binutils-gdb/sim/m68hc11/m68hc11_sim.c
Mike Frysinger 6df01ab8ab sim: switch config.h usage to defs.h
The defs.h header will take care of including the various config.h
headers.  For now, it's just config.h, but we'll add more when we
integrate gnulib in.

This header should be used instead of config.h, and should be the
first include in every .c file.  We won't rely on the old behavior
where we expected files to include the port's sim-main.h which then
includes the common sim-basics.h which then includes config.h.  We
have a ton of code that includes things before sim-main.h, and it
sometimes needs to be that way.  Creating a dedicated header avoids
the ordering mess and implicit inclusion that shows up otherwise.
2021-05-16 22:38:41 -04:00

1076 lines
24 KiB
C

/* m6811_cpu.c -- 68HC11&68HC12 CPU Emulation
Copyright 1999-2021 Free Software Foundation, Inc.
Written by Stephane Carrez (stcarrez@nerim.fr)
This file is part of GDB, GAS, and the GNU binutils.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
/* This must come before any other includes. */
#include "defs.h"
#include "sim-main.h"
#include "sim-assert.h"
#include "sim-module.h"
#include "sim-options.h"
#include <stdlib.h>
enum {
OPTION_CPU_RESET = OPTION_START,
OPTION_EMUL_OS,
OPTION_CPU_CONFIG,
OPTION_CPU_BOOTSTRAP,
OPTION_CPU_MODE
};
static DECLARE_OPTION_HANDLER (cpu_option_handler);
static const OPTION cpu_options[] =
{
{ {"cpu-reset", no_argument, NULL, OPTION_CPU_RESET },
'\0', NULL, "Reset the CPU",
cpu_option_handler },
{ {"emulos", no_argument, NULL, OPTION_EMUL_OS },
'\0', NULL, "Emulate some OS system calls (read, write, ...)",
cpu_option_handler },
{ {"cpu-config", required_argument, NULL, OPTION_CPU_CONFIG },
'\0', NULL, "Specify the initial CPU configuration register",
cpu_option_handler },
{ {"bootstrap", no_argument, NULL, OPTION_CPU_BOOTSTRAP },
'\0', NULL, "Start the processing in bootstrap mode",
cpu_option_handler },
{ {NULL, no_argument, NULL, 0}, '\0', NULL, NULL, NULL }
};
static SIM_RC
cpu_option_handler (SIM_DESC sd, sim_cpu *cpu,
int opt, char *arg, int is_command)
{
int val;
cpu = STATE_CPU (sd, 0);
switch (opt)
{
case OPTION_CPU_RESET:
sim_board_reset (sd);
break;
case OPTION_EMUL_OS:
cpu->cpu_emul_syscall = 1;
break;
case OPTION_CPU_CONFIG:
if (sscanf(arg, "0x%x", &val) == 1
|| sscanf(arg, "%d", &val) == 1)
{
cpu->cpu_config = val;
cpu->cpu_use_local_config = 1;
}
else
cpu->cpu_use_local_config = 0;
break;
case OPTION_CPU_BOOTSTRAP:
cpu->cpu_start_mode = "bootstrap";
break;
case OPTION_CPU_MODE:
break;
}
return SIM_RC_OK;
}
void
cpu_call (sim_cpu *cpu, uint16 addr)
{
cpu_set_pc (cpu, addr);
}
void
cpu_return (sim_cpu *cpu)
{
}
/* Set the stack pointer and re-compute the current frame. */
void
cpu_set_sp (sim_cpu *cpu, uint16 val)
{
cpu->cpu_regs.sp = val;
}
static uint16
cpu_get_reg (sim_cpu *cpu, uint8 reg)
{
switch (reg)
{
case 0:
return cpu_get_x (cpu);
case 1:
return cpu_get_y (cpu);
case 2:
return cpu_get_sp (cpu);
case 3:
return cpu_get_pc (cpu);
default:
return 0;
}
}
static uint16
cpu_get_src_reg (sim_cpu *cpu, uint8 reg)
{
switch (reg)
{
case 0:
return cpu_get_a (cpu);
case 1:
return cpu_get_b (cpu);
case 2:
return cpu_get_ccr (cpu);
case 3:
return cpu_get_tmp3 (cpu);
case 4:
return cpu_get_d (cpu);
case 5:
return cpu_get_x (cpu);
case 6:
return cpu_get_y (cpu);
case 7:
return cpu_get_sp (cpu);
default:
return 0;
}
}
static void
cpu_set_dst_reg (sim_cpu *cpu, uint8 reg, uint16 val)
{
switch (reg)
{
case 0:
cpu_set_a (cpu, val);
break;
case 1:
cpu_set_b (cpu, val);
break;
case 2:
cpu_set_ccr (cpu, val);
break;
case 3:
cpu_set_tmp2 (cpu, val);
break;
case 4:
cpu_set_d (cpu, val);
break;
case 5:
cpu_set_x (cpu, val);
break;
case 6:
cpu_set_y (cpu, val);
break;
case 7:
cpu_set_sp (cpu, val);
break;
default:
break;
}
}
static void
cpu_set_reg (sim_cpu *cpu, uint8 reg, uint16 val)
{
switch (reg)
{
case 0:
cpu_set_x (cpu, val);
break;
case 1:
cpu_set_y (cpu, val);
break;
case 2:
cpu_set_sp (cpu, val);
break;
case 3:
cpu_set_pc (cpu, val);
break;
default:
break;
}
}
/* Returns the address of a 68HC12 indexed operand.
