mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2025-01-24 12:35:55 +08:00
0a703a4ced
This commit replaces this patch: https://sourceware.org/pipermail/gdb-patches/2021-January/174933.html which was itself a replacement for this patch: https://sourceware.org/pipermail/gdb-patches/2020-July/170335.html The motivation behind the original patch can be seen in the new test, which currently gives a GDB session like this: (gdb) ptype var8 type = Type type6 PTR TO -> ( Type type2 :: ptr_1 ) PTR TO -> ( Type type2 :: ptr_2 ) End Type type6 (gdb) ptype var8%ptr_2 type = PTR TO -> ( Type type2 integer(kind=4) :: spacer Type type1, allocatable :: t2_array(:) <------ Issue #1 End Type type2 ) (gdb) ptype var8%ptr_2%t2_array Cannot access memory at address 0x38 <------ Issue #2 (gdb) Issue #1: Here we see the abstract dynamic type, rather than the resolved concrete type. Though in some cases the user might be interested in the abstract dynamic type, I think that in most cases showing the resolved concrete type will be of more use. Plus, the user can always figure out the dynamic type (by source code inspection if nothing else) given the concrete type, but it is much harder to figure out the concrete type given only the dynamic type. Issue #2: In this example, GDB evaluates the expression in EVAL_AVOID_SIDE_EFFECTS mode (due to ptype). The value returned for var8%ptr_2 will be a non-lazy, zero value of the correct dynamic type. However, when GDB asks about the type of t2_array this requires GDB to access the value of var8%ptr_2 in order to read the dynamic properties. As this value was forced to zero (thanks to the use of EVAL_AVOID_SIDE_EFFECTS) then GDB ends up accessing memory at a base of zero plus some offset. Both this patch, and my previous two attempts, have all tried to resolve this problem by stopping EVAL_AVOID_SIDE_EFFECTS replacing the result value with a zero value in some cases. This new patch is influenced by how Ada handles its tagged typed. There are plenty of examples in ada-lang.c, but one specific case is ada_structop_operation::evaluate. When GDB spots that we are dealing with a tagged (dynamic) type, and we're in EVAL_AVOID_SIDE_EFFECTS mode, then GDB re-evaluates the child operation in EVAL_NORMAL mode. This commit handles two cases like this specifically for Fortran, a new fortran_structop_operation, and the already existing fortran_undetermined, which is where we handle array accesses. In these two locations we spot when we are dealing with a dynamic type and re-evaluate the child operation in EVAL_NORMAL mode so that we are able to access the dynamic properties of the type. The rest of this commit message is my attempt to record why my previous patches failed. To understand my second patch, and why it failed lets consider two expressions, this Fortran expression: (gdb) ptype var8%ptr_2%t2_array --<A> Operation: STRUCTOP_STRUCT --(1) Operation: STRUCTOP_STRUCT --(2) Operation: OP_VAR_VALUE --(3) Symbol: var8 Block: 0x3980ac0 String: ptr_2 String: t2_array And this C expression: (gdb) ptype ptr && ptr->a == 3 --<B> Operation: BINOP_LOGICAL_AND --(4) Operation: OP_VAR_VALUE --(5) Symbol: ptr Block: 0x45a2a00 Operation: BINOP_EQUAL --(6) Operation: STRUCTOP_PTR --(7) Operation: OP_VAR_VALUE --(8) Symbol: ptr Block: 0x45a2a00 String: a Operation: OP_LONG --(9) Type: int Constant: 0x0000000000000003 In expression <A> we should assume that t2_array is of dynamic type. Nothing has dynamic type in expression <B>. This is how GDB currently handles expression <A>, in all cases, EVAL_AVOID_SIDE_EFFECTS or EVAL_NORMAL, an OP_VAR_VALUE operation always returns the real value of the symbol, this is not forced to a zero value even in EVAL_AVOID_SIDE_EFFECTS mode. This means that (3), (5), and (8) will always return a real lazy value for the symbol. However a STRUCTOP_STRUCT will always replace its result with a non-lazy, zero value with the same type as its result. So (2) will lookup the field ptr_2 and create a zero value with that type. In this case the type is a pointer to a dynamic type. Then, when we evaluate (1) to figure out the resolved type of t2_array, we need to read the types dynamic properties. These properties are stored in memory relative to the objects base address, and the base address is in var8%ptr_2, which we already figured out has the value zero. GDB then evaluates the DWARF expressions that take the base address, add an offset and dereference. GDB then ends up trying to access addresses like 0x16, 0x8, etc. To fix this, I proposed changing STRUCTOP_STRUCT so that instead of returning a zero value we instead returned the actual value representing the structure's field in the target. My thinking was that GDB would not try to access the value's contents unless it needed it to resolve a dynamic type. This belief was incorrect. Consider expression <B>. We already know that (5) and (8) will return real values for the symbols being referenced. The BINOP_LOGICAL_AND, operation (4) will evaluate both of its children in EVAL_AVOID_SIDE_EFFECTS in order to get the types, this is required for C++ operator lookup. This means that even if the value of (5) would result in the BINOP_LOGICAL_AND returning false (say, ptr is NULL), we still evaluate (6) in EVAL_AVOID_SIDE_EFFECTS mode. Operation (6) will evaluate both children in EVAL_AVOID_SIDE_EFFECTS mode, operation (9) is easy, it just returns a value with the constant packed into it, but (7) is where the problem lies. Currently in GDB this STRUCTOP_STRUCT will always return a non-lazy zero value of the correct type. When the results of (7) and (9) are back in the BINOP_LOGICAL_AND operation (6), the two values are passed to value_equal which performs the comparison and returns a result. Note, the two things compared here are the immediate value (9), and a non-lazy zero value from (7). However, with my proposed patch operation (7) no longer returns a zero value, instead it returns a lazy value representing the actual value in target memory. When we call value_equal in (6) this code causes GDB to try and fetch the actual value from target memory. If `ptr` is NULL then this will cause GDB to access some invalid address at an offset from zero, this will most likely fail, and cause GDB to throw an error instead of returning the expected type. And so, we can now describe the problem that we're facing. The way GDB's expression evaluator is currently written we assume, when in EVAL_AVOID_SIDE_EFFECTS mode, that any value returned from a child operation can safely have its content read without throwing an error. If child operations start returning real values (instead of the fake zero values), then this is simply not true. If we wanted to work around this then we would need to rewrite almost all operations (I would guess) so that EVAL_AVOID_SIDE_EFFECTS mode does not cause evaluation of an operation to try and read the value of a child operation. As an example, consider this current GDB code from eval.c: struct value * eval_op_equal (struct type *expect_type, struct expression *exp, enum noside noside, enum exp_opcode op, struct value *arg1, struct value *arg2) { if (binop_user_defined_p (op, arg1, arg2)) { return value_x_binop (arg1, arg2, op, OP_NULL, noside); } else { binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); int tem = value_equal (arg1, arg2); struct type *type = language_bool_type (exp->language_defn, exp->gdbarch); return value_from_longest (type, (LONGEST) tem); } } We could change this function to be this: struct value * eval_op_equal (struct type *expect_type, struct expression *exp, enum noside noside, enum exp_opcode op, struct value *arg1, struct value *arg2) { if (binop_user_defined_p (op, arg1, arg2)) { return value_x_binop (arg1, arg2, op, OP_NULL, noside); } else { struct type *type = language_bool_type (exp->language_defn, exp->gdbarch); if (noside == EVAL_AVOID_SIDE_EFFECTS) return value_zero (type, VALUE_LVAL (arg1)); else { binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); int tem = value_equal (arg1, arg2); return value_from_longest (type, (LONGEST) tem); } } } Now we don't call value_equal unless we really need to. However, we would need to make the same, or similar change to almost all operations, which would be a big task, and might not be a direction we wanted to take GDB in. So, for now, I'm proposing we go with the more targeted, Fortran specific solution, that does the minimal required in order to correctly resolve the dynamic types. gdb/ChangeLog: * f-exp.h (class fortran_structop_operation): New class. * f-exp.y (exp): Create fortran_structop_operation instead of the generic structop_operation. * f-lang.c (fortran_undetermined::evaluate): Re-evaluate expression as EVAL_NORMAL if the result type was dynamic so we can extract the actual array bounds. (fortran_structop_operation::evaluate): New function. gdb/testsuite/ChangeLog: * gdb.fortran/dynamic-ptype-whatis.exp: New file. * gdb.fortran/dynamic-ptype-whatis.f90: New file.
1886 lines
62 KiB
C
1886 lines
62 KiB
C
/* Fortran language support routines for GDB, the GNU debugger.
|
||
|
||
Copyright (C) 1993-2021 Free Software Foundation, Inc.
|
||
|
||
Contributed by Motorola. Adapted from the C parser by Farooq Butt
|
||
(fmbutt@engage.sps.mot.com).
