binutils-gdb/gdb/netbsd-nat.c
Tom Tromey 6cb06a8cda Unify gdb printf functions
Now that filtered and unfiltered output can be treated identically, we
can unify the printf family of functions.  This is done under the name
"gdb_printf".  Most of this patch was written by script.
2022-03-29 12:46:24 -06:00

813 lines
21 KiB
C

/* Native-dependent code for NetBSD.
Copyright (C) 2006-2022 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "defs.h"
#include "netbsd-nat.h"
#include "nat/netbsd-nat.h"
#include "gdbthread.h"
#include "netbsd-tdep.h"
#include "inferior.h"
#include "gdbarch.h"
#include <sys/types.h>
#include <sys/ptrace.h>
#include <sys/sysctl.h>
#include <sys/wait.h>
/* Return the name of a file that can be opened to get the symbols for
the child process identified by PID. */
char *
nbsd_nat_target::pid_to_exec_file (int pid)
{
return const_cast<char *> (netbsd_nat::pid_to_exec_file (pid));
}
/* Return the current directory for the process identified by PID. */
static std::string
nbsd_pid_to_cwd (int pid)
{
char buf[PATH_MAX];
size_t buflen;
int mib[4] = {CTL_KERN, KERN_PROC_ARGS, pid, KERN_PROC_CWD};
buflen = sizeof (buf);
if (sysctl (mib, ARRAY_SIZE (mib), buf, &buflen, NULL, 0))
return "";
return buf;
}
/* Return the kinfo_proc2 structure for the process identified by PID. */
static bool
nbsd_pid_to_kinfo_proc2 (pid_t pid, struct kinfo_proc2 *kp)
{
gdb_assert (kp != nullptr);
size_t size = sizeof (*kp);
int mib[6] = {CTL_KERN, KERN_PROC2, KERN_PROC_PID, pid,
static_cast<int> (size), 1};
return !sysctl (mib, ARRAY_SIZE (mib), kp, &size, NULL, 0);
}
/* Return the command line for the process identified by PID. */
static gdb::unique_xmalloc_ptr<char[]>
nbsd_pid_to_cmdline (int pid)
{
int mib[4] = {CTL_KERN, KERN_PROC_ARGS, pid, KERN_PROC_ARGV};
size_t size = 0;
if (::sysctl (mib, ARRAY_SIZE (mib), NULL, &size, NULL, 0) == -1 || size == 0)
return nullptr;
gdb::unique_xmalloc_ptr<char[]> args (XNEWVAR (char, size));
if (::sysctl (mib, ARRAY_SIZE (mib), args.get (), &size, NULL, 0) == -1
|| size == 0)
return nullptr;
/* Arguments are returned as a flattened string with NUL separators.
Join the arguments with spaces to form a single string. */
for (size_t i = 0; i < size - 1; i++)
if (args[i] == '\0')
args[i] = ' ';
args[size - 1] = '\0';
return args;
}
/* Return true if PTID is still active in the inferior. */
bool
nbsd_nat_target::thread_alive (ptid_t ptid)
{
return netbsd_nat::thread_alive (ptid);
}
/* Return the name assigned to a thread by an application. Returns
the string in a static buffer. */
const char *
nbsd_nat_target::thread_name (struct thread_info *thr)
{
ptid_t ptid = thr->ptid;
return netbsd_nat::thread_name (ptid);
}
/* Implement the "post_attach" target_ops method. */
static void
nbsd_add_threads (nbsd_nat_target *target, pid_t pid)
{
auto fn
= [&target] (ptid_t ptid)
{
if (!in_thread_list (target, ptid))
{
if (inferior_ptid.lwp () == 0)
