mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2025-01-24 12:35:55 +08:00
0d1912950e
This converts contained_in to be a method of block.
3463 lines
100 KiB
C
3463 lines
100 KiB
C
/* Print values for GNU debugger GDB.
|
||
|
||
Copyright (C) 1986-2023 Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||
|
||
#include "defs.h"
|
||
#include "frame.h"
|
||
#include "symtab.h"
|
||
#include "gdbtypes.h"
|
||
#include "value.h"
|
||
#include "language.h"
|
||
#include "c-lang.h"
|
||
#include "expression.h"
|
||
#include "gdbcore.h"
|
||
#include "gdbcmd.h"
|
||
#include "target.h"
|
||
#include "breakpoint.h"
|
||
#include "demangle.h"
|
||
#include "gdb-demangle.h"
|
||
#include "valprint.h"
|
||
#include "annotate.h"
|
||
#include "symfile.h" /* for overlay functions */
|
||
#include "objfiles.h" /* ditto */
|
||
#include "completer.h" /* for completion functions */
|
||
#include "ui-out.h"
|
||
#include "block.h"
|
||
#include "disasm.h"
|
||
#include "target-float.h"
|
||
#include "observable.h"
|
||
#include "solist.h"
|
||
#include "parser-defs.h"
|
||
#include "charset.h"
|
||
#include "arch-utils.h"
|
||
#include "cli/cli-utils.h"
|
||
#include "cli/cli-option.h"
|
||
#include "cli/cli-script.h"
|
||
#include "cli/cli-style.h"
|
||
#include "gdbsupport/format.h"
|
||
#include "source.h"
|
||
#include "gdbsupport/byte-vector.h"
|
||
#include "gdbsupport/gdb_optional.h"
|
||
#include "safe-ctype.h"
|
||
#include "gdbsupport/rsp-low.h"
|
||
|
||
/* Chain containing all defined memory-tag subcommands. */
|
||
|
||
static struct cmd_list_element *memory_tag_list;
|
||
|
||
/* Last specified output format. */
|
||
|
||
static char last_format = 0;
|
||
|
||
/* Last specified examination size. 'b', 'h', 'w' or `q'. */
|
||
|
||
static char last_size = 'w';
|
||
|
||
/* Last specified count for the 'x' command. */
|
||
|
||
static int last_count;
|
||
|
||
/* Last specified tag-printing option. */
|
||
|
||
static bool last_print_tags = false;
|
||
|
||
/* Default address to examine next, and associated architecture. */
|
||
|
||
static struct gdbarch *next_gdbarch;
|
||
static CORE_ADDR next_address;
|
||
|
||
/* Number of delay instructions following current disassembled insn. */
|
||
|
||
static int branch_delay_insns;
|
||
|
||
/* Last address examined. */
|
||
|
||
static CORE_ADDR last_examine_address;
|
||
|
||
/* Contents of last address examined.
|
||
This is not valid past the end of the `x' command! */
|
||
|
||
static value_ref_ptr last_examine_value;
|
||
|
||
/* Largest offset between a symbolic value and an address, that will be
|
||
printed as `0x1234 <symbol+offset>'. */
|
||
|
||
static unsigned int max_symbolic_offset = UINT_MAX;
|
||
static void
|
||
show_max_symbolic_offset (struct ui_file *file, int from_tty,
|
||
struct cmd_list_element *c, const char *value)
|
||
{
|
||
gdb_printf (file,
|
||
_("The largest offset that will be "
|
||
"printed in <symbol+1234> form is %s.\n"),
|
||
value);
|
||
}
|
||
|
||
/* Append the source filename and linenumber of the symbol when
|
||
printing a symbolic value as `<symbol at filename:linenum>' if set. */
|
||
static bool print_symbol_filename = false;
|
||
static void
|
||
show_print_symbol_filename (struct ui_file *file, int from_tty,
|
||
struct cmd_list_element *c, const char *value)
|
||
{
|
||
gdb_printf (file, _("Printing of source filename and "
|
||
"line number with <symbol> is %s.\n"),
|
||
value);
|
||
}
|
||
|
||
/* Number of auto-display expression currently being displayed.
|
||
So that we can disable it if we get a signal within it.
|
||
-1 when not doing one. */
|
||
|
||
static int current_display_number;
|
||
|
||
/* Last allocated display number. */
|
||
|
||
static int display_number;
|
||
|
||
struct display
|
||
{
|
||
display (const char *exp_string_, expression_up &&exp_,
|
||
const struct format_data &format_, struct program_space *pspace_,
|
||
const struct block *block_)
|
||
: exp_string (exp_string_),
|
||
exp (std::move (exp_)),
|
||
number (++display_number),
|
||
format (format_),
|
||
pspace (pspace_),
|
||
block (block_),
|
||
enabled_p (true)
|
||
{
|
||
}
|
||
|
||
/* The expression as the user typed it. */
|
||
std::string exp_string;
|
||
|
||
/* Expression to be evaluated and displayed. */
|
||
expression_up exp;
|
||
|
||
/* Item number of this auto-display item. */
|
||
int number;
|
||
|
||
/* Display format specified. */
|
||
struct format_data format;
|
||
|
||
/* Program space associated with `block'. */
|
||
struct program_space *pspace;
|
||
|
||
/* Innermost block required by this expression when evaluated. */
|
||
const struct block *block;
|
||
|
||
/* Status of this display (enabled or disabled). */
|
||
bool enabled_p;
|
||
};
|
||
|
||
/* Expressions whose values should be displayed automatically each
|
||
time the program stops. */
|
||
|
||
static std::vector<std::unique_ptr<struct display>> all_displays;
|
||
|
||
/* Prototypes for local functions. */
|
||
|
||
static void do_one_display (struct display *);
|
||
|
||
|
||
/* Decode a format specification. *STRING_PTR should point to it.
|
||
OFORMAT and OSIZE are used as defaults for the format and size
|
||
if none are given in the format specification.
|
||
If OSIZE is zero, then the size field of the returned value
|
||
should be set only if a size is explicitly specified by the
|
||
user.
|
||
The structure returned describes all the data
|
||
found in the specification. In addition, *STRING_PTR is advanced
|
||
past the specification and past all whitespace following it. */
|
||
|
||
static struct format_data
|
||
decode_format (const char **string_ptr, int oformat, int osize)
|
||
{
|
||
struct format_data val;
|
||
const char *p = *string_ptr;
|
||
|
||
val.format = '?';
|
||
val.size = '?';
|
||
val.count = 1;
|
||
val.raw = 0;
|
||
val.print_tags = false;
|
||
|
||
if (*p == '-')
|
||
{
|
||
val.count = -1;
|
||
p++;
|
||
}
|
||
if (*p >= '0' && *p <= '9')
|
||
val.count *= atoi (p);
|
||
while (*p >= '0' && *p <= '9')
|
||
p++;
|
||
|
||
/* Now process size or format letters that follow. */
|
||
|
||
while (1)
|
||
{
|
||
if (*p == 'b' || *p == 'h' || *p == 'w' || *p == 'g')
|
||
val.size = *p++;
|
||
else if (*p == 'r')
|
||
{
|
||
val.raw = 1;
|
||
p++;
|
||
}
|
||
else if (*p == 'm')
|
||
{
|
||
val.print_tags = true;
|
||
p++;
|
||
}
|
||
else if (*p >= 'a' && *p <= 'z')
|
||
val.format = *p++;
|
||
else
|
||
break;
|
||
}
|
||
|
||
*string_ptr = skip_spaces (p);
|
||
|
||
/* Set defaults for format and size if not specified. */
|
||
if (val.format == '?')
|
||
{
|
||
if (val.size == '?')
|
||
{
|
||
/* Neither has been specified. */
|
||
val.format = oformat;
|
||
val.size = osize;
|
||
}
|
||
else
|
||
/* If a size is specified, any format makes a reasonable
|
||
default except 'i'. */
|
||
val.format = oformat == 'i' ? 'x' : oformat;
|
||
}
|
||
else if (val.size == '?')
|
||
switch (val.format)
|
||
{
|
||
case 'a':
|
||
/* Pick the appropriate size for an address. This is deferred
|
||
until do_examine when we know the actual architecture to use.
|
||
A special size value of 'a' is used to indicate this case. */
|
||
val.size = osize ? 'a' : osize;
|
||
break;
|
||
case 'f':
|
||
/* Floating point has to be word or giantword. */
|
||
if (osize == 'w' || osize == 'g')
|
||
val.size = osize;
|
||
else
|
||
/* Default it to giantword if the last used size is not
|
||
appropriate. */
|
||
val.size = osize ? 'g' : osize;
|
||
break;
|
||
case 'c':
|
||
/* Characters default to one byte. */
|
||
val.size = osize ? 'b' : osize;
|
||
break;
|
||
case 's':
|
||
/* Display strings with byte size chars unless explicitly
|
||
specified. */
|
||
val.size = '\0';
|
||
break;
|
||
|
||
default:
|
||
/* The default is the size most recently specified. */
|
||
val.size = osize;
|
||
}
|
||
|
||
return val;
|
||
}
|
||
|
||
/* Print value VAL on stream according to OPTIONS.
|
||
Do not end with a newline.
|
||
SIZE is the letter for the size of datum being printed.
|
||
This is used to pad hex numbers so they line up. SIZE is 0
|
||
for print / output and set for examine. */
|
||
|
||
static void
|
||
print_formatted (struct value *val, int size,
|
||
const struct value_print_options *options,
|
||
struct ui_file *stream)
|
||
{
|
||
struct type *type = check_typedef (val->type ());
|
||
int len = type->length ();
|
||
|
||
if (val->lval () == lval_memory)
|
||
next_address = val->address () + len;
|
||
|
||
if (size)
|
||
{
|
||
switch (options->format)
|
||
{
|
||
case 's':
|
||
{
|
||
struct type *elttype = val->type ();
|
||
|
||
next_address = (val->address ()
|
||
+ val_print_string (elttype, NULL,
|
||
val->address (), -1,
|
||
stream, options) * len);
|
||
}
|
||
return;
|
||
|
||
case 'i':
|
||
/* We often wrap here if there are long symbolic names. */
|
||
stream->wrap_here (4);
|
||
next_address = (val->address ()
|
||
+ gdb_print_insn (type->arch (),
|
||
val->address (), stream,
|
||
&branch_delay_insns));
|
||
return;
|
||
}
|
||
}
|
||
|
||
if (options->format == 0 || options->format == 's'
|
||
|| type->code () == TYPE_CODE_VOID
|
||
|| type->code () == TYPE_CODE_REF
|
||
|| type->code () == TYPE_CODE_ARRAY
|
||
|| type->code () == TYPE_CODE_STRING
|
||
|| type->code () == TYPE_CODE_STRUCT
|
||
|| type->code () == TYPE_CODE_UNION
|
||
|| type->code () == TYPE_CODE_NAMESPACE)
|
||
value_print (val, stream, options);
|
||
else
|
||
/* User specified format, so don't look to the type to tell us
|
||
what to do. */
|
||
value_print_scalar_formatted (val, options, size, stream);
|
||
}
|
||
|
||
/* Return builtin floating point type of same length as TYPE.
|
||
If no such type is found, return TYPE itself. */
|
||
static struct type *
|
||
float_type_from_length (struct type *type)
|
||
{
|
||
struct gdbarch *gdbarch = type->arch ();
|
||
const struct builtin_type *builtin = builtin_type (gdbarch);
|
||
|
||
if (type->length () == builtin->builtin_float->length ())
|
||
type = builtin->builtin_float;
|
||
else if (type->length () == builtin->builtin_double->length ())
|
||
type = builtin->builtin_double;
|
||
else if (type->length () == builtin->builtin_long_double->length ())
|
||
type = builtin->builtin_long_double;
|
||
|
||
return type;
|
||
}
|
||
|
||
/* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
|
||
according to OPTIONS and SIZE on STREAM. Formats s and i are not
|
||
supported at this level. */
|
||
|
||
void
|
||
print_scalar_formatted (const gdb_byte *valaddr, struct type *type,
|
||
const struct value_print_options *options,
|
||
int size, struct ui_file *stream)
|
||
{
|
||
struct gdbarch *gdbarch = type->arch ();
|
||
unsigned int len = type->length ();
|
||
enum bfd_endian byte_order = type_byte_order (type);
|
||
|
||
/* String printing should go through val_print_scalar_formatted. */
|
||
gdb_assert (options->format != 's');
|
||
|
||
/* If the value is a pointer, and pointers and addresses are not the
|
||
same, then at this point, the value's length (in target bytes) is
|
||
gdbarch_addr_bit/TARGET_CHAR_BIT, not type->length (). */
|
||
if (type->code () == TYPE_CODE_PTR)
|
||
len = gdbarch_addr_bit (gdbarch) / TARGET_CHAR_BIT;
|
||
|
||
/* If we are printing it as unsigned, truncate it in case it is actually
|
||
a negative signed value (e.g. "print/u (short)-1" should print 65535
|
||
(if shorts are 16 bits) instead of 4294967295). */
|
||
if (options->format != 'c'
|
||
&& (options->format != 'd' || type->is_unsigned ()))
|
||
{
|
||
if (len < type->length () && byte_order == BFD_ENDIAN_BIG)
|
||
valaddr += type->length () - len;
|
||
}
|
||
|
||
/* Allow LEN == 0, and in this case, don't assume that VALADDR is
|
||
valid. */
|
||
const gdb_byte zero = 0;
|
||
if (len == 0)
|
||
{
|
||
len = 1;
|
||
valaddr = &zero;
|
||
}
|
||
|
||
if (size != 0 && (options->format == 'x' || options->format == 't'))
|
||
{
|
||
/* Truncate to fit. */
|
||
unsigned newlen;
|
||
switch (size)
|
||
{
|
||
case 'b':
|
||
newlen = 1;
|
||
break;
|
||
case 'h':
|
||
newlen = 2;
|
||
break;
|
||
case 'w':
|
||
newlen = 4;
|
||
break;
|
||
case 'g':
|
||
newlen = 8;
|
||
break;
|
||
default:
|
||
error (_("Undefined output size \"%c\"."), size);
|
||
}
|
||
if (newlen < len && byte_order == BFD_ENDIAN_BIG)
|
||
valaddr += len - newlen;
|
||
len = newlen;
|
||
}
|
||
|
||
/* Biased range types and sub-word scalar types must be handled
|
||
here; the value is correctly computed by unpack_long. */
|
||
gdb::byte_vector converted_bytes;
|
||
/* Some cases below will unpack the value again. In the biased
|
||
range case, we want to avoid this, so we store the unpacked value
|
||
here for possible use later. */
|
||
gdb::optional<LONGEST> val_long;
|
||
if ((is_fixed_point_type (type)
|
||
&& (options->format == 'o'
|
||
|| options->format == 'x'
|
||
|| options->format == 't'
|
||
|| options->format == 'z'
|
||
|| options->format == 'd'
|
||
|| options->format == 'u'))
|
||
|| (type->code () == TYPE_CODE_RANGE && type->bounds ()->bias != 0)
|
||
|| type->bit_size_differs_p ())
|
||
{
|
||
val_long.emplace (unpack_long (type, valaddr));
|
||
converted_bytes.resize (type->length ());
|
||
store_signed_integer (converted_bytes.data (), type->length (),
|
||
byte_order, *val_long);
|
||
valaddr = converted_bytes.data ();
|
||
}
|
||
|
||
/* Printing a non-float type as 'f' will interpret the data as if it were
|
||
of a floating-point type of the same length, if that exists. Otherwise,
|
||
the data is printed as integer. */
|
||
char format = options->format;
|
||
if (format == 'f' && type->code () != TYPE_CODE_FLT)
|
||
{
|
||
type = float_type_from_length (type);
|
||
if (type->code () != TYPE_CODE_FLT)
|
||
format = 0;
|
||
}
|
||
|
||
switch (format)
|
||
{
|
||
case 'o':
|
||
print_octal_chars (stream, valaddr, len, byte_order);
|
||
break;
|
||
case 'd':
|
||
print_decimal_chars (stream, valaddr, len, true, byte_order);
|
||
break;
|
||
case 'u':
|
||
print_decimal_chars (stream, valaddr, len, false, byte_order);
|
||
break;
|
||
case 0:
|
||
if (type->code () != TYPE_CODE_FLT)
|
||
{
|
||
print_decimal_chars (stream, valaddr, len, !type->is_unsigned (),
|
||
byte_order);
|
||
break;
|
||
}
|
||
/* FALLTHROUGH */
|
||
case 'f':
|
||
print_floating (valaddr, type, stream);
|
||
break;
|
||
|
||
case 't':
|
||
print_binary_chars (stream, valaddr, len, byte_order, size > 0, options);
|
||
break;
|
||
case 'x':
|
||
print_hex_chars (stream, valaddr, len, byte_order, size > 0);
|
||
break;
|
||
case 'z':
|
||
print_hex_chars (stream, valaddr, len, byte_order, true);
|
||
break;
|
||
case 'c':
|
||
{
|
||
struct value_print_options opts = *options;
|
||
|
||
if (!val_long.has_value ())
|
||
val_long.emplace (unpack_long (type, valaddr));
|
||
|
||
opts.format = 0;
|
||
if (type->is_unsigned ())
|
||
type = builtin_type (gdbarch)->builtin_true_unsigned_char;
|
||
else
|
||
type = builtin_type (gdbarch)->builtin_true_char;
|
||
|
||
value_print (value_from_longest (type, *val_long), stream, &opts);
|
||
}
|
||
break;
|
||
|
||
case 'a':
|
||
{
|
||
if (!val_long.has_value ())
|
||
val_long.emplace (unpack_long (type, valaddr));
|
||
print_address (gdbarch, *val_long, stream);
|
||
}
|
||
break;
|
||
|
||
default:
|
||
error (_("Undefined output format \"%c\"."), format);
|
||
}
|
||
}
|
||
|
||
/* Specify default address for `x' command.
