mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-11-21 01:12:32 +08:00
1183 lines
35 KiB
C
1183 lines
35 KiB
C
/* Event loop machinery for GDB, the GNU debugger.
|
||
Copyright 1999 Free Software Foundation, Inc.
|
||
Written by Elena Zannoni <ezannoni@cygnus.com> of Cygnus Solutions.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 59 Temple Place - Suite 330,
|
||
Boston, MA 02111-1307, USA. */
|
||
|
||
#include "defs.h"
|
||
#include "top.h"
|
||
#include "event-loop.h"
|
||
#include "event-top.h"
|
||
|
||
#ifdef HAVE_POLL
|
||
#if defined (HAVE_POLL_H)
|
||
#include <poll.h>
|
||
#elif defined (HAVE_SYS_POLL_H)
|
||
#include <sys/poll.h>
|
||
#endif
|
||
#endif
|
||
|
||
#include <sys/types.h>
|
||
#include <string.h>
|
||
#include <errno.h>
|
||
#include <setjmp.h>
|
||
#include <sys/time.h>
|
||
|
||
/* Type of the mask arguments to select. */
|
||
|
||
#ifndef HAVE_POLL
|
||
#ifdef NO_FD_SET
|
||
/* All this stuff below is not required if select is used as God(tm)
|
||
intended, with the FD_* macros. Are there any implementations of
|
||
select which don't have FD_SET and other standard FD_* macros? I
|
||
don't think there are, but if I'm wrong, we need to catch them. */
|
||
#error FD_SET must be defined if select function is to be used!
|
||
|
||
#ifndef _AIX
|
||
typedef long fd_mask;
|
||
#endif
|
||
#if defined(_IBMR2)
|
||
#define SELECT_MASK void
|
||
#else
|
||
#define SELECT_MASK int
|
||
#endif /* !_IBMR2 */
|
||
|
||
/* Define "NBBY" (number of bits per byte) if it's not already defined. */
|
||
|
||
#ifndef NBBY
|
||
#define NBBY 8
|
||
#endif
|
||
|
||
/* Define the number of fd_masks in an fd_set */
|
||
|
||
#ifndef FD_SETSIZE
|
||
#ifdef OPEN_MAX
|
||
#define FD_SETSIZE OPEN_MAX
|
||
#else
|
||
#define FD_SETSIZE 256
|
||
#endif
|
||
#endif
|
||
#if !defined(howmany)
|
||
#define howmany(x, y) (((x)+((y)-1))/(y))
|
||
#endif
|
||
#ifndef NFDBITS
|
||
#define NFDBITS NBBY*sizeof(fd_mask)
|
||
#endif
|
||
#define MASK_SIZE howmany(FD_SETSIZE, NFDBITS)
|
||
|
||
#endif /* NO_FD_SET */
|
||
#endif /* !HAVE_POLL */
|
||
|
||
|
||
typedef struct gdb_event gdb_event;
|
||
typedef void (event_handler_func) (int);
|
||
|
||
/* Event for the GDB event system. Events are queued by calling
|
||
async_queue_event and serviced later on by gdb_do_one_event. An
|
||
event can be, for instance, a file descriptor becoming ready to be
|
||
read. Servicing an event simply means that the procedure PROC will
|
||
be called. We have 2 queues, one for file handlers that we listen
|
||
to in the event loop, and one for the file handlers+events that are
|
||
ready. The procedure PROC associated with each event is always the
|
||
same (handle_file_event). Its duty is to invoke the handler
|
||
associated with the file descriptor whose state change generated
|
||
the event, plus doing other cleanups adn such. */
|
||
|
||
struct gdb_event
|
||
{
|
||
event_handler_func *proc; /* Procedure to call to service this event. */
|
||
int fd; /* File descriptor that is ready. */
|
||
struct gdb_event *next_event; /* Next in list of events or NULL. */
|
||
};
|
||
|
||
/* Information about each file descriptor we register with the event
|
||
loop. */
|
||
|
||
typedef struct file_handler
|
||
{
|
||
int fd; /* File descriptor. */
|
||
int mask; /* Events we want to monitor: POLLIN, etc. */
|
||
int ready_mask; /* Events that have been seen since
|
||
the last time. */
|
||
handler_func *proc; /* Procedure to call when fd is ready. */
|
||
gdb_client_data client_data; /* Argument to pass to proc. */
|
||
int error; /* Was an error detected on this fd? */
|
||
struct file_handler *next_file; /* Next registered file descriptor. */
|
||
}
|
||
file_handler;
|
||
|
||
/* PROC is a function to be invoked when the READY flag is set. This
|
||
happens when there has been a signal and the corresponding signal
|
||
handler has 'triggered' this async_signal_handler for
|
||
execution. The actual work to be done in response to a signal will
|
||
be carried out by PROC at a later time, within process_event. This
|
||
provides a deferred execution of signal handlers.
|
||
Async_init_signals takes care of setting up such an
|
||
asyn_signal_handler for each interesting signal. */
|
||
typedef struct async_signal_handler
|
||
{
|
||
int ready; /* If ready, call this handler from the main event loop,
|
||
using invoke_async_handler. */
|
||
struct async_signal_handler *next_handler; /* Ptr to next handler */
|
||
sig_handler_func *proc; /* Function to call to do the work */
|
||
gdb_client_data client_data; /* Argument to async_handler_func */
|
||
}
|
||
async_signal_handler;
|
||
|
||
|
||
/* Event queue:
|
||
- the first event in the queue is the head of the queue.
|
||
It will be the next to be serviced.
|
||
- the last event in the queue
|
||
|
||
Events can be inserted at the front of the queue or at the end of
|
||
the queue. Events will be extracted from the queue for processing
|
||
starting from the head. Therefore, events inserted at the head of
|
||
the queue will be processed in a last in first out fashion, while
|
||
those inserted at the tail of the queue will be processed in a first
|
||
in first out manner. All the fields are NULL if the queue is
|
||
empty. */
|
||
|
||
static struct
|
||
{
|
||
gdb_event *first_event; /* First pending event */
|
||
gdb_event *last_event; /* Last pending event */
|
||
}
|
||
event_queue;
|
||
|
||
/* Gdb_notifier is just a list of file descriptors gdb is interested in.