thread_change_ptid (target, inferior_ptid, ptid);
else
add_thread (target, ptid);
}
};
netbsd_nat::for_each_thread (pid, fn);
}
/* Implement the virtual inf_ptrace_target::post_startup_inferior method. */
void
nbsd_nat_target::post_startup_inferior (ptid_t ptid)
{
netbsd_nat::enable_proc_events (ptid.pid ());
}
/* Implement the "post_attach" target_ops method. */
void
nbsd_nat_target::post_attach (int pid)
{
netbsd_nat::enable_proc_events (pid);
nbsd_add_threads (this, pid);
}
/* Implement the "update_thread_list" target_ops method. */
void
nbsd_nat_target::update_thread_list ()
{
delete_exited_threads ();
}
/* Convert PTID to a string. */
std::string
nbsd_nat_target::pid_to_str (ptid_t ptid)
{
int lwp = ptid.lwp ();
if (lwp != 0)
{
pid_t pid = ptid.pid ();
return string_printf ("LWP %d of process %d", lwp, pid);
}
return normal_pid_to_str (ptid);
}
/* Retrieve all the memory regions in the specified process. */
static gdb::unique_xmalloc_ptr<struct kinfo_vmentry[]>
nbsd_kinfo_get_vmmap (pid_t pid, size_t *size)
{
int mib[5] = {CTL_VM, VM_PROC, VM_PROC_MAP, pid,
sizeof (struct kinfo_vmentry)};
size_t length = 0;
if (sysctl (mib, ARRAY_SIZE (mib), NULL, &length, NULL, 0))
{
*size = 0;
return NULL;
}
/* Prereserve more space. The length argument is volatile and can change
between the sysctl(3) calls as this function can be called against a
running process. */
length = length * 5 / 3;
gdb::unique_xmalloc_ptr<struct kinfo_vmentry[]> kiv
(XNEWVAR (kinfo_vmentry, length));
if (sysctl (mib, ARRAY_SIZE (mib), kiv.get (), &length, NULL, 0))
{
*size = 0;
return NULL;
}
*size = length / sizeof (struct kinfo_vmentry);
return kiv;
}
/* Iterate over all the memory regions in the current inferior,
calling FUNC for each memory region. OBFD is passed as the last
argument to FUNC. */
int
nbsd_nat_target::find_memory_regions (find_memory_region_ftype func,
void *data)
{
pid_t pid = inferior_ptid.pid ();
size_t nitems;
gdb::unique_xmalloc_ptr<struct kinfo_vmentry[]> vmentl
= nbsd_kinfo_get_vmmap (pid, &nitems);
if (vmentl == NULL)
perror_with_name (_("Couldn't fetch VM map entries."));
for (size_t i = 0; i < nitems; i++)
{
struct kinfo_vmentry *kve = &vmentl[i];
/* Skip unreadable segments and those where MAP_NOCORE has been set. */
if (!(kve->kve_protection & KVME_PROT_READ)
|| kve->kve_flags & KVME_FLAG_NOCOREDUMP)
continue;
/* Skip segments with an invalid type. */
switch (kve->kve_type)
{
case KVME_TYPE_VNODE:
case KVME_TYPE_ANON:
case KVME_TYPE_SUBMAP:
case KVME_TYPE_OBJECT:
break;
default:
continue;
}
size_t size = kve->kve_end - kve->kve_start;
if (info_verbose)
{
gdb_printf ("Save segment, %ld bytes at %s (%c%c%c)\n",
(long) size,
paddress (target_gdbarch (), kve->kve_start),
kve->kve_protection & KVME_PROT_READ ? 'r' : '-',
kve->kve_protection & KVME_PROT_WRITE ? 'w' : '-',
kve->kve_protection & KVME_PROT_EXEC ? 'x' : '-');
}
/* Invoke the callback function to create the corefile segment.
