mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2025-01-24 12:35:55 +08:00
eb3ff9a551
This patch reworks the whole completion machinery, and prepares it for later enhancements. Adds a new "completion_tracker" class that is meant to hold everything about the state of the current completion operation. This class now has the responsibility of tracking the list of completion matches, and checking whether the max completions limit has been reached. You can look at this as this patch starting out by C++fying the existing "completion_tracker" in symtab.c (it's just an htab_t typedef currently), moving it to completer.h/c, and then making it a class/generalizing/enhancing it. Unlike with the current tracking, completion_tracker now checks whether the limit has been reached on each completion match list insertion. This both simplifies the max-completions handling code (maybe_add_completion_enum is gone, for example), and is a prerequisite for follow up patches. The current completion_tracker is only used for symbol completions, and the symbol code gets at the current instance via globals. This patch cleans that up by adding a completion_tracker reference to the signature of the completion functions, and passing the tracker around everywhere necessary. Then, the patch changes how the completion match list is handed over to readline. Currently, we're using the rl_completion_entry_function readline entry point, and the patch switches to rl_attempted_completion_function. A following patch will want to let GDB itself decide the common completion prefix between all matches (what readline calls the "lowest common denominator"), instead of having readline compute it, and that's not possible with the rl_completion_entry_function entry point. Also, rl_attempted_completion_function lets GDB hand over the match list to readline as an array in one go instead of passing down matches one by one, so from that angle it's a nicer entry point anyway. Lastly, the patch catches exceptions around the readline entry points, because we can't let C++ exceptions cross readline. We handle that in the readline input entry point, but the completion entry point isn't guarded, so GDB can abort if completion throws. E.g., in current master: (gdb) b -function "fun<tab> terminate called after throwing an instance of 'gdb_exception_RETURN_MASK_ERROR' Aborted (core dumped) This patch fixes that. This will be exercised in the new tests added later on in the series. gdb/ChangeLog: 2017-07-17 Pedro Alves <palves@redhat.com> * ada-lang.c (symbol_completion_match): Adjust comments. (symbol_completion_add): Replace vector parameter with completion_tracker parameter. Use it. (ada_make_symbol_completion_list): Rename to... (ada_collect_symbol_completion_matches): ... this. Add completion_tracker parameter and use it. (ada_language_defn): Adjust. * break-catch-syscall.c (catch_syscall_completer): Adjust prototype and work with completion_tracker instead of VEC. * breakpoint.c (condition_completer): Adjust prototype and work with completion_tracker instead of VEC. * c-lang.c (c_language_defn, cplus_language_defn) (asm_language_defn, minimal_language_defn): Adjust to renames. * cli/cli-cmds.c (complete_command): Rework using completion_tracker. Catch exceptions when completing. * cli/cli-decode.c (integer_unlimited_completer) (complete_on_cmdlist, complete_on_enum): Adjust prototype and work with completion_tracker instead of VEC. * command.h (struct completion_tracker): Forward declare. (completer_ftype, completer_handle_brkchars_ftype): Change types. (complete_on_cmdlist, complete_on_enum): Adjust. * completer.c: Include <algorithm>. (struct gdb_completer_state): New. (current_completion): New global. (readline_line_completion_function): Delete. (noop_completer, filename_completer) (filename_completer_handle_brkchars, complete_files_symbols) (linespec_location_completer): Adjust to work with a completion_tracker instead of a VEC. (string_or_empty): New. (collect_explicit_location_matches): Adjust to work with a completion_tracker instead of a VEC. (explicit_location_completer): Rename to ... (complete_explicit_location): ... this and adjust to work with a completion_tracker instead of a VEC. (location_completer): Adjust to work with a completion_tracker instead of a VEC. (add_struct_fields): Adjust to work with a completion_list instead of VEC. (expression_completer): Rename to ... (complete_expression): ... this and adjust to work with a completion_tracker instead of a VEC. Use complete_files_symbols. (expression_completer): Reimplement on top of complete_expression. (symbol_completer): Adjust to work with a completion_tracker instead of a VEC. (enum complete_line_internal_reason): Add describing comments. (complete_line_internal_normal_command): Adjust to work with a completion_tracker instead of a VEC. (complete_line_internal): Rename to ... (complete_line_internal_1): ... this and adjust to work with a completion_tracker instead of a VEC. Assert TEXT is NULL in the handle_brkchars phase. (new_completion_tracker): Delete. (complete_line_internal): Reimplement as TRY/CATCH wrapper around complete_line_internal_1. (free_completion_tracker): Delete. (INITIAL_COMPLETION_HTAB_SIZE): New. (completion_tracker::completion_tracker) (completion_tracker::~completion_tracker): New. (maybe_add_completion): Delete. (completion_tracker::maybe_add_completion) (completion_tracker::add_completion) (completion_tracker::add_completions): New. (throw_max_completions_reached_error): Delete. (complete_line): Adjust to work with a completion_tracker instead of a VEC. Don't create a completion_tracker_t or check for max completions here. (command_completer, command_completer_handle_brkchars) (signal_completer, reg_or_group_completer_1) (reg_or_group_completer, default_completer_handle_brkchars): Adjust to work with a completion_tracker. (gdb_completion_word_break_characters_throw): New. (gdb_completion_word_break_characters): Reimplement. (line_completion_function): Delete. (completion_tracker::recompute_lowest_common_denominator) (expand_preserving_ws) (completion_tracker::build_completion_result) (completion_result::completion_result) (completion_result::completion_result) (completion_result::~completion_result) (completion_result::completion_result) (completion_result::release_match_list, compare_cstrings) (completion_result::sort_match_list) (completion_result::reset_match_list) (gdb_rl_attempted_completion_function_throw) (gdb_rl_attempted_completion_function): New. * completer.h (completion_list, struct completion_result) (class completion_tracker): New. (complete_line): Add completion_tracker parameter. (readline_line_completion_function): Delete. (gdb_rl_attempted_completion_function): New. (noop_completer, filename_completer, expression_completer) (location_completer, symbol_completer, command_completer) (signal_completer, reg_or_group_completer): Update prototypes. (completion_tracker_t, new_completion_tracker) (make_cleanup_free_completion_tracker): Delete. (enum maybe_add_completion_enum): Delete. (maybe_add_completion): Delete. (throw_max_completions_reached_error): Delete. * corefile.c (complete_set_gnutarget): Adjust to work with a completion_tracker instead of a VEC. * cp-abi.c (cp_abi_completer): Adjust to work with a completion_tracker instead of a VEC. * d-lang.c (d_language_defn): Adjust. * disasm.c (disassembler_options_completer): Adjust to work with a completion_tracker instead of a VEC. * f-lang.c (f_make_symbol_completion_list): Rename to ... (f_collect_symbol_completion_matches): ... this. Adjust to work with a completion_tracker instead of a VEC. (f_language_defn): Adjust. * go-lang.c (go_language_defn): Adjust. * guile/scm-cmd.c (cmdscm_add_completion, cmdscm_completer): Adjust to work with a completion_tracker instead of a VEC. * infrun.c (handle_completer): Likewise. * interps.c (interpreter_completer): Likewise. * interps.h (interpreter_completer): Likewise. * language.c (unknown_language_defn, auto_language_defn) (local_language_defn): Adjust. * language.h (language_defn::la_make_symbol_completion_list): Rename to ... (language_defn::la_collect_symbol_completion_matches): ... this and adjust to work with a completion_tracker instead of a VEC. * m2-lang.c (m2_language_defn): Adjust. * objc-lang.c (objc_language_defn): Adjust. * opencl-lang.c (opencl_language_defn): Adjust. * p-lang.c (pascal_language_defn): Adjust. * python/py-cmd.c (cmdpy_completer_helper): Handle NULL word. (cmdpy_completer_handle_brkchars, cmdpy_completer): Adjust to work with a completion_tracker. * rust-lang.c (rust_language_defn): Adjust. * symtab.c (free_completion_list, do_free_completion_list) (return_val, completion_tracker): Delete. (completion_list_add_name, completion_list_add_symbol) (completion_list_add_msymbol, completion_list_objc_symbol) (completion_list_add_fields, add_symtab_completions): Add completion_tracker parameter and use it. (default_make_symbol_completion_list_break_on_1): Rename to... (default_collect_symbol_completion_matches_break_on): ... this. Add completion_tracker parameter and use it instead of allocating a completion tracker here. (default_make_symbol_completion_list_break_on): Delete old implementation. (default_make_symbol_completion_list): Delete. (default_collect_symbol_completion_matches): New. (make_symbol_completion_list): Delete. (collect_symbol_completion_matches): New. (make_symbol_completion_type): Rename to ... (collect_symbol_completion_matches_type): ... this. Add completion_tracker parameter and use it instead of VEC. (make_file_symbol_completion_list_1): Rename to... (collect_file_symbol_completion_matches): ... this. Add completion_tracker parameter and use it instead of VEC. (make_file_symbol_completion_list): Delete. (add_filename_to_list): Use completion_list instead of a VEC. (add_partial_filename_data::list): Now a completion_list. (make_source_files_completion_list): Work with a completion_list instead of a VEC. * symtab.h: Include "completer.h". (default_make_symbol_completion_list_break_on) (default_make_symbol_completion_list, make_symbol_completion_list) (make_symbol_completion_type, make_file_symbol_completion_list) (make_source_files_completion_list): Delete. (default_collect_symbol_completion_matches_break_on) (default_collect_symbol_completion_matches) (collect_symbol_completion_matches) (collect_symbol_completion_matches_type) (collect_file_symbol_completion_matches) (make_source_files_completion_list): New. * top.c (init_main): Don't install a rl_completion_entry_function hook. Install a rl_attempted_completion_function hook instead. * tui/tui-layout.c (layout_completer): Adjust to work with a completion_tracker. * tui/tui-regs.c (tui_reggroup_completer): * tui/tui-win.c (window_name_completer, focus_completer) (winheight_completer): Adjust to work with a completion_tracker. * value.c: Include "completer.h". (complete_internalvar): Adjust to work with a completion_tracker. * value.h (complete_internalvar): Likewise.
1148 lines
42 KiB
C++
1148 lines
42 KiB
C++
/* Definitions for values of C expressions, for GDB.
|
||
|
||
Copyright (C) 1986-2017 Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||
|
||
#if !defined (VALUE_H)
|
||
#define VALUE_H 1
|
||
|
||
#include "doublest.h"
|
||
#include "frame.h" /* For struct frame_id. */
|
||
|
||
struct block;
|
||
struct expression;
|
||
struct regcache;
|
||
struct symbol;
|
||
struct type;
|
||
struct ui_file;
|
||
struct language_defn;
|
||
struct value_print_options;
|
||
struct xmethod_worker;
|
||
|
||
/* Values can be partially 'optimized out' and/or 'unavailable'.
|
||
These are distinct states and have different string representations
|
||
and related error strings.
|
||
|
||
'unavailable' has a specific meaning in this context. It means the
|
||
value exists in the program (at the machine level), but GDB has no
|
||
means to get to it. Such a value is normally printed as
|
||
<unavailable>. Examples of how to end up with an unavailable value
|
||
would be:
|
||
|
||
- We're inspecting a traceframe, and the memory or registers the
|
||
debug information says the value lives on haven't been collected.
|
||
|
||
- We're inspecting a core dump, the memory or registers the debug
|
||
information says the value lives aren't present in the dump
|
||
(that is, we have a partial/trimmed core dump, or we don't fully
|
||
understand/handle the core dump's format).
|
||
|
||
- We're doing live debugging, but the debug API has no means to
|
||
get at where the value lives in the machine, like e.g., ptrace
|
||
not having access to some register or register set.
|
||
|
||
- Any other similar scenario.
|
||
|
||
OTOH, "optimized out" is about what the compiler decided to generate
|
||
(or not generate). A chunk of a value that was optimized out does
|
||
not actually exist in the program. There's no way to get at it
|
||
short of compiling the program differently.
|
||
|
||
A register that has not been saved in a frame is likewise considered
|
||
optimized out, except not-saved registers have a different string
|
||
representation and related error strings. E.g., we'll print them as
|
||
<not-saved> instead of <optimized out>, as in:
|
||
|
||
(gdb) p/x $rax
|
||
$1 = <not saved>
|
||
(gdb) info registers rax
|
||
rax <not saved>
|
||
|
||
If the debug info describes a variable as being in such a register,
|
||
we'll still print the variable as <optimized out>. IOW, <not saved>
|
||
is reserved for inspecting registers at the machine level.
|
||
|
||
When comparing value contents, optimized out chunks, unavailable
|
||
chunks, and valid contents data are all considered different. See
|
||
value_contents_eq for more info.
|
||
*/
|
||
|
||
/* The structure which defines the type of a value. It should never
|
||
be possible for a program lval value to survive over a call to the
|
||
inferior (i.e. to be put into the history list or an internal
|
||
variable). */
|
||
|
||
struct value;
|
||
|
||
/* Values are stored in a chain, so that they can be deleted easily
|
||
over calls to the inferior. Values assigned to internal variables,
|
||
put into the value history or exposed to Python are taken off this
|
||
list. */
|
||
|
||
struct value *value_next (const struct value *);
|
||
|
||
/* Type of the value. */
|
||
|
||
extern struct type *value_type (const struct value *);
|
||
|
||
/* Return the gdbarch associated with the value. */
|
||
|
||
extern struct gdbarch *get_value_arch (const struct value *value);
|
||
|
||
/* This is being used to change the type of an existing value, that
|
||
code should instead be creating a new value with the changed type
|
||
(but possibly shared content). */
|
||
|
||
extern void deprecated_set_value_type (struct value *value,
|
||
struct type *type);
|
||
|
||
/* Only used for bitfields; number of bits contained in them. */
|
||
|
||
extern LONGEST value_bitsize (const struct value *);
|
||
extern void set_value_bitsize (struct value *, LONGEST bit);
|
||
|
||
/* Only used for bitfields; position of start of field. For
|
||
gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
|
||
gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
|
||
|
||
extern LONGEST value_bitpos (const struct value *);
|
||
extern void set_value_bitpos (struct value *, LONGEST bit);
|
||
|
||
/* Only used for bitfields; the containing value. This allows a
|
||
single read from the target when displaying multiple
|
||
bitfields. */
|
||
|
||
struct value *value_parent (const struct value *);
|
||
extern void set_value_parent (struct value *value, struct value *parent);
|
||
|
||
/* Describes offset of a value within lval of a structure in bytes.