|
||
These are the input file descriptor, and the target file
|
||
descriptor. We have two flavors of the notifier, one for platforms
|
||
that have the POLL function, the other for those that don't, and
|
||
only support SELECT. Each of the elements in the gdb_notifier list is
|
||
basically a description of what kind of events gdb is interested
|
||
in, for each fd. */
|
||
|
||
/* As of 1999-04-30 only the input file descriptor is registered with the
|
||
event loop. */
|
||
|
||
/* Do we use poll or select ? */
|
||
#ifdef HAVE_POLL
|
||
#define USE_POLL 1
|
||
#else
|
||
#define USE_POLL 0
|
||
#endif /* HAVE_POLL */
|
||
|
||
static unsigned char use_poll = USE_POLL;
|
||
|
||
static struct
|
||
{
|
||
/* Ptr to head of file handler list. */
|
||
file_handler *first_file_handler;
|
||
|
||
#ifdef HAVE_POLL
|
||
/* Ptr to array of pollfd structures. */
|
||
struct pollfd *poll_fds;
|
||
|
||
/* Timeout in milliseconds for calls to poll(). */
|
||
int poll_timeout;
|
||
#endif
|
||
|
||
/* Masks to be used in the next call to select.
|
||
Bits are set in response to calls to create_file_handler. */
|
||
fd_set check_masks[3];
|
||
|
||
/* What file descriptors were found ready by select. */
|
||
fd_set ready_masks[3];
|
||
|
||
/* Number of file descriptors to monitor. (for poll) */
|
||
/* Number of valid bits (highest fd value + 1). (for select) */
|
||
int num_fds;
|
||
|
||
/* Time structure for calls to select(). */
|
||
struct timeval select_timeout;
|
||
|
||
/* Flag to tell whether the timeout should be used. */
|
||
int timeout_valid;
|
||
}
|
||
gdb_notifier;
|
||
|
||
/* Structure associated with a timer. PROC will be executed at the
|
||
first occasion after WHEN. */
|
||
struct gdb_timer
|
||
{
|
||
struct timeval when;
|
||
int timer_id;
|
||
struct gdb_timer *next;
|
||
timer_handler_func *proc; /* Function to call to do the work */
|
||
gdb_client_data client_data; /* Argument to async_handler_func */
|
||
}
|
||
gdb_timer;
|
||
|
||
/* List of currently active timers. It is sorted in order of
|
||
increasing timers. */
|
||
static struct
|
||
{
|
||
/* Pointer to first in timer list. */
|
||
struct gdb_timer *first_timer;
|
||
|
||
/* Id of the last timer created. */
|
||
int num_timers;
|
||
}
|
||
timer_list;
|
||
|
||
/* All the async_signal_handlers gdb is interested in are kept onto
|
||
this list. */
|
||
static struct
|
||
{
|
||
/* Pointer to first in handler list. */
|
||
async_signal_handler *first_handler;
|
||
|
||
/* Pointer to last in handler list. */
|
||
async_signal_handler *last_handler;
|
||
}
|
||
sighandler_list;
|
||
|
||
/* Is any of the handlers ready? Check this variable using
|
||
check_async_ready. This is used by process_event, to determine
|
||
whether or not to invoke the invoke_async_signal_handler
|
||
function. */
|
||
static int async_handler_ready = 0;
|
||
|
||
static void create_file_handler (int fd, int mask, handler_func * proc, gdb_client_data client_data);
|
||
static void invoke_async_signal_handler (void);
|
||
static void handle_file_event (int event_file_desc);
|
||
static int gdb_wait_for_event (void);
|
||
static int gdb_do_one_event (void *data);
|
||
static int check_async_ready (void);
|
||
static void async_queue_event (gdb_event * event_ptr, queue_position position);
|
||
static gdb_event *create_file_event (int fd);
|
||
static int process_event (void);
|
||
static void handle_timer_event (int dummy);
|
||
static void poll_timers (void);
|
||
|
||
|
||
/* Insert an event object into the gdb event queue at
|
||
the specified position.
|
||
POSITION can be head or tail, with values TAIL, HEAD.
|
||
EVENT_PTR points to the event to be inserted into the queue.
|
||
The caller must allocate memory for the event. It is freed
|
||
after the event has ben handled.
|
||
Events in the queue will be processed head to tail, therefore,
|
||
events inserted at the head of the queue will be processed
|
||
as last in first out. Event appended at the tail of the queue
|
||
will be processed first in first out. */
|
||
static void
|
||
async_queue_event (gdb_event * event_ptr, queue_position position)
|
||
{
|
||
if (position == TAIL)
|
||
{
|
||
/* The event will become the new last_event. */
|
||
|
||
event_ptr->next_event = NULL;
|
||
if (event_queue.first_event == NULL)
|
||
event_queue.first_event = event_ptr;
|
||
else
|
||
event_queue.last_event->next_event = event_ptr;
|
||
event_queue.last_event = event_ptr;
|
||
}
|
||
else if (position == HEAD)
|
||
{
|
||
/* The event becomes the new first_event. */
|
||
|
||
event_ptr->next_event = event_queue.first_event;
|
||
if (event_queue.first_event == NULL)
|
||
event_queue.last_event = event_ptr;
|
||
event_queue.first_event = event_ptr;
|
||
}
|
||
}
|
||
|
||
/* Create a file event, to be enqueued in the event queue for
|
||
processing. The procedure associated to this event is always
|
||
handle_file_event, which will in turn invoke the one that was
|
||
associated to FD when it was registered with the event loop. */
|
||
static gdb_event *
|
||
create_file_event (int fd)
|
||
{
|
||
gdb_event *file_event_ptr;
|
||
|
||
file_event_ptr = (gdb_event *) xmalloc (sizeof (gdb_event));
|
||
file_event_ptr->proc = handle_file_event;
|
||
file_event_ptr->fd = fd;
|
||
return (file_event_ptr);
|
||
}
|
||
|
||
/* Process one event.