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||
|
||
#include "defs.h"
|
||
#include "symtab.h"
|
||
#include "gdbtypes.h"
|
||
#include "expression.h"
|
||
#include "parser-defs.h"
|
||
#include "language.h"
|
||
#include "varobj.h"
|
||
#include "gdbcore.h"
|
||
#include "f-lang.h"
|
||
#include "valprint.h"
|
||
#include "value.h"
|
||
#include "cp-support.h"
|
||
#include "charset.h"
|
||
#include "c-lang.h"
|
||
#include "target-float.h"
|
||
#include "gdbarch.h"
|
||
#include "gdbcmd.h"
|
||
#include "f-array-walker.h"
|
||
#include "f-exp.h"
|
||
|
||
#include <math.h>
|
||
|
||
/* Whether GDB should repack array slices created by the user. */
|
||
static bool repack_array_slices = false;
|
||
|
||
/* Implement 'show fortran repack-array-slices'. */
|
||
static void
|
||
show_repack_array_slices (struct ui_file *file, int from_tty,
|
||
struct cmd_list_element *c, const char *value)
|
||
{
|
||
fprintf_filtered (file, _("Repacking of Fortran array slices is %s.\n"),
|
||
value);
|
||
}
|
||
|
||
/* Debugging of Fortran's array slicing. */
|
||
static bool fortran_array_slicing_debug = false;
|
||
|
||
/* Implement 'show debug fortran-array-slicing'. */
|
||
static void
|
||
show_fortran_array_slicing_debug (struct ui_file *file, int from_tty,
|
||
struct cmd_list_element *c,
|
||
const char *value)
|
||
{
|
||
fprintf_filtered (file, _("Debugging of Fortran array slicing is %s.\n"),
|
||
value);
|
||
}
|
||
|
||
/* Local functions */
|
||
|
||
static value *fortran_prepare_argument (struct expression *exp,
|
||
expr::operation *subexp,
|
||
int arg_num, bool is_internal_call_p,
|
||
struct type *func_type, enum noside noside);
|
||
|
||
/* Return the encoding that should be used for the character type
|
||
TYPE. */
|
||
|
||
const char *
|
||
f_language::get_encoding (struct type *type)
|
||
{
|
||
const char *encoding;
|
||
|
||
switch (TYPE_LENGTH (type))
|
||
{
|
||
case 1:
|
||
encoding = target_charset (type->arch ());
|
||
break;
|
||
case 4:
|
||
if (type_byte_order (type) == BFD_ENDIAN_BIG)
|
||
encoding = "UTF-32BE";
|
||
else
|
||
encoding = "UTF-32LE";
|
||
break;
|
||
|
||
default:
|
||
error (_("unrecognized character type"));
|
||
}
|
||
|
||
return encoding;
|
||
}
|
||
|
||
|
||
|
||
/* A helper function for the "bound" intrinsics that checks that TYPE
|
||
is an array. LBOUND_P is true for lower bound; this is used for
|
||
the error message, if any. */
|
||
|
||
static void
|
||
fortran_require_array (struct type *type, bool lbound_p)
|
||
{
|
||
type = check_typedef (type);
|
||
if (type->code () != TYPE_CODE_ARRAY)
|
||
{
|
||
if (lbound_p)
|
||
error (_("LBOUND can only be applied to arrays"));
|
||
else
|
||
error (_("UBOUND can only be applied to arrays"));
|
||
}
|
||
}
|
||
|
||
/* Create an array containing the lower bounds (when LBOUND_P is true) or
|
||
the upper bounds (when LBOUND_P is false) of ARRAY (which must be of
|
||
array type). GDBARCH is the current architecture. */
|
||
|
||
static struct value *
|
||
fortran_bounds_all_dims (bool lbound_p,
|
||
struct gdbarch *gdbarch,
|
||
struct value *array)
|
||
{
|
||
type *array_type = check_typedef (value_type (array));
|
||
int ndimensions = calc_f77_array_dims (array_type);
|
||
|
||
/* Allocate a result value of the correct type. */
|
||
struct type *range
|
||
= create_static_range_type (nullptr,
|
||
builtin_type (gdbarch)->builtin_int,
|
||
1, ndimensions);
|
||
struct type *elm_type = builtin_type (gdbarch)->builtin_long_long;
|
||
struct type *result_type = create_array_type (nullptr, elm_type, range);
|
||
struct value *result = allocate_value (result_type);
|
||
|
||
/* Walk the array dimensions backwards due to the way the array will be
|
||
laid out in memory, the first dimension will be the most inner. */
|
||
LONGEST elm_len = TYPE_LENGTH (elm_type);
|
||
for (LONGEST dst_offset = elm_len * (ndimensions - 1);
|
||
dst_offset >= 0;
|
||
dst_offset -= elm_len)
|
||
{
|
||
LONGEST b;
|
||
|
||
/* Grab the required bound. */
|
||
if (lbound_p)
|
||
b = f77_get_lowerbound (array_type);
|
||
else
|
||
b = f77_get_upperbound (array_type);
|
||
|
||
/* And copy the value into the result value. */
|
||
struct value *v = value_from_longest (elm_type, b);
|
||
gdb_assert (dst_offset + TYPE_LENGTH (value_type (v))
|
||
<= TYPE_LENGTH (value_type (result)));
|
||
gdb_assert (TYPE_LENGTH (value_type (v)) == elm_len);
|
||
value_contents_copy (result, dst_offset, v, 0, elm_len);
|
||
|
||
/* Peel another dimension of the array. */
|
||
array_type = TYPE_TARGET_TYPE (array_type);
|
||
}
|
||
|
||
return result;
|
||
}
|
||
|
||
/* Return the lower bound (when LBOUND_P is true) or the upper bound (when
|
||
LBOUND_P is false) for dimension DIM_VAL (which must be an integer) of
|
||
ARRAY (which must be an array). GDBARCH is the current architecture. */
|
||
|
||
static struct value *
|
||
fortran_bounds_for_dimension (bool lbound_p,
|
||
struct gdbarch *gdbarch,
|
||
struct value *array,
|
||
struct value *dim_val)
|
||
{
|
||
/* Check the requested dimension is valid for this array. */
|
||
type *array_type = check_typedef (value_type (array));
|
||
int ndimensions = calc_f77_array_dims (array_type);
|
||
long dim = value_as_long (dim_val);
|
||
if (dim < 1 || dim > ndimensions)
|
||
{
|
||
if (lbound_p)
|
||
error (_("LBOUND dimension must be from 1 to %d"), ndimensions);
|
||
else
|
||
error (_("UBOUND dimension must be from 1 to %d"), ndimensions);
|
||
}
|
||
|
||
/* The type for the result. */
|
||
struct type *bound_type = builtin_type (gdbarch)->builtin_long_long;
|
||
|
||
/* Walk the dimensions backwards, due to the ordering in which arrays are
|
||
laid out the first dimension is the most inner. */
|
||
for (int i = ndimensions - 1; i >= 0; --i)
|
||
{
|
||
/* If this is the requested dimension then we're done. Grab the
|
||
bounds and return. */
|
||
if (i == dim - 1)
|
||
{
|
||
LONGEST b;
|
||
|
||
if (lbound_p)
|
||
b = f77_get_lowerbound (array_type);
|
||
else
|
||
b = f77_get_upperbound (array_type);
|
||
|
||
return value_from_longest (bound_type, b);
|
||
}
|
||
|
||
/* Peel off another dimension of the array. */
|
||
array_type = TYPE_TARGET_TYPE (array_type);
|
||
}
|
||
|
||
gdb_assert_not_reached ("failed to find matching dimension");
|
||
}
|
||
|
||
|
||
/* Return the number of dimensions for a Fortran array or string. */
|
||
|
||
int
|
||
calc_f77_array_dims (struct type *array_type)
|
||
{
|
||
int ndimen = 1;
|
||
struct type *tmp_type;
|
||
|
||
if ((array_type->code () == TYPE_CODE_STRING))
|
||
return 1;
|
||
|
||
if ((array_type->code () != TYPE_CODE_ARRAY))
|
||
error (_("Can't get dimensions for a non-array type"));
|
||
|
||
tmp_type = array_type;
|
||
|
||
while ((tmp_type = TYPE_TARGET_TYPE (tmp_type)))
|
||
{
|
||
if (tmp_type->code () == TYPE_CODE_ARRAY)
|
||
++ndimen;
|
||
}
|
||
return ndimen;
|
||
}
|
||
|
||
/* A class used by FORTRAN_VALUE_SUBARRAY when repacking Fortran array
|
||
slices. This is a base class for two alternative repacking mechanisms,
|
||
one for when repacking from a lazy value, and one for repacking from a
|
||
non-lazy (already loaded) value. */
|
||
class fortran_array_repacker_base_impl
|
||
: public fortran_array_walker_base_impl
|
||
{
|
||
public:
|
||
/* Constructor, DEST is the value we are repacking into. */
|
||
fortran_array_repacker_base_impl (struct value *dest)
|
||
: m_dest (dest),
|
||
m_dest_offset (0)
|
||
{ /* Nothing. */ }
|
||
|
||
/* When we start processing the inner most dimension, this is where we
|
||
will be creating values for each element as we load them and then copy
|
||
them into the M_DEST value. Set a value mark so we can free these
|
||
temporary values. */
|
||
void start_dimension (bool inner_p)
|
||
{
|
||
if (inner_p)
|
||
{
|
||
gdb_assert (m_mark == nullptr);
|
||
m_mark = value_mark ();
|
||
}
|
||
}
|
||
|
||
/* When we finish processing the inner most dimension free all temporary
|
||
value that were created. */
|
||
void finish_dimension (bool inner_p, bool last_p)
|
||
{
|
||
if (inner_p)
|
||
{
|
||
gdb_assert (m_mark != nullptr);
|
||
value_free_to_mark (m_mark);
|
||
m_mark = nullptr;
|
||
}
|
||
}
|
||
|
||
protected:
|
||
/* Copy the contents of array element ELT into M_DEST at the next
|
||
available offset. */
|
||
void copy_element_to_dest (struct value *elt)
|
||
{
|
||
value_contents_copy (m_dest, m_dest_offset, elt, 0,
|
||
TYPE_LENGTH (value_type (elt)));
|
||
m_dest_offset += TYPE_LENGTH (value_type (elt));
|
||
}
|
||
|
||
/* The value being written to. */
|
||
struct value *m_dest;
|
||
|
||
/* The byte offset in M_DEST at which the next element should be
|
||
written. */
|
||
LONGEST m_dest_offset;
|
||
|
||
/* Set with a call to VALUE_MARK, and then reset after calling
|
||
VALUE_FREE_TO_MARK. */
|
||
struct value *m_mark = nullptr;
|
||
};
|
||
|
||
/* A class used by FORTRAN_VALUE_SUBARRAY when repacking Fortran array
|
||
slices. This class is specialised for repacking an array slice from a
|
||
lazy array value, as such it does not require the parent array value to
|
||
be loaded into GDB's memory; the parent value could be huge, while the
|
||
slice could be tiny. */
|
||
class fortran_lazy_array_repacker_impl
|
||
: public fortran_array_repacker_base_impl
|
||
{
|
||
public:
|
||
/* Constructor. TYPE is the type of the slice being loaded from the
|
||
parent value, so this type will correctly reflect the strides required
|
||
to find all of the elements from the parent value. ADDRESS is the
|
||
address in target memory of value matching TYPE, and DEST is the value
|
||
we are repacking into. */
|
||
explicit fortran_lazy_array_repacker_impl (struct type *type,
|
||
CORE_ADDR address,
|
||
struct value *dest)
|
||
: fortran_array_repacker_base_impl (dest),
|
||
m_addr (address)
|
||
{ /* Nothing. */ }
|
||
|
||
/* Create a lazy value in target memory representing a single element,
|
||
then load the element into GDB's memory and copy the contents into the