|
||
The `info lines' command uses this. */
|
||
|
||
void
|
||
set_next_address (struct gdbarch *gdbarch, CORE_ADDR addr)
|
||
{
|
||
struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
|
||
|
||
next_gdbarch = gdbarch;
|
||
next_address = addr;
|
||
|
||
/* Make address available to the user as $_. */
|
||
set_internalvar (lookup_internalvar ("_"),
|
||
value_from_pointer (ptr_type, addr));
|
||
}
|
||
|
||
/* Optionally print address ADDR symbolically as <SYMBOL+OFFSET> on STREAM,
|
||
after LEADIN. Print nothing if no symbolic name is found nearby.
|
||
Optionally also print source file and line number, if available.
|
||
DO_DEMANGLE controls whether to print a symbol in its native "raw" form,
|
||
or to interpret it as a possible C++ name and convert it back to source
|
||
form. However note that DO_DEMANGLE can be overridden by the specific
|
||
settings of the demangle and asm_demangle variables. Returns
|
||
non-zero if anything was printed; zero otherwise. */
|
||
|
||
int
|
||
print_address_symbolic (struct gdbarch *gdbarch, CORE_ADDR addr,
|
||
struct ui_file *stream,
|
||
int do_demangle, const char *leadin)
|
||
{
|
||
std::string name, filename;
|
||
int unmapped = 0;
|
||
int offset = 0;
|
||
int line = 0;
|
||
|
||
if (build_address_symbolic (gdbarch, addr, do_demangle, false, &name,
|
||
&offset, &filename, &line, &unmapped))
|
||
return 0;
|
||
|
||
gdb_puts (leadin, stream);
|
||
if (unmapped)
|
||
gdb_puts ("<*", stream);
|
||
else
|
||
gdb_puts ("<", stream);
|
||
fputs_styled (name.c_str (), function_name_style.style (), stream);
|
||
if (offset != 0)
|
||
gdb_printf (stream, "%+d", offset);
|
||
|
||
/* Append source filename and line number if desired. Give specific
|
||
line # of this addr, if we have it; else line # of the nearest symbol. */
|
||
if (print_symbol_filename && !filename.empty ())
|
||
{
|
||
gdb_puts (line == -1 ? " in " : " at ", stream);
|
||
fputs_styled (filename.c_str (), file_name_style.style (), stream);
|
||
if (line != -1)
|
||
gdb_printf (stream, ":%d", line);
|
||
}
|
||
if (unmapped)
|
||
gdb_puts ("*>", stream);
|
||
else
|
||
gdb_puts (">", stream);
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* See valprint.h. */
|
||
|
||
int
|
||
build_address_symbolic (struct gdbarch *gdbarch,
|
||
CORE_ADDR addr, /* IN */
|
||
bool do_demangle, /* IN */
|
||
bool prefer_sym_over_minsym, /* IN */
|
||
std::string *name, /* OUT */
|
||
int *offset, /* OUT */
|
||
std::string *filename, /* OUT */
|
||
int *line, /* OUT */
|
||
int *unmapped) /* OUT */
|
||
{
|
||
struct bound_minimal_symbol msymbol;
|
||
struct symbol *symbol;
|
||
CORE_ADDR name_location = 0;
|
||
struct obj_section *section = NULL;
|
||
const char *name_temp = "";
|
||
|
||
/* Let's say it is mapped (not unmapped). */
|
||
*unmapped = 0;
|
||
|
||
/* Determine if the address is in an overlay, and whether it is
|
||
mapped. */
|
||
if (overlay_debugging)
|
||
{
|
||
section = find_pc_overlay (addr);
|
||
if (pc_in_unmapped_range (addr, section))
|
||
{
|
||
*unmapped = 1;
|
||
addr = overlay_mapped_address (addr, section);
|
||
}
|
||
}
|
||
|
||
/* Try to find the address in both the symbol table and the minsyms.
|
||
In most cases, we'll prefer to use the symbol instead of the
|
||
minsym. However, there are cases (see below) where we'll choose
|
||
to use the minsym instead. */
|
||
|
||
/* This is defective in the sense that it only finds text symbols. So
|
||
really this is kind of pointless--we should make sure that the
|
||
minimal symbols have everything we need (by changing that we could
|
||
save some memory, but for many debug format--ELF/DWARF or
|
||
anything/stabs--it would be inconvenient to eliminate those minimal
|
||
symbols anyway). */
|
||
msymbol = lookup_minimal_symbol_by_pc_section (addr, section);
|
||
symbol = find_pc_sect_function (addr, section);
|
||
|
||
if (symbol)
|
||
{
|
||
/* If this is a function (i.e. a code address), strip out any
|
||
non-address bits. For instance, display a pointer to the
|
||
first instruction of a Thumb function as <function>; the
|
||
second instruction will be <function+2>, even though the
|
||
pointer is <function+3>. This matches the ISA behavior. */
|
||
addr = gdbarch_addr_bits_remove (gdbarch, addr);
|
||
|
||
name_location = symbol->value_block ()->entry_pc ();
|
||
if (do_demangle || asm_demangle)
|
||
name_temp = symbol->print_name ();
|
||
else
|
||
name_temp = symbol->linkage_name ();
|
||
}
|
||
|
||
if (msymbol.minsym != NULL
|
||
&& msymbol.minsym->has_size ()
|
||
&& msymbol.minsym->size () == 0
|
||
&& msymbol.minsym->type () != mst_text
|
||
&& msymbol.minsym->type () != mst_text_gnu_ifunc
|
||
&& msymbol.minsym->type () != mst_file_text)
|
||
msymbol.minsym = NULL;
|
||
|
||
if (msymbol.minsym != NULL)
|
||
{
|
||
/* Use the minsym if no symbol is found.
|
||
|
||
Additionally, use the minsym instead of a (found) symbol if
|
||
the following conditions all hold:
|
||
1) The prefer_sym_over_minsym flag is false.
|
||
2) The minsym address is identical to that of the address under
|
||
consideration.
|
||
3) The symbol address is not identical to that of the address
|
||
under consideration. */
|
||
if (symbol == NULL ||
|
||
(!prefer_sym_over_minsym
|
||
&& msymbol.value_address () == addr
|
||
&& name_location != addr))
|
||
{
|
||
/* If this is a function (i.e. a code address), strip out any
|
||
non-address bits. For instance, display a pointer to the
|
||
first instruction of a Thumb function as <function>; the
|
||
second instruction will be <function+2>, even though the
|
||
pointer is <function+3>. This matches the ISA behavior. */
|
||
if (msymbol.minsym->type () == mst_text
|
||
|| msymbol.minsym->type () == mst_text_gnu_ifunc
|
||
|| msymbol.minsym->type () == mst_file_text
|
||
|| msymbol.minsym->type () == mst_solib_trampoline)
|
||
addr = gdbarch_addr_bits_remove (gdbarch, addr);
|
||
|
||
symbol = 0;
|
||
name_location = msymbol.value_address ();
|
||
if (do_demangle || asm_demangle)
|
||
name_temp = msymbol.minsym->print_name ();
|
||
else
|
||
name_temp = msymbol.minsym->linkage_name ();
|
||
}
|
||
}
|
||
if (symbol == NULL && msymbol.minsym == NULL)
|
||
return 1;
|
||
|
||
/* If the nearest symbol is too far away, don't print anything symbolic. */
|
||
|
||
/* For when CORE_ADDR is larger than unsigned int, we do math in
|
||
CORE_ADDR. But when we detect unsigned wraparound in the
|
||
CORE_ADDR math, we ignore this test and print the offset,
|
||
because addr+max_symbolic_offset has wrapped through the end
|
||
of the address space back to the beginning, giving bogus comparison. */
|
||
if (addr > name_location + max_symbolic_offset
|
||
&& name_location + max_symbolic_offset > name_location)
|
||
return 1;
|
||
|
||
*offset = (LONGEST) addr - name_location;
|
||
|
||
*name = name_temp;
|
||
|
||
if (print_symbol_filename)
|
||
{
|
||
struct symtab_and_line sal;
|
||
|
||
sal = find_pc_sect_line (addr, section, 0);
|
||
|
||
if (sal.symtab)
|
||
{
|
||
*filename = symtab_to_filename_for_display (sal.symtab);
|
||
*line = sal.line;
|
||
}
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
|
||
/* Print address ADDR symbolically on STREAM.
|
||
First print it as a number. Then perhaps print
|
||
<SYMBOL + OFFSET> after the number. */
|
||
|
||
void
|
||
print_address (struct gdbarch *gdbarch,
|
||
CORE_ADDR addr, struct ui_file *stream)
|
||
{
|
||
fputs_styled (paddress (gdbarch, addr), address_style.style (), stream);
|
||
print_address_symbolic (gdbarch, addr, stream, asm_demangle, " ");
|
||
}
|
||
|
||
/* Return a prefix for instruction address:
|
||
"=> " for current instruction, else " ". */
|
||
|
||
const char *
|
||
pc_prefix (CORE_ADDR addr)
|
||
{
|
||
if (has_stack_frames ())
|
||
{
|
||
frame_info_ptr frame;
|
||
CORE_ADDR pc;
|
||
|
||
frame = get_selected_frame (NULL);
|
||
if (get_frame_pc_if_available (frame, &pc) && pc == addr)
|
||
return "=> ";
|
||
}
|
||
return " ";
|
||
}
|
||
|
||
/* Print address ADDR symbolically on STREAM. Parameter DEMANGLE
|
||
controls whether to print the symbolic name "raw" or demangled.
|
||
Return non-zero if anything was printed; zero otherwise. */
|
||
|
||
int
|
||
print_address_demangle (const struct value_print_options *opts,
|
||
struct gdbarch *gdbarch, CORE_ADDR addr,
|
||
struct ui_file *stream, int do_demangle)
|
||
{
|
||
if (opts->addressprint)
|
||
{
|
||
fputs_styled (paddress (gdbarch, addr), address_style.style (), stream);
|
||
print_address_symbolic (gdbarch, addr, stream, do_demangle, " ");
|
||
}
|
||
else
|
||
{
|
||
return print_address_symbolic (gdbarch, addr, stream, do_demangle, "");
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
|
||
/* Find the address of the instruction that is INST_COUNT instructions before
|
||
the instruction at ADDR.
|
||
Since some architectures have variable-length instructions, we can't just
|
||
simply subtract INST_COUNT * INSN_LEN from ADDR. Instead, we use line
|
||
number information to locate the nearest known instruction boundary,
|
||
and disassemble forward from there. If we go out of the symbol range
|
||
during disassembling, we return the lowest address we've got so far and
|
||
set the number of instructions read to INST_READ. */
|
||
|
||
static CORE_ADDR
|
||
find_instruction_backward (struct gdbarch *gdbarch, CORE_ADDR addr,
|
||
int inst_count, int *inst_read)
|
||
{
|
||
/* The vector PCS is used to store instruction addresses within
|
||
a pc range. */
|
||
CORE_ADDR loop_start, loop_end, p;
|
||
std::vector<CORE_ADDR> pcs;
|
||
struct symtab_and_line sal;
|
||
|
||
*inst_read = 0;
|
||
loop_start = loop_end = addr;
|
||
|
||
/* In each iteration of the outer loop, we get a pc range that ends before
|
||
LOOP_START, then we count and store every instruction address of the range
|
||
iterated in the loop.
|
||
If the number of instructions counted reaches INST_COUNT, return the
|
||
stored address that is located INST_COUNT instructions back from ADDR.
|
||
If INST_COUNT is not reached, we subtract the number of counted
|
||
instructions from INST_COUNT, and go to the next iteration. */
|
||
do
|
||
{
|
||
pcs.clear ();
|
||
sal = find_pc_sect_line (loop_start, NULL, 1);
|
||
if (sal.line <= 0)
|
||
{
|
||
/* We reach here when line info is not available. In this case,
|
||
we print a message and just exit the loop. The return value
|
||
is calculated after the loop. */
|
||
gdb_printf (_("No line number information available "
|
||
"for address "));
|
||
gdb_stdout->wrap_here (2);
|
||
print_address (gdbarch, loop_start - 1, gdb_stdout);
|
||
gdb_printf ("\n");
|
||
break;
|
||
}
|
||
|
||
loop_end = loop_start;
|
||
loop_start = sal.pc;
|
||
|
||
/* This loop pushes instruction addresses in the range from
|
||
LOOP_START to LOOP_END. */
|
||
for (p = loop_start; p < loop_end;)
|
||
{
|
||
pcs.push_back (p);
|
||
p += gdb_insn_length (gdbarch, p);
|
||
}
|
||
|
||
inst_count -= pcs.size ();
|
||
*inst_read += pcs.size ();
|
||
}
|
||
while (inst_count > 0);
|
||
|
||
/* After the loop, the vector PCS has instruction addresses of the last
|
||
source line we processed, and INST_COUNT has a negative value.
|
||
We return the address at the index of -INST_COUNT in the vector for
|
||
the reason below.
|
||
Let's assume the following instruction addresses and run 'x/-4i 0x400e'.
|
||
Line X of File
|
||
0x4000
|
||
0x4001
|
||
0x4005
|
||
Line Y of File
|
||
0x4009
|
||
0x400c
|
||
=> 0x400e
|
||
0x4011
|
||
find_instruction_backward is called with INST_COUNT = 4 and expected to
|
||
return 0x4001. When we reach here, INST_COUNT is set to -1 because
|
||
it was subtracted by 2 (from Line Y) and 3 (from Line X). The value
|
||
4001 is located at the index 1 of the last iterated line (= Line X),
|
||
which is simply calculated by -INST_COUNT.