|
||
The event can be the next one to be serviced in the event queue,
|
||
or an asynchronous event handler can be invoked in response to
|
||
the reception of a signal.
|
||
If an event was processed (either way), 1 is returned otherwise
|
||
0 is returned.
|
||
Scan the queue from head to tail, processing therefore the high
|
||
priority events first, by invoking the associated event handler
|
||
procedure. */
|
||
static int
|
||
process_event (void)
|
||
{
|
||
gdb_event *event_ptr, *prev_ptr;
|
||
event_handler_func *proc;
|
||
int fd;
|
||
|
||
/* First let's see if there are any asynchronous event handlers that
|
||
are ready. These would be the result of invoking any of the
|
||
signal handlers. */
|
||
|
||
if (check_async_ready ())
|
||
{
|
||
invoke_async_signal_handler ();
|
||
return 1;
|
||
}
|
||
|
||
/* Look in the event queue to find an event that is ready
|
||
to be processed. */
|
||
|
||
for (event_ptr = event_queue.first_event; event_ptr != NULL;
|
||
event_ptr = event_ptr->next_event)
|
||
{
|
||
/* Call the handler for the event. */
|
||
|
||
proc = event_ptr->proc;
|
||
fd = event_ptr->fd;
|
||
|
||
/* Let's get rid of the event from the event queue. We need to
|
||
do this now because while processing the event, the proc
|
||
function could end up calling 'error' and therefore jump out
|
||
to the caller of this function, gdb_do_one_event. In that
|
||
case, we would have on the event queue an event wich has been
|
||
processed, but not deleted. */
|
||
|
||
if (event_queue.first_event == event_ptr)
|
||
{
|
||
event_queue.first_event = event_ptr->next_event;
|
||
if (event_ptr->next_event == NULL)
|
||
event_queue.last_event = NULL;
|
||
}
|
||
else
|
||
{
|
||
prev_ptr = event_queue.first_event;
|
||
while (prev_ptr->next_event != event_ptr)
|
||
prev_ptr = prev_ptr->next_event;
|
||
|
||
prev_ptr->next_event = event_ptr->next_event;
|
||
if (event_ptr->next_event == NULL)
|
||
event_queue.last_event = prev_ptr;
|
||
}
|
||
free ((char *) event_ptr);
|
||
|
||
/* Now call the procedure associated with the event. */
|
||
(*proc) (fd);
|
||
return 1;
|
||
}
|
||
|
||
/* this is the case if there are no event on the event queue. */
|
||
return 0;
|
||
}
|
||
|
||
/* Process one high level event. If nothing is ready at this time,
|
||
wait for something to happen (via gdb_wait_for_event), then process
|
||
it. Returns >0 if something was done otherwise returns <0 (this
|
||
can happen if there are no event sources to wait for). If an error
|
||
occures catch_errors() which calls this function returns zero. */
|
||
|
||
static int
|
||
gdb_do_one_event (void *data)
|
||
{
|
||
/* Any events already waiting in the queue? */
|
||
if (process_event ())
|
||
{
|
||
return 1;
|
||
}
|
||
|
||
/* Are any timers that are ready? If so, put an event on the queue. */
|
||
poll_timers ();
|
||
|
||
/* Wait for a new event. If gdb_wait_for_event returns -1,
|
||
we should get out because this means that there are no
|
||
event sources left. This will make the event loop stop,
|
||
and the application exit. */
|
||
|
||
if (gdb_wait_for_event () < 0)
|
||
{
|
||
return -1;
|
||
}
|
||
|
||
/* Handle any new events occurred while waiting. */
|
||
if (process_event ())
|
||
{
|
||
return 1;
|
||
}
|
||
|
||
/* If gdb_wait_for_event has returned 1, it means that one
|
||
event has been handled. We break out of the loop. */
|
||
return 1;
|
||
}
|
||
|
||
/* Start up the event loop. This is the entry point to the event loop
|
||
from the command loop. */
|
||
|
||
void
|
||
start_event_loop (void)
|
||
{
|
||
/* Loop until there is nothing to do. This is the entry point to the
|
||
event loop engine. gdb_do_one_event, called via catch_errors()
|
||
will process one event for each invocation. It blocks waits for
|
||
an event and then processes it. >0 when an event is processed, 0
|
||
when catch_errors() caught an error and <0 when there are no
|
||
longer any event sources registered. */
|
||
while (1)
|
||
{
|
||
int result = catch_errors (gdb_do_one_event, 0, "", RETURN_MASK_ALL);
|
||
if (result < 0)
|
||
break;
|
||
if (result == 0)
|
||
{
|
||
/* FIXME: this should really be a call to a hook that is
|
||
interface specific, because interfaces can display the
|
||
prompt in their own way. */
|
||
display_gdb_prompt (0);
|
||
/* Maybe better to set a flag to be checked somewhere as to
|
||
whether display the prompt or not. */
|
||
}
|
||
}
|
||
|
||
/* We are done with the event loop. There are no more event sources
|
||
to listen to. So we exit GDB. */
|
||
return;
|
||
}
|
||
|
||
|
||
/* Wrapper function for create_file_handler, so that the caller
|
||
doesn't have to know implementation details about the use of poll
|
||
vs. select. */
|
||
void
|
||
add_file_handler (int fd, handler_func * proc, gdb_client_data client_data)
|
||
{
|
||
#ifdef HAVE_POLL
|
||
struct pollfd fds;
|
||
#endif
|
||
|
||
if (use_poll)
|
||
{
|
||
#ifdef HAVE_POLL
|
||
/* Check to see if poll () is usable. If not, we'll switch to
|
||
use select. This can happen on systems like
|
||
m68k-motorola-sys, `poll' cannot be used to wait for `stdin'.
