mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2025-01-06 12:09:26 +08:00
a3769e0c79
destination calculation. Don't expect >> to sign extend. Don't add a break if branch lands inside the sequence anywhere.
4314 lines
134 KiB
C
4314 lines
134 KiB
C
/* Target-dependent code for GDB, the GNU debugger.
|
||
|
||
Copyright (C) 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
|
||
1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
|
||
2010, 2011 Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||
|
||
#include "defs.h"
|
||
#include "frame.h"
|
||
#include "inferior.h"
|
||
#include "symtab.h"
|
||
#include "target.h"
|
||
#include "gdbcore.h"
|
||
#include "gdbcmd.h"
|
||
#include "objfiles.h"
|
||
#include "arch-utils.h"
|
||
#include "regcache.h"
|
||
#include "regset.h"
|
||
#include "doublest.h"
|
||
#include "value.h"
|
||
#include "parser-defs.h"
|
||
#include "osabi.h"
|
||
#include "infcall.h"
|
||
#include "sim-regno.h"
|
||
#include "gdb/sim-ppc.h"
|
||
#include "reggroups.h"
|
||
#include "dwarf2-frame.h"
|
||
#include "target-descriptions.h"
|
||
#include "user-regs.h"
|
||
|
||
#include "libbfd.h" /* for bfd_default_set_arch_mach */
|
||
#include "coff/internal.h" /* for libcoff.h */
|
||
#include "libcoff.h" /* for xcoff_data */
|
||
#include "coff/xcoff.h"
|
||
#include "libxcoff.h"
|
||
|
||
#include "elf-bfd.h"
|
||
#include "elf/ppc.h"
|
||
|
||
#include "solib-svr4.h"
|
||
#include "ppc-tdep.h"
|
||
|
||
#include "gdb_assert.h"
|
||
#include "dis-asm.h"
|
||
|
||
#include "trad-frame.h"
|
||
#include "frame-unwind.h"
|
||
#include "frame-base.h"
|
||
|
||
#include "features/rs6000/powerpc-32.c"
|
||
#include "features/rs6000/powerpc-altivec32.c"
|
||
#include "features/rs6000/powerpc-vsx32.c"
|
||
#include "features/rs6000/powerpc-403.c"
|
||
#include "features/rs6000/powerpc-403gc.c"
|
||
#include "features/rs6000/powerpc-405.c"
|
||
#include "features/rs6000/powerpc-505.c"
|
||
#include "features/rs6000/powerpc-601.c"
|
||
#include "features/rs6000/powerpc-602.c"
|
||
#include "features/rs6000/powerpc-603.c"
|
||
#include "features/rs6000/powerpc-604.c"
|
||
#include "features/rs6000/powerpc-64.c"
|
||
#include "features/rs6000/powerpc-altivec64.c"
|
||
#include "features/rs6000/powerpc-vsx64.c"
|
||
#include "features/rs6000/powerpc-7400.c"
|
||
#include "features/rs6000/powerpc-750.c"
|
||
#include "features/rs6000/powerpc-860.c"
|
||
#include "features/rs6000/powerpc-e500.c"
|
||
#include "features/rs6000/rs6000.c"
|
||
|
||
/* Determine if regnum is an SPE pseudo-register. */
|
||
#define IS_SPE_PSEUDOREG(tdep, regnum) ((tdep)->ppc_ev0_regnum >= 0 \
|
||
&& (regnum) >= (tdep)->ppc_ev0_regnum \
|
||
&& (regnum) < (tdep)->ppc_ev0_regnum + 32)
|
||
|
||
/* Determine if regnum is a decimal float pseudo-register. */
|
||
#define IS_DFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_dl0_regnum >= 0 \
|
||
&& (regnum) >= (tdep)->ppc_dl0_regnum \
|
||
&& (regnum) < (tdep)->ppc_dl0_regnum + 16)
|
||
|
||
/* Determine if regnum is a POWER7 VSX register. */
|
||
#define IS_VSX_PSEUDOREG(tdep, regnum) ((tdep)->ppc_vsr0_regnum >= 0 \
|
||
&& (regnum) >= (tdep)->ppc_vsr0_regnum \
|
||
&& (regnum) < (tdep)->ppc_vsr0_regnum + ppc_num_vsrs)
|
||
|
||
/* Determine if regnum is a POWER7 Extended FP register. */
|
||
#define IS_EFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_efpr0_regnum >= 0 \
|
||
&& (regnum) >= (tdep)->ppc_efpr0_regnum \
|
||
&& (regnum) < (tdep)->ppc_efpr0_regnum + ppc_num_efprs)
|
||
|
||
/* The list of available "set powerpc ..." and "show powerpc ..."