|
||
The case when the length of PCS is 0 means that we reached an area for
|
||
which line info is not available. In such case, we return LOOP_START,
|
||
which was the lowest instruction address that had line info. */
|
||
p = pcs.size () > 0 ? pcs[-inst_count] : loop_start;
|
||
|
||
/* INST_READ includes all instruction addresses in a pc range. Need to
|
||
exclude the beginning part up to the address we're returning. That
|
||
is, exclude {0x4000} in the example above. */
|
||
if (inst_count < 0)
|
||
*inst_read += inst_count;
|
||
|
||
return p;
|
||
}
|
||
|
||
/* Backward read LEN bytes of target memory from address MEMADDR + LEN,
|
||
placing the results in GDB's memory from MYADDR + LEN. Returns
|
||
a count of the bytes actually read. */
|
||
|
||
static int
|
||
read_memory_backward (struct gdbarch *gdbarch,
|
||
CORE_ADDR memaddr, gdb_byte *myaddr, int len)
|
||
{
|
||
int errcode;
|
||
int nread; /* Number of bytes actually read. */
|
||
|
||
/* First try a complete read. */
|
||
errcode = target_read_memory (memaddr, myaddr, len);
|
||
if (errcode == 0)
|
||
{
|
||
/* Got it all. */
|
||
nread = len;
|
||
}
|
||
else
|
||
{
|
||
/* Loop, reading one byte at a time until we get as much as we can. */
|
||
memaddr += len;
|
||
myaddr += len;
|
||
for (nread = 0; nread < len; ++nread)
|
||
{
|
||
errcode = target_read_memory (--memaddr, --myaddr, 1);
|
||
if (errcode != 0)
|
||
{
|
||
/* The read was unsuccessful, so exit the loop. */
|
||
gdb_printf (_("Cannot access memory at address %s\n"),
|
||
paddress (gdbarch, memaddr));
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
return nread;
|
||
}
|
||
|
||
/* Returns true if X (which is LEN bytes wide) is the number zero. */
|
||
|
||
static int
|
||
integer_is_zero (const gdb_byte *x, int len)
|
||
{
|
||
int i = 0;
|
||
|
||
while (i < len && x[i] == 0)
|
||
++i;
|
||
return (i == len);
|
||
}
|
||
|
||
/* Find the start address of a string in which ADDR is included.
|
||
Basically we search for '\0' and return the next address,
|
||
but if OPTIONS->PRINT_MAX is smaller than the length of a string,
|
||
we stop searching and return the address to print characters as many as
|
||
PRINT_MAX from the string. */
|
||
|
||
static CORE_ADDR
|
||
find_string_backward (struct gdbarch *gdbarch,
|
||
CORE_ADDR addr, int count, int char_size,
|
||
const struct value_print_options *options,
|
||
int *strings_counted)
|
||
{
|
||
const int chunk_size = 0x20;
|
||
int read_error = 0;
|
||
int chars_read = 0;
|
||
int chars_to_read = chunk_size;
|
||
int chars_counted = 0;
|
||
int count_original = count;
|
||
CORE_ADDR string_start_addr = addr;
|
||
|
||
gdb_assert (char_size == 1 || char_size == 2 || char_size == 4);
|
||
gdb::byte_vector buffer (chars_to_read * char_size);
|
||
while (count > 0 && read_error == 0)
|
||
{
|
||
int i;
|
||
|
||
addr -= chars_to_read * char_size;
|
||
chars_read = read_memory_backward (gdbarch, addr, buffer.data (),
|
||
chars_to_read * char_size);
|
||
chars_read /= char_size;
|
||
read_error = (chars_read == chars_to_read) ? 0 : 1;
|
||
unsigned int print_max_chars = get_print_max_chars (options);
|
||
/* Searching for '\0' from the end of buffer in backward direction. */
|
||
for (i = 0; i < chars_read && count > 0 ; ++i, ++chars_counted)
|
||
{
|
||
int offset = (chars_to_read - i - 1) * char_size;
|
||
|
||
if (integer_is_zero (&buffer[offset], char_size)
|
||
|| chars_counted == print_max_chars)
|
||
{
|
||
/* Found '\0' or reached `print_max_chars'. As OFFSET
|
||
is the offset to '\0', we add CHAR_SIZE to return
|
||
the start address of a string. */
|
||
--count;
|
||
string_start_addr = addr + offset + char_size;
|
||
chars_counted = 0;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Update STRINGS_COUNTED with the actual number of loaded strings. */
|
||
*strings_counted = count_original - count;
|
||
|
||
if (read_error != 0)
|
||
{
|
||
/* In error case, STRING_START_ADDR is pointing to the string that
|
||
was last successfully loaded. Rewind the partially loaded string. */
|
||
string_start_addr -= chars_counted * char_size;
|
||
}
|
||
|
||
return string_start_addr;
|
||
}
|
||
|
||
/* Examine data at address ADDR in format FMT.
|
||
Fetch it from memory and print on gdb_stdout. */
|
||
|
||
static void
|
||
do_examine (struct format_data fmt, struct gdbarch *gdbarch, CORE_ADDR addr)
|
||
{
|
||
char format = 0;
|
||
char size;
|
||
int count = 1;
|
||
struct type *val_type = NULL;
|
||
int i;
|
||
int maxelts;
|
||
struct value_print_options opts;
|
||
int need_to_update_next_address = 0;
|
||
CORE_ADDR addr_rewound = 0;
|
||
|
||
format = fmt.format;
|
||
size = fmt.size;
|
||
count = fmt.count;
|
||
next_gdbarch = gdbarch;
|
||
next_address = addr;
|
||
|
||
/* Instruction format implies fetch single bytes
|
||
regardless of the specified size.
|
||
The case of strings is handled in decode_format, only explicit
|
||
size operator are not changed to 'b'. */
|
||
if (format == 'i')
|
||
size = 'b';
|
||
|
||
if (size == 'a')
|
||
{
|
||
/* Pick the appropriate size for an address. */
|
||
if (gdbarch_ptr_bit (next_gdbarch) == 64)
|
||
size = 'g';
|
||
else if (gdbarch_ptr_bit (next_gdbarch) == 32)
|
||
size = 'w';
|
||
else if (gdbarch_ptr_bit (next_gdbarch) == 16)
|
||
size = 'h';
|
||
else
|
||
/* Bad value for gdbarch_ptr_bit. */
|
||
internal_error (_("failed internal consistency check"));
|
||
}
|
||
|
||
if (size == 'b')
|
||
val_type = builtin_type (next_gdbarch)->builtin_int8;
|
||
else if (size == 'h')
|
||
val_type = builtin_type (next_gdbarch)->builtin_int16;
|
||
else if (size == 'w')
|
||
val_type = builtin_type (next_gdbarch)->builtin_int32;
|
||
else if (size == 'g')
|
||
val_type = builtin_type (next_gdbarch)->builtin_int64;
|
||
|
||
if (format == 's')
|
||
{
|
||
struct type *char_type = NULL;
|
||
|
||
/* Search for "char16_t" or "char32_t" types or fall back to 8-bit char
|
||
if type is not found. */
|
||
if (size == 'h')
|
||
char_type = builtin_type (next_gdbarch)->builtin_char16;
|
||
else if (size == 'w')
|
||
char_type = builtin_type (next_gdbarch)->builtin_char32;
|
||
if (char_type)
|
||
val_type = char_type;
|
||
else
|
||
{
|
||
if (size != '\0' && size != 'b')
|
||
warning (_("Unable to display strings with "
|
||
"size '%c', using 'b' instead."), size);
|
||
size = 'b';
|
||
val_type = builtin_type (next_gdbarch)->builtin_int8;
|
||
}
|
||
}
|
||
|
||
maxelts = 8;
|
||
if (size == 'w')
|
||
maxelts = 4;
|
||
if (size == 'g')
|
||
maxelts = 2;
|
||
if (format == 's' || format == 'i')
|
||
maxelts = 1;
|
||
|
||
get_formatted_print_options (&opts, format);
|
||
|
||
if (count < 0)
|
||
{
|
||
/* This is the negative repeat count case.
|
||
We rewind the address based on the given repeat count and format,
|
||
then examine memory from there in forward direction. */
|
||
|
||
count = -count;
|
||
if (format == 'i')
|
||
{
|
||
next_address = find_instruction_backward (gdbarch, addr, count,
|
||
&count);
|
||
}
|
||
else if (format == 's')
|
||
{
|
||
next_address = find_string_backward (gdbarch, addr, count,
|
||
val_type->length (),
|
||
&opts, &count);
|
||
}
|
||
else
|
||
{
|
||
next_address = addr - count * val_type->length ();
|
||
}
|
||
|
||
/* The following call to print_formatted updates next_address in every
|
||
iteration. In backward case, we store the start address here
|
||
and update next_address with it before exiting the function. */
|
||
addr_rewound = (format == 's'
|
||
? next_address - val_type->length ()
|
||
: next_address);
|
||
need_to_update_next_address = 1;
|
||
}
|
||
|
||
/* Whether we need to print the memory tag information for the current
|
||
address range. */
|
||
bool print_range_tag = true;
|
||
uint32_t gsize = gdbarch_memtag_granule_size (gdbarch);
|
||
|
||
/* Print as many objects as specified in COUNT, at most maxelts per line,
|
||
with the address of the next one at the start of each line. */
|
||
|
||
while (count > 0)
|
||
{
|
||
QUIT;
|
||
|
||
CORE_ADDR tag_laddr = 0, tag_haddr = 0;
|
||
|
||
/* Print the memory tag information if requested. */
|
||
if (fmt.print_tags && print_range_tag
|
||
&& target_supports_memory_tagging ())
|
||
{
|
||
tag_laddr = align_down (next_address, gsize);
|
||
tag_haddr = align_down (next_address + gsize, gsize);
|
||
|
||
struct value *v_addr
|
||
= value_from_ulongest (builtin_type (gdbarch)->builtin_data_ptr,
|
||
tag_laddr);
|
||
|
||
if (gdbarch_tagged_address_p (target_gdbarch (), v_addr))
|
||
{
|
||
/* Fetch the allocation tag. */
|
||
struct value *tag
|
||
= gdbarch_get_memtag (gdbarch, v_addr, memtag_type::allocation);
|
||
std::string atag
|
||
= gdbarch_memtag_to_string (gdbarch, tag);
|
||
|
||
if (!atag.empty ())
|
||
{
|
||
gdb_printf (_("<Allocation Tag %s for range [%s,%s)>\n"),
|
||
atag.c_str (),
|
||
paddress (gdbarch, tag_laddr),
|
||
paddress (gdbarch, tag_haddr));
|
||
}
|
||
}
|
||
print_range_tag = false;
|
||
}
|
||
|
||
if (format == 'i')
|
||
gdb_puts (pc_prefix (next_address));
|
||
print_address (next_gdbarch, next_address, gdb_stdout);
|
||
gdb_printf (":");
|
||
for (i = maxelts;
|
||
i > 0 && count > 0;
|
||
i--, count--)
|
||
{
|
||
gdb_printf ("\t");
|
||
/* Note that print_formatted sets next_address for the next
|
||
object. */
|
||
last_examine_address = next_address;
|
||
|
||
/* The value to be displayed is not fetched greedily.
|
||
Instead, to avoid the possibility of a fetched value not
|
||
being used, its retrieval is delayed until the print code
|
||
uses it. When examining an instruction stream, the
|
||
disassembler will perform its own memory fetch using just
|
||
the address stored in LAST_EXAMINE_VALUE. FIXME: Should
|
||
the disassembler be modified so that LAST_EXAMINE_VALUE
|
||
is left with the byte sequence from the last complete
|
||
instruction fetched from memory? */
|
||
last_examine_value
|
||
= release_value (value_at_lazy (val_type, next_address));
|
||
|
||
print_formatted (last_examine_value.get (), size, &opts, gdb_stdout);
|
||
|
||
/* Display any branch delay slots following the final insn. */
|
||
if (format == 'i' && count == 1)
|
||
count += branch_delay_insns;
|
||
|
||
/* Update the tag range based on the current address being
|
||
processed. */
|
||
if (tag_haddr <= next_address)
|
||
print_range_tag = true;
|
||
}
|
||
gdb_printf ("\n");
|
||
}
|
||
|
||
if (need_to_update_next_address)
|
||
next_address = addr_rewound;
|
||
}
|
||
|
||
static void
|
||
validate_format (struct format_data fmt, const char *cmdname)
|
||
{
|
||
if (fmt.size != 0)
|
||
error (_("Size letters are meaningless in \"%s\" command."), cmdname);
|
||
if (fmt.count != 1)
|
||
error (_("Item count other than 1 is meaningless in \"%s\" command."),
|
||
cmdname);
|
||
if (fmt.format == 'i')
|
||
error (_("Format letter \"%c\" is meaningless in \"%s\" command."),
|
||
fmt.format, cmdname);
|
||
}
|
||
|
||
/* Parse print command format string into *OPTS and update *EXPP.
|
||
CMDNAME should name the current command. */
|
||
|
||
void
|
||
print_command_parse_format (const char **expp, const char *cmdname,
|
||
value_print_options *opts)
|
||
{
|
||
const char *exp = *expp;
|
||
|
||
/* opts->raw value might already have been set by 'set print raw-values'
|
||
or by using 'print -raw-values'.
|
||
So, do not set opts->raw to 0, only set it to 1 if /r is given. */
|
||
if (exp && *exp == '/')
|
||
{
|
||
format_data fmt;
|
||
|
||
exp++;
|
||
fmt = decode_format (&exp, last_format, 0);
|
||
validate_format (fmt, cmdname);
|
||
last_format = fmt.format;
|
||
|
||
opts->format = fmt.format;
|
||
opts->raw = opts->raw || fmt.raw;
|
||
}
|
||
else
|
||
{
|
||
opts->format = 0;
|
||
}
|
||
|
||
*expp = exp;
|
||
}
|
||
|
||
/* See valprint.h. */
|
||
|
||
void
|
||
print_value (value *val, const value_print_options &opts)
|
||
{
|
||
/* This setting allows large arrays to be printed by limiting the
|
||
number of elements that are loaded into GDB's memory; we only
|
||
need to load as many array elements as we plan to print. */
|
||
scoped_array_length_limiting limit_large_arrays (opts.print_max);
|
||
|
||
int histindex = val->record_latest ();
|
||
|
||
annotate_value_history_begin (histindex, val->type ());
|
||
|
||
gdb_printf ("$%d = ", histindex);
|
||
|
||
annotate_value_history_value ();
|
||
|
||
print_formatted (val, 0, &opts, gdb_stdout);
|
||
gdb_printf ("\n");
|
||
|
||
annotate_value_history_end ();
|
||
}
|
||
|
||
/* Returns true if memory tags should be validated. False otherwise. */
|
||
|
||
static bool
|
||
should_validate_memtags (struct value *value)
|
||
{
|
||
gdb_assert (value != nullptr && value->type () != nullptr);
|
||
|
||
if (!target_supports_memory_tagging ())
|
||
return false;
|
||
|
||
enum type_code code = value->type ()->code ();
|
||
|
||
/* Skip non-address values. */
|
||
if (code != TYPE_CODE_PTR
|
||
&& !TYPE_IS_REFERENCE (value->type ()))
|
||
return false;
|
||
|
||
/* OK, we have an address value. Check we have a complete value we
|
||
can extract. */
|
||
if (value->optimized_out ()
|
||
|| !value->entirely_available ())
|
||
return false;
|
||
|
||
/* We do. Check whether it includes any tags. */
|
||
return gdbarch_tagged_address_p (target_gdbarch (), value);
|
||
}
|
||
|
||
/* Helper for parsing arguments for print_command_1. */
|
||
|
||
static struct value *
|
||
process_print_command_args (const char *args, value_print_options *print_opts,
|
||
bool voidprint)
|
||
{
|
||
get_user_print_options (print_opts);
|
||
/* Override global settings with explicit options, if any. */
|
||
auto group = make_value_print_options_def_group (print_opts);
|
||
gdb::option::process_options
|
||
(&args, gdb::option::PROCESS_OPTIONS_REQUIRE_DELIMITER, group);
|
||
|
||
print_command_parse_format (&args, "print", print_opts);
|
||
|
||
const char *exp = args;
|
||
|
||
if (exp != nullptr && *exp)
|
||
{
|
||
/* This setting allows large arrays to be printed by limiting the
|
||
number of elements that are loaded into GDB's memory; we only
|
||
need to load as many array elements as we plan to print. */
|
||
scoped_array_length_limiting limit_large_arrays (print_opts->print_max);
|
||
|
||
/* VOIDPRINT is true to indicate that we do want to print a void
|
||
value, so invert it for parse_expression. */
|
||
expression_up expr = parse_expression (exp, nullptr, !voidprint);
|
||
return evaluate_expression (expr.get ());
|
||
}
|
||
|
||
return access_value_history (0);
|
||
}
|
||
|
||
/* Implementation of the "print" and "call" commands. */
|
||
|
||
static void
|
||
print_command_1 (const char *args, int voidprint)
|
||
{
|
||
value_print_options print_opts;
|
||
|
||
struct value *val = process_print_command_args (args, &print_opts, voidprint);
|
||
|
||
if (voidprint || (val && val->type () &&
|
||
val->type ()->code () != TYPE_CODE_VOID))
|
||
{
|
||
/* If memory tagging validation is on, check if the tag is valid. */
|
||
if (print_opts.memory_tag_violations)
|
||
{
|
||
try
|
||
{
|
||
if (should_validate_memtags (val)
|
||
&& !gdbarch_memtag_matches_p (target_gdbarch (), val))
|
||
{
|
||
/* Fetch the logical tag. */
|
||
struct value *tag
|
||
= gdbarch_get_memtag (target_gdbarch (), val,
|
||
memtag_type::logical);
|
||
std::string ltag
|
||
= gdbarch_memtag_to_string (target_gdbarch (), tag);
|
||
|
||
/* Fetch the allocation tag. */
|
||
tag = gdbarch_get_memtag (target_gdbarch (), val,
|
||
memtag_type::allocation);
|
||
std::string atag
|
||
= gdbarch_memtag_to_string (target_gdbarch (), tag);
|
||
|
||
gdb_printf (_("Logical tag (%s) does not match the "
|
||
"allocation tag (%s).\n"),
|
||
ltag.c_str (), atag.c_str ());
|
||
}
|
||
}
|
||
catch (gdb_exception_error &ex)
|
||
{
|
||
if (ex.error == TARGET_CLOSE_ERROR)
|
||
throw;
|
||
|
||
gdb_printf (gdb_stderr,
|
||
_("Could not validate memory tag: %s\n"),
|
||
ex.message->c_str ());
|
||
}
|
||
}
|
||
|
||
print_value (val, print_opts);
|
||
}
|
||
}
|
||
|
||
/* Called from command completion function to skip over /FMT
|
||
specifications, allowing the rest of the line to be completed. Returns
|
||
true if the /FMT is at the end of the current line and there is nothing
|
||
left to complete, otherwise false is returned.