|
||
If lval == lval_memory, this is an offset to the address. If lval
|
||
== lval_register, this is a further offset from location.address
|
||
within the registers structure. Note also the member
|
||
embedded_offset below. */
|
||
|
||
extern LONGEST value_offset (const struct value *);
|
||
extern void set_value_offset (struct value *, LONGEST offset);
|
||
|
||
/* The comment from "struct value" reads: ``Is it modifiable? Only
|
||
relevant if lval != not_lval.''. Shouldn't the value instead be
|
||
not_lval and be done with it? */
|
||
|
||
extern int deprecated_value_modifiable (const struct value *value);
|
||
|
||
/* If a value represents a C++ object, then the `type' field gives the
|
||
object's compile-time type. If the object actually belongs to some
|
||
class derived from `type', perhaps with other base classes and
|
||
additional members, then `type' is just a subobject of the real
|
||
thing, and the full object is probably larger than `type' would
|
||
suggest.
|
||
|
||
If `type' is a dynamic class (i.e. one with a vtable), then GDB can
|
||
actually determine the object's run-time type by looking at the
|
||
run-time type information in the vtable. When this information is
|
||
available, we may elect to read in the entire object, for several
|
||
reasons:
|
||
|
||
- When printing the value, the user would probably rather see the
|
||
full object, not just the limited portion apparent from the
|
||
compile-time type.
|
||
|
||
- If `type' has virtual base classes, then even printing `type'
|
||
alone may require reaching outside the `type' portion of the
|
||
object to wherever the virtual base class has been stored.
|
||
|
||
When we store the entire object, `enclosing_type' is the run-time
|
||
type -- the complete object -- and `embedded_offset' is the offset
|
||
of `type' within that larger type, in bytes. The value_contents()
|
||
macro takes `embedded_offset' into account, so most GDB code
|
||
continues to see the `type' portion of the value, just as the
|
||
inferior would.
|
||
|
||
If `type' is a pointer to an object, then `enclosing_type' is a
|
||
pointer to the object's run-time type, and `pointed_to_offset' is
|
||
the offset in bytes from the full object to the pointed-to object
|
||
-- that is, the value `embedded_offset' would have if we followed
|
||
the pointer and fetched the complete object. (I don't really see
|
||
the point. Why not just determine the run-time type when you
|
||
indirect, and avoid the special case? The contents don't matter
|
||
until you indirect anyway.)
|
||
|
||
If we're not doing anything fancy, `enclosing_type' is equal to
|
||
`type', and `embedded_offset' is zero, so everything works
|
||
normally. */
|
||
|
||
extern struct type *value_enclosing_type (const struct value *);
|
||
extern void set_value_enclosing_type (struct value *val,
|
||
struct type *new_type);
|
||
|
||
/* Returns value_type or value_enclosing_type depending on
|
||
value_print_options.objectprint.
|
||
|
||
If RESOLVE_SIMPLE_TYPES is 0 the enclosing type will be resolved
|
||
only for pointers and references, else it will be returned
|
||
for all the types (e.g. structures). This option is useful
|
||
to prevent retrieving enclosing type for the base classes fields.
|
||
|
||
REAL_TYPE_FOUND is used to inform whether the real type was found
|
||
(or just static type was used). The NULL may be passed if it is not
|
||
necessary. */
|
||
|
||
extern struct type *value_actual_type (struct value *value,
|
||
int resolve_simple_types,
|
||
int *real_type_found);
|
||
|
||
extern LONGEST value_pointed_to_offset (const struct value *value);
|
||
extern void set_value_pointed_to_offset (struct value *value, LONGEST val);
|
||
extern LONGEST value_embedded_offset (const struct value *value);
|
||
extern void set_value_embedded_offset (struct value *value, LONGEST val);
|
||
|
||
/* For lval_computed values, this structure holds functions used to
|
||
retrieve and set the value (or portions of the value).
|
||
|
||
For each function, 'V' is the 'this' pointer: an lval_funcs
|
||
function F may always assume that the V it receives is an
|
||
lval_computed value, and has F in the appropriate slot of its
|
||
lval_funcs structure. */
|
||
|
||
struct lval_funcs
|
||
{
|
||
/* Fill in VALUE's contents. This is used to "un-lazy" values. If
|
||
a problem arises in obtaining VALUE's bits, this function should
|
||
call 'error'. If it is NULL value_fetch_lazy on "un-lazy"
|
||
non-optimized-out value is an internal error. */
|
||
void (*read) (struct value *v);
|
||
|
||
/* Handle an assignment TOVAL = FROMVAL by writing the value of
|
||
FROMVAL to TOVAL's location. The contents of TOVAL have not yet
|
||
been updated. If a problem arises in doing so, this function
|
||
should call 'error'. If it is NULL such TOVAL assignment is an error as
|
||
TOVAL is not considered as an lvalue. */
|
||
void (*write) (struct value *toval, struct value *fromval);
|
||
|
||
/* If non-NULL, this is used to implement pointer indirection for
|
||
this value. This method may return NULL, in which case value_ind
|
||
will fall back to ordinary indirection. */
|
||
struct value *(*indirect) (struct value *value);
|
||
|
||
/* If non-NULL, this is used to implement reference resolving for
|
||
this value. This method may return NULL, in which case coerce_ref
|
||
will fall back to ordinary references resolving. */
|
||
struct value *(*coerce_ref) (const struct value *value);
|
||
|
||
/* If non-NULL, this is used to determine whether the indicated bits
|
||
of VALUE are a synthetic pointer. */
|
||
int (*check_synthetic_pointer) (const struct value *value,
|
||
LONGEST offset, int length);
|
||
|
||
/* Return a duplicate of VALUE's closure, for use in a new value.
|
||
This may simply return the same closure, if VALUE's is
|
||
reference-counted or statically allocated.
|
||
|
||
This may be NULL, in which case VALUE's closure is re-used in the
|
||
new value. */
|
||
void *(*copy_closure) (const struct value *v);
|
||
|
||
/* Drop VALUE's reference to its closure. Maybe this frees the
|
||
closure; maybe this decrements a reference count; maybe the
|
||
closure is statically allocated and this does nothing.
|
||
|
||
This may be NULL, in which case no action is taken to free
|
||
VALUE's closure. */
|
||
void (*free_closure) (struct value *v);
|
||
};
|
||
|
||
/* Create a computed lvalue, with type TYPE, function pointers FUNCS,
|
||
and closure CLOSURE. */
|
||
|
||
extern struct value *allocate_computed_value (struct type *type,
|
||
const struct lval_funcs *funcs,
|
||
void *closure);
|
||
|
||
/* Helper function to check the validity of some bits of a value.
|
||
|
||
If TYPE represents some aggregate type (e.g., a structure), return 1.
|
||
|
||
Otherwise, any of the bytes starting at OFFSET and extending for
|
||
TYPE_LENGTH(TYPE) bytes are invalid, print a message to STREAM and
|
||
return 0. The checking is done using FUNCS.