|
||
commands. */
|
||
static struct cmd_list_element *setpowerpccmdlist = NULL;
|
||
static struct cmd_list_element *showpowerpccmdlist = NULL;
|
||
|
||
static enum auto_boolean powerpc_soft_float_global = AUTO_BOOLEAN_AUTO;
|
||
|
||
/* The vector ABI to use. Keep this in sync with powerpc_vector_abi. */
|
||
static const char *powerpc_vector_strings[] =
|
||
{
|
||
"auto",
|
||
"generic",
|
||
"altivec",
|
||
"spe",
|
||
NULL
|
||
};
|
||
|
||
/* A variable that can be configured by the user. */
|
||
static enum powerpc_vector_abi powerpc_vector_abi_global = POWERPC_VEC_AUTO;
|
||
static const char *powerpc_vector_abi_string = "auto";
|
||
|
||
/* To be used by skip_prologue. */
|
||
|
||
struct rs6000_framedata
|
||
{
|
||
int offset; /* total size of frame --- the distance
|
||
by which we decrement sp to allocate
|
||
the frame */
|
||
int saved_gpr; /* smallest # of saved gpr */
|
||
unsigned int gpr_mask; /* Each bit is an individual saved GPR. */
|
||
int saved_fpr; /* smallest # of saved fpr */
|
||
int saved_vr; /* smallest # of saved vr */
|
||
int saved_ev; /* smallest # of saved ev */
|
||
int alloca_reg; /* alloca register number (frame ptr) */
|
||
char frameless; /* true if frameless functions. */
|
||
char nosavedpc; /* true if pc not saved. */
|
||
char used_bl; /* true if link register clobbered */
|
||
int gpr_offset; /* offset of saved gprs from prev sp */
|
||
int fpr_offset; /* offset of saved fprs from prev sp */
|
||
int vr_offset; /* offset of saved vrs from prev sp */
|
||
int ev_offset; /* offset of saved evs from prev sp */
|
||
int lr_offset; /* offset of saved lr */
|
||
int lr_register; /* register of saved lr, if trustworthy */
|
||
int cr_offset; /* offset of saved cr */
|
||
int vrsave_offset; /* offset of saved vrsave register */
|
||
};
|
||
|
||
|
||
/* Is REGNO a VSX register? Return 1 if so, 0 otherwise. */
|
||
int
|
||
vsx_register_p (struct gdbarch *gdbarch, int regno)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
if (tdep->ppc_vsr0_regnum < 0)
|
||
return 0;
|
||
else
|
||
return (regno >= tdep->ppc_vsr0_upper_regnum && regno
|
||
<= tdep->ppc_vsr0_upper_regnum + 31);
|
||
}
|
||
|
||
/* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
|
||
int
|
||
altivec_register_p (struct gdbarch *gdbarch, int regno)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
|
||
return 0;
|
||
else
|
||
return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
|
||
}
|
||
|
||
|
||
/* Return true if REGNO is an SPE register, false otherwise. */
|
||
int
|
||
spe_register_p (struct gdbarch *gdbarch, int regno)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
|
||
/* Is it a reference to EV0 -- EV31, and do we have those? */
|
||
if (IS_SPE_PSEUDOREG (tdep, regno))
|
||
return 1;
|
||
|
||
/* Is it a reference to one of the raw upper GPR halves? */
|
||
if (tdep->ppc_ev0_upper_regnum >= 0
|
||
&& tdep->ppc_ev0_upper_regnum <= regno
|
||
&& regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
|
||