|
||
|
||
In either case *ARGS can be updated to point after any part of /FMT that
|
||
is present.
|
||
|
||
This function is designed so that trying to complete '/' will offer no
|
||
completions, the user needs to insert the format specification
|
||
themselves. Trying to complete '/FMT' (where FMT is any non-empty set
|
||
of alpha-numeric characters) will cause readline to insert a single
|
||
space, setting the user up to enter the expression. */
|
||
|
||
static bool
|
||
skip_over_slash_fmt (completion_tracker &tracker, const char **args)
|
||
{
|
||
const char *text = *args;
|
||
|
||
if (text[0] == '/')
|
||
{
|
||
bool in_fmt;
|
||
tracker.set_use_custom_word_point (true);
|
||
|
||
if (text[1] == '\0')
|
||
{
|
||
/* The user tried to complete after typing just the '/' character
|
||
of the /FMT string. Step the completer past the '/', but we
|
||
don't offer any completions. */
|
||
in_fmt = true;
|
||
++text;
|
||
}
|
||
else
|
||
{
|
||
/* The user has typed some characters after the '/', we assume
|
||
this is a complete /FMT string, first skip over it. */
|
||
text = skip_to_space (text);
|
||
|
||
if (*text == '\0')
|
||
{
|
||
/* We're at the end of the input string. The user has typed
|
||
'/FMT' and asked for a completion. Push an empty
|
||
completion string, this will cause readline to insert a
|
||
space so the user now has '/FMT '. */
|
||
in_fmt = true;
|
||
tracker.add_completion (make_unique_xstrdup (text));
|
||
}
|
||
else
|
||
{
|
||
/* The user has already typed things after the /FMT, skip the
|
||
whitespace and return false. Whoever called this function
|
||
should then try to complete what comes next. */
|
||
in_fmt = false;
|
||
text = skip_spaces (text);
|
||
}
|
||
}
|
||
|
||
tracker.advance_custom_word_point_by (text - *args);
|
||
*args = text;
|
||
return in_fmt;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/* See valprint.h. */
|
||
|
||
void
|
||
print_command_completer (struct cmd_list_element *ignore,
|
||
completion_tracker &tracker,
|
||
const char *text, const char * /*word*/)
|
||
{
|
||
const auto group = make_value_print_options_def_group (nullptr);
|
||
if (gdb::option::complete_options
|
||
(tracker, &text, gdb::option::PROCESS_OPTIONS_REQUIRE_DELIMITER, group))
|
||
return;
|
||
|
||
if (skip_over_slash_fmt (tracker, &text))
|
||
return;
|
||
|
||
const char *word = advance_to_expression_complete_word_point (tracker, text);
|
||
expression_completer (ignore, tracker, text, word);
|
||
}
|
||
|
||
static void
|
||
print_command (const char *exp, int from_tty)
|
||
{
|
||
print_command_1 (exp, true);
|
||
}
|
||
|
||
/* Same as print, except it doesn't print void results. */
|
||
static void
|
||
call_command (const char *exp, int from_tty)
|
||
{
|
||
print_command_1 (exp, false);
|
||
}
|
||
|
||
/* Implementation of the "output" command. */
|
||
|
||
void
|
||
output_command (const char *exp, int from_tty)
|
||
{
|
||
char format = 0;
|
||
struct value *val;
|
||
struct format_data fmt;
|
||
struct value_print_options opts;
|
||
|
||
fmt.size = 0;
|
||
fmt.raw = 0;
|
||
|
||
if (exp && *exp == '/')
|
||
{
|
||
exp++;
|
||
fmt = decode_format (&exp, 0, 0);
|
||
validate_format (fmt, "output");
|
||
format = fmt.format;
|
||
}
|
||
|
||
expression_up expr = parse_expression (exp);
|
||
|
||
val = evaluate_expression (expr.get ());
|
||
|
||
annotate_value_begin (val->type ());
|
||
|
||
get_formatted_print_options (&opts, format);
|
||
opts.raw = fmt.raw;
|
||
|
||
/* This setting allows large arrays to be printed by limiting the
|
||
number of elements that are loaded into GDB's memory; we only
|
||
need to load as many array elements as we plan to print. */
|
||
scoped_array_length_limiting limit_large_arrays (opts.print_max);
|
||
|
||
print_formatted (val, fmt.size, &opts, gdb_stdout);
|
||
|
||
annotate_value_end ();
|
||
|
||
gdb_flush (gdb_stdout);
|
||
}
|
||
|
||
static void
|
||
set_command (const char *exp, int from_tty)
|
||
{
|
||
expression_up expr = parse_expression (exp);
|
||
|
||
switch (expr->first_opcode ())
|
||
{
|
||
case UNOP_PREINCREMENT:
|
||
case UNOP_POSTINCREMENT:
|
||
case UNOP_PREDECREMENT:
|
||
case UNOP_POSTDECREMENT:
|
||
case BINOP_ASSIGN:
|
||
case BINOP_ASSIGN_MODIFY:
|
||
case BINOP_COMMA:
|
||
break;
|
||
default:
|
||
warning
|
||
(_("Expression is not an assignment (and might have no effect)"));
|
||
}
|
||
|
||
evaluate_expression (expr.get ());
|
||
}
|
||
|
||
static void
|
||
info_symbol_command (const char *arg, int from_tty)
|
||
{
|
||
struct minimal_symbol *msymbol;
|
||
struct obj_section *osect;
|
||
CORE_ADDR addr, sect_addr;
|
||
int matches = 0;
|
||
unsigned int offset;
|
||
|
||
if (!arg)
|
||
error_no_arg (_("address"));
|
||
|
||
addr = parse_and_eval_address (arg);
|
||
for (objfile *objfile : current_program_space->objfiles ())
|
||
ALL_OBJFILE_OSECTIONS (objfile, osect)
|
||
{
|
||
/* Only process each object file once, even if there's a separate
|
||
debug file. */
|
||
if (objfile->separate_debug_objfile_backlink)
|
||
continue;
|
||
|
||
sect_addr = overlay_mapped_address (addr, osect);
|
||
|
||
if (osect->addr () <= sect_addr && sect_addr < osect->endaddr ()
|
||
&& (msymbol
|
||
= lookup_minimal_symbol_by_pc_section (sect_addr,
|
||
osect).minsym))
|
||
{
|
||
const char *obj_name, *mapped, *sec_name, *msym_name;
|
||
const char *loc_string;
|
||
|
||
matches = 1;
|
||
offset = sect_addr - msymbol->value_address (objfile);
|
||
mapped = section_is_mapped (osect) ? _("mapped") : _("unmapped");
|
||
sec_name = osect->the_bfd_section->name;
|
||
msym_name = msymbol->print_name ();
|
||
|
||
/* Don't print the offset if it is zero.
|
||
We assume there's no need to handle i18n of "sym + offset". */
|
||
std::string string_holder;
|
||
if (offset)
|
||
{
|
||
string_holder = string_printf ("%s + %u", msym_name, offset);
|
||
loc_string = string_holder.c_str ();
|
||
}
|
||
else
|
||
loc_string = msym_name;
|
||
|
||
gdb_assert (osect->objfile && objfile_name (osect->objfile));
|
||
obj_name = objfile_name (osect->objfile);
|
||
|
||
if (current_program_space->multi_objfile_p ())
|
||
if (pc_in_unmapped_range (addr, osect))
|
||
if (section_is_overlay (osect))
|
||
gdb_printf (_("%s in load address range of "
|
||
"%s overlay section %s of %s\n"),
|
||
loc_string, mapped, sec_name, obj_name);
|
||
else
|
||
gdb_printf (_("%s in load address range of "
|
||
"section %s of %s\n"),
|
||
loc_string, sec_name, obj_name);
|
||
else
|
||
if (section_is_overlay (osect))
|
||
gdb_printf (_("%s in %s overlay section %s of %s\n"),
|
||
loc_string, mapped, sec_name, obj_name);
|
||
else
|
||
gdb_printf (_("%s in section %s of %s\n"),
|
||
loc_string, sec_name, obj_name);
|
||
else
|
||
if (pc_in_unmapped_range (addr, osect))
|
||
if (section_is_overlay (osect))
|
||
gdb_printf (_("%s in load address range of %s overlay "
|
||
"section %s\n"),
|
||
loc_string, mapped, sec_name);
|
||
else
|
||
gdb_printf
|
||
(_("%s in load address range of section %s\n"),
|
||
loc_string, sec_name);
|
||
else
|
||
if (section_is_overlay (osect))
|
||
gdb_printf (_("%s in %s overlay section %s\n"),
|
||
loc_string, mapped, sec_name);
|
||
else
|
||
gdb_printf (_("%s in section %s\n"),
|
||
loc_string, sec_name);
|
||
}
|
||
}
|
||
if (matches == 0)
|
||
gdb_printf (_("No symbol matches %s.\n"), arg);
|
||
}
|
||
|
||
static void
|
||
info_address_command (const char *exp, int from_tty)
|
||
{
|
||
struct gdbarch *gdbarch;
|
||
int regno;
|
||
struct symbol *sym;
|
||
struct bound_minimal_symbol msymbol;
|
||
long val;
|
||
struct obj_section *section;
|
||
CORE_ADDR load_addr, context_pc = 0;
|
||
struct field_of_this_result is_a_field_of_this;
|
||
|
||
if (exp == 0)
|
||
error (_("Argument required."));
|
||
|
||
sym = lookup_symbol (exp, get_selected_block (&context_pc), VAR_DOMAIN,
|
||
&is_a_field_of_this).symbol;
|
||
if (sym == NULL)
|
||
{
|
||
if (is_a_field_of_this.type != NULL)
|
||
{
|
||
gdb_printf ("Symbol \"");
|
||
fprintf_symbol (gdb_stdout, exp,
|
||
current_language->la_language, DMGL_ANSI);
|
||
gdb_printf ("\" is a field of the local class variable ");
|
||
if (current_language->la_language == language_objc)
|
||
gdb_printf ("`self'\n"); /* ObjC equivalent of "this" */
|
||
else
|
||
gdb_printf ("`this'\n");
|
||
return;
|
||
}
|
||
|
||
msymbol = lookup_bound_minimal_symbol (exp);
|
||
|
||
if (msymbol.minsym != NULL)
|
||
{
|
||
struct objfile *objfile = msymbol.objfile;
|
||
|
||
gdbarch = objfile->arch ();
|
||
load_addr = msymbol.value_address ();
|
||
|
||
gdb_printf ("Symbol \"");
|
||
fprintf_symbol (gdb_stdout, exp,
|
||
current_language->la_language, DMGL_ANSI);
|
||
gdb_printf ("\" is at ");
|
||
fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
|
||
gdb_stdout);
|
||
gdb_printf (" in a file compiled without debugging");
|
||
section = msymbol.minsym->obj_section (objfile);
|
||
if (section_is_overlay (section))
|
||
{
|
||
load_addr = overlay_unmapped_address (load_addr, section);
|
||
gdb_printf (",\n -- loaded at ");
|
||
fputs_styled (paddress (gdbarch, load_addr),
|
||
address_style.style (),
|
||
gdb_stdout);
|
||
gdb_printf (" in overlay section %s",
|
||
section->the_bfd_section->name);
|
||
}
|
||
gdb_printf (".\n");
|
||
}
|
||
else
|
||
error (_("No symbol \"%s\" in current context."), exp);
|
||
return;
|
||
}
|
||
|
||
gdb_printf ("Symbol \"");
|
||
gdb_puts (sym->print_name ());
|
||
gdb_printf ("\" is ");
|
||
val = sym->value_longest ();
|
||
if (sym->is_objfile_owned ())
|
||
section = sym->obj_section (sym->objfile ());
|
||
else
|
||
section = NULL;
|
||
gdbarch = sym->arch ();
|
||
|
||
if (SYMBOL_COMPUTED_OPS (sym) != NULL)
|
||
{
|
||
SYMBOL_COMPUTED_OPS (sym)->describe_location (sym, context_pc,
|
||
gdb_stdout);
|
||
gdb_printf (".\n");
|
||
return;
|
||
}
|
||
|
||
switch (sym->aclass ())
|
||
{
|
||
case LOC_CONST:
|
||
case LOC_CONST_BYTES:
|
||
gdb_printf ("constant");
|
||
break;
|
||
|
||
case LOC_LABEL:
|
||
gdb_printf ("a label at address ");
|
||
load_addr = sym->value_address ();
|
||
fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
|
||
gdb_stdout);
|
||
if (section_is_overlay (section))
|
||
{
|
||
load_addr = overlay_unmapped_address (load_addr, section);
|
||
gdb_printf (",\n -- loaded at ");
|
||
fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
|
||
gdb_stdout);
|
||
gdb_printf (" in overlay section %s",
|
||
section->the_bfd_section->name);
|
||
}
|
||
break;
|
||
|
||
case LOC_COMPUTED:
|
||
gdb_assert_not_reached ("LOC_COMPUTED variable missing a method");
|
||
|
||
case LOC_REGISTER:
|
||
/* GDBARCH is the architecture associated with the objfile the symbol
|
||
is defined in; the target architecture may be different, and may
|
||
provide additional registers. However, we do not know the target
|
||
architecture at this point. We assume the objfile architecture
|
||
will contain all the standard registers that occur in debug info
|
||
in that objfile. */
|
||
regno = SYMBOL_REGISTER_OPS (sym)->register_number (sym, gdbarch);
|
||
|
||
if (sym->is_argument ())
|
||
gdb_printf (_("an argument in register %s"),
|
||
gdbarch_register_name (gdbarch, regno));
|
||
else
|
||
gdb_printf (_("a variable in register %s"),
|
||
gdbarch_register_name (gdbarch, regno));
|
||
break;
|
||
|
||
case LOC_STATIC:
|
||
gdb_printf (_("static storage at address "));
|
||
load_addr = sym->value_address ();
|
||
fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
|
||
gdb_stdout);
|
||
if (section_is_overlay (section))
|
||
{
|
||
load_addr = overlay_unmapped_address (load_addr, section);
|
||
gdb_printf (_(",\n -- loaded at "));
|
||
fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
|
||
gdb_stdout);
|
||
gdb_printf (_(" in overlay section %s"),
|
||
section->the_bfd_section->name);
|
||
}
|
||
break;
|
||
|
||
case LOC_REGPARM_ADDR:
|
||
/* Note comment at LOC_REGISTER. */
|
||
regno = SYMBOL_REGISTER_OPS (sym)->register_number (sym, gdbarch);
|
||
gdb_printf (_("address of an argument in register %s"),
|
||
gdbarch_register_name (gdbarch, regno));
|
||
break;
|
||
|
||
case LOC_ARG:
|
||
gdb_printf (_("an argument at offset %ld"), val);
|
||
break;
|
||
|
||
case LOC_LOCAL:
|
||
gdb_printf (_("a local variable at frame offset %ld"), val);
|
||
break;
|
||
|
||
case LOC_REF_ARG:
|
||
gdb_printf (_("a reference argument at offset %ld"), val);
|
||
break;
|
||
|
||
case LOC_TYPEDEF:
|
||
gdb_printf (_("a typedef"));
|
||
break;
|
||
|