|
||
|
||
Otherwise, return 1. */
|
||
|
||
extern int valprint_check_validity (struct ui_file *stream, struct type *type,
|
||
LONGEST embedded_offset,
|
||
const struct value *val);
|
||
|
||
extern struct value *allocate_optimized_out_value (struct type *type);
|
||
|
||
/* If VALUE is lval_computed, return its lval_funcs structure. */
|
||
|
||
extern const struct lval_funcs *value_computed_funcs (const struct value *);
|
||
|
||
/* If VALUE is lval_computed, return its closure. The meaning of the
|
||
returned value depends on the functions VALUE uses. */
|
||
|
||
extern void *value_computed_closure (const struct value *value);
|
||
|
||
/* If zero, contents of this value are in the contents field. If
|
||
nonzero, contents are in inferior. If the lval field is lval_memory,
|
||
the contents are in inferior memory at location.address plus offset.
|
||
The lval field may also be lval_register.
|
||
|
||
WARNING: This field is used by the code which handles watchpoints
|
||
(see breakpoint.c) to decide whether a particular value can be
|
||
watched by hardware watchpoints. If the lazy flag is set for some
|
||
member of a value chain, it is assumed that this member of the
|
||
chain doesn't need to be watched as part of watching the value
|
||
itself. This is how GDB avoids watching the entire struct or array
|
||
when the user wants to watch a single struct member or array
|
||
element. If you ever change the way lazy flag is set and reset, be
|
||
sure to consider this use as well! */
|
||
|
||
extern int value_lazy (const struct value *);
|
||
extern void set_value_lazy (struct value *value, int val);
|
||
|
||
extern int value_stack (const struct value *);
|
||
extern void set_value_stack (struct value *value, int val);
|
||
|
||
/* Throw an error complaining that the value has been optimized
|
||
out. */
|
||
|
||
extern void error_value_optimized_out (void);
|
||
|
||
/* value_contents() and value_contents_raw() both return the address
|
||
of the gdb buffer used to hold a copy of the contents of the lval.
|
||
value_contents() is used when the contents of the buffer are needed
|
||
-- it uses value_fetch_lazy() to load the buffer from the process
|
||
being debugged if it hasn't already been loaded
|
||
(value_contents_writeable() is used when a writeable but fetched
|
||
buffer is required).. value_contents_raw() is used when data is
|
||
being stored into the buffer, or when it is certain that the
|
||
contents of the buffer are valid.
|
||
|
||
Note: The contents pointer is adjusted by the offset required to
|
||
get to the real subobject, if the value happens to represent
|
||
something embedded in a larger run-time object. */
|
||
|
||
extern gdb_byte *value_contents_raw (struct value *);
|
||
|
||
/* Actual contents of the value. For use of this value; setting it
|
||
uses the stuff above. Not valid if lazy is nonzero. Target
|
||
byte-order. We force it to be aligned properly for any possible
|
||
value. Note that a value therefore extends beyond what is
|
||
declared here. */
|
||
|
||
extern const gdb_byte *value_contents (struct value *);
|
||
extern gdb_byte *value_contents_writeable (struct value *);
|
||
|
||
/* The ALL variants of the above two macros do not adjust the returned
|
||
pointer by the embedded_offset value. */
|
||
|
||
extern gdb_byte *value_contents_all_raw (struct value *);
|
||
extern const gdb_byte *value_contents_all (struct value *);
|
||
|
||
/* Like value_contents_all, but does not require that the returned
|
||
bits be valid. This should only be used in situations where you
|
||
plan to check the validity manually. */
|
||
extern const gdb_byte *value_contents_for_printing (struct value *value);
|
||
|
||
/* Like value_contents_for_printing, but accepts a constant value
|
||
pointer. Unlike value_contents_for_printing however, the pointed
|
||
value must _not_ be lazy. */
|
||
extern const gdb_byte *
|
||
value_contents_for_printing_const (const struct value *value);
|
||
|
||
extern void value_fetch_lazy (struct value *val);
|
||
|
||
/* If nonzero, this is the value of a variable which does not actually
|
||
exist in the program, at least partially. If the value is lazy,
|
||
this may fetch it now. */
|
||
extern int value_optimized_out (struct value *value);
|
||
|
||
/* Given a value, return true if any of the contents bits starting at
|
||
OFFSET and extending for LENGTH bits is optimized out, false
|
||
otherwise. */
|
||
|
||
extern int value_bits_any_optimized_out (const struct value *value,
|
||
int bit_offset, int bit_length);
|
||
|
||
/* Like value_optimized_out, but return true iff the whole value is
|
||
optimized out. */
|
||
extern int value_entirely_optimized_out (struct value *value);
|
||
|
||
/* Mark VALUE's content bytes starting at OFFSET and extending for
|
||
LENGTH bytes as optimized out. */
|
||
|
||
extern void mark_value_bytes_optimized_out (struct value *value,
|
||
int offset, int length);
|
||
|
||
/* Mark VALUE's content bits starting at OFFSET and extending for
|
||
LENGTH bits as optimized out. */
|
||
|
||
extern void mark_value_bits_optimized_out (struct value *value,
|
||
LONGEST offset, LONGEST length);
|
||
|
||
/* Set or return field indicating whether a variable is initialized or
|
||
not, based on debugging information supplied by the compiler.
|
||
1 = initialized; 0 = uninitialized. */
|
||
extern int value_initialized (const struct value *);
|
||
extern void set_value_initialized (struct value *, int);
|
||
|
||
/* Set COMPONENT's location as appropriate for a component of WHOLE
|
||
--- regardless of what kind of lvalue WHOLE is. */
|
||
extern void set_value_component_location (struct value *component,
|
||
const struct value *whole);
|
||
|
||
/* While the following fields are per- VALUE .CONTENT .PIECE (i.e., a
|
||
single value might have multiple LVALs), this hacked interface is
|
||
limited to just the first PIECE. Expect further change. */
|
||
/* Type of value; either not an lval, or one of the various different
|
||
possible kinds of lval. */
|
||
extern enum lval_type *deprecated_value_lval_hack (struct value *);
|
||
#define VALUE_LVAL(val) (*deprecated_value_lval_hack (val))
|
||
|
||
/* Like VALUE_LVAL, except the parameter can be const. */
|
||
extern enum lval_type value_lval_const (const struct value *value);
|
||
|
||
/* If lval == lval_memory, return the address in the inferior. If
|
||
lval == lval_register, return the byte offset into the registers
|
||
structure. Otherwise, return 0. The returned address
|
||
includes the offset, if any. */
|
||
extern CORE_ADDR value_address (const struct value *);
|
||
|
||
/* Like value_address, except the result does not include value's
|
||
offset. */
|
||
extern CORE_ADDR value_raw_address (const struct value *);
|
||
|
||
/* Set the address of a value. */
|
||
extern void set_value_address (struct value *, CORE_ADDR);
|
||
|
||
/* Pointer to internal variable. */
|
||
extern struct internalvar **deprecated_value_internalvar_hack (struct value *);
|
||
#define VALUE_INTERNALVAR(val) (*deprecated_value_internalvar_hack (val))
|
||
|
||
/* Frame ID of "next" frame to which a register value is relative. A
|
||
register value is indicated by VALUE_LVAL being set to lval_register.