Pre and post modifications are handled on the source register. */
uint16
cpu_get_indexed_operand_addr (sim_cpu *cpu, int restricted)
{
uint8 reg;
uint16 sval;
uint16 addr;
uint8 code;
code = cpu_fetch8 (cpu);
/* n,r with 5-bit signed constant. */
if ((code & 0x20) == 0)
{
reg = (code >> 6) & 3;
sval = (code & 0x1f);
if (code & 0x10)
sval |= 0xfff0;
addr = cpu_get_reg (cpu, reg);
addr += sval;
}
/* Auto pre/post increment/decrement. */
else if ((code & 0xc0) != 0xc0)
{
reg = (code >> 6) & 3;
sval = (code & 0x0f);
if (sval & 0x8)
{
sval |= 0xfff0;
}
else
{
sval = sval + 1;
}
addr = cpu_get_reg (cpu, reg);
cpu_set_reg (cpu, reg, addr + sval);
if ((code & 0x10) == 0)
{
addr += sval;
}
}
/* [n,r] 16-bits offset indexed indirect. */
else if ((code & 0x07) == 3)
{
if (restricted)
{
return 0;
}
reg = (code >> 3) & 0x03;
addr = cpu_get_reg (cpu, reg);
addr += cpu_fetch16 (cpu);
addr = memory_read16 (cpu, addr);
cpu_add_cycles (cpu, 1);
}
else if ((code & 0x4) == 0)
{
if (restricted)
{
return 0;
}
reg = (code >> 3) & 0x03;
addr = cpu_get_reg (cpu, reg);
if (code & 0x2)
{
sval = cpu_fetch16 (cpu);
cpu_add_cycles (cpu, 1);
}
else
{
sval = cpu_fetch8 (cpu);
if (code & 0x1)
sval |= 0xff00;
cpu_add_cycles (cpu, 1);
}
addr += sval;
}
else
{
reg = (code >> 3) & 0x03;
addr = cpu_get_reg (cpu, reg);
switch (code & 3)
{
case 0:
addr += cpu_get_a (cpu);
break;
case 1:
addr += cpu_get_b (cpu);
break;
case 2:
addr += cpu_get_d (cpu);
break;
case 3:
default:
addr += cpu_get_d (cpu);
addr = memory_read16 (cpu, addr);
cpu_add_cycles (cpu, 1);
break;
}
}
return addr;
}
static uint8
cpu_get_indexed_operand8 (sim_cpu *cpu, int restricted)
{
uint16 addr;
addr = cpu_get_indexed_operand_addr (cpu, restricted);
return memory_read8 (cpu, addr);
}
static uint16
cpu_get_indexed_operand16 (sim_cpu *cpu, int restricted)
{
uint16 addr;
addr = cpu_get_indexed_operand_addr (cpu, restricted);
return memory_read16 (cpu, addr);
}
void
cpu_move8 (sim_cpu *cpu, uint8 code)
{
uint8 src;
uint16 addr;
switch (code)
{
case 0x0b:
src = cpu_fetch8 (cpu);
addr = cpu_fetch16 (cpu);
break;
case 0x08:
addr = cpu_get_indexed_operand_addr (cpu, 1);