||
case LOC_BLOCK:
|
||
gdb_printf (_("a function at address "));
|
||
load_addr = sym->value_block ()->entry_pc ();
|
||
fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
|
||
gdb_stdout);
|
||
if (section_is_overlay (section))
|
||
{
|
||
load_addr = overlay_unmapped_address (load_addr, section);
|
||
gdb_printf (_(",\n -- loaded at "));
|
||
fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
|
||
gdb_stdout);
|
||
gdb_printf (_(" in overlay section %s"),
|
||
section->the_bfd_section->name);
|
||
}
|
||
break;
|
||
|
||
case LOC_UNRESOLVED:
|
||
{
|
||
struct bound_minimal_symbol msym;
|
||
|
||
msym = lookup_bound_minimal_symbol (sym->linkage_name ());
|
||
if (msym.minsym == NULL)
|
||
gdb_printf ("unresolved");
|
||
else
|
||
{
|
||
section = msym.obj_section ();
|
||
|
||
if (section
|
||
&& (section->the_bfd_section->flags & SEC_THREAD_LOCAL) != 0)
|
||
{
|
||
load_addr = msym.minsym->value_raw_address ();
|
||
gdb_printf (_("a thread-local variable at offset %s "
|
||
"in the thread-local storage for `%s'"),
|
||
paddress (gdbarch, load_addr),
|
||
objfile_name (section->objfile));
|
||
}
|
||
else
|
||
{
|
||
load_addr = msym.value_address ();
|
||
gdb_printf (_("static storage at address "));
|
||
fputs_styled (paddress (gdbarch, load_addr),
|
||
address_style.style (), gdb_stdout);
|
||
if (section_is_overlay (section))
|
||
{
|
||
load_addr = overlay_unmapped_address (load_addr, section);
|
||
gdb_printf (_(",\n -- loaded at "));
|
||
fputs_styled (paddress (gdbarch, load_addr),
|
||
address_style.style (),
|
||
gdb_stdout);
|
||
gdb_printf (_(" in overlay section %s"),
|
||
section->the_bfd_section->name);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
break;
|
||
|
||
case LOC_OPTIMIZED_OUT:
|
||
gdb_printf (_("optimized out"));
|
||
break;
|
||
|
||
default:
|
||
gdb_printf (_("of unknown (botched) type"));
|
||
break;
|
||
}
|
||
gdb_printf (".\n");
|
||
}
|
||
|
||
|
||
static void
|
||
x_command (const char *exp, int from_tty)
|
||
{
|
||
struct format_data fmt;
|
||
struct value *val;
|
||
|
||
fmt.format = last_format ? last_format : 'x';
|
||
fmt.print_tags = last_print_tags;
|
||
fmt.size = last_size;
|
||
fmt.count = 1;
|
||
fmt.raw = 0;
|
||
|
||
/* If there is no expression and no format, use the most recent
|
||
count. */
|
||
if (exp == nullptr && last_count > 0)
|
||
fmt.count = last_count;
|
||
|
||
if (exp && *exp == '/')
|
||
{
|
||
const char *tmp = exp + 1;
|
||
|
||
fmt = decode_format (&tmp, last_format, last_size);
|
||
exp = (char *) tmp;
|
||
}
|
||
|
||
last_count = fmt.count;
|
||
|
||
/* If we have an expression, evaluate it and use it as the address. */
|
||
|
||
if (exp != 0 && *exp != 0)
|
||
{
|
||
expression_up expr = parse_expression (exp);
|
||
/* Cause expression not to be there any more if this command is
|
||
repeated with Newline. But don't clobber a user-defined
|
||
command's definition. */
|
||
if (from_tty)
|
||
set_repeat_arguments ("");
|
||
val = evaluate_expression (expr.get ());
|
||
if (TYPE_IS_REFERENCE (val->type ()))
|
||
val = coerce_ref (val);
|
||
/* In rvalue contexts, such as this, functions are coerced into
|
||
pointers to functions. This makes "x/i main" work. */
|
||
if (val->type ()->code () == TYPE_CODE_FUNC
|
||
&& val->lval () == lval_memory)
|
||
next_address = val->address ();
|
||
else
|
||
next_address = value_as_address (val);
|
||
|
||
next_gdbarch = expr->gdbarch;
|
||
}
|
||
|
||
if (!next_gdbarch)
|
||
error_no_arg (_("starting display address"));
|
||
|
||
do_examine (fmt, next_gdbarch, next_address);
|
||
|
||
/* If the examine succeeds, we remember its size and format for next
|
||
time. Set last_size to 'b' for strings. */
|
||
if (fmt.format == 's')
|
||
last_size = 'b';
|
||
else
|
||
last_size = fmt.size;
|
||
last_format = fmt.format;
|
||
|
||
/* Remember tag-printing setting. */
|
||
last_print_tags = fmt.print_tags;
|
||
|
||
/* Set a couple of internal variables if appropriate. */
|
||
if (last_examine_value != nullptr)
|
||
{
|
||
/* Make last address examined available to the user as $_. Use
|
||
the correct pointer type. */
|
||
struct type *pointer_type
|
||
= lookup_pointer_type (last_examine_value->type ());
|
||
set_internalvar (lookup_internalvar ("_"),
|
||
value_from_pointer (pointer_type,
|
||
last_examine_address));
|
||
|
||
/* Make contents of last address examined available to the user
|
||
as $__. If the last value has not been fetched from memory
|
||
then don't fetch it now; instead mark it by voiding the $__
|
||
variable. */
|
||
if (last_examine_value->lazy ())
|
||
clear_internalvar (lookup_internalvar ("__"));
|
||
else
|
||
set_internalvar (lookup_internalvar ("__"), last_examine_value.get ());
|
||
}
|
||
}
|
||
|
||
/* Command completion for the 'display' and 'x' commands. */
|
||
|
||
static void
|
||
display_and_x_command_completer (struct cmd_list_element *ignore,
|
||
completion_tracker &tracker,
|
||
const char *text, const char * /*word*/)
|
||
{
|
||
if (skip_over_slash_fmt (tracker, &text))
|
||
return;
|
||
|
||
const char *word = advance_to_expression_complete_word_point (tracker, text);
|
||
expression_completer (ignore, tracker, text, word);
|
||
}
|
||
|
||
|
||
|
||
/* Add an expression to the auto-display chain.
|
||
Specify the expression. */
|
||
|
||
static void
|
||
display_command (const char *arg, int from_tty)
|
||
{
|
||
struct format_data fmt;
|
||
struct display *newobj;
|
||
const char *exp = arg;
|
||
|
||
if (exp == 0)
|
||
{
|
||
do_displays ();
|
||
return;
|
||
}
|
||
|
||
if (*exp == '/')
|
||
{
|
||
exp++;
|
||
fmt = decode_format (&exp, 0, 0);
|
||
if (fmt.size && fmt.format == 0)
|
||
fmt.format = 'x';
|
||
if (fmt.format == 'i' || fmt.format == 's')
|
||
fmt.size = 'b';
|
||
}
|
||
else
|
||
{
|
||
fmt.format = 0;
|
||
fmt.size = 0;
|
||
fmt.count = 0;
|
||
fmt.raw = 0;
|
||
}
|
||
|
||
innermost_block_tracker tracker;
|
||
expression_up expr = parse_expression (exp, &tracker);
|
||
|
||
newobj = new display (exp, std::move (expr), fmt,
|
||
current_program_space, tracker.block ());
|
||
all_displays.emplace_back (newobj);
|
||
|
||
if (from_tty)
|
||
do_one_display (newobj);
|
||
|
||
dont_repeat ();
|
||
}
|
||
|
||
/* Clear out the display_chain. Done when new symtabs are loaded,
|
||
since this invalidates the types stored in many expressions. */
|
||
|
||
void
|
||
clear_displays ()
|
||
{
|
||
all_displays.clear ();
|
||
}
|
||
|
||
/* Delete the auto-display DISPLAY. */
|
||
|
||
static void
|
||
delete_display (struct display *display)
|
||
{
|
||
gdb_assert (display != NULL);
|
||
|
||
auto iter = std::find_if (all_displays.begin (),
|
||
all_displays.end (),
|
||
[=] (const std::unique_ptr<struct display> &item)
|
||
{
|
||
return item.get () == display;
|
||
});
|
||
gdb_assert (iter != all_displays.end ());
|
||
all_displays.erase (iter);
|
||
}
|
||
|
||
/* Call FUNCTION on each of the displays whose numbers are given in
|
||
ARGS. DATA is passed unmodified to FUNCTION. */
|
||
|
||
static void
|
||
map_display_numbers (const char *args,
|
||
gdb::function_view<void (struct display *)> function)
|
||
{
|
||
int num;
|
||
|
||
if (args == NULL)
|
||
error_no_arg (_("one or more display numbers"));
|
||
|
||
number_or_range_parser parser (args);
|
||
|
||
while (!parser.finished ())
|
||
{
|
||
const char *p = parser.cur_tok ();
|
||
|
||
num = parser.get_number ();
|
||
if (num == 0)
|
||
warning (_("bad display number at or near '%s'"), p);
|
||
else
|
||
{
|
||
auto iter = std::find_if (all_displays.begin (),
|
||
all_displays.end (),
|
||
[=] (const std::unique_ptr<display> &item)
|
||
{
|
||
return item->number == num;
|
||
});
|
||
if (iter == all_displays.end ())
|
||
gdb_printf (_("No display number %d.\n"), num);
|
||
else
|
||
function (iter->get ());
|
||
}
|
||
}
|
||
}
|
||
|
||
/* "undisplay" command. */
|
||
|
||
static void
|
||
undisplay_command (const char *args, int from_tty)
|
||
{
|
||
if (args == NULL)
|
||
{
|
||
if (query (_("Delete all auto-display expressions? ")))
|
||
clear_displays ();
|
||
dont_repeat ();
|
||
return;
|
||
}
|
||
|
||
map_display_numbers (args, delete_display);
|
||
dont_repeat ();
|
||
}
|
||
|
||
/* Display a single auto-display.
|
||
Do nothing if the display cannot be printed in the current context,
|
||
or if the display is disabled. */
|
||
|
||
static void
|
||
do_one_display (struct display *d)
|
||
{
|
||
int within_current_scope;
|
||
|
||
if (!d->enabled_p)
|
||
return;
|
||
|
||
/* The expression carries the architecture that was used at parse time.
|
||
This is a problem if the expression depends on architecture features
|
||
(e.g. register numbers), and the current architecture is now different.
|
||
For example, a display statement like "display/i $pc" is expected to
|
||
display the PC register of the current architecture, not the arch at
|
||
the time the display command was given. Therefore, we re-parse the
|
||
expression if the current architecture has changed. */
|
||
if (d->exp != NULL && d->exp->gdbarch != get_current_arch ())
|
||
{
|
||
d->exp.reset ();
|
||
d->block = NULL;
|
||
}
|
||
|
||
if (d->exp == NULL)
|
||
{
|
||
|
||
try
|
||
{
|
||
innermost_block_tracker tracker;
|
||
d->exp = parse_expression (d->exp_string.c_str (), &tracker);
|
||
d->block = tracker.block ();
|
||
}
|
||
catch (const gdb_exception &ex)
|
||
{
|
||
/* Can't re-parse the expression. Disable this display item. */
|
||
d->enabled_p = false;
|
||
warning (_("Unable to display \"%s\": %s"),
|
||
d->exp_string.c_str (), ex.what ());
|
||
return;
|
||
}
|
||
}
|
||
|
||
if (d->block)
|
||
{
|
||
if (d->pspace == current_program_space)
|
||
within_current_scope = d->block->contains (get_selected_block (0),
|
||
true);
|
||
else
|
||
within_current_scope = 0;
|
||
}
|
||
else
|
||
within_current_scope = 1;
|
||
if (!within_current_scope)
|
||
return;
|
||
|
||
scoped_restore save_display_number
|
||
= make_scoped_restore (¤t_display_number, d->number);
|
||
|
||
annotate_display_begin ();
|
||
gdb_printf ("%d", d->number);
|
||
annotate_display_number_end ();
|
||
gdb_printf (": ");
|
||
if (d->format.size)
|
||
{
|
||
|
||
annotate_display_format ();
|
||
|
||
gdb_printf ("x/");
|
||
if (d->format.count != 1)
|
||
gdb_printf ("%d", d->format.count);
|
||
gdb_printf ("%c", d->format.format);
|
||
if (d->format.format != 'i' && d->format.format != 's')
|
||
gdb_printf ("%c", d->format.size);
|
||
gdb_printf (" ");
|
||
|
||
annotate_display_expression ();
|
||
|
||
gdb_puts (d->exp_string.c_str ());
|
||
annotate_display_expression_end ();
|
||
|
||
if (d->format.count != 1 || d->format.format == 'i')
|
||
gdb_printf ("\n");
|
||
else
|
||
gdb_printf (" ");
|
||
|
||
annotate_display_value ();
|
||
|
||
try
|
||
{
|
||
struct value *val;
|
||
CORE_ADDR addr;
|
||
|
||
val = evaluate_expression (d->exp.get ());
|
||
addr = value_as_address (val);
|
||
if (d->format.format == 'i')
|
||
addr = gdbarch_addr_bits_remove (d->exp->gdbarch, addr);
|
||
do_examine (d->format, d->exp->gdbarch, addr);
|
||
}
|
||
catch (const gdb_exception_error &ex)
|
||
{
|
||
gdb_printf (_("%p[<error: %s>%p]\n"),
|
||
metadata_style.style ().ptr (), ex.what (),
|
||
nullptr);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
struct value_print_options opts;
|
||
|
||
annotate_display_format ();
|
||
|
||
if (d->format.format)
|
||
gdb_printf ("/%c ", d->format.format);
|
||
|
||
annotate_display_expression ();
|
||
|
||
gdb_puts (d->exp_string.c_str ());
|
||
annotate_display_expression_end ();
|
||
|
||
gdb_printf (" = ");
|
||
|
||
annotate_display_expression ();
|
||
|
||
get_formatted_print_options (&opts, d->format.format);
|
||
opts.raw = d->format.raw;
|
||
|
||
try
|
||
{
|
||
struct value *val;
|
||
|
||
val = evaluate_expression (d->exp.get ());
|
||
print_formatted (val, d->format.size, &opts, gdb_stdout);
|
||
}
|
||
catch (const gdb_exception_error &ex)
|
||
{
|
||
fprintf_styled (gdb_stdout, metadata_style.style (),
|
||
_("<error: %s>"), ex.what ());
|
||
}
|
||
|
||
gdb_printf ("\n");
|
||
}
|
||
|
||
annotate_display_end ();
|
||
|
||
gdb_flush (gdb_stdout);
|
||
}
|
||
|
||
/* Display all of the values on the auto-display chain which can be
|
||
evaluated in the current scope. */
|
||
|
||
void
|
||
do_displays (void)
|
||
{
|
||
for (auto &d : all_displays)
|
||
do_one_display (d.get ());
|
||
}
|
||
|
||
/* Delete the auto-display which we were in the process of displaying.