|
||
So, if the register value is found relative to frame F, then the
|
||
frame id of F->next will be stored in VALUE_NEXT_FRAME_ID. */
|
||
extern struct frame_id *deprecated_value_next_frame_id_hack (struct value *);
|
||
#define VALUE_NEXT_FRAME_ID(val) (*deprecated_value_next_frame_id_hack (val))
|
||
|
||
/* Frame ID of frame to which a register value is relative. This is
|
||
similar to VALUE_NEXT_FRAME_ID, above, but may not be assigned to.
|
||
Note that VALUE_FRAME_ID effectively undoes the "next" operation
|
||
that was performed during the assignment to VALUE_NEXT_FRAME_ID. */
|
||
#define VALUE_FRAME_ID(val) (get_prev_frame_id_by_id (VALUE_NEXT_FRAME_ID (val)))
|
||
|
||
/* Register number if the value is from a register. */
|
||
extern int *deprecated_value_regnum_hack (struct value *);
|
||
#define VALUE_REGNUM(val) (*deprecated_value_regnum_hack (val))
|
||
|
||
/* Return value after lval_funcs->coerce_ref (after check_typedef). Return
|
||
NULL if lval_funcs->coerce_ref is not applicable for whatever reason. */
|
||
|
||
extern struct value *coerce_ref_if_computed (const struct value *arg);
|
||
|
||
/* Setup a new value type and enclosing value type for dereferenced value VALUE.
|
||
ENC_TYPE is the new enclosing type that should be set. ORIGINAL_TYPE and
|
||
ORIGINAL_VAL are the type and value of the original reference or pointer.
|
||
|
||
Note, that VALUE is modified by this function.
|
||
|
||
It is a common implementation for coerce_ref and value_ind. */
|
||
|
||
extern struct value * readjust_indirect_value_type (struct value *value,
|
||
struct type *enc_type,
|
||
const struct type *original_type,
|
||
const struct value *original_val);
|
||
|
||
/* Convert a REF to the object referenced. */
|
||
|
||
extern struct value *coerce_ref (struct value *value);
|
||
|
||
/* If ARG is an array, convert it to a pointer.
|
||
If ARG is a function, convert it to a function pointer.
|
||
|
||
References are dereferenced. */
|
||
|
||
extern struct value *coerce_array (struct value *value);
|
||
|
||
/* Given a value, determine whether the bits starting at OFFSET and
|
||
extending for LENGTH bits are a synthetic pointer. */
|
||
|
||
extern int value_bits_synthetic_pointer (const struct value *value,
|
||
LONGEST offset, LONGEST length);
|
||
|
||
/* Given a value, determine whether the contents bytes starting at
|
||
OFFSET and extending for LENGTH bytes are available. This returns
|
||
nonzero if all bytes in the given range are available, zero if any
|
||
byte is unavailable. */
|
||
|
||
extern int value_bytes_available (const struct value *value,
|
||
LONGEST offset, LONGEST length);
|
||
|
||
/* Given a value, determine whether the contents bits starting at
|
||
OFFSET and extending for LENGTH bits are available. This returns
|
||
nonzero if all bits in the given range are available, zero if any
|
||
bit is unavailable. */
|
||
|
||
extern int value_bits_available (const struct value *value,
|
||
LONGEST offset, LONGEST length);
|
||
|
||
/* Like value_bytes_available, but return false if any byte in the
|
||
whole object is unavailable. */
|
||
extern int value_entirely_available (struct value *value);
|
||
|
||
/* Like value_entirely_available, but return false if any byte in the
|
||
whole object is available. */
|
||
extern int value_entirely_unavailable (struct value *value);
|
||
|
||
/* Mark VALUE's content bytes starting at OFFSET and extending for
|
||
LENGTH bytes as unavailable. */
|
||
|
||
extern void mark_value_bytes_unavailable (struct value *value,
|
||
LONGEST offset, LONGEST length);
|
||
|
||
/* Mark VALUE's content bits starting at OFFSET and extending for
|
||
LENGTH bits as unavailable. */
|
||
|
||
extern void mark_value_bits_unavailable (struct value *value,
|
||
LONGEST offset, LONGEST length);
|
||
|
||
/* Compare LENGTH bytes of VAL1's contents starting at OFFSET1 with
|
||
LENGTH bytes of VAL2's contents starting at OFFSET2.
|
||
|
||
Note that "contents" refers to the whole value's contents
|
||
(value_contents_all), without any embedded offset adjustment. For
|
||
example, to compare a complete object value with itself, including
|
||
its enclosing type chunk, you'd do:
|
||
|
||
int len = TYPE_LENGTH (check_typedef (value_enclosing_type (val)));
|
||
value_contents_eq (val, 0, val, 0, len);
|
||
|
||
Returns true iff the set of available/valid contents match.
|
||
|
||
Optimized-out contents are equal to optimized-out contents, and are
|
||
not equal to non-optimized-out contents.
|
||
|
||
Unavailable contente are equal to unavailable contents, and are not
|
||
equal to non-unavailable contents.
|
||
|
||
For example, if 'x's represent an unavailable byte, and 'V' and 'Z'
|
||
represent different available/valid bytes, in a value with length
|
||
16:
|
||
|
||
offset: 0 4 8 12 16
|
||
contents: xxxxVVVVxxxxVVZZ
|
||
|
||
then:
|
||
|
||
value_contents_eq(val, 0, val, 8, 6) => 1
|
||
value_contents_eq(val, 0, val, 4, 4) => 0
|
||
value_contents_eq(val, 0, val, 8, 8) => 0
|
||
value_contents_eq(val, 4, val, 12, 2) => 1
|
||
value_contents_eq(val, 4, val, 12, 4) => 0
|
||
value_contents_eq(val, 3, val, 4, 4) => 0
|
||
|
||
If 'x's represent an unavailable byte, 'o' represents an optimized
|
||
out byte, in a value with length 8:
|
||
|
||
offset: 0 4 8
|
||
contents: xxxxoooo
|
||
|
||
then:
|
||
|
||
value_contents_eq(val, 0, val, 2, 2) => 1
|
||
value_contents_eq(val, 4, val, 6, 2) => 1
|
||
value_contents_eq(val, 0, val, 4, 4) => 0
|
||
|
||
We only know whether a value chunk is unavailable or optimized out
|
||
if we've tried to read it. As this routine is used by printing
|
||
routines, which may be printing values in the value history, long
|
||
after the inferior is gone, it works with const values. Therefore,
|
||
this routine must not be called with lazy values. */
|
||
|
||
extern int value_contents_eq (const struct value *val1, LONGEST offset1,
|
||
const struct value *val2, LONGEST offset2,
|
||
LONGEST length);
|
||
|
||
/* Read LENGTH addressable memory units starting at MEMADDR into BUFFER,
|
||
which is (or will be copied to) VAL's contents buffer offset by
|
||
BIT_OFFSET bits. Marks value contents ranges as unavailable if
|
||
the corresponding memory is likewise unavailable. STACK indicates
|
||
whether the memory is known to be stack memory. */
|
||
|
||
extern void read_value_memory (struct value *val, LONGEST bit_offset,
|
||
int stack, CORE_ADDR memaddr,
|
||
gdb_byte *buffer, size_t length);
|
||
|
||
/* Cast SCALAR_VALUE to the element type of VECTOR_TYPE, then replicate