return 1;
|
||
|
||
/* Is it a reference to the 64-bit accumulator, and do we have that? */
|
||
if (tdep->ppc_acc_regnum >= 0
|
||
&& tdep->ppc_acc_regnum == regno)
|
||
return 1;
|
||
|
||
/* Is it a reference to the SPE floating-point status and control register,
|
||
and do we have that? */
|
||
if (tdep->ppc_spefscr_regnum >= 0
|
||
&& tdep->ppc_spefscr_regnum == regno)
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
|
||
/* Return non-zero if the architecture described by GDBARCH has
|
||
floating-point registers (f0 --- f31 and fpscr). */
|
||
int
|
||
ppc_floating_point_unit_p (struct gdbarch *gdbarch)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
|
||
return (tdep->ppc_fp0_regnum >= 0
|
||
&& tdep->ppc_fpscr_regnum >= 0);
|
||
}
|
||
|
||
/* Return non-zero if the architecture described by GDBARCH has
|
||
VSX registers (vsr0 --- vsr63). */
|
||
static int
|
||
ppc_vsx_support_p (struct gdbarch *gdbarch)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
|
||
return tdep->ppc_vsr0_regnum >= 0;
|
||
}
|
||
|
||
/* Return non-zero if the architecture described by GDBARCH has
|
||
Altivec registers (vr0 --- vr31, vrsave and vscr). */
|
||
int
|
||
ppc_altivec_support_p (struct gdbarch *gdbarch)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
|
||
return (tdep->ppc_vr0_regnum >= 0
|
||
&& tdep->ppc_vrsave_regnum >= 0);
|
||
}
|
||
|
||
/* Check that TABLE[GDB_REGNO] is not already initialized, and then
|
||
set it to SIM_REGNO.
|
||
|
||
This is a helper function for init_sim_regno_table, constructing
|
||
the table mapping GDB register numbers to sim register numbers; we
|
||
initialize every element in that table to -1 before we start
|
||
filling it in. */
|
||
static void
|
||
set_sim_regno (int *table, int gdb_regno, int sim_regno)
|
||
{
|
||
/* Make sure we don't try to assign any given GDB register a sim
|
||
register number more than once. */
|
||
gdb_assert (table[gdb_regno] == -1);
|
||
table[gdb_regno] = sim_regno;
|
||
}
|
||
|
||
|
||
/* Initialize ARCH->tdep->sim_regno, the table mapping GDB register
|
||
numbers to simulator register numbers, based on the values placed
|
||
in the ARCH->tdep->ppc_foo_regnum members. */
|
||
static void
|
||
init_sim_regno_table (struct gdbarch *arch)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
|
||
int total_regs = gdbarch_num_regs (arch);
|
||
int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int);
|
||
int i;
|
||
static const char *const segment_regs[] = {
|
||
"sr0", "sr1", "sr2", "sr3", "sr4", "sr5", "sr6", "sr7",
|
||
"sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15"
|
||
};
|
||
|
||
/* Presume that all registers not explicitly mentioned below are
|
||
unavailable from the sim. */
|
||
for (i = 0; i < total_regs; i++)
|
||
sim_regno[i] = -1;
|
||
|
||
/* General-purpose registers. */
|
||
for (i = 0; i < ppc_num_gprs; i++)
|
||
set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i);
|
||
|
||
/* Floating-point registers. */
|
||