|
||
On m68k-motorola-sysv, tty's are not stream-based and not
|
||
`poll'able. */
|
||
fds.fd = fd;
|
||
fds.events = POLLIN;
|
||
if (poll (&fds, 1, 0) == 1 && (fds.revents & POLLNVAL))
|
||
use_poll = 0;
|
||
#else
|
||
internal_error ("event-loop.c : use_poll without HAVE_POLL");
|
||
#endif /* HAVE_POLL */
|
||
}
|
||
if (use_poll)
|
||
{
|
||
#ifdef HAVE_POLL
|
||
create_file_handler (fd, POLLIN, proc, client_data);
|
||
#else
|
||
internal_error ("event-loop.c : use_poll without HAVE_POLL");
|
||
#endif
|
||
}
|
||
else
|
||
create_file_handler (fd, GDB_READABLE | GDB_EXCEPTION, proc, client_data);
|
||
}
|
||
|
||
/* Add a file handler/descriptor to the list of descriptors we are
|
||
interested in.
|
||
FD is the file descriptor for the file/stream to be listened to.
|
||
For the poll case, MASK is a combination (OR) of
|
||
POLLIN, POLLRDNORM, POLLRDBAND, POLLPRI, POLLOUT, POLLWRNORM,
|
||
POLLWRBAND: these are the events we are interested in. If any of them
|
||
occurs, proc should be called.
|
||
For the select case, MASK is a combination of READABLE, WRITABLE, EXCEPTION.
|
||
PROC is the procedure that will be called when an event occurs for
|
||
FD. CLIENT_DATA is the argument to pass to PROC. */
|
||
static void
|
||
create_file_handler (int fd, int mask, handler_func * proc, gdb_client_data client_data)
|
||
{
|
||
file_handler *file_ptr;
|
||
|
||
/* Do we already have a file handler for this file? (We may be
|
||
changing its associated procedure). */
|
||
for (file_ptr = gdb_notifier.first_file_handler; file_ptr != NULL;
|
||
file_ptr = file_ptr->next_file)
|
||
{
|
||
if (file_ptr->fd == fd)
|
||
break;
|
||
}
|
||
|
||
/* It is a new file descriptor. Add it to the list. Otherwise, just
|
||
change the data associated with it. */
|
||
if (file_ptr == NULL)
|
||
{
|
||
file_ptr = (file_handler *) xmalloc (sizeof (file_handler));
|
||
file_ptr->fd = fd;
|
||
file_ptr->ready_mask = 0;
|
||
file_ptr->next_file = gdb_notifier.first_file_handler;
|
||
gdb_notifier.first_file_handler = file_ptr;
|
||
}
|
||
file_ptr->proc = proc;
|
||
file_ptr->client_data = client_data;
|
||
file_ptr->mask = mask;
|
||
|
||
if (use_poll)
|
||
{
|
||
#ifdef HAVE_POLL
|
||
gdb_notifier.num_fds++;
|
||
if (gdb_notifier.poll_fds)
|
||
gdb_notifier.poll_fds =
|
||
(struct pollfd *) realloc (gdb_notifier.poll_fds,
|
||
(gdb_notifier.num_fds) * sizeof (struct pollfd));
|
||
else
|
||
gdb_notifier.poll_fds =
|
||
(struct pollfd *) xmalloc (sizeof (struct pollfd));
|
||
(gdb_notifier.poll_fds + gdb_notifier.num_fds - 1)->fd = fd;
|
||
(gdb_notifier.poll_fds + gdb_notifier.num_fds - 1)->events = mask;
|
||
(gdb_notifier.poll_fds + gdb_notifier.num_fds - 1)->revents = 0;
|
||
#else
|
||
internal_error ("event-loop.c : use_poll without HAVE_POLL");
|
||
#endif /* HAVE_POLL */
|
||
}
|
||
else
|
||
{
|
||
if (mask & GDB_READABLE)
|
||
FD_SET (fd, &gdb_notifier.check_masks[0]);
|
||
else
|
||
FD_CLR (fd, &gdb_notifier.check_masks[0]);
|
||
|
||
if (mask & GDB_WRITABLE)
|
||
FD_SET (fd, &gdb_notifier.check_masks[1]);
|
||
else
|
||
FD_CLR (fd, &gdb_notifier.check_masks[1]);
|
||
|
||
if (mask & GDB_EXCEPTION)
|
||
FD_SET (fd, &gdb_notifier.check_masks[2]);
|
||
else
|
||
FD_CLR (fd, &gdb_notifier.check_masks[2]);
|
||
|
||
if (gdb_notifier.num_fds <= fd)
|
||
gdb_notifier.num_fds = fd + 1;
|
||
}
|
||
}
|
||
|
||
/* Remove the file descriptor FD from the list of monitored fd's:
|
||
i.e. we don't care anymore about events on the FD. */
|
||
void
|
||
delete_file_handler (int fd)
|
||
{
|
||
file_handler *file_ptr, *prev_ptr = NULL;
|
||
int i;
|
||
#ifdef HAVE_POLL
|
||
int j;
|
||
struct pollfd *new_poll_fds;
|
||
#endif
|
||
|
||
/* Find the entry for the given file. */
|
||
|
||
for (file_ptr = gdb_notifier.first_file_handler; file_ptr != NULL;
|
||
file_ptr = file_ptr->next_file)
|
||
{
|
||
if (file_ptr->fd == fd)
|
||
break;
|
||
}
|
||
|
||
if (file_ptr == NULL)
|
||
return;
|
||
|
||
if (use_poll)
|
||
{
|
||
#ifdef HAVE_POLL
|
||
/* Create a new poll_fds array by copying every fd's information but the
|
||
one we want to get rid of. */
|
||
|
||
new_poll_fds =
|
||
(struct pollfd *) xmalloc ((gdb_notifier.num_fds - 1) * sizeof (struct pollfd));
|
||
|
||
for (i = 0, j = 0; i < gdb_notifier.num_fds; i++)
|
||
{
|
||
if ((gdb_notifier.poll_fds + i)->fd != fd)
|
||
{
|
||
(new_poll_fds + j)->fd = (gdb_notifier.poll_fds + i)->fd;
|
||