|
||
into each element of a new vector value with VECTOR_TYPE. */
|
||
|
||
struct value *value_vector_widen (struct value *scalar_value,
|
||
struct type *vector_type);
|
||
|
||
|
||
|
||
#include "symtab.h"
|
||
#include "gdbtypes.h"
|
||
#include "expression.h"
|
||
|
||
struct frame_info;
|
||
struct fn_field;
|
||
|
||
extern int print_address_demangle (const struct value_print_options *,
|
||
struct gdbarch *, CORE_ADDR,
|
||
struct ui_file *, int);
|
||
|
||
extern LONGEST value_as_long (struct value *val);
|
||
extern DOUBLEST value_as_double (struct value *val);
|
||
extern CORE_ADDR value_as_address (struct value *val);
|
||
|
||
extern LONGEST unpack_long (struct type *type, const gdb_byte *valaddr);
|
||
extern DOUBLEST unpack_double (struct type *type, const gdb_byte *valaddr,
|
||
int *invp);
|
||
extern CORE_ADDR unpack_pointer (struct type *type, const gdb_byte *valaddr);
|
||
|
||
extern LONGEST unpack_field_as_long (struct type *type,
|
||
const gdb_byte *valaddr,
|
||
int fieldno);
|
||
extern int unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
|
||
LONGEST embedded_offset, int fieldno,
|
||
const struct value *val, LONGEST *result);
|
||
|
||
extern void unpack_value_bitfield (struct value *dest_val,
|
||
LONGEST bitpos, LONGEST bitsize,
|
||
const gdb_byte *valaddr,
|
||
LONGEST embedded_offset,
|
||
const struct value *val);
|
||
|
||
extern struct value *value_field_bitfield (struct type *type, int fieldno,
|
||
const gdb_byte *valaddr,
|
||
LONGEST embedded_offset,
|
||
const struct value *val);
|
||
|
||
extern void pack_long (gdb_byte *buf, struct type *type, LONGEST num);
|
||
|
||
extern struct value *value_from_longest (struct type *type, LONGEST num);
|
||
extern struct value *value_from_ulongest (struct type *type, ULONGEST num);
|
||
extern struct value *value_from_pointer (struct type *type, CORE_ADDR addr);
|
||
extern struct value *value_from_double (struct type *type, DOUBLEST num);
|
||
extern struct value *value_from_decfloat (struct type *type,
|
||
const gdb_byte *decbytes);
|
||
extern struct value *value_from_history_ref (const char *, const char **);
|
||
extern struct value *value_from_component (struct value *, struct type *,
|
||
LONGEST);
|
||
|
||
extern struct value *value_at (struct type *type, CORE_ADDR addr);
|
||
extern struct value *value_at_lazy (struct type *type, CORE_ADDR addr);
|
||
|
||
extern struct value *value_from_contents_and_address_unresolved
|
||
(struct type *, const gdb_byte *, CORE_ADDR);
|
||
extern struct value *value_from_contents_and_address (struct type *,
|
||
const gdb_byte *,
|
||
CORE_ADDR);
|
||
extern struct value *value_from_contents (struct type *, const gdb_byte *);
|
||
|
||
extern struct value *default_value_from_register (struct gdbarch *gdbarch,
|
||
struct type *type,
|
||
int regnum,
|
||
struct frame_id frame_id);
|
||
|
||
extern void read_frame_register_value (struct value *value,
|
||
struct frame_info *frame);
|
||
|
||
extern struct value *value_from_register (struct type *type, int regnum,
|
||
struct frame_info *frame);
|
||
|
||
extern CORE_ADDR address_from_register (int regnum,
|
||
struct frame_info *frame);
|
||
|
||
extern struct value *value_of_variable (struct symbol *var,
|
||
const struct block *b);
|
||
|
||
extern struct value *address_of_variable (struct symbol *var,
|
||
const struct block *b);
|
||
|
||
extern struct value *value_of_register (int regnum, struct frame_info *frame);
|
||
|
||
struct value *value_of_register_lazy (struct frame_info *frame, int regnum);
|
||
|
||
/* Return the symbol's reading requirement. */
|
||
|
||
extern enum symbol_needs_kind symbol_read_needs (struct symbol *);
|
||
|
||
/* Return true if the symbol needs a frame. This is a wrapper for
|
||
symbol_read_needs that simply checks for SYMBOL_NEEDS_FRAME. */
|
||
|
||
extern int symbol_read_needs_frame (struct symbol *);
|
||
|
||
extern struct value *read_var_value (struct symbol *var,
|
||
const struct block *var_block,
|
||
struct frame_info *frame);
|
||
|
||
extern struct value *default_read_var_value (struct symbol *var,
|
||
const struct block *var_block,
|
||
struct frame_info *frame);
|
||
|
||
extern struct value *allocate_value (struct type *type);
|
||
extern struct value *allocate_value_lazy (struct type *type);
|
||
extern void value_contents_copy (struct value *dst, LONGEST dst_offset,
|
||
struct value *src, LONGEST src_offset,
|
||
LONGEST length);
|
||
extern void value_contents_copy_raw (struct value *dst, LONGEST dst_offset,
|
||
struct value *src, LONGEST src_offset,
|
||
LONGEST length);
|
||
|
||
extern struct value *allocate_repeat_value (struct type *type, int count);
|
||
|
||
extern struct value *value_mark (void);
|
||
|
||
extern void value_free_to_mark (const struct value *mark);
|
||
|
||
/* A helper class that uses value_mark at construction time and calls
|
||
value_free_to_mark in the destructor. This is used to clear out
|
||
temporary values created during the lifetime of this object. */
|
||
class scoped_value_mark
|
||
{
|
||
public:
|
||
|
||
scoped_value_mark ()
|
||
: m_value (value_mark ())
|
||
{
|
||
}
|
||
|
||
~scoped_value_mark ()
|
||
{
|
||
free_to_mark ();
|
||
}
|
||
|
||
/* Free the values currently on the value stack. */
|
||
void free_to_mark ()
|
||
{
|
||
if (m_value != NULL)
|
||
{
|
||
value_free_to_mark (m_value);
|
||
m_value = NULL;
|
||
}
|
||
}
|
||
|
||
private:
|
||
|
||
const struct value *m_value;
|
||
};
|
||
|
||
extern struct value *value_cstring (const char *ptr, ssize_t len,
|
||
struct type *char_type);
|
||
extern struct value *value_string (const char *ptr, ssize_t len,
|
||
struct type *char_type);
|
||
|
||
extern struct value *value_array (int lowbound, int highbound,
|
||
struct value **elemvec);
|
||
|
||
extern struct value *value_concat (struct value *arg1, struct value *arg2);
|
||
|
||
extern struct value *value_binop (struct value *arg1, struct value *arg2,
|
||
enum exp_opcode op);
|
||
|
||
extern struct value *value_ptradd (struct value *arg1, LONGEST arg2);
|
||
|
||
extern LONGEST value_ptrdiff (struct value *arg1, struct value *arg2);
|
||
|
||
extern int value_must_coerce_to_target (struct value *arg1);
|
||
|
||
extern struct value *value_coerce_to_target (struct value *arg1);
|
||
|
||
extern struct value *value_coerce_array (struct value *arg1);
|
||
|
||
extern struct value *value_coerce_function (struct value *arg1);
|
||
|
||
extern struct value *value_ind (struct value *arg1);
|
||
|
||
extern struct value *value_addr (struct value *arg1);