src = cpu_fetch8 (cpu);
break;
case 0x0c:
addr = cpu_fetch16 (cpu);
src = memory_read8 (cpu, addr);
addr = cpu_fetch16 (cpu);
break;
case 0x09:
addr = cpu_get_indexed_operand_addr (cpu, 1);
src = memory_read8 (cpu, cpu_fetch16 (cpu));
break;
case 0x0d:
src = cpu_get_indexed_operand8 (cpu, 1);
addr = cpu_fetch16 (cpu);
break;
case 0x0a:
src = cpu_get_indexed_operand8 (cpu, 1);
addr = cpu_get_indexed_operand_addr (cpu, 1);
break;
default:
sim_engine_abort (CPU_STATE (cpu), cpu, 0,
"Invalid code 0x%0x -- internal error?", code);
return;
}
memory_write8 (cpu, addr, src);
}
void
cpu_move16 (sim_cpu *cpu, uint8 code)
{
uint16 src;
uint16 addr;
switch (code)
{
case 0x03:
src = cpu_fetch16 (cpu);
addr = cpu_fetch16 (cpu);
break;
case 0x00:
addr = cpu_get_indexed_operand_addr (cpu, 1);
src = cpu_fetch16 (cpu);
break;
case 0x04:
addr = cpu_fetch16 (cpu);
src = memory_read16 (cpu, addr);
addr = cpu_fetch16 (cpu);
break;
case 0x01:
addr = cpu_get_indexed_operand_addr (cpu, 1);
src = memory_read16 (cpu, cpu_fetch16 (cpu));
break;
case 0x05:
src = cpu_get_indexed_operand16 (cpu, 1);
addr = cpu_fetch16 (cpu);
break;
case 0x02:
src = cpu_get_indexed_operand16 (cpu, 1);
addr = cpu_get_indexed_operand_addr (cpu, 1);
break;
default:
sim_engine_abort (CPU_STATE (cpu), cpu, 0,
"Invalid code 0x%0x -- internal error?", code);
return;
}
memory_write16 (cpu, addr, src);
}
int
cpu_initialize (SIM_DESC sd, sim_cpu *cpu)
{
sim_add_option_table (sd, 0, cpu_options);
memset (&cpu->cpu_regs, 0, sizeof(cpu->cpu_regs));
cpu->cpu_absolute_cycle = 0;
cpu->cpu_current_cycle = 0;
cpu->cpu_emul_syscall = 1;
cpu->cpu_running = 1;
cpu->cpu_stop_on_interrupt = 0;
cpu->cpu_frequency = 8 * 1000 * 1000;
cpu->cpu_use_elf_start = 0;
cpu->cpu_elf_start = 0;
cpu->cpu_use_local_config = 0;
cpu->bank_start = 0;
cpu->bank_end = 0;
cpu->bank_shift = 0;
cpu->cpu_config = M6811_NOSEC | M6811_NOCOP | M6811_ROMON |
M6811_EEON;
interrupts_initialize (sd, cpu);
cpu->cpu_is_initialized = 1;
return 0;
}
/* Reinitialize the processor after a reset. */
int
cpu_reset (sim_cpu *cpu)
{
/* Initialize the config register.