(new_poll_fds + j)->events = (gdb_notifier.poll_fds + i)->events;
|
||
(new_poll_fds + j)->revents = (gdb_notifier.poll_fds + i)->revents;
|
||
j++;
|
||
}
|
||
}
|
||
free (gdb_notifier.poll_fds);
|
||
gdb_notifier.poll_fds = new_poll_fds;
|
||
gdb_notifier.num_fds--;
|
||
#else
|
||
internal_error ("event-loop.c : use_poll without HAVE_POLL");
|
||
#endif /* HAVE_POLL */
|
||
}
|
||
else
|
||
{
|
||
if (file_ptr->mask & GDB_READABLE)
|
||
FD_CLR (fd, &gdb_notifier.check_masks[0]);
|
||
if (file_ptr->mask & GDB_WRITABLE)
|
||
FD_CLR (fd, &gdb_notifier.check_masks[1]);
|
||
if (file_ptr->mask & GDB_EXCEPTION)
|
||
FD_CLR (fd, &gdb_notifier.check_masks[2]);
|
||
|
||
/* Find current max fd. */
|
||
|
||
if ((fd + 1) == gdb_notifier.num_fds)
|
||
{
|
||
gdb_notifier.num_fds--;
|
||
for (i = gdb_notifier.num_fds; i; i--)
|
||
{
|
||
if (FD_ISSET (i - 1, &gdb_notifier.check_masks[0])
|
||
|| FD_ISSET (i - 1, &gdb_notifier.check_masks[1])
|
||
|| FD_ISSET (i - 1, &gdb_notifier.check_masks[2]))
|
||
break;
|
||
}
|
||
gdb_notifier.num_fds = i;
|
||
}
|
||
}
|
||
|
||
/* Deactivate the file descriptor, by clearing its mask,
|
||
so that it will not fire again. */
|
||
|
||
file_ptr->mask = 0;
|
||
|
||
/* Get rid of the file handler in the file handler list. */
|
||
if (file_ptr == gdb_notifier.first_file_handler)
|
||
gdb_notifier.first_file_handler = file_ptr->next_file;
|
||
else
|
||
{
|
||
for (prev_ptr = gdb_notifier.first_file_handler;
|
||
prev_ptr->next_file != file_ptr;
|
||
prev_ptr = prev_ptr->next_file)
|
||
;
|
||
prev_ptr->next_file = file_ptr->next_file;
|
||
}
|
||
free ((char *) file_ptr);
|
||
}
|
||
|
||
/* Handle the given event by calling the procedure associated to the
|
||
corresponding file handler. Called by process_event indirectly,
|
||
through event_ptr->proc. EVENT_FILE_DESC is file descriptor of the
|
||
event in the front of the event queue. */
|
||
static void
|
||
handle_file_event (int event_file_desc)
|
||
{
|
||
file_handler *file_ptr;
|
||
int mask;
|
||
#ifdef HAVE_POLL
|
||
int error_mask;
|
||
int error_mask_returned;
|
||
#endif
|
||
|
||
/* Search the file handler list to find one that matches the fd in
|
||
the event. */
|
||
for (file_ptr = gdb_notifier.first_file_handler; file_ptr != NULL;
|
||
file_ptr = file_ptr->next_file)
|
||
{
|
||
if (file_ptr->fd == event_file_desc)
|
||
{
|
||
/* With poll, the ready_mask could have any of three events
|
||
set to 1: POLLHUP, POLLERR, POLLNVAL. These events cannot
|
||
be used in the requested event mask (events), but they
|
||
can be returned in the return mask (revents). We need to
|
||
check for those event too, and add them to the mask which
|
||
will be passed to the handler. */
|
||
|
||
/* See if the desired events (mask) match the received
|
||
events (ready_mask). */
|
||
|
||
if (use_poll)
|
||
{
|
||
#ifdef HAVE_POLL
|
||
error_mask = POLLHUP | POLLERR | POLLNVAL;
|
||
mask = (file_ptr->ready_mask & file_ptr->mask) |
|
||
(file_ptr->ready_mask & error_mask);
|
||
error_mask_returned = mask & error_mask;
|
||
|
||
if (error_mask_returned != 0)
|
||
{
|
||
/* Work in progress. We may need to tell somebody what
|
||
kind of error we had. */
|
||
if (error_mask_returned & POLLHUP)
|
||
printf_unfiltered ("Hangup detected on fd %d\n", file_ptr->fd);
|
||
if (error_mask_returned & POLLERR)
|
||
printf_unfiltered ("Error detected on fd %d\n", file_ptr->fd);
|
||
if (error_mask_returned & POLLNVAL)
|
||
printf_unfiltered ("Invalid or non-`poll'able fd %d\n", file_ptr->fd);
|
||
file_ptr->error = 1;
|
||
}
|
||
else
|
||
file_ptr->error = 0;
|
||
#else
|
||
internal_error ("event-loop.c : use_poll without HAVE_POLL");
|
||
#endif /* HAVE_POLL */
|
||
}
|
||
else
|
||
{
|
||
if (file_ptr->ready_mask & GDB_EXCEPTION)
|
||
{
|
||
printf_unfiltered ("Exception condition detected on fd %d\n", file_ptr->fd);
|
||
file_ptr->error = 1;
|
||
}
|
||
else
|
||
file_ptr->error = 0;
|
||
mask = file_ptr->ready_mask & file_ptr->mask;
|
||
}
|
||
|
||
/* Clear the received events for next time around. */
|
||
file_ptr->ready_mask = 0;
|
||
|
||
/* If there was a match, then call the handler. */
|
||
if (mask != 0)
|
||
(*file_ptr->proc) (file_ptr->error, file_ptr->client_data);
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Called by gdb_do_one_event to wait for new events on the
|
||
monitored file descriptors. Queue file events as they are
|
||
detected by the poll.