|
||
|
||
extern struct value *value_ref (struct value *arg1, enum type_code refcode);
|
||
|
||
extern struct value *value_assign (struct value *toval,
|
||
struct value *fromval);
|
||
|
||
extern struct value *value_pos (struct value *arg1);
|
||
|
||
extern struct value *value_neg (struct value *arg1);
|
||
|
||
extern struct value *value_complement (struct value *arg1);
|
||
|
||
extern struct value *value_struct_elt (struct value **argp,
|
||
struct value **args,
|
||
const char *name, int *static_memfuncp,
|
||
const char *err);
|
||
|
||
extern struct value *value_struct_elt_bitpos (struct value **argp,
|
||
int bitpos,
|
||
struct type *field_type,
|
||
const char *err);
|
||
|
||
extern struct value *value_aggregate_elt (struct type *curtype,
|
||
const char *name,
|
||
struct type *expect_type,
|
||
int want_address,
|
||
enum noside noside);
|
||
|
||
extern struct value *value_static_field (struct type *type, int fieldno);
|
||
|
||
enum oload_search_type { NON_METHOD, METHOD, BOTH };
|
||
|
||
extern int find_overload_match (struct value **args, int nargs,
|
||
const char *name,
|
||
enum oload_search_type method,
|
||
struct value **objp, struct symbol *fsym,
|
||
struct value **valp, struct symbol **symp,
|
||
int *staticp, const int no_adl,
|
||
enum noside noside);
|
||
|
||
extern struct value *value_field (struct value *arg1, int fieldno);
|
||
|
||
extern struct value *value_primitive_field (struct value *arg1, LONGEST offset,
|
||
int fieldno,
|
||
struct type *arg_type);
|
||
|
||
|
||
extern struct type *value_rtti_indirect_type (struct value *, int *, LONGEST *,
|
||
int *);
|
||
|
||
extern struct value *value_full_object (struct value *, struct type *, int,
|
||
int, int);
|
||
|
||
extern struct value *value_cast_pointers (struct type *, struct value *, int);
|
||
|
||
extern struct value *value_cast (struct type *type, struct value *arg2);
|
||
|
||
extern struct value *value_reinterpret_cast (struct type *type,
|
||
struct value *arg);
|
||
|
||
extern struct value *value_dynamic_cast (struct type *type, struct value *arg);
|
||
|
||
extern struct value *value_zero (struct type *type, enum lval_type lv);
|
||
|
||
extern struct value *value_one (struct type *type);
|
||
|
||
extern struct value *value_repeat (struct value *arg1, int count);
|
||
|
||
extern struct value *value_subscript (struct value *array, LONGEST index);
|
||
|
||
extern struct value *value_bitstring_subscript (struct type *type,
|
||
struct value *bitstring,
|
||
LONGEST index);
|
||
|
||
extern struct value *register_value_being_returned (struct type *valtype,
|
||
struct regcache *retbuf);
|
||
|
||
extern int value_in (struct value *element, struct value *set);
|
||
|
||
extern int value_bit_index (struct type *type, const gdb_byte *addr,
|
||
int index);
|
||
|
||
extern enum return_value_convention
|
||
struct_return_convention (struct gdbarch *gdbarch, struct value *function,
|
||
struct type *value_type);
|
||
|
||
extern int using_struct_return (struct gdbarch *gdbarch,
|
||
struct value *function,
|
||
struct type *value_type);
|
||
|
||
extern struct value *evaluate_expression (struct expression *exp);
|
||
|
||
extern struct value *evaluate_type (struct expression *exp);
|
||
|
||
extern struct value *evaluate_subexp (struct type *expect_type,
|
||
struct expression *exp,
|
||
int *pos, enum noside noside);
|
||
|
||
extern struct value *evaluate_subexpression_type (struct expression *exp,
|
||
int subexp);
|
||
|
||
extern void fetch_subexp_value (struct expression *exp, int *pc,
|
||
struct value **valp, struct value **resultp,
|
||
struct value **val_chain,
|
||
int preserve_errors);
|
||
|
||
extern char *extract_field_op (struct expression *exp, int *subexp);
|
||
|
||
extern struct value *evaluate_subexp_with_coercion (struct expression *,
|
||
int *, enum noside);
|
||
|
||
extern struct value *parse_and_eval (const char *exp);
|
||
|
||
extern struct value *parse_to_comma_and_eval (const char **expp);
|
||
|
||
extern struct type *parse_and_eval_type (char *p, int length);
|
||
|
||
extern CORE_ADDR parse_and_eval_address (const char *exp);
|
||
|
||
extern LONGEST parse_and_eval_long (const char *exp);
|
||
|
||
extern void unop_promote (const struct language_defn *language,
|
||
struct gdbarch *gdbarch,
|
||
struct value **arg1);
|
||
|
||
extern void binop_promote (const struct language_defn *language,
|
||
struct gdbarch *gdbarch,
|
||
struct value **arg1, struct value **arg2);
|
||
|
||
extern struct value *access_value_history (int num);
|
||
|
||
extern struct value *value_of_internalvar (struct gdbarch *gdbarch,
|
||
struct internalvar *var);
|
||
|
||
extern int get_internalvar_integer (struct internalvar *var, LONGEST *l);
|
||
|
||
extern void set_internalvar (struct internalvar *var, struct value *val);
|
||
|
||
extern void set_internalvar_integer (struct internalvar *var, LONGEST l);
|
||
|
||
extern void set_internalvar_string (struct internalvar *var,
|
||
const char *string);
|
||
|
||
extern void clear_internalvar (struct internalvar *var);
|
||
|
||
extern void set_internalvar_component (struct internalvar *var,
|
||
LONGEST offset,
|
||
LONGEST bitpos, LONGEST bitsize,
|
||
struct value *newvalue);
|
||
|
||
extern struct internalvar *lookup_only_internalvar (const char *name);
|
||
|
||
extern struct internalvar *create_internalvar (const char *name);
|
||
|
||
extern void complete_internalvar (completion_tracker &tracker,
|
||
const char *name);
|
||
|
||
/* An internalvar can be dynamically computed by supplying a vector of
|
||
function pointers to perform various operations. */
|
||
|
||
struct internalvar_funcs
|
||
{
|
||
/* Compute the value of the variable. The DATA argument passed to
|
||
the function is the same argument that was passed to
|
||
`create_internalvar_type_lazy'. */
|
||
|
||
struct value *(*make_value) (struct gdbarch *arch,
|
||
struct internalvar *var,
|
||
void *data);
|
||
|
||
/* Update the agent expression EXPR with bytecode to compute the
|
||
value. VALUE is the agent value we are updating. The DATA
|
||
argument passed to this function is the same argument that was
|
||
passed to `create_internalvar_type_lazy'. If this pointer is
|
||
NULL, then the internalvar cannot be compiled to an agent
|
||
expression. */
|
||
|
||
void (*compile_to_ax) (struct internalvar *var,
|
||
struct agent_expr *expr,
|
||
struct axs_value *value,
|
||
void *data);
|
||
|
||
/* If non-NULL, this is called to destroy DATA. The DATA argument
|
||