|
||
This is done when there is an error or a signal. */
|
||
|
||
void
|
||
disable_display (int num)
|
||
{
|
||
for (auto &d : all_displays)
|
||
if (d->number == num)
|
||
{
|
||
d->enabled_p = false;
|
||
return;
|
||
}
|
||
gdb_printf (_("No display number %d.\n"), num);
|
||
}
|
||
|
||
void
|
||
disable_current_display (void)
|
||
{
|
||
if (current_display_number >= 0)
|
||
{
|
||
disable_display (current_display_number);
|
||
gdb_printf (gdb_stderr,
|
||
_("Disabling display %d to "
|
||
"avoid infinite recursion.\n"),
|
||
current_display_number);
|
||
}
|
||
current_display_number = -1;
|
||
}
|
||
|
||
static void
|
||
info_display_command (const char *ignore, int from_tty)
|
||
{
|
||
if (all_displays.empty ())
|
||
gdb_printf (_("There are no auto-display expressions now.\n"));
|
||
else
|
||
gdb_printf (_("Auto-display expressions now in effect:\n\
|
||
Num Enb Expression\n"));
|
||
|
||
for (auto &d : all_displays)
|
||
{
|
||
gdb_printf ("%d: %c ", d->number, "ny"[(int) d->enabled_p]);
|
||
if (d->format.size)
|
||
gdb_printf ("/%d%c%c ", d->format.count, d->format.size,
|
||
d->format.format);
|
||
else if (d->format.format)
|
||
gdb_printf ("/%c ", d->format.format);
|
||
gdb_puts (d->exp_string.c_str ());
|
||
if (d->block && !d->block->contains (get_selected_block (0), true))
|
||
gdb_printf (_(" (cannot be evaluated in the current context)"));
|
||
gdb_printf ("\n");
|
||
}
|
||
}
|
||
|
||
/* Implementation of both the "disable display" and "enable display"
|
||
commands. ENABLE decides what to do. */
|
||
|
||
static void
|
||
enable_disable_display_command (const char *args, int from_tty, bool enable)
|
||
{
|
||
if (args == NULL)
|
||
{
|
||
for (auto &d : all_displays)
|
||
d->enabled_p = enable;
|
||
return;
|
||
}
|
||
|
||
map_display_numbers (args,
|
||
[=] (struct display *d)
|
||
{
|
||
d->enabled_p = enable;
|
||
});
|
||
}
|
||
|
||
/* The "enable display" command. */
|
||
|
||
static void
|
||
enable_display_command (const char *args, int from_tty)
|
||
{
|
||
enable_disable_display_command (args, from_tty, true);
|
||
}
|
||
|
||
/* The "disable display" command. */
|
||
|
||
static void
|
||
disable_display_command (const char *args, int from_tty)
|
||
{
|
||
enable_disable_display_command (args, from_tty, false);
|
||
}
|
||
|
||
/* display_chain items point to blocks and expressions. Some expressions in
|
||
turn may point to symbols.
|
||
Both symbols and blocks are obstack_alloc'd on objfile_stack, and are
|
||
obstack_free'd when a shared library is unloaded.
|
||
Clear pointers that are about to become dangling.
|
||
Both .exp and .block fields will be restored next time we need to display
|
||
an item by re-parsing .exp_string field in the new execution context. */
|
||
|
||
static void
|
||
clear_dangling_display_expressions (struct objfile *objfile)
|
||
{
|
||
struct program_space *pspace;
|
||
|
||
/* With no symbol file we cannot have a block or expression from it. */
|
||
if (objfile == NULL)
|
||
return;
|
||
pspace = objfile->pspace;
|
||
if (objfile->separate_debug_objfile_backlink)
|
||
{
|
||
objfile = objfile->separate_debug_objfile_backlink;
|
||
gdb_assert (objfile->pspace == pspace);
|
||
}
|
||
|
||
for (auto &d : all_displays)
|
||
{
|
||
if (d->pspace != pspace)
|
||
continue;
|
||
|
||
struct objfile *bl_objf = nullptr;
|
||
if (d->block != nullptr)
|
||
{
|
||
bl_objf = d->block->objfile ();
|
||
if (bl_objf->separate_debug_objfile_backlink != nullptr)
|
||
bl_objf = bl_objf->separate_debug_objfile_backlink;
|
||
}
|
||
|
||
if (bl_objf == objfile
|
||
|| (d->exp != nullptr && d->exp->uses_objfile (objfile)))
|
||
{
|
||
d->exp.reset ();
|
||
d->block = NULL;
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/* Print the value in stack frame FRAME of a variable specified by a
|
||
struct symbol. NAME is the name to print; if NULL then VAR's print
|
||
name will be used. STREAM is the ui_file on which to print the
|
||
value. INDENT specifies the number of indent levels to print
|
||
before printing the variable name.
|
||
|
||
This function invalidates FRAME. */
|
||
|
||
void
|
||
print_variable_and_value (const char *name, struct symbol *var,
|
||
frame_info_ptr frame,
|
||
struct ui_file *stream, int indent)
|
||
{
|
||
|
||
if (!name)
|
||
name = var->print_name ();
|
||
|
||
gdb_printf (stream, "%*s%ps = ", 2 * indent, "",
|
||
styled_string (variable_name_style.style (), name));
|
||
|
||
try
|
||
{
|
||
struct value *val;
|
||
struct value_print_options opts;
|
||
|
||
/* READ_VAR_VALUE needs a block in order to deal with non-local
|
||
references (i.e. to handle nested functions). In this context, we
|
||
print variables that are local to this frame, so we can avoid passing
|
||
a block to it. */
|
||
val = read_var_value (var, NULL, frame);
|
||
get_user_print_options (&opts);
|
||
opts.deref_ref = true;
|
||
common_val_print_checked (val, stream, indent, &opts, current_language);
|
||
|
||
/* common_val_print invalidates FRAME when a pretty printer calls inferior
|
||
function. */
|
||
frame = NULL;
|
||
}
|
||
catch (const gdb_exception_error &except)
|
||
{
|
||
fprintf_styled (stream, metadata_style.style (),
|
||
"<error reading variable %s (%s)>", name,
|
||
except.what ());
|
||
}
|
||
|
||
gdb_printf (stream, "\n");
|
||
}
|
||
|
||
/* Subroutine of ui_printf to simplify it.
|
||
Print VALUE to STREAM using FORMAT.
|
||
VALUE is a C-style string either on the target or
|
||
in a GDB internal variable. */
|
||
|
||
static void
|
||
printf_c_string (struct ui_file *stream, const char *format,
|
||
struct value *value)
|
||
{
|
||
const gdb_byte *str;
|
||
|
||
if (value->type ()->code () != TYPE_CODE_PTR
|
||
&& value->lval () == lval_internalvar
|
||
&& c_is_string_type_p (value->type ()))
|
||
{
|
||
size_t len = value->type ()->length ();
|
||
|
||
/* Copy the internal var value to TEM_STR and append a terminating null
|
||
character. This protects against corrupted C-style strings that lack
|
||
the terminating null char. It also allows Ada-style strings (not
|
||
null terminated) to be printed without problems. */
|
||
gdb_byte *tem_str = (gdb_byte *) alloca (len + 1);
|
||
|
||
memcpy (tem_str, value->contents ().data (), len);
|
||
tem_str [len] = 0;
|
||
str = tem_str;
|
||
}
|
||
else
|
||
{
|
||
CORE_ADDR tem = value_as_address (value);;
|
||
|
||
if (tem == 0)
|
||
{
|
||
DIAGNOSTIC_PUSH
|
||
DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
|
||
gdb_printf (stream, format, "(null)");
|
||
DIAGNOSTIC_POP
|
||
return;
|
||
}
|
||
|
||
/* This is a %s argument. Find the length of the string. */
|
||
size_t len;
|
||
|
||
for (len = 0;; len++)
|
||
{
|
||
gdb_byte c;
|
||
|
||
QUIT;
|
||
read_memory (tem + len, &c, 1);
|
||
if (c == 0)
|
||
break;
|
||
}
|
||
|
||
/* Copy the string contents into a string inside GDB. */
|
||
gdb_byte *tem_str = (gdb_byte *) alloca (len + 1);
|
||
|
||
if (len != 0)
|
||
read_memory (tem, tem_str, len);
|
||
tem_str[len] = 0;
|
||
str = tem_str;
|
||
}
|
||
|
||
DIAGNOSTIC_PUSH
|
||
DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
|
||
gdb_printf (stream, format, (char *) str);
|
||
DIAGNOSTIC_POP
|
||
}
|
||
|
||
/* Subroutine of ui_printf to simplify it.
|
||
Print VALUE to STREAM using FORMAT.
|
||
VALUE is a wide C-style string on the target or
|
||
in a GDB internal variable. */
|
||
|
||
static void
|
||
printf_wide_c_string (struct ui_file *stream, const char *format,
|
||
struct value *value)
|
||
{
|
||
const gdb_byte *str;
|
||
size_t len;
|
||
struct gdbarch *gdbarch = value->type ()->arch ();
|
||
struct type *wctype = lookup_typename (current_language,
|
||
"wchar_t", NULL, 0);
|
||
int wcwidth = wctype->length ();
|
||
|
||
if (value->lval () == lval_internalvar
|
||
&& c_is_string_type_p (value->type ()))
|
||
{
|
||
str = value->contents ().data ();
|
||
len = value->type ()->length ();
|
||
}
|
||
else
|
||
{
|
||
CORE_ADDR tem = value_as_address (value);
|
||
|
||
if (tem == 0)
|
||
{
|
||
DIAGNOSTIC_PUSH
|
||
DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
|
||
gdb_printf (stream, format, "(null)");
|
||
DIAGNOSTIC_POP
|
||
return;
|
||
}
|
||
|
||
/* This is a %s argument. Find the length of the string. */
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
gdb_byte *buf = (gdb_byte *) alloca (wcwidth);
|
||
|
||
for (len = 0;; len += wcwidth)
|
||
{
|
||
QUIT;
|
||
read_memory (tem + len, buf, wcwidth);
|
||
if (extract_unsigned_integer (buf, wcwidth, byte_order) == 0)
|
||
break;
|
||
}
|
||
|
||
/* Copy the string contents into a string inside GDB. */
|
||
gdb_byte *tem_str = (gdb_byte *) alloca (len + wcwidth);
|
||
|
||
if (len != 0)
|
||
read_memory (tem, tem_str, len);
|
||
memset (&tem_str[len], 0, wcwidth);
|
||
str = tem_str;
|
||
}
|
||
|
||
auto_obstack output;
|
||
|
||
convert_between_encodings (target_wide_charset (gdbarch),
|
||
host_charset (),
|
||
str, len, wcwidth,
|
||
&output, translit_char);
|
||
obstack_grow_str0 (&output, "");
|
||
|
||
DIAGNOSTIC_PUSH
|
||
DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
|
||
gdb_printf (stream, format, obstack_base (&output));
|
||
DIAGNOSTIC_POP
|
||
}
|
||
|
||
/* Subroutine of ui_printf to simplify it.
|
||
Print VALUE, a floating point value, to STREAM using FORMAT. */
|
||
|
||
static void
|
||
printf_floating (struct ui_file *stream, const char *format,
|
||
struct value *value, enum argclass argclass)
|
||
{
|
||
/* Parameter data. */
|
||
struct type *param_type = value->type ();
|
||
struct gdbarch *gdbarch = param_type->arch ();
|
||
|
||
/* Determine target type corresponding to the format string. */
|
||
struct type *fmt_type;
|
||
switch (argclass)
|
||
{
|
||
case double_arg:
|
||
fmt_type = builtin_type (gdbarch)->builtin_double;
|
||
break;
|
||
case long_double_arg:
|
||
fmt_type = builtin_type (gdbarch)->builtin_long_double;
|
||
break;
|
||
case dec32float_arg:
|
||
fmt_type = builtin_type (gdbarch)->builtin_decfloat;
|
||
break;
|
||
case dec64float_arg:
|
||
fmt_type = builtin_type (gdbarch)->builtin_decdouble;
|
||
break;
|
||
case dec128float_arg:
|
||
fmt_type = builtin_type (gdbarch)->builtin_declong;
|
||
break;
|
||
default:
|
||
gdb_assert_not_reached ("unexpected argument class");
|
||
}
|
||
|
||
/* To match the traditional GDB behavior, the conversion is
|
||
done differently depending on the type of the parameter:
|
||
|
||
- if the parameter has floating-point type, it's value
|
||
is converted to the target type;
|
||
|
||
- otherwise, if the parameter has a type that is of the
|
||
same size as a built-in floating-point type, the value
|
||
bytes are interpreted as if they were of that type, and
|
||
then converted to the target type (this is not done for
|
||
decimal floating-point argument classes);
|
||
|
||
- otherwise, if the source value has an integer value,
|
||
it's value is converted to the target type;
|
||
|
||
- otherwise, an error is raised.
|
||
|
||
In either case, the result of the conversion is a byte buffer
|
||
formatted in the target format for the target type. */
|
||
|
||
if (fmt_type->code () == TYPE_CODE_FLT)
|
||
{
|
||
param_type = float_type_from_length (param_type);
|
||
if (param_type != value->type ())
|
||
value = value_from_contents (param_type,
|
||
value->contents ().data ());
|
||
}
|
||
|
||
value = value_cast (fmt_type, value);
|
||
|
||
/* Convert the value to a string and print it. */
|
||
std::string str
|
||
= target_float_to_string (value->contents ().data (), fmt_type, format);
|
||
gdb_puts (str.c_str (), stream);
|
||
}
|
||
|
||
/* Subroutine of ui_printf to simplify it.
|
||
Print VALUE, a target pointer, to STREAM using FORMAT. */
|
||
|
||
static void
|
||
printf_pointer (struct ui_file *stream, const char *format,
|
||
struct value *value)
|
||
{
|
||
/* We avoid the host's %p because pointers are too
|
||
likely to be the wrong size. The only interesting
|
||
modifier for %p is a width; extract that, and then
|
||
handle %p as glibc would: %#x or a literal "(nil)". */
|
||
|
||
const char *p;
|
||
char *fmt, *fmt_p;
|
||
#ifdef PRINTF_HAS_LONG_LONG
|
||
long long val = value_as_long (value);
|
||
#else
|
||
long val = value_as_long (value);
|
||
#endif
|
||
|
||
fmt = (char *) alloca (strlen (format) + 5);
|
||
|
||
/* Copy up to the leading %. */
|
||
p = format;
|
||
fmt_p = fmt;
|
||
while (*p)
|
||
{
|
||
int is_percent = (*p == '%');
|
||
|
||
*fmt_p++ = *p++;
|
||
if (is_percent)
|
||
{
|
||
if (*p == '%')
|
||
*fmt_p++ = *p++;
|
||
else
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (val != 0)
|
||
*fmt_p++ = '#';
|
||
|
||
/* Copy any width or flags. Only the "-" flag is valid for pointers
|
||
-- see the format_pieces constructor. */
|
||
while (*p == '-' || (*p >= '0' && *p < '9'))
|
||
*fmt_p++ = *p++;
|
||
|
||
gdb_assert (*p == 'p' && *(p + 1) == '\0');
|
||
if (val != 0)
|
||
{
|
||
#ifdef PRINTF_HAS_LONG_LONG
|
||
*fmt_p++ = 'l';
|
||
#endif
|
||
*fmt_p++ = 'l';
|
||
*fmt_p++ = 'x';
|
||
*fmt_p++ = '\0';
|
||
DIAGNOSTIC_PUSH
|
||
DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
|
||
gdb_printf (stream, fmt, val);
|
||
DIAGNOSTIC_POP
|
||
}
|
||
else
|
||
{
|
||
*fmt_p++ = 's';
|
||
*fmt_p++ = '\0';
|
||
DIAGNOSTIC_PUSH
|
||
DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
|
||
gdb_printf (stream, fmt, "(nil)");
|
||
DIAGNOSTIC_POP
|
||
}
|
||
}
|
||
|
||
/* printf "printf format string" ARG to STREAM. */
|
||
|
||
static void
|
||
ui_printf (const char *arg, struct ui_file *stream)
|
||
{
|
||
const char *s = arg;
|
||
std::vector<struct value *> val_args;
|
||
|
||
if (s == 0)
|
||
error_no_arg (_("format-control string and values to print"));
|
||
|
||
s = skip_spaces (s);
|
||
|
||
/* A format string should follow, enveloped in double quotes. */
|
||
if (*s++ != '"')
|
||
error (_("Bad format string, missing '\"'."));
|
||
|
||
format_pieces fpieces (&s);
|
||
|
||
if (*s++ != '"')
|
||
error (_("Bad format string, non-terminated '\"'."));
|
||
|
||
s = skip_spaces (s);
|
||
|
||
if (*s != ',' && *s != 0)
|
||
error (_("Invalid argument syntax"));
|
||
|
||
if (*s == ',')
|
||
s++;
|
||
s = skip_spaces (s);
|
||
|
||
{
|
||
int nargs_wanted;
|
||
int i;
|
||
const char *current_substring;
|
||
|
||
nargs_wanted = 0;
|
||
for (auto &&piece : fpieces)
|
||
if (piece.argclass != literal_piece)
|
||
++nargs_wanted;
|
||
|
||
/* Now, parse all arguments and evaluate them.
