item
|
|
@code{R_SPARC_H44} is requested using @samp{%h44}.
|
|
@item
|
|
@code{R_SPARC_M44} is requested using @samp{%m44}.
|
|
@item
|
|
@code{R_SPARC_L44} is requested using @samp{%l44} or @samp{%l34}.
|
|
@item
|
|
@code{R_SPARC_H34} is requested using @samp{%h34}.
|
|
@end itemize
|
|
|
|
The @samp{%l34} generates a @code{R_SPARC_L44} relocation because it
|
|
calculates the necessary value, and therefore no explicit
|
|
@code{R_SPARC_L34} relocation needed to be created for this purpose.
|
|
|
|
The @samp{%h34} and @samp{%l34} relocations are used for the abs34 code
|
|
model. Here is an example abs34 address generation sequence:
|
|
|
|
@example
|
|
sethi %h34(symbol), %g1
|
|
sllx %g1, 2, %g1
|
|
or %g1, %l34(symbol), %g1
|
|
@end example
|
|
|
|
The PC relative relocation @code{R_SPARC_PC22} can be obtained by
|
|
enclosing an operand inside of @samp{%pc22}. Likewise, the
|
|
@code{R_SPARC_PC10} relocation can be obtained using @samp{%pc10}.
|
|
These are mostly used when assembling PIC code. For example, the
|
|
standard PIC sequence on Sparc to get the base of the global offset
|
|
table, PC relative, into a register, can be performed as:
|
|
|
|
@example
|
|
sethi %pc22(_GLOBAL_OFFSET_TABLE_-4), %l7
|
|
add %l7, %pc10(_GLOBAL_OFFSET_TABLE_+4), %l7
|
|
@end example
|
|
|
|
Several relocations exist to allow the link editor to potentially
|
|
optimize GOT data references. The @code{R_SPARC_GOTDATA_OP_HIX22}
|
|
relocation can obtained by enclosing an operand inside of
|
|
@samp{%gdop_hix22}. The @code{R_SPARC_GOTDATA_OP_LOX10}
|
|
relocation can obtained by enclosing an operand inside of
|
|
@samp{%gdop_lox10}. Likewise, @code{R_SPARC_GOTDATA_OP} can be
|
|
obtained by enclosing an operand inside of @samp{%gdop}.
|
|
For example, assuming the GOT base is in register @code{%l7}:
|
|
|
|
@example
|
|
sethi %gdop_hix22(symbol), %l1
|
|
xor %l1, %gdop_lox10(symbol), %l1
|
|
ld [%l7 + %l1], %l2, %gdop(symbol)
|
|
@end example
|
|
|
|
There are many relocations that can be requested for access to
|
|
thread local storage variables. All of the Sparc TLS mnemonics
|
|
are supported:
|
|
|
|
@itemize @bullet
|
|
@item
|
|
@code{R_SPARC_TLS_GD_HI22} is requested using @samp{%tgd_hi22}.
|
|
@item
|
|
@code{R_SPARC_TLS_GD_LO10} is requested using @samp{%tgd_lo10}.
|
|
@item
|
|
@code{R_SPARC_TLS_GD_ADD} is requested using @samp{%tgd_add}.
|
|
@item
|
|
@code{R_SPARC_TLS_GD_CALL} is requested using @samp{%tgd_call}.
|
|
|
|
@item
|
|
@code{R_SPARC_TLS_LDM_HI22} is requested using @samp{%tldm_hi22}.
|
|
@item
|
|
@code{R_SPARC_TLS_LDM_LO10} is requested using @samp{%tldm_lo10}.
|
|
@item
|
|
@code{R_SPARC_TLS_LDM_ADD} is requested using @samp{%tldm_add}.
|
|
@item
|
|
@code{R_SPARC_TLS_LDM_CALL} is requested using @samp{%tldm_call}.
|
|
|
|
@item
|
|
@code{R_SPARC_TLS_LDO_HIX22} is requested using @samp{%tldo_hix22}.
|
|
@item
|
|
@code{R_SPARC_TLS_LDO_LOX10} is requested using @samp{%tldo_lox10}.
|
|
@item
|
|
@code{R_SPARC_TLS_LDO_ADD} is requested using @samp{%tldo_add}.
|
|
|
|
@item
|
|
@code{R_SPARC_TLS_IE_HI22} is requested using @samp{%tie_hi22}.
|
|
@item
|
|
@code{R_SPARC_TLS_IE_LO10} is requested using @samp{%tie_lo10}.