|
||
If there are no events, this function will block in the
|
||
call to poll.
|
||
Return -1 if there are no files descriptors to monitor,
|
||
otherwise return 0. */
|
||
static int
|
||
gdb_wait_for_event (void)
|
||
{
|
||
file_handler *file_ptr;
|
||
gdb_event *file_event_ptr;
|
||
int num_found = 0;
|
||
int i;
|
||
|
||
/* Make sure all output is done before getting another event. */
|
||
gdb_flush (gdb_stdout);
|
||
gdb_flush (gdb_stderr);
|
||
|
||
if (gdb_notifier.num_fds == 0)
|
||
return -1;
|
||
|
||
if (use_poll)
|
||
{
|
||
#ifdef HAVE_POLL
|
||
num_found =
|
||
poll (gdb_notifier.poll_fds,
|
||
(unsigned long) gdb_notifier.num_fds,
|
||
gdb_notifier.timeout_valid ? gdb_notifier.poll_timeout : -1);
|
||
|
||
/* Don't print anything if we get out of poll because of a
|
||
signal. */
|
||
if (num_found == -1 && errno != EINTR)
|
||
perror_with_name ("Poll");
|
||
#else
|
||
internal_error ("event-loop.c : use_poll without HAVE_POLL");
|
||
#endif /* HAVE_POLL */
|
||
}
|
||
else
|
||
{
|
||
gdb_notifier.ready_masks[0] = gdb_notifier.check_masks[0];
|
||
gdb_notifier.ready_masks[1] = gdb_notifier.check_masks[1];
|
||
gdb_notifier.ready_masks[2] = gdb_notifier.check_masks[2];
|
||
num_found = select (gdb_notifier.num_fds,
|
||
&gdb_notifier.ready_masks[0],
|
||
&gdb_notifier.ready_masks[1],
|
||
&gdb_notifier.ready_masks[2],
|
||
gdb_notifier.timeout_valid
|
||
? &gdb_notifier.select_timeout : NULL);
|
||
|
||
/* Clear the masks after an error from select. */
|
||
if (num_found == -1)
|
||
{
|
||
FD_ZERO (&gdb_notifier.ready_masks[0]);
|
||
FD_ZERO (&gdb_notifier.ready_masks[1]);
|
||
FD_ZERO (&gdb_notifier.ready_masks[2]);
|
||
/* Dont print anything is we got a signal, let gdb handle it. */
|
||
if (errno != EINTR)
|
||
perror_with_name ("Select");
|
||
}
|
||
}
|
||
|
||
/* Enqueue all detected file events. */
|
||
|
||
if (use_poll)
|
||
{
|
||
#ifdef HAVE_POLL
|
||
for (i = 0; (i < gdb_notifier.num_fds) && (num_found > 0); i++)
|
||
{
|
||
if ((gdb_notifier.poll_fds + i)->revents)
|
||
num_found--;
|
||
else
|
||
continue;
|
||
|
||
for (file_ptr = gdb_notifier.first_file_handler;
|
||
file_ptr != NULL;
|
||
file_ptr = file_ptr->next_file)
|
||
{
|
||
if (file_ptr->fd == (gdb_notifier.poll_fds + i)->fd)
|
||
break;
|
||
}
|
||
|
||
if (file_ptr)
|
||
{
|
||
/* Enqueue an event only if this is still a new event for
|
||
this fd. */
|
||
if (file_ptr->ready_mask == 0)
|
||
{
|
||
file_event_ptr = create_file_event (file_ptr->fd);
|
||
async_queue_event (file_event_ptr, TAIL);
|
||
}
|
||
}
|
||
|
||
file_ptr->ready_mask = (gdb_notifier.poll_fds + i)->revents;
|
||
}
|
||
#else
|
||
internal_error ("event-loop.c : use_poll without HAVE_POLL");
|
||
#endif /* HAVE_POLL */
|
||
}
|
||
else
|
||
{
|
||
for (file_ptr = gdb_notifier.first_file_handler;
|
||
(file_ptr != NULL) && (num_found > 0);
|
||
file_ptr = file_ptr->next_file)
|
||
{
|
||
int mask = 0;
|
||
|
||
if (FD_ISSET (file_ptr->fd, &gdb_notifier.ready_masks[0]))
|
||
mask |= GDB_READABLE;
|
||
if (FD_ISSET (file_ptr->fd, &gdb_notifier.ready_masks[1]))
|
||
mask |= GDB_WRITABLE;
|
||
if (FD_ISSET (file_ptr->fd, &gdb_notifier.ready_masks[2]))
|
||
mask |= GDB_EXCEPTION;
|
||
|
||
if (!mask)
|
||
continue;
|
||
else
|
||
num_found--;
|
||
|
||
/* Enqueue an event only if this is still a new event for
|
||
this fd. */
|
||
|
||
if (file_ptr->ready_mask == 0)
|
||
{
|
||
file_event_ptr = create_file_event (file_ptr->fd);
|
||
async_queue_event (file_event_ptr, TAIL);
|
||
}
|
||
file_ptr->ready_mask = mask;
|
||
}
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
|
||
/* Create an asynchronous handler, allocating memory for it.
|
||
Return a pointer to the newly created handler.
|
||
This pointer will be used to invoke the handler by
|
||
invoke_async_signal_handler.