|
||
Store the VALUEs in VAL_ARGS. */
|
||
|
||
while (*s != '\0')
|
||
{
|
||
const char *s1;
|
||
|
||
s1 = s;
|
||
val_args.push_back (parse_to_comma_and_eval (&s1));
|
||
|
||
s = s1;
|
||
if (*s == ',')
|
||
s++;
|
||
}
|
||
|
||
if (val_args.size () != nargs_wanted)
|
||
error (_("Wrong number of arguments for specified format-string"));
|
||
|
||
/* Now actually print them. */
|
||
i = 0;
|
||
for (auto &&piece : fpieces)
|
||
{
|
||
current_substring = piece.string;
|
||
switch (piece.argclass)
|
||
{
|
||
case string_arg:
|
||
printf_c_string (stream, current_substring, val_args[i]);
|
||
break;
|
||
case wide_string_arg:
|
||
printf_wide_c_string (stream, current_substring, val_args[i]);
|
||
break;
|
||
case wide_char_arg:
|
||
{
|
||
struct gdbarch *gdbarch = val_args[i]->type ()->arch ();
|
||
struct type *wctype = lookup_typename (current_language,
|
||
"wchar_t", NULL, 0);
|
||
struct type *valtype;
|
||
const gdb_byte *bytes;
|
||
|
||
valtype = val_args[i]->type ();
|
||
if (valtype->length () != wctype->length ()
|
||
|| valtype->code () != TYPE_CODE_INT)
|
||
error (_("expected wchar_t argument for %%lc"));
|
||
|
||
bytes = val_args[i]->contents ().data ();
|
||
|
||
auto_obstack output;
|
||
|
||
convert_between_encodings (target_wide_charset (gdbarch),
|
||
host_charset (),
|
||
bytes, valtype->length (),
|
||
valtype->length (),
|
||
&output, translit_char);
|
||
obstack_grow_str0 (&output, "");
|
||
|
||
DIAGNOSTIC_PUSH
|
||
DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
|
||
gdb_printf (stream, current_substring,
|
||
obstack_base (&output));
|
||
DIAGNOSTIC_POP
|
||
}
|
||
break;
|
||
case long_long_arg:
|
||
#ifdef PRINTF_HAS_LONG_LONG
|
||
{
|
||
long long val = value_as_long (val_args[i]);
|
||
|
||
DIAGNOSTIC_PUSH
|
||
DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
|
||
gdb_printf (stream, current_substring, val);
|
||
DIAGNOSTIC_POP
|
||
break;
|
||
}
|
||
#else
|
||
error (_("long long not supported in printf"));
|
||
#endif
|
||
case int_arg:
|
||
{
|
||
int val = value_as_long (val_args[i]);
|
||
|
||
DIAGNOSTIC_PUSH
|
||
DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
|
||
gdb_printf (stream, current_substring, val);
|
||
DIAGNOSTIC_POP
|
||
break;
|
||
}
|
||
case long_arg:
|
||
{
|
||
long val = value_as_long (val_args[i]);
|
||
|
||
DIAGNOSTIC_PUSH
|
||
DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
|
||
gdb_printf (stream, current_substring, val);
|
||
DIAGNOSTIC_POP
|
||
break;
|
||
}
|
||
case size_t_arg:
|
||
{
|
||
size_t val = value_as_long (val_args[i]);
|
||
|
||
DIAGNOSTIC_PUSH
|
||
DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
|
||
gdb_printf (stream, current_substring, val);
|
||
DIAGNOSTIC_POP
|
||
break;
|
||
}
|
||
/* Handles floating-point values. */
|
||
case double_arg:
|
||
case long_double_arg:
|
||
case dec32float_arg:
|
||
case dec64float_arg:
|
||
case dec128float_arg:
|
||
printf_floating (stream, current_substring, val_args[i],
|
||
piece.argclass);
|
||
break;
|
||
case ptr_arg:
|
||
printf_pointer (stream, current_substring, val_args[i]);
|
||
break;
|
||
case literal_piece:
|
||
/* Print a portion of the format string that has no
|
||
directives. Note that this will not include any
|
||
ordinary %-specs, but it might include "%%". That is
|
||
why we use gdb_printf and not gdb_puts here.
|
||
Also, we pass a dummy argument because some platforms
|
||
have modified GCC to include -Wformat-security by
|
||
default, which will warn here if there is no
|
||
argument. */
|
||
DIAGNOSTIC_PUSH
|
||
DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
|
||
gdb_printf (stream, current_substring, 0);
|
||
DIAGNOSTIC_POP
|
||
break;
|
||
default:
|
||
internal_error (_("failed internal consistency check"));
|
||
}
|
||
/* Maybe advance to the next argument. */
|
||
if (piece.argclass != literal_piece)
|
||
++i;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Implement the "printf" command. */
|
||
|
||
static void
|
||
printf_command (const char *arg, int from_tty)
|
||
{
|
||
ui_printf (arg, gdb_stdout);
|
||
gdb_stdout->reset_style ();
|
||
gdb_stdout->wrap_here (0);
|
||
gdb_stdout->flush ();
|
||
}
|
||
|
||
/* Implement the "eval" command. */
|
||
|
||
static void
|
||
eval_command (const char *arg, int from_tty)
|
||
{
|
||
string_file stb;
|
||
|
||
ui_printf (arg, &stb);
|
||
|
||
std::string expanded = insert_user_defined_cmd_args (stb.c_str ());
|
||
|
||
execute_command (expanded.c_str (), from_tty);
|
||
}
|
||
|
||
/* Convenience function for error checking in memory-tag commands. */
|
||
|
||
static void
|
||
show_addr_not_tagged (CORE_ADDR address)
|
||
{
|
||
error (_("Address %s not in a region mapped with a memory tagging flag."),
|
||
paddress (target_gdbarch (), address));
|
||
}
|
||
|
||
/* Convenience function for error checking in memory-tag commands. */
|
||
|
||
static void
|
||
show_memory_tagging_unsupported (void)
|
||
{
|
||
error (_("Memory tagging not supported or disabled by the current"
|
||
" architecture."));
|
||
}
|
||
|
||
/* Implement the "memory-tag" prefix command. */
|
||
|
||
static void
|
||
memory_tag_command (const char *arg, int from_tty)
|
||
{
|
||
help_list (memory_tag_list, "memory-tag ", all_commands, gdb_stdout);
|
||
}
|
||
|
||
/* Helper for print-logical-tag and print-allocation-tag. */
|
||
|
||
static void
|
||
memory_tag_print_tag_command (const char *args, enum memtag_type tag_type)
|
||
{
|
||
if (args == nullptr)
|
||
error_no_arg (_("address or pointer"));
|
||
|
||
/* Parse args into a value. If the value is a pointer or an address,
|
||
then fetch the logical or allocation tag. */
|
||
value_print_options print_opts;
|
||
|
||
struct value *val = process_print_command_args (args, &print_opts, true);
|
||
|
||
/* If the address is not in a region memory mapped with a memory tagging
|
||
flag, it is no use trying to access/manipulate its allocation tag.
|
||
|
||
It is OK to manipulate the logical tag though. */
|
||
if (tag_type == memtag_type::allocation
|
||
&& !gdbarch_tagged_address_p (target_gdbarch (), val))
|
||
show_addr_not_tagged (value_as_address (val));
|
||
|
||
struct value *tag_value
|
||
= gdbarch_get_memtag (target_gdbarch (), val, tag_type);
|
||
std::string tag = gdbarch_memtag_to_string (target_gdbarch (), tag_value);
|
||
|
||
if (tag.empty ())
|
||
gdb_printf (_("%s tag unavailable.\n"),
|
||
tag_type
|
||
== memtag_type::logical? "Logical" : "Allocation");
|
||
|
||
struct value *v_tag = process_print_command_args (tag.c_str (),
|
||
&print_opts,
|
||
true);
|
||
print_opts.output_format = 'x';
|
||
print_value (v_tag, print_opts);
|
||
}
|
||
|
||
/* Implement the "memory-tag print-logical-tag" command. */
|
||
|
||
static void
|
||
memory_tag_print_logical_tag_command (const char *args, int from_tty)
|
||
{
|
||
if (!target_supports_memory_tagging ())
|
||
show_memory_tagging_unsupported ();
|
||
|
||
memory_tag_print_tag_command (args, memtag_type::logical);
|
||
}
|
||
|
||
/* Implement the "memory-tag print-allocation-tag" command. */
|
||
|
||
static void
|
||
memory_tag_print_allocation_tag_command (const char *args, int from_tty)
|
||
{
|
||
if (!target_supports_memory_tagging ())
|
||
show_memory_tagging_unsupported ();
|
||
|
||
memory_tag_print_tag_command (args, memtag_type::allocation);
|
||
}
|
||
|
||
/* Parse ARGS and extract ADDR and TAG.
|
||
ARGS should have format <expression> <tag bytes>. */
|
||
|
||
static void
|
||
parse_with_logical_tag_input (const char *args, struct value **val,
|
||
gdb::byte_vector &tags,
|
||
value_print_options *print_opts)
|
||
{
|
||
/* Fetch the address. */
|
||
std::string address_string = extract_string_maybe_quoted (&args);
|
||
|
||
/* Parse the address into a value. */
|
||
*val = process_print_command_args (address_string.c_str (), print_opts,
|
||
true);
|
||
|
||
/* Fetch the tag bytes. */
|
||
std::string tag_string = extract_string_maybe_quoted (&args);
|
||
|
||
/* Validate the input. */
|
||
if (address_string.empty () || tag_string.empty ())
|
||
error (_("Missing arguments."));
|
||
|
||
if (tag_string.length () != 2)
|
||
error (_("Error parsing tags argument. The tag should be 2 digits."));
|
||
|
||
tags = hex2bin (tag_string.c_str ());
|
||
}
|
||
|
||
/* Implement the "memory-tag with-logical-tag" command. */
|
||
|
||
static void
|
||
memory_tag_with_logical_tag_command (const char *args, int from_tty)
|
||
{
|
||
if (!target_supports_memory_tagging ())
|
||
show_memory_tagging_unsupported ();
|
||
|
||
if (args == nullptr)
|
||
error_no_arg (_("<address> <tag>"));
|
||
|
||
gdb::byte_vector tags;
|
||
struct value *val;
|
||
value_print_options print_opts;
|
||
|
||
/* Parse the input. */
|
||
parse_with_logical_tag_input (args, &val, tags, &print_opts);
|
||
|
||
/* Setting the logical tag is just a local operation that does not touch
|
||
any memory from the target. Given an input value, we modify the value
|
||
to include the appropriate tag.
|
||
|
||
For this reason we need to cast the argument value to a
|
||
(void *) pointer. This is so we have the right type for the gdbarch
|
||
hook to manipulate the value and insert the tag.
|
||
|
||
Otherwise, this would fail if, for example, GDB parsed the argument value
|
||
into an int-sized value and the pointer value has a type of greater
|
||
length. */
|
||
|
||
/* Cast to (void *). */
|
||
val = value_cast (builtin_type (target_gdbarch ())->builtin_data_ptr,
|
||
val);
|
||
|
||
/* Length doesn't matter for a logical tag. Pass 0. */
|
||
if (!gdbarch_set_memtags (target_gdbarch (), val, 0, tags,
|
||
memtag_type::logical))
|
||
gdb_printf (_("Could not update the logical tag data.\n"));
|
||
else
|
||
{
|
||
/* Always print it in hex format. */
|
||
print_opts.output_format = 'x';
|
||
print_value (val, print_opts);
|
||
}
|
||
}
|
||
|
||
/* Parse ARGS and extract ADDR, LENGTH and TAGS. */
|
||
|
||
static void
|
||
parse_set_allocation_tag_input (const char *args, struct value **val,
|
||
size_t *length, gdb::byte_vector &tags)
|
||
{
|
||
/* Fetch the address. */
|
||
std::string address_string = extract_string_maybe_quoted (&args);
|
||
|
||
/* Parse the address into a value. */
|
||
value_print_options print_opts;
|
||
*val = process_print_command_args (address_string.c_str (), &print_opts,
|
||
true);
|
||
|
||
/* Fetch the length. */
|
||
std::string length_string = extract_string_maybe_quoted (&args);
|
||
|
||
/* Fetch the tag bytes. */
|
||
std::string tags_string = extract_string_maybe_quoted (&args);
|
||
|
||
/* Validate the input. */
|
||
if (address_string.empty () || length_string.empty () || tags_string.empty ())
|
||
error (_("Missing arguments."));
|
||
|
||
errno = 0;
|
||
const char *trailer = nullptr;
|
||
LONGEST parsed_length = strtoulst (length_string.c_str (), &trailer, 10);
|
||
|
||
if (errno != 0 || (trailer != nullptr && trailer[0] != '\0'))
|
||
error (_("Error parsing length argument."));
|
||
|
||
if (parsed_length <= 0)
|
||
error (_("Invalid zero or negative length."));
|
||
|
||
*length = parsed_length;
|
||
|
||
if (tags_string.length () % 2)
|
||
error (_("Error parsing tags argument. Tags should be 2 digits per byte."));
|
||
|
||
tags = hex2bin (tags_string.c_str ());
|
||
|
||
/* If the address is not in a region memory mapped with a memory tagging
|
||
flag, it is no use trying to access/manipulate its allocation tag. */
|
||
if (!gdbarch_tagged_address_p (target_gdbarch (), *val))
|
||
show_addr_not_tagged (value_as_address (*val));
|
||
}
|
||
|
||
/* Implement the "memory-tag set-allocation-tag" command.