Pass MODIFIED as true, we do not know the real modification state. */
func (kve->kve_start, size, kve->kve_protection & KVME_PROT_READ,
kve->kve_protection & KVME_PROT_WRITE,
kve->kve_protection & KVME_PROT_EXEC, 1, data);
}
return 0;
}
/* Implement the "info_proc" target_ops method. */
bool
nbsd_nat_target::info_proc (const char *args, enum info_proc_what what)
{
pid_t pid;
bool do_cmdline = false;
bool do_cwd = false;
bool do_exe = false;
bool do_mappings = false;
bool do_status = false;
switch (what)
{
case IP_MINIMAL:
do_cmdline = true;
do_cwd = true;
do_exe = true;
break;
case IP_STAT:
case IP_STATUS:
do_status = true;
break;
case IP_MAPPINGS:
do_mappings = true;
break;
case IP_CMDLINE:
do_cmdline = true;
break;
case IP_EXE:
do_exe = true;
break;
case IP_CWD:
do_cwd = true;
break;
case IP_ALL:
do_cmdline = true;
do_cwd = true;
do_exe = true;
do_mappings = true;
do_status = true;
break;
default:
error (_("Not supported on this target."));
}
gdb_argv built_argv (args);
if (built_argv.count () == 0)
{
pid = inferior_ptid.pid ();
if (pid == 0)
error (_("No current process: you must name one."));
}
else if (built_argv.count () == 1 && isdigit (built_argv[0][0]))
pid = strtol (built_argv[0], NULL, 10);
else
error (_("Invalid arguments."));
gdb_printf (_("process %d\n"), pid);
if (do_cmdline)
{
gdb::unique_xmalloc_ptr<char[]> cmdline = nbsd_pid_to_cmdline (pid);
if (cmdline != nullptr)
gdb_printf ("cmdline = '%s'\n", cmdline.get ());
else
warning (_("unable to fetch command line"));
}
if (do_cwd)
{
std::string cwd = nbsd_pid_to_cwd (pid);
if (cwd != "")
gdb_printf ("cwd = '%s'\n", cwd.c_str ());
else
warning (_("unable to fetch current working directory"));
}
if (do_exe)
{
const char *exe = pid_to_exec_file (pid);
if (exe != nullptr)
gdb_printf ("exe = '%s'\n", exe);
else
warning (_("unable to fetch executable path name"));
}
if (do_mappings)
{
size_t nvment;
gdb::unique_xmalloc_ptr<struct kinfo_vmentry[]> vmentl
= nbsd_kinfo_get_vmmap (pid, &nvment);
if (vmentl != nullptr)
{
int addr_bit = TARGET_CHAR_BIT * sizeof (void *);
nbsd_info_proc_mappings_header (addr_bit);
struct kinfo_vmentry *kve = vmentl.get ();
for (int i = 0; i < nvment; i++, kve++)
nbsd_info_proc_mappings_entry (addr_bit, kve->kve_start,
kve->kve_end, kve->kve_offset,
kve->kve_flags, kve->kve_protection,
kve->kve_path);
}
else
warning (_("unable to fetch virtual memory map"));
}
if (do_status)
{
struct kinfo_proc2 kp;
if (!nbsd_pid_to_kinfo_proc2 (pid, &kp))
warning (_("Failed to fetch process information"));
else
{
auto process_status
= [] (int8_t stat)
{
switch (stat)
{
case SIDL:
return "IDL";
case SACTIVE:
return "ACTIVE";
case SDYING:
return "DYING";
case SSTOP:
return "STOP";
case SZOMB:
return "ZOMB";
case SDEAD:
return "DEAD";
default:
return "? (unknown)";
}
};
gdb_printf ("Name: %s\n", kp.p_comm);
gdb_printf ("State: %s\n", process_status(kp.p_realstat));
gdb_printf ("Parent process: %" PRId32 "\n", kp.p_ppid);
gdb_printf ("Process group: %" PRId32 "\n", kp.p__pgid);
gdb_printf ("Session id: %" PRId32 "\n", kp.p_sid);
gdb_printf ("TTY: %" PRId32 "\n", kp.p_tdev);