|
||
PROC is the function to call with CLIENT_DATA argument
|
||
whenever the handler is invoked. */
|
||
async_signal_handler *
|
||
create_async_signal_handler (sig_handler_func * proc, gdb_client_data client_data)
|
||
{
|
||
async_signal_handler *async_handler_ptr;
|
||
|
||
async_handler_ptr =
|
||
(async_signal_handler *) xmalloc (sizeof (async_signal_handler));
|
||
async_handler_ptr->ready = 0;
|
||
async_handler_ptr->next_handler = NULL;
|
||
async_handler_ptr->proc = proc;
|
||
async_handler_ptr->client_data = client_data;
|
||
if (sighandler_list.first_handler == NULL)
|
||
sighandler_list.first_handler = async_handler_ptr;
|
||
else
|
||
sighandler_list.last_handler->next_handler = async_handler_ptr;
|
||
sighandler_list.last_handler = async_handler_ptr;
|
||
return async_handler_ptr;
|
||
}
|
||
|
||
/* Mark the handler (ASYNC_HANDLER_PTR) as ready. This information will
|
||
be used when the handlers are invoked, after we have waited for
|
||
some event. The caller of this function is the interrupt handler
|
||
associated with a signal. */
|
||
void
|
||
mark_async_signal_handler (async_signal_handler * async_handler_ptr)
|
||
{
|
||
((async_signal_handler *) async_handler_ptr)->ready = 1;
|
||
async_handler_ready = 1;
|
||
}
|
||
|
||
/* Call all the handlers that are ready. */
|
||
static void
|
||
invoke_async_signal_handler (void)
|
||
{
|
||
async_signal_handler *async_handler_ptr;
|
||
|
||
if (async_handler_ready == 0)
|
||
return;
|
||
async_handler_ready = 0;
|
||
|
||
/* Invoke ready handlers. */
|
||
|
||
while (1)
|
||
{
|
||
for (async_handler_ptr = sighandler_list.first_handler;
|
||
async_handler_ptr != NULL;
|
||
async_handler_ptr = async_handler_ptr->next_handler)
|
||
{
|
||
if (async_handler_ptr->ready)
|
||
break;
|
||
}
|
||
if (async_handler_ptr == NULL)
|
||
break;
|
||
async_handler_ptr->ready = 0;
|
||
(*async_handler_ptr->proc) (async_handler_ptr->client_data);
|
||
}
|
||
|
||
return;
|
||
}
|
||
|
||
/* Delete an asynchronous handler (ASYNC_HANDLER_PTR).
|
||
Free the space allocated for it. */
|
||
void
|
||
delete_async_signal_handler (async_signal_handler ** async_handler_ptr)
|
||
{
|
||
async_signal_handler *prev_ptr;
|
||
|
||
if (sighandler_list.first_handler == (*async_handler_ptr))
|
||
{
|
||
sighandler_list.first_handler = (*async_handler_ptr)->next_handler;
|
||
if (sighandler_list.first_handler == NULL)
|
||
sighandler_list.last_handler = NULL;
|
||
}
|
||
else
|
||
{
|
||
prev_ptr = sighandler_list.first_handler;
|
||
while (prev_ptr->next_handler != (*async_handler_ptr) && prev_ptr)
|
||
prev_ptr = prev_ptr->next_handler;
|
||
prev_ptr->next_handler = (*async_handler_ptr)->next_handler;
|
||
if (sighandler_list.last_handler == (*async_handler_ptr))
|
||
sighandler_list.last_handler = prev_ptr;
|
||
}
|
||
free ((char *) (*async_handler_ptr));
|
||
(*async_handler_ptr) = NULL;
|
||
}
|
||
|
||
/* Is it necessary to call invoke_async_signal_handler? */
|
||
static int
|
||
check_async_ready (void)
|
||
{
|
||
return async_handler_ready;
|
||
}
|
||
|
||
/* Create a timer that will expire in MILLISECONDS from now. When the
|
||
timer is ready, PROC will be executed. At creation, the timer is
|
||
aded to the timers queue. This queue is kept sorted in order of
|
||
increasing timers. Return a handle to the timer struct. */
|
||
int
|
||
create_timer (int milliseconds, timer_handler_func * proc, gdb_client_data client_data)
|
||
{
|
||
struct gdb_timer *timer_ptr, *timer_index, *prev_timer;
|
||
struct timeval time_now, delta;
|
||
|
||
/* compute seconds */
|
||
delta.tv_sec = milliseconds / 1000;
|
||
/* compute microseconds */
|
||
delta.tv_usec = (milliseconds % 1000) * 1000;
|
||
|
||
gettimeofday (&time_now, NULL);
|
||
|
||
timer_ptr = (struct gdb_timer *) xmalloc (sizeof (gdb_timer));
|
||
timer_ptr->when.tv_sec = time_now.tv_sec + delta.tv_sec;
|
||
timer_ptr->when.tv_usec = time_now.tv_usec + delta.tv_usec;
|
||
/* carry? */
|
||
if (timer_ptr->when.tv_usec >= 1000000)
|
||
{
|
||
timer_ptr->when.tv_sec += 1;
|
||
timer_ptr->when.tv_usec -= 1000000;
|
||
}
|
||
timer_ptr->proc = proc;
|
||
timer_ptr->client_data = client_data;
|
||
timer_list.num_timers++;
|
||
timer_ptr->timer_id = timer_list.num_timers;
|
||
|
||
/* Now add the timer to the timer queue, making sure it is sorted in
|
||
increasing order of expiration. */
|
||
|
||
for (timer_index = timer_list.first_timer;
|
||
timer_index != NULL;
|
||
timer_index = timer_index->next)
|
||
{
|
||
/* If the seconds field is greater or if it is the same, but the
|
||
microsecond field is greater. */
|
||
if ((timer_index->when.tv_sec > timer_ptr->when.tv_sec) ||
|
||
((timer_index->when.tv_sec == timer_ptr->when.tv_sec)