if (tdep->ppc_fp0_regnum >= 0)
|
||
for (i = 0; i < ppc_num_fprs; i++)
|
||
set_sim_regno (sim_regno,
|
||
tdep->ppc_fp0_regnum + i,
|
||
sim_ppc_f0_regnum + i);
|
||
if (tdep->ppc_fpscr_regnum >= 0)
|
||
set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum);
|
||
|
||
set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum);
|
||
set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum);
|
||
set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum);
|
||
|
||
/* Segment registers. */
|
||
for (i = 0; i < ppc_num_srs; i++)
|
||
{
|
||
int gdb_regno;
|
||
|
||
gdb_regno = user_reg_map_name_to_regnum (arch, segment_regs[i], -1);
|
||
if (gdb_regno >= 0)
|
||
set_sim_regno (sim_regno, gdb_regno, sim_ppc_sr0_regnum + i);
|
||
}
|
||
|
||
/* Altivec registers. */
|
||
if (tdep->ppc_vr0_regnum >= 0)
|
||
{
|
||
for (i = 0; i < ppc_num_vrs; i++)
|
||
set_sim_regno (sim_regno,
|
||
tdep->ppc_vr0_regnum + i,
|
||
sim_ppc_vr0_regnum + i);
|
||
|
||
/* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum,
|
||
we can treat this more like the other cases. */
|
||
set_sim_regno (sim_regno,
|
||
tdep->ppc_vr0_regnum + ppc_num_vrs,
|
||
sim_ppc_vscr_regnum);
|
||
}
|
||
/* vsave is a special-purpose register, so the code below handles it. */
|
||
|
||
/* SPE APU (E500) registers. */
|
||
if (tdep->ppc_ev0_upper_regnum >= 0)
|
||
for (i = 0; i < ppc_num_gprs; i++)
|
||
set_sim_regno (sim_regno,
|
||
tdep->ppc_ev0_upper_regnum + i,
|
||
sim_ppc_rh0_regnum + i);
|
||
if (tdep->ppc_acc_regnum >= 0)
|
||
set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum);
|
||
/* spefscr is a special-purpose register, so the code below handles it. */
|
||
|
||
#ifdef WITH_SIM
|
||
/* Now handle all special-purpose registers. Verify that they
|
||
haven't mistakenly been assigned numbers by any of the above
|
||
code. */
|
||
for (i = 0; i < sim_ppc_num_sprs; i++)
|
||
{
|
||
const char *spr_name = sim_spr_register_name (i);
|
||
int gdb_regno = -1;
|
||
|
||
if (spr_name != NULL)
|
||
gdb_regno = user_reg_map_name_to_regnum (arch, spr_name, -1);
|
||
|
||
if (gdb_regno != -1)
|
||
set_sim_regno (sim_regno, gdb_regno, sim_ppc_spr0_regnum + i);
|
||
}
|
||
#endif
|
||
|
||
/* Drop the initialized array into place. */
|
||
tdep->sim_regno = sim_regno;
|
||
}
|
||
|
||
|
||
/* Given a GDB register number REG, return the corresponding SIM
|
||
register number. */
|
||
static int
|
||
rs6000_register_sim_regno (struct gdbarch *gdbarch, int reg)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
int sim_regno;
|
||
|
||
if (tdep->sim_regno == NULL)
|
||
init_sim_regno_table (gdbarch);
|
||
|
||
gdb_assert (0 <= reg
|
||
&& reg <= gdbarch_num_regs (gdbarch)
|
||
+ gdbarch_num_pseudo_regs (gdbarch));
|
||
sim_regno = tdep->sim_regno[reg];
|
||
|
||
if (sim_regno >= 0)
|
||
return sim_regno;
|
||
else
|
||
return LEGACY_SIM_REGNO_IGNORE;
|
||
}
|
||
|
||
|
||
|
||
/* Register set support functions. */
|
||
|
||
/* REGS + OFFSET contains register REGNUM in a field REGSIZE wide.