gdb_printf ("TTY owner process group: %" PRId32 "\n", kp.p_tpgid);
gdb_printf ("User IDs (real, effective, saved): "
"%" PRIu32 " %" PRIu32 " %" PRIu32 "\n",
kp.p_ruid, kp.p_uid, kp.p_svuid);
gdb_printf ("Group IDs (real, effective, saved): "
"%" PRIu32 " %" PRIu32 " %" PRIu32 "\n",
kp.p_rgid, kp.p_gid, kp.p_svgid);
gdb_printf ("Groups:");
for (int i = 0; i < kp.p_ngroups; i++)
gdb_printf (" %" PRIu32, kp.p_groups[i]);
gdb_printf ("\n");
gdb_printf ("Minor faults (no memory page): %" PRIu64 "\n",
kp.p_uru_minflt);
gdb_printf ("Major faults (memory page faults): %" PRIu64 "\n",
kp.p_uru_majflt);
gdb_printf ("utime: %" PRIu32 ".%06" PRIu32 "\n",
kp.p_uutime_sec, kp.p_uutime_usec);
gdb_printf ("stime: %" PRIu32 ".%06" PRIu32 "\n",
kp.p_ustime_sec, kp.p_ustime_usec);
gdb_printf ("utime+stime, children: %" PRIu32 ".%06" PRIu32 "\n",
kp.p_uctime_sec, kp.p_uctime_usec);
gdb_printf ("'nice' value: %" PRIu8 "\n", kp.p_nice);
gdb_printf ("Start time: %" PRIu32 ".%06" PRIu32 "\n",
kp.p_ustart_sec, kp.p_ustart_usec);
int pgtok = getpagesize () / 1024;
gdb_printf ("Data size: %" PRIuMAX " kB\n",
(uintmax_t) kp.p_vm_dsize * pgtok);
gdb_printf ("Stack size: %" PRIuMAX " kB\n",
(uintmax_t) kp.p_vm_ssize * pgtok);
gdb_printf ("Text size: %" PRIuMAX " kB\n",
(uintmax_t) kp.p_vm_tsize * pgtok);
gdb_printf ("Resident set size: %" PRIuMAX " kB\n",
(uintmax_t) kp.p_vm_rssize * pgtok);
gdb_printf ("Maximum RSS: %" PRIu64 " kB\n", kp.p_uru_maxrss);
gdb_printf ("Pending Signals:");
for (size_t i = 0; i < ARRAY_SIZE (kp.p_siglist.__bits); i++)
gdb_printf (" %08" PRIx32, kp.p_siglist.__bits[i]);
gdb_printf ("\n");
gdb_printf ("Ignored Signals:");
for (size_t i = 0; i < ARRAY_SIZE (kp.p_sigignore.__bits); i++)
gdb_printf (" %08" PRIx32, kp.p_sigignore.__bits[i]);
gdb_printf ("\n");
gdb_printf ("Caught Signals:");
for (size_t i = 0; i < ARRAY_SIZE (kp.p_sigcatch.__bits); i++)
gdb_printf (" %08" PRIx32, kp.p_sigcatch.__bits[i]);
gdb_printf ("\n");
}
}
return true;
}
/* Resume execution of a specified PTID, that points to a process or a thread
within a process. If one thread is specified, all other threads are
suspended. If STEP is nonzero, single-step it. If SIGNAL is nonzero,
give it that signal. */
static void
nbsd_resume(nbsd_nat_target *target, ptid_t ptid, int step,
enum gdb_signal signal)
{
int request;
gdb_assert (minus_one_ptid != ptid);
if (ptid.lwp_p ())
{
/* If ptid is a specific LWP, suspend all other LWPs in the process. */
inferior *inf = find_inferior_ptid (target, ptid);
for (thread_info *tp : inf->non_exited_threads ())
{
if (tp->ptid.lwp () == ptid.lwp ())
request = PT_RESUME;
else
request = PT_SUSPEND;
if (ptrace (request, tp->ptid.pid (), NULL, tp->ptid.lwp ()) == -1)
perror_with_name (("ptrace"));
}
}
else
{
/* If ptid is a wildcard, resume all matching threads (they won't run
until the process is continued however). */
for (thread_info *tp : all_non_exited_threads (target, ptid))
if (ptrace (PT_RESUME, tp->ptid.pid (), NULL, tp->ptid.lwp ()) == -1)
perror_with_name (("ptrace"));
}
if (step)
{
for (thread_info *tp : all_non_exited_threads (target, ptid))
if (ptrace (PT_SETSTEP, tp->ptid.pid (), NULL, tp->ptid.lwp ()) == -1)