|
||
destination value. */
|
||
void process_element (struct type *elt_type, LONGEST elt_off, bool last_p)
|
||
{
|
||
copy_element_to_dest (value_at_lazy (elt_type, m_addr + elt_off));
|
||
}
|
||
|
||
private:
|
||
/* The address in target memory where the parent value starts. */
|
||
CORE_ADDR m_addr;
|
||
};
|
||
|
||
/* A class used by FORTRAN_VALUE_SUBARRAY when repacking Fortran array
|
||
slices. This class is specialised for repacking an array slice from a
|
||
previously loaded (non-lazy) array value, as such it fetches the
|
||
element values from the contents of the parent value. */
|
||
class fortran_array_repacker_impl
|
||
: public fortran_array_repacker_base_impl
|
||
{
|
||
public:
|
||
/* Constructor. TYPE is the type for the array slice within the parent
|
||
value, as such it has stride values as required to find the elements
|
||
within the original parent value. ADDRESS is the address in target
|
||
memory of the value matching TYPE. BASE_OFFSET is the offset from
|
||
the start of VAL's content buffer to the start of the object of TYPE,
|
||
VAL is the parent object from which we are loading the value, and
|
||
DEST is the value into which we are repacking. */
|
||
explicit fortran_array_repacker_impl (struct type *type, CORE_ADDR address,
|
||
LONGEST base_offset,
|
||
struct value *val, struct value *dest)
|
||
: fortran_array_repacker_base_impl (dest),
|
||
m_base_offset (base_offset),
|
||
m_val (val)
|
||
{
|
||
gdb_assert (!value_lazy (val));
|
||
}
|
||
|
||
/* Extract an element of ELT_TYPE at offset (M_BASE_OFFSET + ELT_OFF)
|
||
from the content buffer of M_VAL then copy this extracted value into
|
||
the repacked destination value. */
|
||
void process_element (struct type *elt_type, LONGEST elt_off, bool last_p)
|
||
{
|
||
struct value *elt
|
||
= value_from_component (m_val, elt_type, (elt_off + m_base_offset));
|
||
copy_element_to_dest (elt);
|
||
}
|
||
|
||
private:
|
||
/* The offset into the content buffer of M_VAL to the start of the slice
|
||
being extracted. */
|
||
LONGEST m_base_offset;
|
||
|
||
/* The parent value from which we are extracting a slice. */
|
||
struct value *m_val;
|
||
};
|
||
|
||
|
||
/* Evaluate FORTRAN_ASSOCIATED expressions. Both GDBARCH and LANG are
|
||
extracted from the expression being evaluated. POINTER is the required
|
||
first argument to the 'associated' keyword, and TARGET is the optional
|
||
second argument, this will be nullptr if the user only passed one
|
||
argument to their use of 'associated'. */
|
||
|
||
static struct value *
|
||
fortran_associated (struct gdbarch *gdbarch, const language_defn *lang,
|
||
struct value *pointer, struct value *target = nullptr)
|
||
{
|
||
struct type *result_type = language_bool_type (lang, gdbarch);
|
||
|
||
/* All Fortran pointers should have the associated property, this is
|
||
how we know the pointer is pointing at something or not. */
|
||
struct type *pointer_type = check_typedef (value_type (pointer));
|
||
if (TYPE_ASSOCIATED_PROP (pointer_type) == nullptr
|
||
&& pointer_type->code () != TYPE_CODE_PTR)
|
||
error (_("ASSOCIATED can only be applied to pointers"));
|
||
|
||
/* Get an address from POINTER. Fortran (or at least gfortran) models
|
||
array pointers as arrays with a dynamic data address, so we need to
|
||
use two approaches here, for real pointers we take the contents of the
|
||
pointer as an address. For non-pointers we take the address of the
|
||
content. */
|
||
CORE_ADDR pointer_addr;
|
||
if (pointer_type->code () == TYPE_CODE_PTR)
|
||
pointer_addr = value_as_address (pointer);
|
||
else
|
||
pointer_addr = value_address (pointer);
|
||
|
||
/* The single argument case, is POINTER associated with anything? */
|
||
if (target == nullptr)
|
||
{
|
||
bool is_associated = false;
|
||
|
||
/* If POINTER is an actual pointer and doesn't have an associated
|
||
property then we need to figure out whether this pointer is
|
||
associated by looking at the value of the pointer itself. We make
|
||
the assumption that a non-associated pointer will be set to 0.
|
||
This is probably true for most targets, but might not be true for
|
||
everyone. */
|
||
if (pointer_type->code () == TYPE_CODE_PTR
|
||
&& TYPE_ASSOCIATED_PROP (pointer_type) == nullptr)
|
||
is_associated = (pointer_addr != 0);
|
||
else
|
||
is_associated = !type_not_associated (pointer_type);
|
||
return value_from_longest (result_type, is_associated ? 1 : 0);
|
||
}
|
||
|
||
/* The two argument case, is POINTER associated with TARGET? */
|
||
|
||
struct type *target_type = check_typedef (value_type (target));
|
||
|
||
struct type *pointer_target_type;
|
||
if (pointer_type->code () == TYPE_CODE_PTR)
|
||
pointer_target_type = TYPE_TARGET_TYPE (pointer_type);
|
||
else
|
||
pointer_target_type = pointer_type;
|
||
|
||
struct type *target_target_type;
|
||
if (target_type->code () == TYPE_CODE_PTR)
|
||
target_target_type = TYPE_TARGET_TYPE (target_type);
|
||
else
|
||
target_target_type = target_type;
|
||
|
||
if (pointer_target_type->code () != target_target_type->code ()
|
||
|| (pointer_target_type->code () != TYPE_CODE_ARRAY
|
||
&& (TYPE_LENGTH (pointer_target_type)
|
||
!= TYPE_LENGTH (target_target_type))))
|
||
error (_("arguments to associated must be of same type and kind"));
|
||
|
||
/* If TARGET is not in memory, or the original pointer is specifically
|
||
known to be not associated with anything, then the answer is obviously
|
||
false. Alternatively, if POINTER is an actual pointer and has no
|
||
associated property, then we have to check if its associated by
|
||
looking the value of the pointer itself. We make the assumption that
|
||
a non-associated pointer will be set to 0. This is probably true for
|
||
most targets, but might not be true for everyone. */
|
||
if (value_lval_const (target) != lval_memory
|
||
|| type_not_associated (pointer_type)
|
||
|| (TYPE_ASSOCIATED_PROP (pointer_type) == nullptr
|
||
&& pointer_type->code () == TYPE_CODE_PTR
|
||
&& pointer_addr == 0))
|
||
return value_from_longest (result_type, 0);
|
||
|
||
/* See the comment for POINTER_ADDR above. */
|
||
CORE_ADDR target_addr;
|
||
if (target_type->code () == TYPE_CODE_PTR)
|
||
target_addr = value_as_address (target);
|
||
else
|
||
target_addr = value_address (target);
|
||
|
||
/* Wrap the following checks inside a do { ... } while (false) loop so
|
||
that we can use `break' to jump out of the loop. */
|
||
bool is_associated = false;
|
||
do
|
||
{
|
||
/* If the addresses are different then POINTER is definitely not
|
||
pointing at TARGET. */
|
||
if (pointer_addr != target_addr)
|
||
break;
|
||
|
||
/* If POINTER is a real pointer (i.e. not an array pointer, which are
|
||
implemented as arrays with a dynamic content address), then this
|
||
is all the checking that is needed. */
|
||
if (pointer_type->code () == TYPE_CODE_PTR)
|
||
{
|
||
is_associated = true;
|
||
break;
|
||
}
|
||
|
||
/* We have an array pointer. Check the number of dimensions. */
|
||
int pointer_dims = calc_f77_array_dims (pointer_type);
|
||
int target_dims = calc_f77_array_dims (target_type);
|
||
if (pointer_dims != target_dims)
|
||
break;
|
||
|
||
/* Now check that every dimension has the same upper bound, lower
|
||
bound, and stride value. */
|
||
int dim = 0;
|
||
while (dim < pointer_dims)
|
||
{
|
||
LONGEST pointer_lowerbound, pointer_upperbound, pointer_stride;
|
||
LONGEST target_lowerbound, target_upperbound, target_stride;
|
||
|
||
pointer_type = check_typedef (pointer_type);
|
||
target_type = check_typedef (target_type);
|
||
|
||
struct type *pointer_range = pointer_type->index_type ();
|
||
struct type *target_range = target_type->index_type ();
|
||
|
||
if (!get_discrete_bounds (pointer_range, &pointer_lowerbound,
|
||
&pointer_upperbound))
|
||
break;
|
||
|
||
if (!get_discrete_bounds (target_range, &target_lowerbound,
|
||
&target_upperbound))
|
||
break;
|
||
|
||
if (pointer_lowerbound != target_lowerbound
|
||
|| pointer_upperbound != target_upperbound)
|
||
break;
|
||
|
||
/* Figure out the stride (in bits) for both pointer and target.
|
||
If either doesn't have a stride then we take the element size,
|
||
but we need to convert to bits (hence the * 8). */
|
||
pointer_stride = pointer_range->bounds ()->bit_stride ();
|
||
if (pointer_stride == 0)
|
||
pointer_stride
|
||
= type_length_units (check_typedef
|
||
(TYPE_TARGET_TYPE (pointer_type))) * 8;
|
||
target_stride = target_range->bounds ()->bit_stride ();
|
||
if (target_stride == 0)
|
||
target_stride
|
||
= type_length_units (check_typedef
|
||
(TYPE_TARGET_TYPE (target_type))) * 8;
|
||
if (pointer_stride != target_stride)
|
||
break;
|
||
|
||
++dim;
|
||
}
|
||
|
||
if (dim < pointer_dims)
|
||
break;
|
||
|
||
is_associated = true;
|
||
}
|
||
while (false);
|
||
|
||
return value_from_longest (result_type, is_associated ? 1 : 0);
|
||
}
|
||
|
||
struct value *
|
||
eval_op_f_associated (struct type *expect_type,
|
||
struct expression *exp,
|
||
enum noside noside,
|
||
enum exp_opcode opcode,
|
||
struct value *arg1)
|
||
{
|
||
return fortran_associated (exp->gdbarch, exp->language_defn, arg1);
|
||
}
|
||
|
||
struct value *
|
||
eval_op_f_associated (struct type *expect_type,
|
||
struct expression *exp,
|
||
enum noside noside,
|
||
enum exp_opcode opcode,
|
||
struct value *arg1,
|
||
struct value *arg2)
|
||
{
|
||
return fortran_associated (exp->gdbarch, exp->language_defn, arg1, arg2);
|
||
}
|
||
|
||
/* Implement FORTRAN_ARRAY_SIZE expression, this corresponds to the 'SIZE'
|
||
keyword. Both GDBARCH and LANG are extracted from the expression being
|
||
evaluated. ARRAY is the value that should be an array, though this will
|
||
not have been checked before calling this function. DIM is optional, if
|
||
present then it should be an integer identifying a dimension of the
|
||
array to ask about. As with ARRAY the validity of DIM is not checked
|
||
before calling this function.