It is only initialized at reset time. */
memset (cpu->ios, 0, sizeof (cpu->ios));
if (cpu->cpu_configured_arch->arch == bfd_arch_m68hc11)
cpu->ios[M6811_INIT] = 0x1;
else
cpu->ios[M6811_INIT] = 0;
/* Output compare registers set to 0xFFFF. */
cpu->ios[M6811_TOC1_H] = 0xFF;
cpu->ios[M6811_TOC1_L] = 0xFF;
cpu->ios[M6811_TOC2_H] = 0xFF;
cpu->ios[M6811_TOC2_L] = 0xFF;
cpu->ios[M6811_TOC3_H] = 0xFF;
cpu->ios[M6811_TOC4_L] = 0xFF;
cpu->ios[M6811_TOC5_H] = 0xFF;
cpu->ios[M6811_TOC5_L] = 0xFF;
/* Setup the processor registers. */
memset (&cpu->cpu_regs, 0, sizeof(cpu->cpu_regs));
cpu->cpu_absolute_cycle = 0;
cpu->cpu_current_cycle = 0;
cpu->cpu_is_initialized = 0;
/* Reset interrupts. */
interrupts_reset (&cpu->cpu_interrupts);
/* Reinitialize the CPU operating mode. */
cpu->ios[M6811_HPRIO] = cpu->cpu_mode;
return 0;
}
/* Reinitialize the processor after a reset. */
int
cpu_restart (sim_cpu *cpu)
{
uint16 addr;
/* Get CPU starting address depending on the CPU mode. */
if (cpu->cpu_use_elf_start == 0)
{
switch ((cpu->ios[M6811_HPRIO]) & (M6811_SMOD | M6811_MDA))
{
/* Single Chip */
default:
case 0 :
addr = memory_read16 (cpu, 0xFFFE);
break;
/* Expanded Multiplexed */
case M6811_MDA:
addr = memory_read16 (cpu, 0xFFFE);
break;
/* Special Bootstrap */
case M6811_SMOD:
addr = 0;
break;
/* Factory Test */
case M6811_MDA | M6811_SMOD:
addr = memory_read16 (cpu, 0xFFFE);
break;
}
}
else
{
addr = cpu->cpu_elf_start;
}
/* Setup the processor registers. */
cpu->cpu_insn_pc = addr;
cpu->cpu_regs.pc = addr;
cpu->cpu_regs.ccr = M6811_X_BIT | M6811_I_BIT | M6811_S_BIT;
cpu->cpu_absolute_cycle = 0;
cpu->cpu_is_initialized = 1;
cpu->cpu_current_cycle = 0;
cpu_call (cpu, addr);
return 0;
}
void
print_io_reg_desc (SIM_DESC sd, io_reg_desc *desc, int val, int mode)
{
while (desc->mask)
{
if (val & desc->mask)
sim_io_printf (sd, "%s",
mode == 0 ? desc->short_name : desc->long_name);
desc++;
}
}
void
print_io_byte (SIM_DESC sd, const char *name, io_reg_desc *desc,
uint8 val, uint16 addr)
{
sim_io_printf (sd, " %-9.9s @ 0x%04x 0x%02x ", name, addr, val);
if (desc)
print_io_reg_desc (sd, desc, val, 0);
}
void
print_io_word (SIM_DESC sd, const char *name, io_reg_desc *desc,
uint16 val, uint16 addr)
{
sim_io_printf (sd, " %-9.9s @ 0x%04x 0x%04x ", name, addr, val);
if (desc)
print_io_reg_desc (sd, desc, val, 0);
}
void
cpu_ccr_update_tst8 (sim_cpu *cpu, uint8 val)
{
cpu_set_ccr_V (cpu, 0);
cpu_set_ccr_N (cpu, val & 0x80 ? 1 : 0);
cpu_set_ccr_Z (cpu, val == 0 ? 1 : 0);
}
uint16
cpu_fetch_relbranch (sim_cpu *cpu)
{
uint16 addr = (uint16) cpu_fetch8 (cpu);
if (addr & 0x0080)
{
addr |= 0xFF00;
}
addr += cpu->cpu_regs.pc;
return addr;
}
uint16
cpu_fetch_relbranch16 (sim_cpu *cpu)
{
uint16 addr = cpu_fetch16 (cpu);
addr += cpu->cpu_regs.pc;
return addr;
}
/* Push all the CPU registers (when an interruption occurs). */
void