passed to this function is the same argument that was passed to
|
||
`create_internalvar_type_lazy'. */
|
||
|
||
void (*destroy) (void *data);
|
||
};
|
||
|
||
extern struct internalvar *create_internalvar_type_lazy (const char *name,
|
||
const struct internalvar_funcs *funcs,
|
||
void *data);
|
||
|
||
/* Compile an internal variable to an agent expression. VAR is the
|
||
variable to compile; EXPR and VALUE are the agent expression we are
|
||
updating. This will return 0 if there is no known way to compile
|
||
VAR, and 1 if VAR was successfully compiled. It may also throw an
|
||
exception on error. */
|
||
|
||
extern int compile_internalvar_to_ax (struct internalvar *var,
|
||
struct agent_expr *expr,
|
||
struct axs_value *value);
|
||
|
||
extern struct internalvar *lookup_internalvar (const char *name);
|
||
|
||
extern int value_equal (struct value *arg1, struct value *arg2);
|
||
|
||
extern int value_equal_contents (struct value *arg1, struct value *arg2);
|
||
|
||
extern int value_less (struct value *arg1, struct value *arg2);
|
||
|
||
extern int value_logical_not (struct value *arg1);
|
||
|
||
/* C++ */
|
||
|
||
extern struct value *value_of_this (const struct language_defn *lang);
|
||
|
||
extern struct value *value_of_this_silent (const struct language_defn *lang);
|
||
|
||
extern struct value *value_x_binop (struct value *arg1, struct value *arg2,
|
||
enum exp_opcode op,
|
||
enum exp_opcode otherop,
|
||
enum noside noside);
|
||
|
||
extern struct value *value_x_unop (struct value *arg1, enum exp_opcode op,
|
||
enum noside noside);
|
||
|
||
extern struct value *value_fn_field (struct value **arg1p, struct fn_field *f,
|
||
int j, struct type *type, LONGEST offset);
|
||
|
||
extern int binop_types_user_defined_p (enum exp_opcode op,
|
||
struct type *type1,
|
||
struct type *type2);
|
||
|
||
extern int binop_user_defined_p (enum exp_opcode op, struct value *arg1,
|
||
struct value *arg2);
|
||
|
||
extern int unop_user_defined_p (enum exp_opcode op, struct value *arg1);
|
||
|
||
extern int destructor_name_p (const char *name, struct type *type);
|
||
|
||
extern void value_incref (struct value *val);
|
||
|
||
extern void value_free (struct value *val);
|
||
|
||
extern void free_all_values (void);
|
||
|
||
extern void free_value_chain (struct value *v);
|
||
|
||
extern void release_value (struct value *val);
|
||
|
||
extern void release_value_or_incref (struct value *val);
|
||
|
||
extern int record_latest_value (struct value *val);
|
||
|
||
extern void modify_field (struct type *type, gdb_byte *addr,
|
||
LONGEST fieldval, LONGEST bitpos, LONGEST bitsize);
|
||
|
||
extern void type_print (struct type *type, const char *varstring,
|
||
struct ui_file *stream, int show);
|
||
|
||
extern std::string type_to_string (struct type *type);
|
||
|
||
extern gdb_byte *baseclass_addr (struct type *type, int index,
|
||
gdb_byte *valaddr,
|
||
struct value **valuep, int *errp);
|
||
|
||
extern void print_longest (struct ui_file *stream, int format,
|
||
int use_local, LONGEST val);
|
||
|
||
extern void print_floating (const gdb_byte *valaddr, struct type *type,
|
||
struct ui_file *stream);
|
||
|
||
extern void print_decimal_floating (const gdb_byte *valaddr, struct type *type,
|
||
struct ui_file *stream);
|
||
|
||
extern void value_print (struct value *val, struct ui_file *stream,
|
||
const struct value_print_options *options);
|
||
|
||
extern void value_print_array_elements (struct value *val,
|
||
struct ui_file *stream, int format,
|
||
enum val_prettyformat pretty);
|
||
|
||
extern struct value *value_release_to_mark (const struct value *mark);
|
||
|
||
extern void val_print (struct type *type,
|
||
LONGEST embedded_offset, CORE_ADDR address,
|
||
struct ui_file *stream, int recurse,
|
||
struct value *val,
|
||
const struct value_print_options *options,
|
||
const struct language_defn *language);
|
||
|
||
extern void common_val_print (struct value *val,
|
||
struct ui_file *stream, int recurse,
|
||
const struct value_print_options *options,
|
||
const struct language_defn *language);
|
||
|
||
extern int val_print_string (struct type *elttype, const char *encoding,
|
||
CORE_ADDR addr, int len,
|
||
struct ui_file *stream,
|
||
const struct value_print_options *options);
|
||
|
||
extern void print_variable_and_value (const char *name,
|
||
struct symbol *var,
|
||
struct frame_info *frame,
|
||
struct ui_file *stream,
|
||
int indent);
|
||
|
||
extern void typedef_print (struct type *type, struct symbol *news,
|
||
struct ui_file *stream);
|
||
|
||
extern char *internalvar_name (const struct internalvar *var);
|
||
|
||
extern void preserve_values (struct objfile *);
|
||
|
||
/* From values.c */
|
||
|
||
extern struct value *value_copy (struct value *);
|
||
|
||
extern struct value *value_non_lval (struct value *);
|
||
|
||
extern void value_force_lval (struct value *, CORE_ADDR);
|
||
|
||
extern struct value *make_cv_value (int, int, struct value *);
|
||
|
||
extern void preserve_one_value (struct value *, struct objfile *, htab_t);
|
||
|
||
/* From valops.c */
|
||
|
||
extern struct value *varying_to_slice (struct value *);
|
||
|
||
extern struct value *value_slice (struct value *, int, int);
|
||
|
||
extern struct value *value_literal_complex (struct value *, struct value *,
|
||
struct type *);
|
||
|
||
extern struct value *find_function_in_inferior (const char *,
|
||
struct objfile **);
|
||
|
||
extern struct value *value_allocate_space_in_inferior (int);
|
||
|
||
extern struct value *value_subscripted_rvalue (struct value *array,
|
||
LONGEST index, int lowerbound);
|
||
|
||
/* User function handler. */
|
||
|
||
typedef struct value *(*internal_function_fn) (struct gdbarch *gdbarch,
|
||
const struct language_defn *language,
|
||
void *cookie,
|
||
int argc,
|
||
struct value **argv);
|
||
|
||
void add_internal_function (const char *name, const char *doc,
|
||
internal_function_fn handler,
|
||
void *cookie);
|
||
|
||
struct value *call_internal_function (struct gdbarch *gdbarch,
|
||
const struct language_defn *language,
|
||
struct value *function,
|
||
int argc, struct value **argv);
|
||
|
||
char *value_internal_function_name (struct value *);
|
||
|
||
extern struct value *value_of_xmethod (struct xmethod_worker *);
|
||
|
||
extern struct type *result_type_of_xmethod (struct value *method,
|
||
int argc, struct value **argv);
|
||
|
||
extern struct value *call_xmethod (struct value *method,
|
||
int argc, struct value **argv);
|
||
|
||
#endif /* !defined (VALUE_H) */
|