|
||
|
||
Return either the total number of elements in ARRAY (when DIM is
|
||
nullptr), or the number of elements in dimension DIM. */
|
||
|
||
static struct value *
|
||
fortran_array_size (struct gdbarch *gdbarch, const language_defn *lang,
|
||
struct value *array, struct value *dim_val = nullptr)
|
||
{
|
||
/* Check that ARRAY is the correct type. */
|
||
struct type *array_type = check_typedef (value_type (array));
|
||
if (array_type->code () != TYPE_CODE_ARRAY)
|
||
error (_("SIZE can only be applied to arrays"));
|
||
if (type_not_allocated (array_type) || type_not_associated (array_type))
|
||
error (_("SIZE can only be used on allocated/associated arrays"));
|
||
|
||
int ndimensions = calc_f77_array_dims (array_type);
|
||
int dim = -1;
|
||
LONGEST result = 0;
|
||
|
||
if (dim_val != nullptr)
|
||
{
|
||
if (check_typedef (value_type (dim_val))->code () != TYPE_CODE_INT)
|
||
error (_("DIM argument to SIZE must be an integer"));
|
||
dim = (int) value_as_long (dim_val);
|
||
|
||
if (dim < 1 || dim > ndimensions)
|
||
error (_("DIM argument to SIZE must be between 1 and %d"),
|
||
ndimensions);
|
||
}
|
||
|
||
/* Now walk over all the dimensions of the array totalling up the
|
||
elements in each dimension. */
|
||
for (int i = ndimensions - 1; i >= 0; --i)
|
||
{
|
||
/* If this is the requested dimension then we're done. Grab the
|
||
bounds and return. */
|
||
if (i == dim - 1 || dim == -1)
|
||
{
|
||
LONGEST lbound, ubound;
|
||
struct type *range = array_type->index_type ();
|
||
|
||
if (!get_discrete_bounds (range, &lbound, &ubound))
|
||
error (_("failed to find array bounds"));
|
||
|
||
LONGEST dim_size = (ubound - lbound + 1);
|
||
if (result == 0)
|
||
result = dim_size;
|
||
else
|
||
result *= dim_size;
|
||
|
||
if (dim != -1)
|
||
break;
|
||
}
|
||
|
||
/* Peel off another dimension of the array. */
|
||
array_type = TYPE_TARGET_TYPE (array_type);
|
||
}
|
||
|
||
struct type *result_type
|
||
= builtin_f_type (gdbarch)->builtin_integer;
|
||
return value_from_longest (result_type, result);
|
||
}
|
||
|
||
/* See f-exp.h. */
|
||
|
||
struct value *
|
||
eval_op_f_array_size (struct type *expect_type,
|
||
struct expression *exp,
|
||
enum noside noside,
|
||
enum exp_opcode opcode,
|
||
struct value *arg1)
|
||
{
|
||
gdb_assert (opcode == FORTRAN_ARRAY_SIZE);
|
||
return fortran_array_size (exp->gdbarch, exp->language_defn, arg1);
|
||
}
|
||
|
||
/* See f-exp.h. */
|
||
|
||
struct value *
|
||
eval_op_f_array_size (struct type *expect_type,
|
||
struct expression *exp,
|
||
enum noside noside,
|
||
enum exp_opcode opcode,
|
||
struct value *arg1,
|
||
struct value *arg2)
|
||
{
|
||
gdb_assert (opcode == FORTRAN_ARRAY_SIZE);
|
||
return fortran_array_size (exp->gdbarch, exp->language_defn, arg1, arg2);
|
||
}
|
||
|
||
/* Implement UNOP_FORTRAN_SHAPE expression. Both GDBARCH and LANG are
|
||
extracted from the expression being evaluated. VAL is the value on
|
||
which 'shape' was used, this can be any type.
|
||
|
||
Return an array of integers. If VAL is not an array then the returned
|
||
array should have zero elements. If VAL is an array then the returned
|
||
array should have one element per dimension, with the element
|
||
containing the extent of that dimension from VAL. */
|
||
|
||
static struct value *
|
||
fortran_array_shape (struct gdbarch *gdbarch, const language_defn *lang,
|
||
struct value *val)
|
||
{
|
||
struct type *val_type = check_typedef (value_type (val));
|
||
|
||
/* If we are passed an array that is either not allocated, or not
|
||
associated, then this is explicitly not allowed according to the
|
||
Fortran specification. */
|
||
if (val_type->code () == TYPE_CODE_ARRAY
|
||
&& (type_not_associated (val_type) || type_not_allocated (val_type)))
|
||
error (_("The array passed to SHAPE must be allocated or associated"));
|
||
|
||
/* The Fortran specification allows non-array types to be passed to this
|
||
function, in which case we get back an empty array.
|
||
|
||
Calculate the number of dimensions for the resulting array. */
|
||
int ndimensions = 0;
|
||
if (val_type->code () == TYPE_CODE_ARRAY)
|
||
ndimensions = calc_f77_array_dims (val_type);
|
||
|
||
/* Allocate a result value of the correct type. */
|
||
struct type *range
|
||
= create_static_range_type (nullptr,
|
||
builtin_type (gdbarch)->builtin_int,
|
||
1, ndimensions);
|
||
struct type *elm_type = builtin_f_type (gdbarch)->builtin_integer;
|
||
struct type *result_type = create_array_type (nullptr, elm_type, range);
|
||
struct value *result = allocate_value (result_type);
|
||
LONGEST elm_len = TYPE_LENGTH (elm_type);
|
||
|
||
/* Walk the array dimensions backwards due to the way the array will be
|
||
laid out in memory, the first dimension will be the most inner.
|
||
|
||
If VAL was not an array then ndimensions will be 0, in which case we
|
||
will never go around this loop. */
|
||
for (LONGEST dst_offset = elm_len * (ndimensions - 1);
|
||
dst_offset >= 0;
|
||
dst_offset -= elm_len)
|
||
{
|
||
LONGEST lbound, ubound;
|
||
|
||
if (!get_discrete_bounds (val_type->index_type (), &lbound, &ubound))
|
||
error (_("failed to find array bounds"));
|
||
|
||
LONGEST dim_size = (ubound - lbound + 1);
|
||
|
||
/* And copy the value into the result value. */
|
||
struct value *v = value_from_longest (elm_type, dim_size);
|
||
gdb_assert (dst_offset + TYPE_LENGTH (value_type (v))
|
||
<= TYPE_LENGTH (value_type (result)));
|
||
gdb_assert (TYPE_LENGTH (value_type (v)) == elm_len);
|
||
value_contents_copy (result, dst_offset, v, 0, elm_len);
|
||
|
||
/* Peel another dimension of the array. */
|
||
val_type = TYPE_TARGET_TYPE (val_type);
|
||
}
|
||
|
||
return result;
|
||
}
|
||
|
||
/* See f-exp.h. */
|
||
|
||
struct value *
|
||
eval_op_f_array_shape (struct type *expect_type, struct expression *exp,
|
||
enum noside noside, enum exp_opcode opcode,
|
||
struct value *arg1)
|
||
{
|
||
gdb_assert (opcode == UNOP_FORTRAN_SHAPE);
|
||
return fortran_array_shape (exp->gdbarch, exp->language_defn, arg1);
|
||
}
|
||
|
||
/* A helper function for UNOP_ABS. */
|
||
|
||
struct value *
|
||
eval_op_f_abs (struct type *expect_type, struct expression *exp,
|
||
enum noside noside,
|
||
enum exp_opcode opcode,
|
||
struct value *arg1)
|
||
{
|
||
struct type *type = value_type (arg1);
|
||
switch (type->code ())
|
||
{
|
||
case TYPE_CODE_FLT:
|
||
{
|
||
double d
|
||
= fabs (target_float_to_host_double (value_contents (arg1),
|
||
value_type (arg1)));
|
||
return value_from_host_double (type, d);
|
||
}
|
||
case TYPE_CODE_INT:
|
||
{
|
||
LONGEST l = value_as_long (arg1);
|
||
l = llabs (l);
|
||
return value_from_longest (type, l);
|
||
}
|
||
}
|
||
error (_("ABS of type %s not supported"), TYPE_SAFE_NAME (type));
|
||
}
|
||
|
||
/* A helper function for BINOP_MOD. */
|
||
|
||
struct value *
|
||
eval_op_f_mod (struct type *expect_type, struct expression *exp,
|
||
enum noside noside,
|
||
enum exp_opcode opcode,
|
||
struct value *arg1, struct value *arg2)
|
||
{
|
||
struct type *type = value_type (arg1);
|
||
if (type->code () != value_type (arg2)->code ())
|
||
error (_("non-matching types for parameters to MOD ()"));
|
||
switch (type->code ())
|
||
{
|
||
case TYPE_CODE_FLT:
|
||
{
|
||
double d1
|
||
= target_float_to_host_double (value_contents (arg1),
|
||
value_type (arg1));
|
||
double d2
|
||
= target_float_to_host_double (value_contents (arg2),
|
||
value_type (arg2));
|
||
double d3 = fmod (d1, d2);
|
||
return value_from_host_double (type, d3);
|
||
}
|
||
case TYPE_CODE_INT:
|
||
{
|
||
LONGEST v1 = value_as_long (arg1);
|
||
LONGEST v2 = value_as_long (arg2);
|
||
if (v2 == 0)
|
||
error (_("calling MOD (N, 0) is undefined"));
|
||
LONGEST v3 = v1 - (v1 / v2) * v2;
|
||
return value_from_longest (value_type (arg1), v3);
|
||
}
|
||
}
|
||
error (_("MOD of type %s not supported"), TYPE_SAFE_NAME (type));
|
||
}
|
||
|
||
/* A helper function for UNOP_FORTRAN_CEILING. */
|
||
|
||
struct value *
|
||
eval_op_f_ceil (struct type *expect_type, struct expression *exp,
|
||
enum noside noside,
|
||
enum exp_opcode opcode,
|
||
struct value *arg1)
|
||
{
|
||
struct type *type = value_type (arg1);
|
||
if (type->code () != TYPE_CODE_FLT)
|
||
error (_("argument to CEILING must be of type float"));
|
||
double val
|
||
= target_float_to_host_double (value_contents (arg1),
|
||
value_type (arg1));
|
||
val = ceil (val);
|
||
return value_from_host_double (type, val);
|
||
}
|
||
|
||
/* A helper function for UNOP_FORTRAN_FLOOR. */
|
||
|
||
struct value *
|
||
eval_op_f_floor (struct type *expect_type, struct expression *exp,
|
||
enum noside noside,
|
||
enum exp_opcode opcode,
|
||
struct value *arg1)
|
||
{
|
||
struct type *type = value_type (arg1);
|
||
if (type->code () != TYPE_CODE_FLT)
|
||
error (_("argument to FLOOR must be of type float"));
|
||
double val
|
||
= target_float_to_host_double (value_contents (arg1),
|
||
value_type (arg1));
|
||
val = floor (val);
|
||
return value_from_host_double (type, val);
|
||
}
|
||
|
||
/* A helper function for BINOP_FORTRAN_MODULO. */
|
||
|
||
struct value *
|
||
eval_op_f_modulo (struct type *expect_type, struct expression *exp,
|
||
enum noside noside,
|
||
enum exp_opcode opcode,
|
||
struct value *arg1, struct value *arg2)
|
||
{
|
||
struct type *type = value_type (arg1);
|
||
if (type->code () != value_type (arg2)->code ())
|
||
error (_("non-matching types for parameters to MODULO ()"));
|
||
/* MODULO(A, P) = A - FLOOR (A / P) * P */
|
||
switch (type->code ())
|
||
{
|
||
case TYPE_CODE_INT:
|
||
{
|
||
LONGEST a = value_as_long (arg1);
|
||
LONGEST p = value_as_long (arg2);
|
||
LONGEST result = a - (a / p) * p;
|
||
if (result != 0 && (a < 0) != (p < 0))
|
||
result += p;
|
||
return value_from_longest (value_type (arg1), result);
|