|
||
Write the register to REGCACHE. */
|
||
|
||
void
|
||
ppc_supply_reg (struct regcache *regcache, int regnum,
|
||
const gdb_byte *regs, size_t offset, int regsize)
|
||
{
|
||
if (regnum != -1 && offset != -1)
|
||
{
|
||
if (regsize > 4)
|
||
{
|
||
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
||
int gdb_regsize = register_size (gdbarch, regnum);
|
||
if (gdb_regsize < regsize
|
||
&& gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
|
||
offset += regsize - gdb_regsize;
|
||
}
|
||
regcache_raw_supply (regcache, regnum, regs + offset);
|
||
}
|
||
}
|
||
|
||
/* Read register REGNUM from REGCACHE and store to REGS + OFFSET
|
||
in a field REGSIZE wide. Zero pad as necessary. */
|
||
|
||
void
|
||
ppc_collect_reg (const struct regcache *regcache, int regnum,
|
||
gdb_byte *regs, size_t offset, int regsize)
|
||
{
|
||
if (regnum != -1 && offset != -1)
|
||
{
|
||
if (regsize > 4)
|
||
{
|
||
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
||
int gdb_regsize = register_size (gdbarch, regnum);
|
||
if (gdb_regsize < regsize)
|
||
{
|
||
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
|
||
{
|
||
memset (regs + offset, 0, regsize - gdb_regsize);
|
||
offset += regsize - gdb_regsize;
|
||
}
|
||
else
|
||
memset (regs + offset + regsize - gdb_regsize, 0,
|
||
regsize - gdb_regsize);
|
||
}
|
||
}
|
||
regcache_raw_collect (regcache, regnum, regs + offset);
|
||
}
|
||
}
|
||
|
||
static int
|
||
ppc_greg_offset (struct gdbarch *gdbarch,
|
||
struct gdbarch_tdep *tdep,
|
||
const struct ppc_reg_offsets *offsets,
|
||
int regnum,
|
||
int *regsize)
|
||
{
|
||
*regsize = offsets->gpr_size;
|
||
if (regnum >= tdep->ppc_gp0_regnum
|
||
&& regnum < tdep->ppc_gp0_regnum + ppc_num_gprs)
|
||
return (offsets->r0_offset
|
||
+ (regnum - tdep->ppc_gp0_regnum) * offsets->gpr_size);
|
||
|
||
if (regnum == gdbarch_pc_regnum (gdbarch))
|
||
return offsets->pc_offset;
|
||
|
||
if (regnum == tdep->ppc_ps_regnum)
|
||
return offsets->ps_offset;
|
||
|
||
if (regnum == tdep->ppc_lr_regnum)
|
||
return offsets->lr_offset;
|
||
|
||
if (regnum == tdep->ppc_ctr_regnum)
|
||
return offsets->ctr_offset;
|
||
|
||
*regsize = offsets->xr_size;
|
||
if (regnum == tdep->ppc_cr_regnum)
|
||
return offsets->cr_offset;
|
||
|
||
if (regnum == tdep->ppc_xer_regnum)
|
||
return offsets->xer_offset;
|
||
|
||
if (regnum == tdep->ppc_mq_regnum)
|
||
return offsets->mq_offset;
|
||
|
||
return -1;
|
||
}
|
||
|
||
static int
|
||
ppc_fpreg_offset (struct gdbarch_tdep *tdep,
|
||
const struct ppc_reg_offsets *offsets,
|
||
int regnum)
|
||
{
|
||
if (regnum >= tdep->ppc_fp0_regnum
|
||
&& regnum < tdep->ppc_fp0_regnum + ppc_num_fprs)
|
||
return offsets->f0_offset + (regnum - tdep->ppc_fp0_regnum) * 8;
|
||
|
||
if (regnum == tdep->ppc_fpscr_regnum)
|
||
return offsets->fpscr_offset;
|
||
|
||
return -1;
|
||
}
|
||
|
||
static int
|
||
ppc_vrreg_offset (struct gdbarch_tdep *tdep,
|
||
const struct ppc_reg_offsets *offsets,
|
||
int regnum)
|
||
{
|
||
if (regnum >= tdep->ppc_vr0_regnum
|
||
&& regnum < tdep->ppc_vr0_regnum + ppc_num_vrs)
|
||
return offsets->vr0_offset + (regnum - tdep->ppc_vr0_regnum) * 16;
|
||
|
||
if (regnum == tdep->ppc_vrsave_regnum - 1)
|
||
return offsets->vscr_offset;
|
||
|
||
if (regnum == tdep->ppc_vrsave_regnum)
|
||
return offsets->vrsave_offset;
|
||
|
||
return -1;
|
||
}
|
||
|
||
/* Supply register REGNUM in the general-purpose register set REGSET
|
||
from the buffer specified by GREGS and LEN to register cache
|
||
REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
|
||
|
||
void
|
||
ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
|
||
int regnum, const void *gregs, size_t len)
|
||
{
|
||
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
const struct ppc_reg_offsets *offsets = regset->descr;
|
||
size_t offset;
|
||
int regsize;
|
||
|
||
if (regnum == -1)
|
||
{
|
||
int i;
|
||
int gpr_size = offsets->gpr_size;
|
||
|
||
for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
|
||
i < tdep->ppc_gp0_regnum + ppc_num_gprs;
|
||
i++, offset += gpr_size)
|
||
ppc_supply_reg (regcache, i, gregs, offset, gpr_size);
|
||
|
||
ppc_supply_reg (regcache, gdbarch_pc_regnum (gdbarch),
|
||
gregs, offsets->pc_offset, gpr_size);
|
||
ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
|
||
gregs, offsets->ps_offset, gpr_size);
|
||
ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
|
||
gregs, offsets->lr_offset, gpr_size);
|
||
ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
|
||
gregs, offsets->ctr_offset, gpr_size);
|
||
ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
|
||
gregs, offsets->cr_offset, offsets->xr_size);
|
||
ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
|
||
gregs, offsets->xer_offset, offsets->xr_size);
|
||
ppc_supply_reg (regcache, tdep->ppc_mq_regnum,
|
||
gregs, offsets->mq_offset, offsets->xr_size);
|
||
return;
|
||
}
|
||
|
||
offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, ®size);
|
||
ppc_supply_reg (regcache, regnum, gregs, offset, regsize);
|
||
}
|
||
|
||
/* Supply register REGNUM in the floating-point register set REGSET
|
||
from the buffer specified by FPREGS and LEN to register cache
|
||
REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
|
||
|
||
void
|
||
ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
|
||
int regnum, const void *fpregs, size_t len)
|
||
{
|
||
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
||
struct gdbarch_tdep *tdep;
|
||
const struct ppc_reg_offsets *offsets;
|
||
size_t offset;
|
||
|
||
if (!ppc_floating_point_unit_p (gdbarch))
|
||
return;
|
||
|
||
tdep = gdbarch_tdep (gdbarch);
|
||
offsets = regset->descr;
|
||
if (regnum == -1)
|
||
{
|
||
int i;
|
||
|
||
for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
|
||
i < tdep->ppc_fp0_regnum + ppc_num_fprs;
|
||
i++, offset += 8)
|
||
ppc_supply_reg (regcache, i, fpregs, offset, 8);
|
||
|
||
ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
|
||
fpregs, offsets->fpscr_offset, offsets->fpscr_size);
|
||
return;
|
||
}
|
||
|
||
offset = ppc_fpreg_offset (tdep, offsets, regnum);
|
||
ppc_supply_reg (regcache, regnum, fpregs, offset,
|
||
regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
|
||
}
|
||
|
||
/* Supply register REGNUM in the VSX register set REGSET
|
||
from the buffer specified by VSXREGS and LEN to register cache
|
||
REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
|
||
|
||
void
|
||
ppc_supply_vsxregset (const struct regset *regset, struct regcache *regcache,
|
||
int regnum, const void *vsxregs, size_t len)
|
||
{
|
||
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
||
struct gdbarch_tdep *tdep;
|
||
|
||
if (!ppc_vsx_support_p (gdbarch))
|
||
return;
|
||
|
||
tdep = gdbarch_tdep (gdbarch);
|
||
|
||
if (regnum == -1)
|
||
{
|
||
int i;
|
||
|
||
for (i = tdep->ppc_vsr0_upper_regnum;
|
||
i < tdep->ppc_vsr0_upper_regnum + 32;
|
||
i++)
|
||
ppc_supply_reg (regcache, i, vsxregs, 0, 8);
|
||
|
||
return;
|
||
}
|
||
else
|
||
ppc_supply_reg (regcache, regnum, vsxregs, 0, 8);
|
||
}
|
||
|
||
/* Supply register REGNUM in the Altivec register set REGSET
|
||
from the buffer specified by VRREGS and LEN to register cache