perror_with_name (("ptrace"));
}
else
{
for (thread_info *tp : all_non_exited_threads (target, ptid))
if (ptrace (PT_CLEARSTEP, tp->ptid.pid (), NULL, tp->ptid.lwp ()) == -1)
perror_with_name (("ptrace"));
}
if (catch_syscall_enabled () > 0)
request = PT_SYSCALL;
else
request = PT_CONTINUE;
/* An address of (void *)1 tells ptrace to continue from
where it was. If GDB wanted it to start some other way, we have
already written a new program counter value to the child. */
if (ptrace (request, ptid.pid (), (void *)1, gdb_signal_to_host (signal)) == -1)
perror_with_name (("ptrace"));
}
/* Resume execution of thread PTID, or all threads of all inferiors
if PTID is -1. If STEP is nonzero, single-step it. If SIGNAL is nonzero,
give it that signal. */
void
nbsd_nat_target::resume (ptid_t ptid, int step, enum gdb_signal signal)
{
if (minus_one_ptid != ptid)
nbsd_resume (this, ptid, step, signal);
else
{
for (inferior *inf : all_non_exited_inferiors (this))
nbsd_resume (this, ptid_t (inf->pid, 0, 0), step, signal);
}
}
/* Implement a safe wrapper around waitpid(). */
static pid_t
nbsd_wait (ptid_t ptid, struct target_waitstatus *ourstatus,
target_wait_flags options)
{
pid_t pid;
int status;
set_sigint_trap ();
do
{
/* The common code passes WNOHANG that leads to crashes, overwrite it. */
pid = waitpid (ptid.pid (), &status, 0);
}
while (pid == -1 && errno == EINTR);
clear_sigint_trap ();
if (pid == -1)
perror_with_name (_("Child process unexpectedly missing"));
*ourstatus = host_status_to_waitstatus (status);
return pid;
}
/* Wait for the child specified by PTID to do something. Return the
process ID of the child, or MINUS_ONE_PTID in case of error; store
the status in *OURSTATUS. */
ptid_t
nbsd_nat_target::wait (ptid_t ptid, struct target_waitstatus *ourstatus,
target_wait_flags target_options)
{
pid_t pid = nbsd_wait (ptid, ourstatus, target_options);
ptid_t wptid = ptid_t (pid);
/* If the child stopped, keep investigating its status. */
if (ourstatus->kind () != TARGET_WAITKIND_STOPPED)
return wptid;
/* Extract the event and thread that received a signal. */
ptrace_siginfo_t psi;
if (ptrace (PT_GET_SIGINFO, pid, &psi, sizeof (psi)) == -1)
perror_with_name (("ptrace"));
/* Pick child's siginfo_t. */
siginfo_t *si = &psi.psi_siginfo;
int lwp = psi.psi_lwpid;
int signo = si->si_signo;
const int code = si->si_code;
/* Construct PTID with a specified thread that received the event.
If a signal was targeted to the whole process, lwp is 0. */
wptid = ptid_t (pid, lwp, 0);
/* Bail out on non-debugger oriented signals.. */
if (signo != SIGTRAP)
return wptid;
/* Stop examining non-debugger oriented SIGTRAP codes. */
if (code <= SI_USER || code == SI_NOINFO)
return wptid;
/* Process state for threading events */
ptrace_state_t pst = {};
if (code == TRAP_LWP)
{
if (ptrace (PT_GET_PROCESS_STATE, pid, &pst, sizeof (pst)) == -1)
perror_with_name (("ptrace"));
}
if (code == TRAP_LWP && pst.pe_report_event == PTRACE_LWP_EXIT)
{
/* If GDB attaches to a multi-threaded process, exiting
threads might be skipped during post_attach that
have not yet reported their PTRACE_LWP_EXIT event.