||
}
|
||
case TYPE_CODE_FLT:
|
||
{
|
||
double a
|
||
= target_float_to_host_double (value_contents (arg1),
|
||
value_type (arg1));
|
||
double p
|
||
= target_float_to_host_double (value_contents (arg2),
|
||
value_type (arg2));
|
||
double result = fmod (a, p);
|
||
if (result != 0 && (a < 0.0) != (p < 0.0))
|
||
result += p;
|
||
return value_from_host_double (type, result);
|
||
}
|
||
}
|
||
error (_("MODULO of type %s not supported"), TYPE_SAFE_NAME (type));
|
||
}
|
||
|
||
/* A helper function for BINOP_FORTRAN_CMPLX. */
|
||
|
||
struct value *
|
||
eval_op_f_cmplx (struct type *expect_type, struct expression *exp,
|
||
enum noside noside,
|
||
enum exp_opcode opcode,
|
||
struct value *arg1, struct value *arg2)
|
||
{
|
||
struct type *type = builtin_f_type(exp->gdbarch)->builtin_complex_s16;
|
||
return value_literal_complex (arg1, arg2, type);
|
||
}
|
||
|
||
/* A helper function for UNOP_FORTRAN_KIND. */
|
||
|
||
struct value *
|
||
eval_op_f_kind (struct type *expect_type, struct expression *exp,
|
||
enum noside noside,
|
||
enum exp_opcode opcode,
|
||
struct value *arg1)
|
||
{
|
||
struct type *type = value_type (arg1);
|
||
|
||
switch (type->code ())
|
||
{
|
||
case TYPE_CODE_STRUCT:
|
||
case TYPE_CODE_UNION:
|
||
case TYPE_CODE_MODULE:
|
||
case TYPE_CODE_FUNC:
|
||
error (_("argument to kind must be an intrinsic type"));
|
||
}
|
||
|
||
if (!TYPE_TARGET_TYPE (type))
|
||
return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
|
||
TYPE_LENGTH (type));
|
||
return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
|
||
TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
|
||
}
|
||
|
||
/* A helper function for UNOP_FORTRAN_ALLOCATED. */
|
||
|
||
struct value *
|
||
eval_op_f_allocated (struct type *expect_type, struct expression *exp,
|
||
enum noside noside, enum exp_opcode op,
|
||
struct value *arg1)
|
||
{
|
||
struct type *type = check_typedef (value_type (arg1));
|
||
if (type->code () != TYPE_CODE_ARRAY)
|
||
error (_("ALLOCATED can only be applied to arrays"));
|
||
struct type *result_type
|
||
= builtin_f_type (exp->gdbarch)->builtin_logical;
|
||
LONGEST result_value = type_not_allocated (type) ? 0 : 1;
|
||
return value_from_longest (result_type, result_value);
|
||
}
|
||
|
||
/* See f-exp.h. */
|
||
|
||
struct value *
|
||
eval_op_f_rank (struct type *expect_type,
|
||
struct expression *exp,
|
||
enum noside noside,
|
||
enum exp_opcode op,
|
||
struct value *arg1)
|
||
{
|
||
gdb_assert (op == UNOP_FORTRAN_RANK);
|
||
|
||
struct type *result_type
|
||
= builtin_f_type (exp->gdbarch)->builtin_integer;
|
||
struct type *type = check_typedef (value_type (arg1));
|
||
if (type->code () != TYPE_CODE_ARRAY)
|
||
return value_from_longest (result_type, 0);
|
||
LONGEST ndim = calc_f77_array_dims (type);
|
||
return value_from_longest (result_type, ndim);
|
||
}
|
||
|
||
/* A helper function for UNOP_FORTRAN_LOC. */
|
||
|
||
struct value *
|
||
eval_op_f_loc (struct type *expect_type, struct expression *exp,
|
||
enum noside noside, enum exp_opcode op,
|
||
struct value *arg1)
|
||
{
|
||
struct type *result_type;
|
||
if (gdbarch_ptr_bit (exp->gdbarch) == 16)
|
||
result_type = builtin_f_type (exp->gdbarch)->builtin_integer_s2;
|
||
else if (gdbarch_ptr_bit (exp->gdbarch) == 32)
|
||
result_type = builtin_f_type (exp->gdbarch)->builtin_integer;
|
||
else
|
||
result_type = builtin_f_type (exp->gdbarch)->builtin_integer_s8;
|
||
|
||
LONGEST result_value = value_address (arg1);
|
||
return value_from_longest (result_type, result_value);
|
||
}
|
||
|
||
namespace expr
|
||
{
|
||
|
||
/* Called from evaluate to perform array indexing, and sub-range
|
||
extraction, for Fortran. As well as arrays this function also
|
||
handles strings as they can be treated like arrays of characters.
|
||
ARRAY is the array or string being accessed. EXP and NOSIDE are as
|
||
for evaluate. */
|
||
|
||
value *
|
||
fortran_undetermined::value_subarray (value *array,
|
||
struct expression *exp,
|
||
enum noside noside)
|
||
{
|
||
type *original_array_type = check_typedef (value_type (array));
|
||
bool is_string_p = original_array_type->code () == TYPE_CODE_STRING;
|
||
const std::vector<operation_up> &ops = std::get<1> (m_storage);
|
||
int nargs = ops.size ();
|
||
|
||
/* Perform checks for ARRAY not being available. The somewhat overly
|
||
complex logic here is just to keep backward compatibility with the
|
||
errors that we used to get before FORTRAN_VALUE_SUBARRAY was
|
||
rewritten. Maybe a future task would streamline the error messages we
|
||
get here, and update all the expected test results. */
|
||
if (ops[0]->opcode () != OP_RANGE)
|
||
{
|
||
if (type_not_associated (original_array_type))
|
||
error (_("no such vector element (vector not associated)"));
|
||
else if (type_not_allocated (original_array_type))
|
||
error (_("no such vector element (vector not allocated)"));
|
||
}
|
||
else
|
||
{
|
||
if (type_not_associated (original_array_type))
|
||
error (_("array not associated"));
|
||
else if (type_not_allocated (original_array_type))
|
||
error (_("array not allocated"));
|
||
}
|
||
|
||
/* First check that the number of dimensions in the type we are slicing
|
||
matches the number of arguments we were passed. */
|
||
int ndimensions = calc_f77_array_dims (original_array_type);
|
||
if (nargs != ndimensions)
|
||
error (_("Wrong number of subscripts"));
|
||
|
||
/* This will be initialised below with the type of the elements held in
|
||
ARRAY. */
|
||
struct type *inner_element_type;
|
||
|
||
/* Extract the types of each array dimension from the original array
|
||
type. We need these available so we can fill in the default upper and
|
||
lower bounds if the user requested slice doesn't provide that
|
||
information. Additionally unpacking the dimensions like this gives us
|
||
the inner element type. */
|
||
std::vector<struct type *> dim_types;
|
||
{
|
||
dim_types.reserve (ndimensions);
|
||
struct type *type = original_array_type;
|
||
for (int i = 0; i < ndimensions; ++i)
|
||
{
|
||
dim_types.push_back (type);
|
||
type = TYPE_TARGET_TYPE (type);
|
||
}
|
||
/* TYPE is now the inner element type of the array, we start the new
|
||
array slice off as this type, then as we process the requested slice
|
||
(from the user) we wrap new types around this to build up the final
|
||
slice type. */
|
||
inner_element_type = type;
|
||
}
|
||
|
||
/* As we analyse the new slice type we need to understand if the data
|
||
being referenced is contiguous. Do decide this we must track the size
|
||
of an element at each dimension of the new slice array. Initially the
|
||
elements of the inner most dimension of the array are the same inner
|
||
most elements as the original ARRAY. */
|
||
LONGEST slice_element_size = TYPE_LENGTH (inner_element_type);
|
||
|
||
/* Start off assuming all data is contiguous, this will be set to false
|
||
if access to any dimension results in non-contiguous data. */
|
||
bool is_all_contiguous = true;
|
||
|
||
/* The TOTAL_OFFSET is the distance in bytes from the start of the
|
||
original ARRAY to the start of the new slice. This is calculated as
|
||
we process the information from the user. */
|
||
LONGEST total_offset = 0;
|
||
|
||
/* A structure representing information about each dimension of the
|
||
resulting slice. */
|
||
struct slice_dim
|
||
{
|
||
/* Constructor. */
|
||
slice_dim (LONGEST l, LONGEST h, LONGEST s, struct type *idx)
|
||
: low (l),
|
||
high (h),
|
||
stride (s),
|
||
index (idx)
|
||
{ /* Nothing. */ }
|
||
|
||
/* The low bound for this dimension of the slice. */
|
||
LONGEST low;
|
||
|
||
/* The high bound for this dimension of the slice. */
|
||
LONGEST high;
|
||
|
||
/* The byte stride for this dimension of the slice. */
|
||
LONGEST stride;
|
||
|
||
struct type *index;
|
||
};
|
||
|
||
/* The dimensions of the resulting slice. */
|
||
std::vector<slice_dim> slice_dims;
|
||
|
||
/* Process the incoming arguments. These arguments are in the reverse
|
||
order to the array dimensions, that is the first argument refers to
|
||
the last array dimension. */
|
||
if (fortran_array_slicing_debug)
|
||
debug_printf ("Processing array access:\n");
|
||
for (int i = 0; i < nargs; ++i)
|
||
{
|
||
/* For each dimension of the array the user will have either provided
|
||
a ranged access with optional lower bound, upper bound, and
|
||
stride, or the user will have supplied a single index. */
|
||
struct type *dim_type = dim_types[ndimensions - (i + 1)];
|
||
fortran_range_operation *range_op
|
||
= dynamic_cast<fortran_range_operation *> (ops[i].get ());
|
||
if (range_op != nullptr)
|
||
{
|
||
enum range_flag range_flag = range_op->get_flags ();
|
||
|
||
LONGEST low, high, stride;
|
||
low = high = stride = 0;
|
||
|
||
if ((range_flag & RANGE_LOW_BOUND_DEFAULT) == 0)
|
||
low = value_as_long (range_op->evaluate0 (exp, noside));
|
||
else
|
||
low = f77_get_lowerbound (dim_type);
|
||
if ((range_flag & RANGE_HIGH_BOUND_DEFAULT) == 0)
|
||
high = value_as_long (range_op->evaluate1 (exp, noside));
|
||
else
|
||
high = f77_get_upperbound (dim_type);
|
||
if ((range_flag & RANGE_HAS_STRIDE) == RANGE_HAS_STRIDE)
|
||
stride = value_as_long (range_op->evaluate2 (exp, noside));
|
||
else
|
||
stride = 1;
|
||
|
||
if (stride == 0)
|
||
error (_("stride must not be 0"));
|
||
|
||
/* Get information about this dimension in the original ARRAY. */
|
||
struct type *target_type = TYPE_TARGET_TYPE (dim_type);
|
||
struct type *index_type = dim_type->index_type ();
|
||
LONGEST lb = f77_get_lowerbound (dim_type);
|
||
LONGEST ub = f77_get_upperbound (dim_type);
|
||
LONGEST sd = index_type->bit_stride ();
|
||
if (sd == 0)
|
||
sd = TYPE_LENGTH (target_type) * 8;
|
||
|
||
if (fortran_array_slicing_debug)
|
||
{
|
||
debug_printf ("|-> Range access\n");