cpu_push_all (sim_cpu *cpu)
{
if (cpu->cpu_configured_arch->arch == bfd_arch_m68hc11)
{
cpu_m68hc11_push_uint16 (cpu, cpu->cpu_regs.pc);
cpu_m68hc11_push_uint16 (cpu, cpu->cpu_regs.iy);
cpu_m68hc11_push_uint16 (cpu, cpu->cpu_regs.ix);
cpu_m68hc11_push_uint16 (cpu, cpu->cpu_regs.d);
cpu_m68hc11_push_uint8 (cpu, cpu->cpu_regs.ccr);
}
else
{
cpu_m68hc12_push_uint16 (cpu, cpu->cpu_regs.pc);
cpu_m68hc12_push_uint16 (cpu, cpu->cpu_regs.iy);
cpu_m68hc12_push_uint16 (cpu, cpu->cpu_regs.ix);
cpu_m68hc12_push_uint16 (cpu, cpu->cpu_regs.d);
cpu_m68hc12_push_uint8 (cpu, cpu->cpu_regs.ccr);
}
}
/* Simulation of the dbcc/ibcc/tbcc 68HC12 conditional branch operations. */
void
cpu_dbcc (sim_cpu *cpu)
{
uint8 code;
uint16 addr;
uint16 inc;
uint16 reg;
code = cpu_fetch8 (cpu);
switch (code & 0xc0)
{
case 0x80: /* ibcc */
inc = 1;
break;
case 0x40: /* tbcc */
inc = 0;
break;
case 0: /* dbcc */
inc = -1;
break;
default:
abort ();
break;
}
addr = cpu_fetch8 (cpu);
if (code & 0x10)
addr |= 0xff00;
addr += cpu_get_pc (cpu);
reg = cpu_get_src_reg (cpu, code & 0x07);
reg += inc;
/* Branch according to register value. */
if ((reg != 0 && (code & 0x20)) || (reg == 0 && !(code & 0x20)))
{
cpu_set_pc (cpu, addr);
}
cpu_set_dst_reg (cpu, code & 0x07, reg);
}
void
cpu_exg (sim_cpu *cpu, uint8 code)
{
uint8 r1, r2;
uint16 src1;
uint16 src2;
r1 = (code >> 4) & 0x07;
r2 = code & 0x07;
if (code & 0x80)
{
src1 = cpu_get_src_reg (cpu, r1);
src2 = cpu_get_src_reg (cpu, r2);
if (r2 == 1 || r2 == 2)
src2 |= 0xff00;
cpu_set_dst_reg (cpu, r2, src1);
cpu_set_dst_reg (cpu, r1, src2);
}
else
{
src1 = cpu_get_src_reg (cpu, r1);
/* Sign extend the 8-bit registers (A, B, CCR). */
if ((r1 == 0 || r1 == 1 || r1 == 2) && (src1 & 0x80))
src1 |= 0xff00;
cpu_set_dst_reg (cpu, r2, src1);
}
}
/* Handle special instructions. */
void
cpu_special (sim_cpu *cpu, enum M6811_Special special)
{
switch (special)
{
case M6811_RTI:
{
uint8 ccr;
ccr = cpu_m68hc11_pop_uint8 (cpu);
cpu_set_ccr (cpu, ccr);
cpu_set_d (cpu, cpu_m68hc11_pop_uint16 (cpu));
cpu_set_x (cpu, cpu_m68hc11_pop_uint16 (cpu));
cpu_set_y (cpu, cpu_m68hc11_pop_uint16 (cpu));
cpu_set_pc (cpu, cpu_m68hc11_pop_uint16 (cpu));
cpu_return (cpu);
break;
}
case M6812_RTI:
{
uint8 ccr;
ccr = cpu_m68hc12_pop_uint8 (cpu);
cpu_set_ccr (cpu, ccr);
cpu_set_d (cpu, cpu_m68hc12_pop_uint16 (cpu));
cpu_set_x (cpu, cpu_m68hc12_pop_uint16 (cpu));
cpu_set_y (cpu, cpu_m68hc12_pop_uint16 (cpu));
cpu_set_pc (cpu, cpu_m68hc12_pop_uint16 (cpu));
cpu_return (cpu);
break;
}
case M6811_WAI:
/* In the ELF-start mode, we are in a special mode where
the WAI corresponds to an exit. */
if (cpu->cpu_use_elf_start)
{
cpu_set_pc (cpu, cpu->cpu_insn_pc);
sim_engine_halt (CPU_STATE (cpu), cpu,
NULL, NULL_CIA, sim_exited,
cpu_get_d (cpu));
return;
}
/* SCz: not correct... */
cpu_push_all (cpu);
break;
case M6811_SWI:
interrupts_raise (&cpu->cpu_interrupts, M6811_INT_SWI);
interrupts_process (&cpu->cpu_interrupts);
break;
case M6811_EMUL_SYSCALL:
case M6811_ILLEGAL:
if (cpu->cpu_emul_syscall)
{
uint8 op = memory_read8 (cpu,
cpu_get_pc (cpu) - 1);
if (op == 0x41)
{
cpu_set_pc (cpu, cpu->cpu_insn_pc);
sim_engine_halt (CPU_STATE (cpu), cpu,
NULL, NULL_CIA, sim_exited,
cpu_get_d (cpu));
return;
}
else
{
emul_os (op, cpu);
}
return;
}
interrupts_raise (&cpu->cpu_interrupts, M6811_INT_ILLEGAL);
interrupts_process (&cpu->cpu_interrupts);
break;
case M6811_TEST:
case M6812_BGND:
{
SIM_DESC sd;
sd = CPU_STATE (cpu);
/* Breakpoint instruction if we are under gdb. */
if (STATE_OPEN_KIND (sd) == SIM_OPEN_DEBUG)
{
cpu->cpu_regs.pc --;
sim_engine_halt (CPU_STATE (cpu), cpu,
0, cpu_get_pc (cpu), sim_stopped,
SIM_SIGTRAP);
}
/* else this is a nop but not in test factory mode. */
break;
}
case M6812_IDIVS:
{
int32 src1 = (int16) cpu_get_d (cpu);
int32 src2 = (int16) cpu_get_x (cpu);
if (src2 == 0)
{
cpu_set_ccr_C (cpu, 1);
}
else
{
cpu_set_d (cpu, src1 % src2);
src1 = src1 / src2;
cpu_set_x (cpu, src1);
cpu_set_ccr_C (cpu, 0);
cpu_set_ccr_Z (cpu, src1 == 0);
cpu_set_ccr_N (cpu, src1 & 0x8000);
cpu_set_ccr_V (cpu, src1 >= 32768 || src1 < -32768);
}
}
break;
case M6812_EDIV:
{
uint32 src1 = (uint32) cpu_get_x (cpu);
uint32 src2 = (uint32) (cpu_get_y (cpu) << 16)
| (uint32) (cpu_get_d (cpu));
if (src1 == 0)
{
cpu_set_ccr_C (cpu, 1);
}
else
{
cpu_set_ccr_C (cpu, 0);
cpu_set_d (cpu, src2 % src1);
src2 = src2 / src1;
cpu_set_y (cpu, src2);
cpu_set_ccr_Z (cpu, src2 == 0);
cpu_set_ccr_N (cpu, (src2 & 0x8000) != 0);
cpu_set_ccr_V (cpu, (src2 & 0xffff0000) != 0);
}
}
break;
case M6812_EDIVS:
{
int32 src1 = (int16) cpu_get_x (cpu);
int32 src2 = (uint32) (cpu_get_y (cpu) << 16)
| (uint32) (cpu_get_d (cpu));
if (src1 == 0)
{
cpu_set_ccr_C (cpu, 1);
}
else
{
cpu_set_ccr_C (cpu, 0);
cpu_set_d (cpu, src2 % src1);
src2 = src2 / src1;
cpu_set_y (cpu, src2);
cpu_set_ccr_Z (cpu, src2 == 0);
cpu_set_ccr_N (cpu, (src2 & 0x8000) != 0);
cpu_set_ccr_V (cpu, src2 > 32767 || src2 < -32768);
}
}
break;
case M6812_EMULS:
{
int32 src1, src2;
src1 = (int16) cpu_get_d (cpu);
src2 = (int16) cpu_get_y (cpu);
src1 = src1 * src2;
cpu_set_d (cpu, src1 & 0x0ffff);
cpu_set_y (cpu, src1 >> 16);
cpu_set_ccr_Z (cpu, src1 == 0);
cpu_set_ccr_N (cpu, (src1 & 0x80000000) != 0);
cpu_set_ccr_C (cpu, (src1 & 0x00008000) != 0);
}
break;
case M6812_EMACS:
{
int32 src1, src2;
uint16 addr;
addr = cpu_fetch16 (cpu);
src1 = (int16) memory_read16 (cpu, cpu_get_x (cpu));
src2 = (int16) memory_read16 (cpu, cpu_get_y (cpu));
src1 = src1 * src2;
src2 = (((uint32) memory_read16 (cpu, addr)) << 16)
| (uint32) memory_read16 (cpu, addr + 2);
memory_write16 (cpu, addr, (src1 + src2) >> 16);
memory_write16 (cpu, addr + 2, (src1 + src2));
}
break;
case M6812_CALL:
{
uint8 page;
uint16 addr;
addr = cpu_fetch16 (cpu);
