binutils-gdb/sim/d30v/cpu.h
2000-05-29 19:26:48 +00:00

250 lines
7.5 KiB
C

/* Mitsubishi Electric Corp. D30V Simulator.
Copyright (C) 1997, Free Software Foundation, Inc.
Contributed by Cygnus Support.
This file is part of GDB, the GNU debugger.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
#ifndef _CPU_H_
#define _CPU_H_
enum {
NR_GENERAL_PURPOSE_REGISTERS = 64,
NR_CONTROL_REGISTERS = 64,
NR_ACCUMULATORS = 2,
STACK_POINTER_GPR = 63,
NR_STACK_POINTERS = 2,
};
enum {
processor_status_word_cr = 0,
backup_processor_status_word_cr = 1,
program_counter_cr = 2,
backup_program_counter_cr = 3,
debug_backup_processor_status_word_cr = 4,
debug_backup_program_counter_cr = 5,
reserved_6_cr = 6,
repeat_count_cr = 7,
repeat_start_address_cr = 8,
repeat_end_address_cr = 9,
modulo_start_address_cr = 10,
modulo_end_address_cr = 11,
instruction_break_address_cr = 14,
eit_vector_base_cr = 15,
};
enum {
PSW_SM = 0,
PSW_EA = 2,
PSW_DB = 3,
PSW_DS = 4,
PSW_IE = 5,
PSW_RP = 6,
PSW_MD = 7,
PSW_F0 = 17,
PSW_F1 = 19,
PSW_F2 = 21,
PSW_F3 = 23,
PSW_S = 25,
PSW_V = 27,
PSW_VA = 29,
PSW_C = 31,
};
/* aliases for PSW flag numbers (F0..F7) */
enum
{
PSW_S_FLAG = 4,
};
typedef struct _registers {
unsigned32 general_purpose[NR_GENERAL_PURPOSE_REGISTERS];
/* keep track of the stack pointer */
unsigned32 sp[NR_STACK_POINTERS]; /* swap with SP */
unsigned32 current_sp;
unsigned32 control[NR_CONTROL_REGISTERS];
unsigned64 accumulator[NR_ACCUMULATORS];
} registers;
typedef enum _cpu_units {
memory_unit,
integer_unit,
any_unit,
} cpu_units;
/* In order to support parallel instructions, which one instruction can be
writing to a register that is used as input to another, queue up the
writes to the end of the instruction boundaries. */
#define MAX_WRITE32 16
#define MAX_WRITE64 2
struct _write32 {
int num; /* # of 32-bit writes queued up */
unsigned32 value[MAX_WRITE32]; /* value to write */
unsigned32 mask[MAX_WRITE32]; /* mask to use */
unsigned32 *ptr[MAX_WRITE32]; /* address to write to */
};
struct _write64 {
int num; /* # of 64-bit writes queued up */
unsigned64 value[MAX_WRITE64]; /* value to write */
unsigned64 *ptr[MAX_WRITE64]; /* address to write to */
};
struct _sim_cpu {
cpu_units unit;
registers regs;
sim_cpu_base base;
int trace_call_p; /* Whether to do call tracing. */
int trace_trap_p; /* If unknown traps dump out the regs */
int trace_action; /* trace bits at end of instructions */
int left_kills_right_p; /* left insn kills insn in right slot of -> */
int mvtsys_left_p; /* left insn was mvtsys */
int did_trap; /* we did a trap & need to finish it */
struct _write32 write32; /* queued up 32-bit writes */
struct _write64 write64; /* queued up 64-bit writes */
};
#define PC (STATE_CPU (sd, 0)->regs.control[program_counter_cr])
#define PSW (STATE_CPU (sd, 0)->regs.control[processor_status_word_cr])
#define PSWL (*AL2_4(&PSW))
#define PSWH (*AH2_4(&PSW))
#define DPSW (STATE_CPU (sd, 0)->regs.control[debug_backup_processor_status_word_cr])
#define DPC (STATE_CPU (sd, 0)->regs.control[debug_backup_program_counter_cr])
#define bPC (STATE_CPU (sd, 0)->regs.control[backup_program_counter_cr])
#define bPSW (STATE_CPU (sd, 0)->regs.control[backup_processor_status_word_cr])
#define RPT_C (STATE_CPU (sd, 0)->regs.control[repeat_count_cr])
#define RPT_S (STATE_CPU (sd, 0)->regs.control[repeat_start_address_cr])