|
||
std::string str = type_to_string (dim_type);
|
||
debug_printf ("| |-> Type: %s\n", str.c_str ());
|
||
debug_printf ("| |-> Array:\n");
|
||
debug_printf ("| | |-> Low bound: %s\n", plongest (lb));
|
||
debug_printf ("| | |-> High bound: %s\n", plongest (ub));
|
||
debug_printf ("| | |-> Bit stride: %s\n", plongest (sd));
|
||
debug_printf ("| | |-> Byte stride: %s\n", plongest (sd / 8));
|
||
debug_printf ("| | |-> Type size: %s\n",
|
||
pulongest (TYPE_LENGTH (dim_type)));
|
||
debug_printf ("| | '-> Target type size: %s\n",
|
||
pulongest (TYPE_LENGTH (target_type)));
|
||
debug_printf ("| |-> Accessing:\n");
|
||
debug_printf ("| | |-> Low bound: %s\n",
|
||
plongest (low));
|
||
debug_printf ("| | |-> High bound: %s\n",
|
||
plongest (high));
|
||
debug_printf ("| | '-> Element stride: %s\n",
|
||
plongest (stride));
|
||
}
|
||
|
||
/* Check the user hasn't asked for something invalid. */
|
||
if (high > ub || low < lb)
|
||
error (_("array subscript out of bounds"));
|
||
|
||
/* Calculate what this dimension of the new slice array will look
|
||
like. OFFSET is the byte offset from the start of the
|
||
previous (more outer) dimension to the start of this
|
||
dimension. E_COUNT is the number of elements in this
|
||
dimension. REMAINDER is the number of elements remaining
|
||
between the last included element and the upper bound. For
|
||
example an access '1:6:2' will include elements 1, 3, 5 and
|
||
have a remainder of 1 (element #6). */
|
||
LONGEST lowest = std::min (low, high);
|
||
LONGEST offset = (sd / 8) * (lowest - lb);
|
||
LONGEST e_count = std::abs (high - low) + 1;
|
||
e_count = (e_count + (std::abs (stride) - 1)) / std::abs (stride);
|
||
LONGEST new_low = 1;
|
||
LONGEST new_high = new_low + e_count - 1;
|
||
LONGEST new_stride = (sd * stride) / 8;
|
||
LONGEST last_elem = low + ((e_count - 1) * stride);
|
||
LONGEST remainder = high - last_elem;
|
||
if (low > high)
|
||
{
|
||
offset += std::abs (remainder) * TYPE_LENGTH (target_type);
|
||
if (stride > 0)
|
||
error (_("incorrect stride and boundary combination"));
|
||
}
|
||
else if (stride < 0)
|
||
error (_("incorrect stride and boundary combination"));
|
||
|
||
/* Is the data within this dimension contiguous? It is if the
|
||
newly computed stride is the same size as a single element of
|
||
this dimension. */
|
||
bool is_dim_contiguous = (new_stride == slice_element_size);
|
||
is_all_contiguous &= is_dim_contiguous;
|
||
|
||
if (fortran_array_slicing_debug)
|
||
{
|
||
debug_printf ("| '-> Results:\n");
|
||
debug_printf ("| |-> Offset = %s\n", plongest (offset));
|
||
debug_printf ("| |-> Elements = %s\n", plongest (e_count));
|
||
debug_printf ("| |-> Low bound = %s\n", plongest (new_low));
|
||
debug_printf ("| |-> High bound = %s\n",
|
||
plongest (new_high));
|
||
debug_printf ("| |-> Byte stride = %s\n",
|
||
plongest (new_stride));
|
||
debug_printf ("| |-> Last element = %s\n",
|
||
plongest (last_elem));
|
||
debug_printf ("| |-> Remainder = %s\n",
|
||
plongest (remainder));
|
||
debug_printf ("| '-> Contiguous = %s\n",
|
||
(is_dim_contiguous ? "Yes" : "No"));
|
||
}
|
||
|
||
/* Figure out how big (in bytes) an element of this dimension of
|
||
the new array slice will be. */
|
||
slice_element_size = std::abs (new_stride * e_count);
|
||
|
||
slice_dims.emplace_back (new_low, new_high, new_stride,
|
||
index_type);
|
||
|
||
/* Update the total offset. */
|
||
total_offset += offset;
|
||
}
|
||
else
|
||
{
|
||
/* There is a single index for this dimension. */
|
||
LONGEST index
|
||
= value_as_long (ops[i]->evaluate_with_coercion (exp, noside));
|
||
|
||
/* Get information about this dimension in the original ARRAY. */
|
||
struct type *target_type = TYPE_TARGET_TYPE (dim_type);
|
||
struct type *index_type = dim_type->index_type ();
|
||
LONGEST lb = f77_get_lowerbound (dim_type);
|
||
LONGEST ub = f77_get_upperbound (dim_type);
|
||
LONGEST sd = index_type->bit_stride () / 8;
|
||
if (sd == 0)
|
||
sd = TYPE_LENGTH (target_type);
|
||
|
||
if (fortran_array_slicing_debug)
|
||
{
|
||
debug_printf ("|-> Index access\n");
|
||
std::string str = type_to_string (dim_type);
|
||
debug_printf ("| |-> Type: %s\n", str.c_str ());
|
||
debug_printf ("| |-> Array:\n");
|
||
debug_printf ("| | |-> Low bound: %s\n", plongest (lb));
|
||
debug_printf ("| | |-> High bound: %s\n", plongest (ub));
|
||
debug_printf ("| | |-> Byte stride: %s\n", plongest (sd));
|
||
debug_printf ("| | |-> Type size: %s\n",
|
||
pulongest (TYPE_LENGTH (dim_type)));
|
||
debug_printf ("| | '-> Target type size: %s\n",
|
||
pulongest (TYPE_LENGTH (target_type)));
|
||
debug_printf ("| '-> Accessing:\n");
|
||
debug_printf ("| '-> Index: %s\n",
|
||
plongest (index));
|
||
}
|
||
|
||
/* If the array has actual content then check the index is in
|
||
bounds. An array without content (an unbound array) doesn't
|
||
have a known upper bound, so don't error check in that
|
||
situation. */
|
||
if (index < lb
|
||
|| (dim_type->index_type ()->bounds ()->high.kind () != PROP_UNDEFINED
|
||
&& index > ub)
|
||
|| (VALUE_LVAL (array) != lval_memory
|
||
&& dim_type->index_type ()->bounds ()->high.kind () == PROP_UNDEFINED))
|
||
{
|
||
if (type_not_associated (dim_type))
|
||
error (_("no such vector element (vector not associated)"));
|
||
else if (type_not_allocated (dim_type))
|
||
error (_("no such vector element (vector not allocated)"));
|
||
else
|
||
error (_("no such vector element"));
|
||
}
|
||
|
||
/* Calculate using the type stride, not the target type size. */
|
||
LONGEST offset = sd * (index - lb);
|
||
total_offset += offset;
|
||
}
|
||
}
|
||
|
||
/* Build a type that represents the new array slice in the target memory
|
||
of the original ARRAY, this type makes use of strides to correctly
|
||
find only those elements that are part of the new slice. */
|
||
struct type *array_slice_type = inner_element_type;
|
||
for (const auto &d : slice_dims)
|
||
{
|
||
/* Create the range. */
|
||
dynamic_prop p_low, p_high, p_stride;
|
||
|
||
p_low.set_const_val (d.low);
|
||
p_high.set_const_val (d.high);
|
||
p_stride.set_const_val (d.stride);
|
||
|
||
struct type *new_range
|
||
= create_range_type_with_stride ((struct type *) NULL,
|
||
TYPE_TARGET_TYPE (d.index),
|
||
&p_low, &p_high, 0, &p_stride,
|
||
true);
|
||
array_slice_type
|
||
= create_array_type (nullptr, array_slice_type, new_range);
|
||
}
|
||
|
||
if (fortran_array_slicing_debug)
|
||
{
|
||
debug_printf ("'-> Final result:\n");
|
||
debug_printf (" |-> Type: %s\n",
|
||
type_to_string (array_slice_type).c_str ());
|
||
debug_printf (" |-> Total offset: %s\n",
|
||
plongest (total_offset));
|
||
debug_printf (" |-> Base address: %s\n",
|
||
core_addr_to_string (value_address (array)));
|
||
debug_printf (" '-> Contiguous = %s\n",
|
||
(is_all_contiguous ? "Yes" : "No"));
|
||
}
|
||
|
||
/* Should we repack this array slice? */
|
||
if (!is_all_contiguous && (repack_array_slices || is_string_p))
|
||
{
|
||
/* Build a type for the repacked slice. */
|
||
struct type *repacked_array_type = inner_element_type;
|
||
for (const auto &d : slice_dims)
|
||
{
|
||
/* Create the range. */
|
||
dynamic_prop p_low, p_high, p_stride;
|
||
|
||
p_low.set_const_val (d.low);
|
||
p_high.set_const_val (d.high);
|
||
p_stride.set_const_val (TYPE_LENGTH (repacked_array_type));
|
||
|
||
struct type *new_range
|
||
= create_range_type_with_stride ((struct type *) NULL,
|
||
TYPE_TARGET_TYPE (d.index),
|
||
&p_low, &p_high, 0, &p_stride,
|
||
true);
|
||
repacked_array_type
|
||
= create_array_type (nullptr, repacked_array_type, new_range);
|
||
}
|
||
|
||
/* Now copy the elements from the original ARRAY into the packed
|
||
array value DEST. */
|
||
struct value *dest = allocate_value (repacked_array_type);
|
||
if (value_lazy (array)
|
||
|| (total_offset + TYPE_LENGTH (array_slice_type)
|
||
> TYPE_LENGTH (check_typedef (value_type (array)))))
|
||
{
|
||
fortran_array_walker<fortran_lazy_array_repacker_impl> p
|
||
(array_slice_type, value_address (array) + total_offset, dest);
|
||
p.walk ();
|
||
}
|
||
else
|
||
{
|
||
fortran_array_walker<fortran_array_repacker_impl> p
|
||
(array_slice_type, value_address (array) + total_offset,
|
||
total_offset, array, dest);
|
||
p.walk ();
|
||
}
|
||
array = dest;
|
||
}
|
||
else
|
||
{
|
||
if (VALUE_LVAL (array) == lval_memory)
|
||
{
|
||
/* If the value we're taking a slice from is not yet loaded, or
|
||
the requested slice is outside the values content range then
|
||
just create a new lazy value pointing at the memory where the
|
||
contents we're looking for exist. */
|
||
if (value_lazy (array)
|
||
|| (total_offset + TYPE_LENGTH (array_slice_type)
|
||
> TYPE_LENGTH (check_typedef (value_type (array)))))
|
||
array = value_at_lazy (array_slice_type,
|
||
value_address (array) + total_offset);
|
||
else
|
||
array = value_from_contents_and_address (array_slice_type,
|
||
(value_contents (array)
|
||
+ total_offset),
|
||
(value_address (array)
|
||
+ total_offset));
|
||
}
|
||
else if (!value_lazy (array))
|
||
array = value_from_component (array, array_slice_type, total_offset);
|
||
else
|
||
error (_("cannot subscript arrays that are not in memory"));
|
||
}
|
||
|
||
return array;
|
||
}
|
||
|
||
value *
|
||
fortran_undetermined::evaluate (struct type *expect_type,
|
||
struct expression *exp,
|
||
enum noside noside)
|
||
{
|
||
value *callee = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS
|
||
&& is_dynamic_type (value_type (callee)))
|
||
callee = std::get<0> (m_storage)->evaluate (nullptr, exp, EVAL_NORMAL);
|
||
struct type *type = check_typedef (value_type (callee));
|
||
enum type_code code = type->code ();
|
||
|
||
if (code == TYPE_CODE_PTR)
|
||
{
|
||
/* Fortran always passes variable to subroutines as pointer.