|
||
ARGS should be in the format <address> <length> <tags>. */
|
||
|
||
static void
|
||
memory_tag_set_allocation_tag_command (const char *args, int from_tty)
|
||
{
|
||
if (!target_supports_memory_tagging ())
|
||
show_memory_tagging_unsupported ();
|
||
|
||
if (args == nullptr)
|
||
error_no_arg (_("<starting address> <length> <tag bytes>"));
|
||
|
||
gdb::byte_vector tags;
|
||
size_t length = 0;
|
||
struct value *val;
|
||
|
||
/* Parse the input. */
|
||
parse_set_allocation_tag_input (args, &val, &length, tags);
|
||
|
||
if (!gdbarch_set_memtags (target_gdbarch (), val, length, tags,
|
||
memtag_type::allocation))
|
||
gdb_printf (_("Could not update the allocation tag(s).\n"));
|
||
else
|
||
gdb_printf (_("Allocation tag(s) updated successfully.\n"));
|
||
}
|
||
|
||
/* Implement the "memory-tag check" command. */
|
||
|
||
static void
|
||
memory_tag_check_command (const char *args, int from_tty)
|
||
{
|
||
if (!target_supports_memory_tagging ())
|
||
show_memory_tagging_unsupported ();
|
||
|
||
if (args == nullptr)
|
||
error (_("Argument required (address or pointer)"));
|
||
|
||
/* Parse the expression into a value. If the value is an address or
|
||
pointer, then check its logical tag against the allocation tag. */
|
||
value_print_options print_opts;
|
||
|
||
struct value *val = process_print_command_args (args, &print_opts, true);
|
||
|
||
/* If the address is not in a region memory mapped with a memory tagging
|
||
flag, it is no use trying to access/manipulate its allocation tag. */
|
||
if (!gdbarch_tagged_address_p (target_gdbarch (), val))
|
||
show_addr_not_tagged (value_as_address (val));
|
||
|
||
CORE_ADDR addr = value_as_address (val);
|
||
|
||
/* Check if the tag is valid. */
|
||
if (!gdbarch_memtag_matches_p (target_gdbarch (), val))
|
||
{
|
||
struct value *tag
|
||
= gdbarch_get_memtag (target_gdbarch (), val, memtag_type::logical);
|
||
std::string ltag
|
||
= gdbarch_memtag_to_string (target_gdbarch (), tag);
|
||
|
||
tag = gdbarch_get_memtag (target_gdbarch (), val,
|
||
memtag_type::allocation);
|
||
std::string atag
|
||
= gdbarch_memtag_to_string (target_gdbarch (), tag);
|
||
|
||
gdb_printf (_("Logical tag (%s) does not match"
|
||
" the allocation tag (%s) for address %s.\n"),
|
||
ltag.c_str (), atag.c_str (),
|
||
paddress (target_gdbarch (), addr));
|
||
}
|
||
else
|
||
{
|
||
struct value *tag
|
||
= gdbarch_get_memtag (target_gdbarch (), val, memtag_type::logical);
|
||
std::string ltag
|
||
= gdbarch_memtag_to_string (target_gdbarch (), tag);
|
||
|
||
gdb_printf (_("Memory tags for address %s match (%s).\n"),
|
||
paddress (target_gdbarch (), addr), ltag.c_str ());
|
||
}
|
||
}
|
||
|
||
void _initialize_printcmd ();
|
||
void
|
||
_initialize_printcmd ()
|
||
{
|
||
struct cmd_list_element *c;
|
||
|
||
current_display_number = -1;
|
||
|
||
gdb::observers::free_objfile.attach (clear_dangling_display_expressions,
|
||
"printcmd");
|
||
|
||
add_info ("address", info_address_command,
|
||
_("Describe where symbol SYM is stored.\n\
|
||
Usage: info address SYM"));
|
||
|
||
add_info ("symbol", info_symbol_command, _("\
|
||
Describe what symbol is at location ADDR.\n\
|
||
Usage: info symbol ADDR\n\
|
||
Only for symbols with fixed locations (global or static scope)."));
|
||
|
||
c = add_com ("x", class_vars, x_command, _("\
|
||
Examine memory: x/FMT ADDRESS.\n\
|
||
ADDRESS is an expression for the memory address to examine.\n\
|
||
FMT is a repeat count followed by a format letter and a size letter.\n\
|
||
Format letters are o(octal), x(hex), d(decimal), u(unsigned decimal),\n\
|
||
t(binary), f(float), a(address), i(instruction), c(char), s(string)\n\
|
||
and z(hex, zero padded on the left).\n\
|
||
Size letters are b(byte), h(halfword), w(word), g(giant, 8 bytes).\n\
|
||
The specified number of objects of the specified size are printed\n\
|
||
according to the format. If a negative number is specified, memory is\n\
|
||
examined backward from the address.\n\n\
|
||
Defaults for format and size letters are those previously used.\n\
|
||
Default count is 1. Default address is following last thing printed\n\
|
||
with this command or \"print\"."));
|
||
set_cmd_completer_handle_brkchars (c, display_and_x_command_completer);
|
||
|
||
add_info ("display", info_display_command, _("\
|
||
Expressions to display when program stops, with code numbers.\n\
|
||
Usage: info display"));
|
||
|
||
add_cmd ("undisplay", class_vars, undisplay_command, _("\
|
||
Cancel some expressions to be displayed when program stops.\n\
|
||
Usage: undisplay [NUM]...\n\
|
||
Arguments are the code numbers of the expressions to stop displaying.\n\
|
||
No argument means cancel all automatic-display expressions.\n\
|
||
\"delete display\" has the same effect as this command.\n\
|
||
Do \"info display\" to see current list of code numbers."),
|
||
&cmdlist);
|
||
|
||
c = add_com ("display", class_vars, display_command, _("\
|
||
Print value of expression EXP each time the program stops.\n\
|
||
Usage: display[/FMT] EXP\n\
|
||
/FMT may be used before EXP as in the \"print\" command.\n\
|
||
/FMT \"i\" or \"s\" or including a size-letter is allowed,\n\
|
||
as in the \"x\" command, and then EXP is used to get the address to examine\n\
|
||
and examining is done as in the \"x\" command.\n\n\
|
||
With no argument, display all currently requested auto-display expressions.\n\
|
||
Use \"undisplay\" to cancel display requests previously made."));
|
||
set_cmd_completer_handle_brkchars (c, display_and_x_command_completer);
|
||
|
||
add_cmd ("display", class_vars, enable_display_command, _("\
|
||
Enable some expressions to be displayed when program stops.\n\
|
||
Usage: enable display [NUM]...\n\
|
||
Arguments are the code numbers of the expressions to resume displaying.\n\
|
||
No argument means enable all automatic-display expressions.\n\
|
||
Do \"info display\" to see current list of code numbers."), &enablelist);
|
||
|
||
add_cmd ("display", class_vars, disable_display_command, _("\
|
||
Disable some expressions to be displayed when program stops.\n\
|
||
Usage: disable display [NUM]...\n\
|
||
Arguments are the code numbers of the expressions to stop displaying.\n\
|
||
No argument means disable all automatic-display expressions.\n\
|
||
Do \"info display\" to see current list of code numbers."), &disablelist);
|
||
|
||
add_cmd ("display", class_vars, undisplay_command, _("\
|
||
Cancel some expressions to be displayed when program stops.\n\
|
||
Usage: delete display [NUM]...\n\
|
||
Arguments are the code numbers of the expressions to stop displaying.\n\
|
||
No argument means cancel all automatic-display expressions.\n\
|
||
Do \"info display\" to see current list of code numbers."), &deletelist);
|
||
|
||
add_com ("printf", class_vars, printf_command, _("\
|
||
Formatted printing, like the C \"printf\" function.\n\
|
||
Usage: printf \"format string\", ARG1, ARG2, ARG3, ..., ARGN\n\
|
||
This supports most C printf format specifications, like %s, %d, etc."));
|
||
|
||
add_com ("output", class_vars, output_command, _("\
|
||
Like \"print\" but don't put in value history and don't print newline.\n\
|
||
Usage: output EXP\n\
|
||
This is useful in user-defined commands."));
|
||
|
||
add_prefix_cmd ("set", class_vars, set_command, _("\
|
||
Evaluate expression EXP and assign result to variable VAR.\n\
|
||
Usage: set VAR = EXP\n\
|
||
This uses assignment syntax appropriate for the current language\n\
|
||
(VAR = EXP or VAR := EXP for example).\n\
|
||
VAR may be a debugger \"convenience\" variable (names starting\n\
|
||
with $), a register (a few standard names starting with $), or an actual\n\
|
||
variable in the program being debugged. EXP is any valid expression.\n\
|
||
Use \"set variable\" for variables with names identical to set subcommands.\n\
|
||
\n\
|
||
With a subcommand, this command modifies parts of the gdb environment.\n\
|
||
You can see these environment settings with the \"show\" command."),
|
||
&setlist, 1, &cmdlist);
|
||
|
||
/* "call" is the same as "set", but handy for dbx users to call fns. */
|
||
c = add_com ("call", class_vars, call_command, _("\
|
||
Call a function in the program.\n\
|
||
Usage: call EXP\n\
|
||
The argument is the function name and arguments, in the notation of the\n\
|
||
current working language. The result is printed and saved in the value\n\
|
||
history, if it is not void."));
|
||
set_cmd_completer_handle_brkchars (c, print_command_completer);
|
||
|
||
cmd_list_element *set_variable_cmd
|
||
= add_cmd ("variable", class_vars, set_command, _("\
|
||
Evaluate expression EXP and assign result to variable VAR.\n\
|
||
Usage: set variable VAR = EXP\n\
|
||
This uses assignment syntax appropriate for the current language\n\
|
||
(VAR = EXP or VAR := EXP for example).\n\
|
||
VAR may be a debugger \"convenience\" variable (names starting\n\
|
||
with $), a register (a few standard names starting with $), or an actual\n\
|
||
variable in the program being debugged. EXP is any valid expression.\n\
|
||
This may usually be abbreviated to simply \"set\"."),
|
||
&setlist);
|
||
add_alias_cmd ("var", set_variable_cmd, class_vars, 0, &setlist);
|
||
|
||
const auto print_opts = make_value_print_options_def_group (nullptr);
|
||
|
||
static const std::string print_help = gdb::option::build_help (_("\
|
||
Print value of expression EXP.\n\
|
||
Usage: print [[OPTION]... --] [/FMT] [EXP]\n\
|
||
\n\
|
||
Options:\n\
|
||
%OPTIONS%\n\
|
||
\n\
|
||
Note: because this command accepts arbitrary expressions, if you\n\
|
||
specify any command option, you must use a double dash (\"--\")\n\
|
||
to mark the end of option processing. E.g.: \"print -o -- myobj\".\n\
|
||
\n\
|
||
Variables accessible are those of the lexical environment of the selected\n\
|
||
stack frame, plus all those whose scope is global or an entire file.\n\
|
||
\n\
|
||
$NUM gets previous value number NUM. $ and $$ are the last two values.\n\
|
||
$$NUM refers to NUM'th value back from the last one.\n\
|
||
Names starting with $ refer to registers (with the values they would have\n\
|
||
if the program were to return to the stack frame now selected, restoring\n\
|
||
all registers saved by frames farther in) or else to debugger\n\
|
||
\"convenience\" variables (any such name not a known register).\n\
|
||
Use assignment expressions to give values to convenience variables.\n\
|
||
\n\
|
||
{TYPE}ADREXP refers to a datum of data type TYPE, located at address ADREXP.\n\
|
||
@ is a binary operator for treating consecutive data objects\n\
|
||
anywhere in memory as an array. FOO@NUM gives an array whose first\n\
|
||
element is FOO, whose second element is stored in the space following\n\
|
||
where FOO is stored, etc. FOO must be an expression whose value\n\
|
||
resides in memory.\n\
|
||
\n\
|
||
EXP may be preceded with /FMT, where FMT is a format letter\n\
|
||
but no count or size letter (see \"x\" command)."),
|
||
print_opts);
|
||
|
||
cmd_list_element *print_cmd
|
||
= add_com ("print", class_vars, print_command, print_help.c_str ());
|
||
set_cmd_completer_handle_brkchars (print_cmd, print_command_completer);
|
||
add_com_alias ("p", print_cmd, class_vars, 1);
|
||
add_com_alias ("inspect", print_cmd, class_vars, 1);
|
||
|
||
add_setshow_uinteger_cmd ("max-symbolic-offset", no_class,
|
||
&max_symbolic_offset, _("\
|
||
Set the largest offset that will be printed in <SYMBOL+1234> form."), _("\
|
||
Show the largest offset that will be printed in <SYMBOL+1234> form."), _("\
|
||
Tell GDB to only display the symbolic form of an address if the\n\
|
||
offset between the closest earlier symbol and the address is less than\n\
|
||
the specified maximum offset. The default is \"unlimited\", which tells GDB\n\
|
||
to always print the symbolic form of an address if any symbol precedes\n\
|
||
it. Zero is equivalent to \"unlimited\"."),
|
||
NULL,
|
||
show_max_symbolic_offset,
|
||
&setprintlist, &showprintlist);
|
||
add_setshow_boolean_cmd ("symbol-filename", no_class,
|
||
&print_symbol_filename, _("\
|
||
Set printing of source filename and line number with <SYMBOL>."), _("\
|
||
Show printing of source filename and line number with <SYMBOL>."), NULL,
|
||
NULL,
|
||
show_print_symbol_filename,
|
||
&setprintlist, &showprintlist);
|
||
|
||
add_com ("eval", no_class, eval_command, _("\
|
||
Construct a GDB command and then evaluate it.\n\
|
||
Usage: eval \"format string\", ARG1, ARG2, ARG3, ..., ARGN\n\
|
||
Convert the arguments to a string as \"printf\" would, but then\n\
|
||
treat this string as a command line, and evaluate it."));
|
||
|
||
/* Memory tagging commands. */
|
||
add_prefix_cmd ("memory-tag", class_vars, memory_tag_command, _("\
|
||
Generic command for printing and manipulating memory tag properties."),
|
||
&memory_tag_list, 0, &cmdlist);
|
||
add_cmd ("print-logical-tag", class_vars,
|
||
memory_tag_print_logical_tag_command,
|
||
("Print the logical tag from POINTER.\n\
|
||
Usage: memory-tag print-logical-tag <POINTER>.\n\
|
||
<POINTER> is an expression that evaluates to a pointer.\n\
|
||
Print the logical tag contained in POINTER. The tag interpretation is\n\
|
||
architecture-specific."),
|
||
&memory_tag_list);
|
||
add_cmd ("print-allocation-tag", class_vars,
|
||
memory_tag_print_allocation_tag_command,
|
||
_("Print the allocation tag for ADDRESS.\n\
|
||
Usage: memory-tag print-allocation-tag <ADDRESS>.\n\
|
||
<ADDRESS> is an expression that evaluates to a memory address.\n\
|
||
Print the allocation tag associated with the memory address ADDRESS.\n\
|
||
The tag interpretation is architecture-specific."),
|
||
&memory_tag_list);
|
||
add_cmd ("with-logical-tag", class_vars, memory_tag_with_logical_tag_command,
|
||
_("Print a POINTER with a specific logical TAG.\n\
|
||
Usage: memory-tag with-logical-tag <POINTER> <TAG>\n\
|
||
<POINTER> is an expression that evaluates to a pointer.\n\
|
||
<TAG> is a sequence of hex bytes that is interpreted by the architecture\n\
|
||
as a single memory tag."),
|
||
&memory_tag_list);
|
||
add_cmd ("set-allocation-tag", class_vars,
|
||
memory_tag_set_allocation_tag_command,
|
||
_("Set the allocation tag(s) for a memory range.\n\
|
||
Usage: memory-tag set-allocation-tag <ADDRESS> <LENGTH> <TAG_BYTES>\n\
|
||
<ADDRESS> is an expression that evaluates to a memory address\n\
|
||
<LENGTH> is the number of bytes that is added to <ADDRESS> to calculate\n\
|
||
the memory range.\n\
|
||
<TAG_BYTES> is a sequence of hex bytes that is interpreted by the\n\
|
||
architecture as one or more memory tags.\n\
|
||
Sets the tags of the memory range [ADDRESS, ADDRESS + LENGTH)\n\
|
||
to TAG_BYTES.\n\
|
||
\n\
|
||
If the number of tags is greater than or equal to the number of tag granules\n\
|
||
in the [ADDRESS, ADDRESS + LENGTH) range, only the tags up to the\n\
|
||
number of tag granules are updated.\n\
|
||
\n\
|
||
If the number of tags is less than the number of tag granules, then the\n\
|
||
command is a fill operation. The TAG_BYTES are interpreted as a pattern\n\
|
||
that gets repeated until the number of tag granules in the memory range\n\
|
||
[ADDRESS, ADDRESS + LENGTH) is updated."),
|
||
&memory_tag_list);
|
||
add_cmd ("check", class_vars, memory_tag_check_command,
|
||
_("Validate a pointer's logical tag against the allocation tag.\n\
|
||
Usage: memory-tag check <POINTER>\n\
|
||
<POINTER> is an expression that evaluates to a pointer\n\
|
||
Fetch the logical and allocation tags for POINTER and compare them\n\
|
||
for equality. If the tags do not match, print additional information about\n\
|
||
the tag mismatch."),
|
||
&memory_tag_list);
|
||
}
|