|
||
&& (timer_index->when.tv_usec > timer_ptr->when.tv_usec)))
|
||
break;
|
||
}
|
||
|
||
if (timer_index == timer_list.first_timer)
|
||
{
|
||
timer_ptr->next = timer_list.first_timer;
|
||
timer_list.first_timer = timer_ptr;
|
||
|
||
}
|
||
else
|
||
{
|
||
for (prev_timer = timer_list.first_timer;
|
||
prev_timer->next != timer_index;
|
||
prev_timer = prev_timer->next)
|
||
;
|
||
|
||
prev_timer->next = timer_ptr;
|
||
timer_ptr->next = timer_index;
|
||
}
|
||
|
||
gdb_notifier.timeout_valid = 0;
|
||
return timer_ptr->timer_id;
|
||
}
|
||
|
||
/* There is a chance that the creator of the timer wants to get rid of
|
||
it before it expires. */
|
||
void
|
||
delete_timer (int id)
|
||
{
|
||
struct gdb_timer *timer_ptr, *prev_timer = NULL;
|
||
|
||
/* Find the entry for the given timer. */
|
||
|
||
for (timer_ptr = timer_list.first_timer; timer_ptr != NULL;
|
||
timer_ptr = timer_ptr->next)
|
||
{
|
||
if (timer_ptr->timer_id == id)
|
||
break;
|
||
}
|
||
|
||
if (timer_ptr == NULL)
|
||
return;
|
||
/* Get rid of the timer in the timer list. */
|
||
if (timer_ptr == timer_list.first_timer)
|
||
timer_list.first_timer = timer_ptr->next;
|
||
else
|
||
{
|
||
for (prev_timer = timer_list.first_timer;
|
||
prev_timer->next != timer_ptr;
|
||
prev_timer = prev_timer->next)
|
||
;
|
||
prev_timer->next = timer_ptr->next;
|
||
}
|
||
free ((char *) timer_ptr);
|
||
|
||
gdb_notifier.timeout_valid = 0;
|
||
}
|
||
|
||
/* When a timer event is put on the event queue, it will be handled by
|
||
this function. Just call the assiciated procedure and delete the
|
||
timer event from the event queue. Repeat this for each timer that
|
||
has expired. */
|
||
static void
|
||
handle_timer_event (int dummy)
|
||
{
|
||
struct timeval time_now;
|
||
struct gdb_timer *timer_ptr, *saved_timer;
|
||
|
||
gettimeofday (&time_now, NULL);
|
||
timer_ptr = timer_list.first_timer;
|
||
|
||
while (timer_ptr != NULL)
|
||
{
|
||
if ((timer_ptr->when.tv_sec > time_now.tv_sec) ||
|
||
((timer_ptr->when.tv_sec == time_now.tv_sec) &&
|
||
(timer_ptr->when.tv_usec > time_now.tv_usec)))
|
||
break;
|
||
|
||
/* Get rid of the timer from the beginning of the list. */
|
||
timer_list.first_timer = timer_ptr->next;
|
||
saved_timer = timer_ptr;
|
||
timer_ptr = timer_ptr->next;
|
||
/* Call the procedure associated with that timer. */
|
||
(*saved_timer->proc) (saved_timer->client_data);
|
||
free (saved_timer);
|
||
}
|
||
|
||
gdb_notifier.timeout_valid = 0;
|
||
}
|
||
|
||
/* Check whether any timers in the timers queue are ready. If at least
|
||
one timer is ready, stick an event onto the event queue. Even in
|
||
case more than one timer is ready, one event is enough, because the
|
||
handle_timer_event() will go through the timers list and call the
|
||
procedures associated with all that have expired. Update the
|
||
timeout for the select() or poll() as well. */
|
||
static void
|
||
poll_timers (void)
|
||
{
|
||
struct timeval time_now, delta;
|
||
gdb_event *event_ptr;
|
||
|
||
if (timer_list.first_timer != NULL)
|
||
{
|
||
gettimeofday (&time_now, NULL);
|
||
delta.tv_sec = timer_list.first_timer->when.tv_sec - time_now.tv_sec;
|
||
delta.tv_usec = timer_list.first_timer->when.tv_usec - time_now.tv_usec;
|
||
/* borrow? */
|
||
if (delta.tv_usec < 0)
|
||
{
|
||
delta.tv_sec -= 1;
|
||
delta.tv_usec += 1000000;
|
||
}
|
||
|
||
/* Oops it expired already. Tell select / poll to return
|
||
immediately. (Cannot simply test if delta.tv_sec is negative
|
||
because time_t might be unsigned.) */
|
||
if (timer_list.first_timer->when.tv_sec < time_now.tv_sec
|
||
|| (timer_list.first_timer->when.tv_sec == time_now.tv_sec
|
||
&& timer_list.first_timer->when.tv_usec < time_now.tv_usec))
|
||
{
|
||
delta.tv_sec = 0;
|
||
delta.tv_usec = 0;
|
||
}
|
||
|
||
if (delta.tv_sec == 0 && delta.tv_usec == 0)
|
||
{
|
||
event_ptr = (gdb_event *) xmalloc (sizeof (gdb_event));
|
||
event_ptr->proc = handle_timer_event;
|
||
event_ptr->fd = timer_list.first_timer->timer_id;
|
||
async_queue_event (event_ptr, TAIL);
|
||
}
|
||
|
||
/* Now we need to update the timeout for select/ poll, because we
|
||
don't want to sit there while this timer is expiring. */
|
||
if (use_poll)
|
||
{
|
||
#ifdef HAVE_POLL
|
||
gdb_notifier.poll_timeout = delta.tv_sec * 1000;
|
||
#else
|
||
internal_error ("event-loop.c : use_poll without HAVE_POLL");
|
||
#endif /* HAVE_POLL */
|
||
}
|
||
else
|
||
{
|
||
gdb_notifier.select_timeout.tv_sec = delta.tv_sec;
|
||
gdb_notifier.select_timeout.tv_usec = delta.tv_usec;
|
||
}
|
||
gdb_notifier.timeout_valid = 1;
|
||
}
|
||
else
|
||
gdb_notifier.timeout_valid = 0;
|
||
}
|