|
||
So we need to look into its target type to see if it is
|
||
array, string or function. If it is, we need to switch
|
||
to the target value the original one points to. */
|
||
struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
|
||
|
||
if (target_type->code () == TYPE_CODE_ARRAY
|
||
|| target_type->code () == TYPE_CODE_STRING
|
||
|| target_type->code () == TYPE_CODE_FUNC)
|
||
{
|
||
callee = value_ind (callee);
|
||
type = check_typedef (value_type (callee));
|
||
code = type->code ();
|
||
}
|
||
}
|
||
|
||
switch (code)
|
||
{
|
||
case TYPE_CODE_ARRAY:
|
||
case TYPE_CODE_STRING:
|
||
return value_subarray (callee, exp, noside);
|
||
|
||
case TYPE_CODE_PTR:
|
||
case TYPE_CODE_FUNC:
|
||
case TYPE_CODE_INTERNAL_FUNCTION:
|
||
{
|
||
/* It's a function call. Allocate arg vector, including
|
||
space for the function to be called in argvec[0] and a
|
||
termination NULL. */
|
||
const std::vector<operation_up> &actual (std::get<1> (m_storage));
|
||
std::vector<value *> argvec (actual.size ());
|
||
bool is_internal_func = (code == TYPE_CODE_INTERNAL_FUNCTION);
|
||
for (int tem = 0; tem < argvec.size (); tem++)
|
||
argvec[tem] = fortran_prepare_argument (exp, actual[tem].get (),
|
||
tem, is_internal_func,
|
||
value_type (callee),
|
||
noside);
|
||
return evaluate_subexp_do_call (exp, noside, callee, argvec,
|
||
nullptr, expect_type);
|
||
}
|
||
|
||
default:
|
||
error (_("Cannot perform substring on this type"));
|
||
}
|
||
}
|
||
|
||
value *
|
||
fortran_bound_1arg::evaluate (struct type *expect_type,
|
||
struct expression *exp,
|
||
enum noside noside)
|
||
{
|
||
bool lbound_p = std::get<0> (m_storage) == FORTRAN_LBOUND;
|
||
value *arg1 = std::get<1> (m_storage)->evaluate (nullptr, exp, noside);
|
||
fortran_require_array (value_type (arg1), lbound_p);
|
||
return fortran_bounds_all_dims (lbound_p, exp->gdbarch, arg1);
|
||
}
|
||
|
||
value *
|
||
fortran_bound_2arg::evaluate (struct type *expect_type,
|
||
struct expression *exp,
|
||
enum noside noside)
|
||
{
|
||
bool lbound_p = std::get<0> (m_storage) == FORTRAN_LBOUND;
|
||
value *arg1 = std::get<1> (m_storage)->evaluate (nullptr, exp, noside);
|
||
fortran_require_array (value_type (arg1), lbound_p);
|
||
|
||
/* User asked for the bounds of a specific dimension of the array. */
|
||
value *arg2 = std::get<2> (m_storage)->evaluate (nullptr, exp, noside);
|
||
struct type *type = check_typedef (value_type (arg2));
|
||
if (type->code () != TYPE_CODE_INT)
|
||
{
|
||
if (lbound_p)
|
||
error (_("LBOUND second argument should be an integer"));
|
||
else
|
||
error (_("UBOUND second argument should be an integer"));
|
||
}
|
||
|
||
return fortran_bounds_for_dimension (lbound_p, exp->gdbarch, arg1, arg2);
|
||
}
|
||
|
||
/* Implement STRUCTOP_STRUCT for Fortran. See operation::evaluate in
|
||
expression.h for argument descriptions. */
|
||
|
||
value *
|
||
fortran_structop_operation::evaluate (struct type *expect_type,
|
||
struct expression *exp,
|
||
enum noside noside)
|
||
{
|
||
value *arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
|
||
const char *str = std::get<1> (m_storage).c_str ();
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
{
|
||
struct type *type = lookup_struct_elt_type (value_type (arg1), str, 1);
|
||
|
||
if (type != nullptr && is_dynamic_type (type))
|
||
arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp, EVAL_NORMAL);
|
||
}
|
||
|
||
value *elt = value_struct_elt (&arg1, NULL, str, NULL, "structure");
|
||
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
{
|
||
struct type *elt_type = value_type (elt);
|
||
if (is_dynamic_type (elt_type))
|
||
{
|
||
const gdb_byte *valaddr = value_contents_for_printing (elt);
|
||
CORE_ADDR address = value_address (elt);
|
||
gdb::array_view<const gdb_byte> view
|
||
= gdb::make_array_view (valaddr, TYPE_LENGTH (elt_type));
|
||
elt_type = resolve_dynamic_type (elt_type, view, address);
|
||
}
|
||
elt = value_zero (elt_type, VALUE_LVAL (elt));
|
||
}
|
||
|
||
return elt;
|
||
}
|
||
|
||
} /* namespace expr */
|
||
|
||
/* See language.h. */
|
||
|
||
void
|
||
f_language::language_arch_info (struct gdbarch *gdbarch,
|
||
struct language_arch_info *lai) const
|
||
{
|
||
const struct builtin_f_type *builtin = builtin_f_type (gdbarch);
|
||
|
||
/* Helper function to allow shorter lines below. */
|
||
auto add = [&] (struct type * t)
|
||
{
|
||
lai->add_primitive_type (t);
|
||
};
|
||
|
||
add (builtin->builtin_character);
|
||
add (builtin->builtin_logical);
|
||
add (builtin->builtin_logical_s1);
|
||
add (builtin->builtin_logical_s2);
|
||
add (builtin->builtin_logical_s8);
|
||
add (builtin->builtin_real);
|
||
add (builtin->builtin_real_s8);
|
||
add (builtin->builtin_real_s16);
|
||
add (builtin->builtin_complex_s8);
|
||
add (builtin->builtin_complex_s16);
|
||
add (builtin->builtin_void);
|
||
|
||
lai->set_string_char_type (builtin->builtin_character);
|
||
lai->set_bool_type (builtin->builtin_logical_s2, "logical");
|
||
}
|
||
|
||
/* See language.h. */
|
||
|
||
unsigned int
|
||
f_language::search_name_hash (const char *name) const
|
||
{
|
||
return cp_search_name_hash (name);
|
||
}
|
||
|
||
/* See language.h. */
|
||
|
||
struct block_symbol
|
||
f_language::lookup_symbol_nonlocal (const char *name,
|
||
const struct block *block,
|
||
const domain_enum domain) const
|
||
{
|
||
return cp_lookup_symbol_nonlocal (this, name, block, domain);
|
||
}
|
||
|
||
/* See language.h. */
|
||
|
||
symbol_name_matcher_ftype *
|
||
f_language::get_symbol_name_matcher_inner
|
||
(const lookup_name_info &lookup_name) const
|
||
{
|
||
return cp_get_symbol_name_matcher (lookup_name);
|
||
}
|
||
|
||
/* Single instance of the Fortran language class. */
|
||
|
||
static f_language f_language_defn;
|
||
|
||
static void *
|
||
build_fortran_types (struct gdbarch *gdbarch)
|
||
{
|
||
struct builtin_f_type *builtin_f_type
|
||
= GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_f_type);
|
||
|
||
builtin_f_type->builtin_void
|
||
= arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
|
||
|
||
builtin_f_type->builtin_character
|
||
= arch_type (gdbarch, TYPE_CODE_CHAR, TARGET_CHAR_BIT, "character");
|
||
|
||
builtin_f_type->builtin_logical_s1
|
||
= arch_boolean_type (gdbarch, TARGET_CHAR_BIT, 1, "logical*1");
|
||
|
||
builtin_f_type->builtin_integer_s2
|
||
= arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch), 0,
|
||
"integer*2");
|
||
|
||
builtin_f_type->builtin_integer_s8
|
||
= arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch), 0,
|
||
"integer*8");
|
||
|
||
builtin_f_type->builtin_logical_s2
|
||
= arch_boolean_type (gdbarch, gdbarch_short_bit (gdbarch), 1,
|
||
"logical*2");
|
||
|
||
builtin_f_type->builtin_logical_s8
|
||
= arch_boolean_type (gdbarch, gdbarch_long_long_bit (gdbarch), 1,
|
||
"logical*8");
|
||
|
||
builtin_f_type->builtin_integer
|
||
= arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), 0,
|
||
"integer");
|
||
|
||
builtin_f_type->builtin_logical
|
||
= arch_boolean_type (gdbarch, gdbarch_int_bit (gdbarch), 1,
|
||
"logical*4");
|
||
|
||
builtin_f_type->builtin_real
|
||
= arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
|
||
"real", gdbarch_float_format (gdbarch));
|
||
builtin_f_type->builtin_real_s8
|
||
= arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
|
||
"real*8", gdbarch_double_format (gdbarch));
|
||
auto fmt = gdbarch_floatformat_for_type (gdbarch, "real(kind=16)", 128);
|
||
if (fmt != nullptr)
|
||
builtin_f_type->builtin_real_s16
|
||
= arch_float_type (gdbarch, 128, "real*16", fmt);
|
||
else if (gdbarch_long_double_bit (gdbarch) == 128)
|
||
builtin_f_type->builtin_real_s16
|
||
= arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
|
||
"real*16", gdbarch_long_double_format (gdbarch));
|
||
else
|
||
builtin_f_type->builtin_real_s16
|
||
= arch_type (gdbarch, TYPE_CODE_ERROR, 128, "real*16");
|
||
|
||
builtin_f_type->builtin_complex_s8
|
||
= init_complex_type ("complex*8", builtin_f_type->builtin_real);
|
||
builtin_f_type->builtin_complex_s16
|
||
= init_complex_type ("complex*16", builtin_f_type->builtin_real_s8);
|
||
|
||
if (builtin_f_type->builtin_real_s16->code () == TYPE_CODE_ERROR)
|
||
builtin_f_type->builtin_complex_s32
|
||
= arch_type (gdbarch, TYPE_CODE_ERROR, 256, "complex*32");
|
||
else
|
||
builtin_f_type->builtin_complex_s32
|
||
= init_complex_type ("complex*32", builtin_f_type->builtin_real_s16);
|
||
|
||
return builtin_f_type;
|
||
}
|
||
|
||
static struct gdbarch_data *f_type_data;
|
||
|
||
const struct builtin_f_type *