#define RPT_E (STATE_CPU (sd, 0)->regs.control[repeat_end_address_cr])
#define MOD_S (STATE_CPU (sd, 0)->regs.control[modulo_start_address_cr])
#define MOD_E (STATE_CPU (sd, 0)->regs.control[modulo_end_address_cr])
#define IBA (STATE_CPU (sd, 0)->regs.control[instruction_break_address_cr])
#define EIT_VB (STATE_CPU (sd, 0)->regs.control[eit_vector_base_cr])
#define GPR (STATE_CPU (sd, 0)->regs.general_purpose)
#define GPR_CLEAR(N) (GPR[(N)] = 0)
#define ACC (STATE_CPU (sd, 0)->regs.accumulator)
#define CREG (STATE_CPU (sd, 0)->regs.control)
#define SP (GPR[STACK_POINTER_GPR])
#define TRACE_CALL_P (STATE_CPU (sd, 0)->trace_call_p)
#define TRACE_TRAP_P (STATE_CPU (sd, 0)->trace_trap_p)
#define TRACE_ACTION (STATE_CPU (sd, 0)->trace_action)
#define TRACE_ACTION_CALL 0x00000001 /* call occurred */
#define TRACE_ACTION_RETURN 0x00000002 /* return occurred */
#define WRITE32 (STATE_CPU (sd, 0)->write32)
#define WRITE32_NUM (WRITE32.num)
#define WRITE32_PTR(N) (WRITE32.ptr[N])
#define WRITE32_MASK(N) (WRITE32.mask[N])
#define WRITE32_VALUE(N) (WRITE32.value[N])
#define WRITE32_QUEUE(PTR, VALUE) WRITE32_QUEUE_MASK (PTR, VALUE, 0xffffffff)
#define WRITE32_QUEUE_MASK(PTR, VALUE, MASK) \
do { \
int _num = WRITE32_NUM; \
if (_num >= MAX_WRITE32) \
sim_engine_abort (sd, STATE_CPU (sd, 0), cia, \
"Too many queued 32-bit writes"); \
WRITE32_PTR(_num) = PTR; \
WRITE32_VALUE(_num) = VALUE; \
WRITE32_MASK(_num) = MASK; \
WRITE32_NUM = _num+1; \
} while (0)
#define DID_TRAP (STATE_CPU (sd, 0)->did_trap)
#define WRITE64 (STATE_CPU (sd, 0)->write64)
#define WRITE64_NUM (WRITE64.num)
#define WRITE64_PTR(N) (WRITE64.ptr[N])
#define WRITE64_VALUE(N) (WRITE64.value[N])
#define WRITE64_QUEUE(PTR, VALUE) \
do { \
int _num = WRITE64_NUM; \
if (_num >= MAX_WRITE64) \
sim_engine_abort (sd, STATE_CPU (sd, 0), cia, \
"Too many queued 64-bit writes"); \
WRITE64_PTR(_num) = PTR; \
WRITE64_VALUE(_num) = VALUE; \
WRITE64_NUM = _num+1; \
} while (0)
#define DPSW_VALID 0xbf005555
#define PSW_VALID 0xb7005555
#define EIT_VALID 0xfffff000 /* From page 7-4 of D30V/MPEG arch. manual */
#define EIT_VB_DEFAULT 0xfffff000 /* Value of the EIT_VB register after reset */
/* Verify that the instruction is in the correct slot */
#define IS_WRONG_SLOT is_wrong_slot(sd, cia, MY_INDEX)
extern int is_wrong_slot
(SIM_DESC sd,
address_word cia,
itable_index index);
#define IS_CONDITION_OK is_condition_ok(sd, cia, CCC)
extern int is_condition_ok
(SIM_DESC sd,
address_word cia,
int cond);
#define SIM_HAVE_BREAKPOINTS /* Turn on internal breakpoint module */
/* Internal breakpoint instruction is syscall 5 */
#define SIM_BREAKPOINT {0x0e, 0x00, 0x00, 0x05}
#define SIM_BREAKPOINT_SIZE (4)
/* Call occurred */
extern void call_occurred
(SIM_DESC sd,
sim_cpu *cpu,
address_word cia,
address_word nia);
/* Return occurred */
extern void return_occurred
(SIM_DESC sd,
sim_cpu *cpu,
address_word cia,
address_word nia);
/* Whether to do call tracing. */
extern int d30v_call_trace_p;
/* Read/write functions for system call interface. */
extern int d30v_read_mem
(host_callback *cb,
struct cb_syscall *sc,
unsigned long taddr,
char *buf,
int bytes);
extern int d30v_write_mem
(host_callback *cb,
struct cb_syscall *sc,
unsigned long taddr,
const char *buf,
int bytes);
/* Process all of the queued up writes in order now */
void unqueue_writes
(SIM_DESC sd,
sim_cpu *cpu,
address_word cia);
#endif /* _CPU_H_ */