page = cpu_fetch8 (cpu);
cpu_m68hc12_push_uint16 (cpu, cpu_get_pc (cpu));
cpu_m68hc12_push_uint8 (cpu, cpu_get_page (cpu));
cpu_set_page (cpu, page);
cpu_set_pc (cpu, addr);
}
break;
case M6812_CALL_INDIRECT:
{
uint8 code;
uint16 addr;
uint8 page;
code = memory_read8 (cpu, cpu_get_pc (cpu));
/* Indirect addressing call has the page specified in the
memory location pointed to by the address. */
if ((code & 0xE3) == 0xE3)
{
addr = cpu_get_indexed_operand_addr (cpu, 0);
page = memory_read8 (cpu, addr + 2);
addr = memory_read16 (cpu, addr);
}
else
{
/* Otherwise, page is in the opcode. */
addr = cpu_get_indexed_operand16 (cpu, 0);
page = cpu_fetch8 (cpu);
}
cpu_m68hc12_push_uint16 (cpu, cpu_get_pc (cpu));
cpu_m68hc12_push_uint8 (cpu, cpu_get_page (cpu));
cpu_set_page (cpu, page);
cpu_set_pc (cpu, addr);
}
break;
case M6812_RTC:
{
uint8 page = cpu_m68hc12_pop_uint8 (cpu);
uint16 addr = cpu_m68hc12_pop_uint16 (cpu);
cpu_set_page (cpu, page);
cpu_set_pc (cpu, addr);
}
break;
case M6812_ETBL:
default:
sim_engine_halt (CPU_STATE (cpu), cpu, NULL,
cpu_get_pc (cpu), sim_stopped,
SIM_SIGILL);
break;
}
}
void
cpu_single_step (sim_cpu *cpu)
{
cpu->cpu_current_cycle = 0;
cpu->cpu_insn_pc = cpu_get_pc (cpu);
/* Handle the pending interrupts. If an interrupt is handled,
treat this as an single step. */
if (interrupts_process (&cpu->cpu_interrupts))
{
cpu->cpu_absolute_cycle += cpu->cpu_current_cycle;
return;
}
/* printf("PC = 0x%04x\n", cpu_get_pc (cpu));*/
cpu->cpu_interpretor (cpu);
cpu->cpu_absolute_cycle += cpu->cpu_current_cycle;
}
/* VARARGS */
void
sim_memory_error (sim_cpu *cpu, SIM_SIGNAL excep,
uint16 addr, const char *message, ...)
{
char buf[1024];
va_list args;
va_start (args, message);
vsprintf (buf, message, args);
va_end (args);
sim_io_printf (CPU_STATE (cpu), "%s\n", buf);
cpu_memory_exception (cpu, excep, addr, buf);
}
void
cpu_memory_exception (sim_cpu *cpu, SIM_SIGNAL excep,
uint16 addr, const char *message)
{
if (cpu->cpu_running == 0)
return;
cpu_set_pc (cpu, cpu->cpu_insn_pc);
sim_engine_halt (CPU_STATE (cpu), cpu, NULL,
cpu_get_pc (cpu), sim_stopped, excep);
#if 0
cpu->mem_exception = excep;
cpu->fault_addr = addr;
cpu->fault_msg = strdup (message);
if (cpu->cpu_use_handler)
{
longjmp (&cpu->cpu_exception_handler, 1);
}
(* cpu->callback->printf_filtered)
(cpu->callback, "Fault at 0x%04x: %s\n", addr, message);
#endif
}
void
cpu_info (SIM_DESC sd, sim_cpu *cpu)
{
sim_io_printf (sd, "CPU info:\n");
sim_io_printf (sd, " Absolute cycle: %s\n",
cycle_to_string (cpu, cpu->cpu_absolute_cycle,
PRINT_TIME | PRINT_CYCLE));
sim_io_printf (sd, " Syscall emulation: %s\n",
cpu->cpu_emul_syscall ? "yes, via 0xcd <n>" : "no");
sim_io_printf (sd, " Memory errors detection: %s\n",
cpu->cpu_check_memory ? "yes" : "no");
sim_io_printf (sd, " Stop on interrupt: %s\n",
cpu->cpu_stop_on_interrupt ? "yes" : "no");
}