|
|
@item
|
|
@code{R_SPARC_TLS_IE_LD} is requested using @samp{%tie_ld}.
|
|
@item
|
|
@code{R_SPARC_TLS_IE_LDX} is requested using @samp{%tie_ldx}.
|
|
@item
|
|
@code{R_SPARC_TLS_IE_ADD} is requested using @samp{%tie_add}.
|
|
|
|
@item
|
|
@code{R_SPARC_TLS_LE_HIX22} is requested using @samp{%tle_hix22}.
|
|
@item
|
|
@code{R_SPARC_TLS_LE_LOX10} is requested using @samp{%tle_lox10}.
|
|
@end itemize
|
|
|
|
Here are some example TLS model sequences.
|
|
|
|
First, General Dynamic:
|
|
|
|
@example
|
|
sethi %tgd_hi22(symbol), %l1
|
|
add %l1, %tgd_lo10(symbol), %l1
|
|
add %l7, %l1, %o0, %tgd_add(symbol)
|
|
call __tls_get_addr, %tgd_call(symbol)
|
|
nop
|
|
@end example
|
|
|
|
Local Dynamic:
|
|
|
|
@example
|
|
sethi %tldm_hi22(symbol), %l1
|
|
add %l1, %tldm_lo10(symbol), %l1
|
|
add %l7, %l1, %o0, %tldm_add(symbol)
|
|
call __tls_get_addr, %tldm_call(symbol)
|
|
nop
|
|
|
|
sethi %tldo_hix22(symbol), %l1
|
|
xor %l1, %tldo_lox10(symbol), %l1
|
|
add %o0, %l1, %l1, %tldo_add(symbol)
|
|
@end example
|
|
|
|
Initial Exec:
|
|
|
|
@example
|
|
sethi %tie_hi22(symbol), %l1
|
|
add %l1, %tie_lo10(symbol), %l1
|
|
ld [%l7 + %l1], %o0, %tie_ld(symbol)
|
|
add %g7, %o0, %o0, %tie_add(symbol)
|
|
|
|
sethi %tie_hi22(symbol), %l1
|
|
add %l1, %tie_lo10(symbol), %l1
|
|
ldx [%l7 + %l1], %o0, %tie_ldx(symbol)
|
|
add %g7, %o0, %o0, %tie_add(symbol)
|
|
@end example
|
|
|
|
And finally, Local Exec:
|
|
|
|
@example
|
|
sethi %tle_hix22(symbol), %l1
|
|
add %l1, %tle_lox10(symbol), %l1
|
|
add %g7, %l1, %l1
|
|
@end example
|
|
|
|
When assembling for 64-bit, and a secondary constant addend is
|
|
specified in an address expression that would normally generate
|
|
an @code{R_SPARC_LO10} relocation, the assembler will emit an
|
|
@code{R_SPARC_OLO10} instead.
|
|
|
|
@node Sparc-Size-Translations
|
|
@subsection Size Translations
|
|
@cindex Sparc size translations
|
|
@cindex size, translations, Sparc
|
|
|
|
Often it is desirable to write code in an operand size agnostic
|
|
manner. @code{@value{AS}} provides support for this via
|
|
operand size opcode translations. Translations are supported
|
|
for loads, stores, shifts, compare-and-swap atomics, and the
|
|
@samp{clr} synthetic instruction.
|
|
|
|
If generating 32-bit code, @code{@value{AS}} will generate the
|
|
32-bit opcode. Whereas if 64-bit code is being generated,
|
|
the 64-bit opcode will be emitted. For example @code{ldn}
|
|
will be transformed into @code{ld} for 32-bit code and
|
|
@code{ldx} for 64-bit code.