Ignore exited events for an unknown LWP. */
thread_info *thr = find_thread_ptid (this, wptid);
if (thr == nullptr)
ourstatus->set_spurious ();
else
{
/* NetBSD does not store an LWP exit status. */
ourstatus->set_thread_exited (0);
if (print_thread_events)
gdb_printf (_("[%s exited]\n"),
target_pid_to_str (wptid).c_str ());
delete_thread (thr);
}
/* The GDB core expects that the rest of the threads are running. */
if (ptrace (PT_CONTINUE, pid, (void *) 1, 0) == -1)
perror_with_name (("ptrace"));
return wptid;
}
if (in_thread_list (this, ptid_t (pid)))
thread_change_ptid (this, ptid_t (pid), wptid);
if (code == TRAP_LWP && pst.pe_report_event == PTRACE_LWP_CREATE)
{
/* If GDB attaches to a multi-threaded process, newborn
threads might be added by nbsd_add_threads that have
not yet reported their PTRACE_LWP_CREATE event. Ignore
born events for an already-known LWP. */
if (in_thread_list (this, wptid))
ourstatus->set_spurious ();
else
{
add_thread (this, wptid);
ourstatus->set_thread_created ();
}
return wptid;
}
if (code == TRAP_EXEC)
{
ourstatus->set_execd (make_unique_xstrdup (pid_to_exec_file (pid)));
return wptid;
}
if (code == TRAP_TRACE)
{
/* Unhandled at this level. */
return wptid;
}
if (code == TRAP_SCE || code == TRAP_SCX)
{
int sysnum = si->si_sysnum;
if (!catch_syscall_enabled () || !catching_syscall_number (sysnum))
{
/* If the core isn't interested in this event, ignore it. */
ourstatus->set_spurious ();
return wptid;
}
if (code == TRAP_SCE)
ourstatus->set_syscall_entry (sysnum);
else
ourstatus->set_syscall_return (sysnum);
return wptid;
}
if (code == TRAP_BRKPT)
{
/* Unhandled at this level. */
return wptid;
}
/* Unclassified SIGTRAP event. */
ourstatus->set_spurious ();
return wptid;
}
/* Implement the "insert_exec_catchpoint" target_ops method. */
int
nbsd_nat_target::insert_exec_catchpoint (int pid)
{
/* Nothing to do. */
return 0;
}
/* Implement the "remove_exec_catchpoint" target_ops method. */
int
nbsd_nat_target::remove_exec_catchpoint (int pid)
{
/* Nothing to do. */
return 0;
}
/* Implement the "set_syscall_catchpoint" target_ops method. */
int
nbsd_nat_target::set_syscall_catchpoint (int pid, bool needed,
int any_count,
gdb::array_view<const int> syscall_counts)
{
/* Ignore the arguments. inf-ptrace.c will use PT_SYSCALL which
will catch all system call entries and exits. The system calls
are filtered by GDB rather than the kernel. */
return 0;
}
/* Implement the "supports_multi_process" target_ops method. */
bool
nbsd_nat_target::supports_multi_process ()
{
return true;
}
/* Implement the "xfer_partial" target_ops method. */
enum target_xfer_status
nbsd_nat_target::xfer_partial (enum target_object object,
const char *annex, gdb_byte *readbuf,
const gdb_byte *writebuf,
ULONGEST offset, ULONGEST len,
ULONGEST *xfered_len)
{
pid_t pid = inferior_ptid.pid ();
switch (object)
{
case TARGET_OBJECT_SIGNAL_INFO:
{
len = netbsd_nat::qxfer_siginfo(pid, annex, readbuf, writebuf, offset,
len);
if (len == -1)
return TARGET_XFER_E_IO;
*xfered_len = len;
return TARGET_XFER_OK;
}
case TARGET_OBJECT_MEMORY:
{
size_t xfered;
int res;
if (writebuf != nullptr)
res = netbsd_nat::write_memory (pid, writebuf, offset, len, &xfered);
else
res = netbsd_nat::read_memory (pid, readbuf, offset, len, &xfered);
if (res != 0)
{
if (res == EACCES)
gdb_printf (gdb_stderr, "Cannot %s process at %s (%s). "
"Is PaX MPROTECT active? See security(7), "
"sysctl(7), paxctl(8)\n",
(writebuf ? "write to" : "read from"),
pulongest (offset), safe_strerror (errno));
return TARGET_XFER_E_IO;
}
if (xfered == 0)
return TARGET_XFER_EOF;
*xfered_len = (ULONGEST) xfered;
return TARGET_XFER_OK;
}
default:
return inf_ptrace_target::xfer_partial (object, annex,
readbuf, writebuf, offset,
len, xfered_len);
}
}
/* Implement the "supports_dumpcore" target_ops method. */
bool
nbsd_nat_target::supports_dumpcore ()
{
return true;
}
/* Implement the "dumpcore" target_ops method. */
void
nbsd_nat_target::dumpcore (const char *filename)
{
pid_t pid = inferior_ptid.pid ();
if (ptrace (PT_DUMPCORE, pid, const_cast<char *>(filename),
strlen (filename)) == -1)
perror_with_name (("ptrace"));
}