|
||
builtin_f_type (struct gdbarch *gdbarch)
|
||
{
|
||
return (const struct builtin_f_type *) gdbarch_data (gdbarch, f_type_data);
|
||
}
|
||
|
||
/* Command-list for the "set/show fortran" prefix command. */
|
||
static struct cmd_list_element *set_fortran_list;
|
||
static struct cmd_list_element *show_fortran_list;
|
||
|
||
void _initialize_f_language ();
|
||
void
|
||
_initialize_f_language ()
|
||
{
|
||
f_type_data = gdbarch_data_register_post_init (build_fortran_types);
|
||
|
||
add_basic_prefix_cmd ("fortran", no_class,
|
||
_("Prefix command for changing Fortran-specific settings."),
|
||
&set_fortran_list, "set fortran ", 0, &setlist);
|
||
|
||
add_show_prefix_cmd ("fortran", no_class,
|
||
_("Generic command for showing Fortran-specific settings."),
|
||
&show_fortran_list, "show fortran ", 0, &showlist);
|
||
|
||
add_setshow_boolean_cmd ("repack-array-slices", class_vars,
|
||
&repack_array_slices, _("\
|
||
Enable or disable repacking of non-contiguous array slices."), _("\
|
||
Show whether non-contiguous array slices are repacked."), _("\
|
||
When the user requests a slice of a Fortran array then we can either return\n\
|
||
a descriptor that describes the array in place (using the original array data\n\
|
||
in its existing location) or the original data can be repacked (copied) to a\n\
|
||
new location.\n\
|
||
\n\
|
||
When the content of the array slice is contiguous within the original array\n\
|
||
then the result will never be repacked, but when the data for the new array\n\
|
||
is non-contiguous within the original array repacking will only be performed\n\
|
||
when this setting is on."),
|
||
NULL,
|
||
show_repack_array_slices,
|
||
&set_fortran_list, &show_fortran_list);
|
||
|
||
/* Debug Fortran's array slicing logic. */
|
||
add_setshow_boolean_cmd ("fortran-array-slicing", class_maintenance,
|
||
&fortran_array_slicing_debug, _("\
|
||
Set debugging of Fortran array slicing."), _("\
|
||
Show debugging of Fortran array slicing."), _("\
|
||
When on, debugging of Fortran array slicing is enabled."),
|
||
NULL,
|
||
show_fortran_array_slicing_debug,
|
||
&setdebuglist, &showdebuglist);
|
||
}
|
||
|
||
/* Ensures that function argument VALUE is in the appropriate form to
|
||
pass to a Fortran function. Returns a possibly new value that should
|
||
be used instead of VALUE.
|
||
|
||
When IS_ARTIFICIAL is true this indicates an artificial argument,
|
||
e.g. hidden string lengths which the GNU Fortran argument passing
|
||
convention specifies as being passed by value.
|
||
|
||
When IS_ARTIFICIAL is false, the argument is passed by pointer. If the
|
||
value is already in target memory then return a value that is a pointer
|
||
to VALUE. If VALUE is not in memory (e.g. an integer literal), allocate
|
||
space in the target, copy VALUE in, and return a pointer to the in
|
||
memory copy. */
|
||
|
||
static struct value *
|
||
fortran_argument_convert (struct value *value, bool is_artificial)
|
||
{
|
||
if (!is_artificial)
|
||
{
|
||
/* If the value is not in the inferior e.g. registers values,
|
||
convenience variables and user input. */
|
||
if (VALUE_LVAL (value) != lval_memory)
|
||
{
|
||
struct type *type = value_type (value);
|
||
const int length = TYPE_LENGTH (type);
|
||
const CORE_ADDR addr
|
||
= value_as_long (value_allocate_space_in_inferior (length));
|
||
write_memory (addr, value_contents (value), length);
|
||
struct value *val
|
||
= value_from_contents_and_address (type, value_contents (value),
|
||
addr);
|
||
return value_addr (val);
|
||
}
|
||
else
|
||
return value_addr (value); /* Program variables, e.g. arrays. */
|
||
}
|
||
return value;
|
||
}
|
||
|
||
/* Prepare (and return) an argument value ready for an inferior function
|
||
call to a Fortran function. EXP and POS are the expressions describing
|
||
the argument to prepare. ARG_NUM is the argument number being
|
||
prepared, with 0 being the first argument and so on. FUNC_TYPE is the
|
||
type of the function being called.
|
||
|
||
IS_INTERNAL_CALL_P is true if this is a call to a function of type
|
||
TYPE_CODE_INTERNAL_FUNCTION, otherwise this parameter is false.
|
||
|
||
NOSIDE has its usual meaning for expression parsing (see eval.c).
|
||
|
||
Arguments in Fortran are normally passed by address, we coerce the
|
||
arguments here rather than in value_arg_coerce as otherwise the call to
|
||
malloc (to place the non-lvalue parameters in target memory) is hit by
|
||
this Fortran specific logic. This results in malloc being called with a
|
||
pointer to an integer followed by an attempt to malloc the arguments to
|
||
malloc in target memory. Infinite recursion ensues. */
|
||
|
||
static value *
|
||
fortran_prepare_argument (struct expression *exp,
|
||
expr::operation *subexp,
|
||
int arg_num, bool is_internal_call_p,
|
||
struct type *func_type, enum noside noside)
|
||
{
|
||
if (is_internal_call_p)
|
||
return subexp->evaluate_with_coercion (exp, noside);
|
||
|
||
bool is_artificial = ((arg_num >= func_type->num_fields ())
|
||
? true
|
||
: TYPE_FIELD_ARTIFICIAL (func_type, arg_num));
|
||
|
||
/* If this is an artificial argument, then either, this is an argument
|
||
beyond the end of the known arguments, or possibly, there are no known
|
||
arguments (maybe missing debug info).
|
||
|
||
For these artificial arguments, if the user has prefixed it with '&'
|
||
(for address-of), then lets always allow this to succeed, even if the
|
||
argument is not actually in inferior memory. This will allow the user
|
||
to pass arguments to a Fortran function even when there's no debug
|
||
information.
|
||
|
||
As we already pass the address of non-artificial arguments, all we
|
||
need to do if skip the UNOP_ADDR operator in the expression and mark
|
||
the argument as non-artificial. */
|
||
if (is_artificial)
|
||
{
|
||
expr::unop_addr_operation *addrop
|
||
= dynamic_cast<expr::unop_addr_operation *> (subexp);
|
||
if (addrop != nullptr)
|
||
{
|
||
subexp = addrop->get_expression ().get ();
|
||
is_artificial = false;
|
||
}
|
||
}
|
||
|
||
struct value *arg_val = subexp->evaluate_with_coercion (exp, noside);
|
||
return fortran_argument_convert (arg_val, is_artificial);
|
||
}
|
||
|
||
/* See f-lang.h. */
|
||
|
||
struct type *
|
||
fortran_preserve_arg_pointer (struct value *arg, struct type *type)
|
||
{
|
||
if (value_type (arg)->code () == TYPE_CODE_PTR)
|
||
return value_type (arg);
|
||
return type;
|
||
}
|
||
|
||
/* See f-lang.h. */
|
||
|
||
CORE_ADDR
|
||
fortran_adjust_dynamic_array_base_address_hack (struct type *type,
|
||
CORE_ADDR address)
|
||
{
|
||
gdb_assert (type->code () == TYPE_CODE_ARRAY);
|
||
|
||
/* We can't adjust the base address for arrays that have no content. */
|
||
if (type_not_allocated (type) || type_not_associated (type))
|
||
return address;
|
||
|
||
int ndimensions = calc_f77_array_dims (type);
|
||
LONGEST total_offset = 0;
|
||
|
||
/* Walk through each of the dimensions of this array type and figure out
|
||
if any of the dimensions are "backwards", that is the base address
|
||
for this dimension points to the element at the highest memory
|
||
address and the stride is negative. */
|
||
struct type *tmp_type = type;
|
||
for (int i = 0 ; i < ndimensions; ++i)
|
||
{
|
||
/* Grab the range for this dimension and extract the lower and upper
|
||
bounds. */
|
||
tmp_type = check_typedef (tmp_type);
|
||
struct type *range_type = tmp_type->index_type ();
|
||
LONGEST lowerbound, upperbound, stride;
|
||
if (!get_discrete_bounds (range_type, &lowerbound, &upperbound))
|
||
error ("failed to get range bounds");
|
||
|
||
/* Figure out the stride for this dimension. */
|
||
struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (tmp_type));
|
||
stride = tmp_type->index_type ()->bounds ()->bit_stride ();
|
||
if (stride == 0)
|
||
stride = type_length_units (elt_type);
|
||
else
|
||
{
|
||
int unit_size
|
||
= gdbarch_addressable_memory_unit_size (elt_type->arch ());
|
||
stride /= (unit_size * 8);
|
||
}
|
||
|
||
/* If this dimension is "backward" then figure out the offset
|
||
adjustment required to point to the element at the lowest memory
|
||
address, and add this to the total offset. */
|
||
LONGEST offset = 0;
|
||
if (stride < 0 && lowerbound < upperbound)
|
||
offset = (upperbound - lowerbound) * stride;
|
||
total_offset += offset;
|
||
tmp_type = TYPE_TARGET_TYPE (tmp_type);
|
||
}
|
||
|
||
/* Adjust the address of this object and return it. */
|
||
address += total_offset;
|
||
return address;
|
||
}
|