|
|
|
|
Here is an example meant to demonstrate all the supported
|
|
opcode translations:
|
|
|
|
@example
|
|
ldn [%o0], %o1
|
|
ldna [%o0] %asi, %o2
|
|
stn %o1, [%o0]
|
|
stna %o2, [%o0] %asi
|
|
slln %o3, 3, %o3
|
|
srln %o4, 8, %o4
|
|
sran %o5, 12, %o5
|
|
casn [%o0], %o1, %o2
|
|
casna [%o0] %asi, %o1, %o2
|
|
clrn %g1
|
|
@end example
|
|
|
|
In 32-bit mode @code{@value{AS}} will emit:
|
|
|
|
@example
|
|
ld [%o0], %o1
|
|
lda [%o0] %asi, %o2
|
|
st %o1, [%o0]
|
|
sta %o2, [%o0] %asi
|
|
sll %o3, 3, %o3
|
|
srl %o4, 8, %o4
|
|
sra %o5, 12, %o5
|
|
cas [%o0], %o1, %o2
|
|
casa [%o0] %asi, %o1, %o2
|
|
clr %g1
|
|
@end example
|
|
|
|
And in 64-bit mode @code{@value{AS}} will emit:
|
|
|
|
@example
|
|
ldx [%o0], %o1
|
|
ldxa [%o0] %asi, %o2
|
|
stx %o1, [%o0]
|
|
stxa %o2, [%o0] %asi
|
|
sllx %o3, 3, %o3
|
|
srlx %o4, 8, %o4
|
|
srax %o5, 12, %o5
|
|
casx [%o0], %o1, %o2
|
|
casxa [%o0] %asi, %o1, %o2
|
|
clrx %g1
|
|
@end example
|
|
|
|
Finally, the @samp{.nword} translating directive is supported
|
|
as well. It is documented in the section on Sparc machine
|
|
directives.
|
|
|
|
@node Sparc-Float
|
|
@section Floating Point
|
|
|
|
@cindex floating point, SPARC (@sc{ieee})
|
|
@cindex SPARC floating point (@sc{ieee})
|
|
The Sparc uses @sc{ieee} floating-point numbers.
|
|
|
|
@node Sparc-Directives
|
|
@section Sparc Machine Directives
|
|
|
|
@cindex SPARC machine directives
|
|
@cindex machine directives, SPARC
|
|
The Sparc version of @code{@value{AS}} supports the following additional
|
|
machine directives:
|
|
|
|
@table @code
|
|
@cindex @code{align} directive, SPARC
|
|
@item .align
|
|
This must be followed by the desired alignment in bytes.
|
|
|
|
@cindex @code{common} directive, SPARC
|
|
@item .common
|
|
This must be followed by a symbol name, a positive number, and
|
|
@code{"bss"}. This behaves somewhat like @code{.comm}, but the
|
|
syntax is different.
|
|
|
|
@cindex @code{half} directive, SPARC
|
|
@item .half
|
|
This is functionally identical to @code{.short}.
|
|
|
|
@cindex @code{nword} directive, SPARC
|
|
@item .nword
|
|
On the Sparc, the @code{.nword} directive produces native word sized value,
|
|
ie. if assembling with -32 it is equivalent to @code{.word}, if assembling
|
|
with -64 it is equivalent to @code{.xword}.
|
|
|
|
@cindex @code{proc} directive, SPARC
|
|
@item .proc
|
|
This directive is ignored. Any text following it on the same
|
|
line is also ignored.
|
|
|
|
@cindex @code{register} directive, SPARC
|
|
@item .register
|
|
This directive declares use of a global application or system register.
|
|
It must be followed by a register name %g2, %g3, %g6 or %g7, comma and
|
|
the symbol name for that register. If symbol name is @code{#scratch},
|
|
it is a scratch register, if it is @code{#ignore}, it just suppresses any
|
|
errors about using undeclared global register, but does not emit any
|
|
information about it into the object file. This can be useful e.g. if you
|
|
save the register before use and restore it after.
|
|
|
|
@cindex @code{reserve} directive, SPARC
|
|
@item .reserve
|
|
This must be followed by a symbol name, a positive number, and
|
|
@code{"bss"}. This behaves somewhat like @code{.lcomm}, but the
|
|
syntax is different.
|
|
|
|
@cindex @code{seg} directive, SPARC
|
|
@item .seg
|
|
This must be followed by @code{"text"}, @code{"data"}, or
|
|
@code{"data1"}. It behaves like @code{.text}, @code{.data}, or
|
|
@code{.data 1}.
|
|
|
|
@cindex @code{skip} directive, SPARC
|
|
@item .skip
|
|
This is functionally identical to the @code{.space} directive.
|
|
|
|
@cindex @code{word} directive, SPARC
|
|
@item .word
|
|
On the Sparc, the @code{.word} directive produces 32 bit values,
|
|
instead of the 16 bit values it produces on many other machines.
|
|
|
|
@cindex @code{xword} directive, SPARC
|
|
@item .xword
|
|
On the Sparc V9 processor, the @code{.xword} directive produces
|
|
64 bit values.
|
|
@end table
|