|
||
REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
|
||
|
||
void
|
||
ppc_supply_vrregset (const struct regset *regset, struct regcache *regcache,
|
||
int regnum, const void *vrregs, size_t len)
|
||
{
|
||
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
||
struct gdbarch_tdep *tdep;
|
||
const struct ppc_reg_offsets *offsets;
|
||
size_t offset;
|
||
|
||
if (!ppc_altivec_support_p (gdbarch))
|
||
return;
|
||
|
||
tdep = gdbarch_tdep (gdbarch);
|
||
offsets = regset->descr;
|
||
if (regnum == -1)
|
||
{
|
||
int i;
|
||
|
||
for (i = tdep->ppc_vr0_regnum, offset = offsets->vr0_offset;
|
||
i < tdep->ppc_vr0_regnum + ppc_num_vrs;
|
||
i++, offset += 16)
|
||
ppc_supply_reg (regcache, i, vrregs, offset, 16);
|
||
|
||
ppc_supply_reg (regcache, (tdep->ppc_vrsave_regnum - 1),
|
||
vrregs, offsets->vscr_offset, 4);
|
||
|
||
ppc_supply_reg (regcache, tdep->ppc_vrsave_regnum,
|
||
vrregs, offsets->vrsave_offset, 4);
|
||
return;
|
||
}
|
||
|
||
offset = ppc_vrreg_offset (tdep, offsets, regnum);
|
||
if (regnum != tdep->ppc_vrsave_regnum
|
||
&& regnum != tdep->ppc_vrsave_regnum - 1)
|
||
ppc_supply_reg (regcache, regnum, vrregs, offset, 16);
|
||
else
|
||
ppc_supply_reg (regcache, regnum,
|
||
vrregs, offset, 4);
|
||
}
|
||
|
||
/* Collect register REGNUM in the general-purpose register set
|
||
REGSET from register cache REGCACHE into the buffer specified by
|
||
GREGS and LEN. If REGNUM is -1, do this for all registers in
|
||
REGSET. */
|
||
|
||
void
|
||
ppc_collect_gregset (const struct regset *regset,
|
||
const struct regcache *regcache,
|
||
int regnum, void *gregs, size_t len)
|
||
{
|
||
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
const struct ppc_reg_offsets *offsets = regset->descr;
|
||
size_t offset;
|
||
int regsize;
|
||
|
||
if (regnum == -1)
|
||
{
|
||
int i;
|
||
int gpr_size = offsets->gpr_size;
|
||
|
||
for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
|
||
i < tdep->ppc_gp0_regnum + ppc_num_gprs;
|
||
i++, offset += gpr_size)
|
||
ppc_collect_reg (regcache, i, gregs, offset, gpr_size);
|
||
|
||
ppc_collect_reg (regcache, gdbarch_pc_regnum (gdbarch),
|
||
gregs, offsets->pc_offset, gpr_size);
|
||
ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
|
||
gregs, offsets->ps_offset, gpr_size);
|
||
ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
|
||
gregs, offsets->lr_offset, gpr_size);
|
||
ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
|
||
gregs, offsets->ctr_offset, gpr_size);
|
||
ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
|
||
gregs, offsets->cr_offset, offsets->xr_size);
|
||
ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
|
||
gregs, offsets->xer_offset, offsets->xr_size);
|
||
ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
|
||
gregs, offsets->mq_offset, offsets->xr_size);
|
||
return;
|
||
}
|
||
|
||
offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, ®size);
|
||
ppc_collect_reg (regcache, regnum, gregs, offset, regsize);
|
||
}
|
||
|
||
/* Collect register REGNUM in the floating-point register set
|
||
REGSET from register cache REGCACHE into the buffer specified by
|
||
FPREGS and LEN. If REGNUM is -1, do this for all registers in
|
||
REGSET. */
|
||
|
||
void
|
||
ppc_collect_fpregset (const struct regset *regset,
|
||
const struct regcache *regcache,
|
||
int regnum, void *fpregs, size_t len)
|
||
{
|
||
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
||
struct gdbarch_tdep *tdep;
|
||
const struct ppc_reg_offsets *offsets;
|
||
size_t offset;
|
||
|
||
if (!ppc_floating_point_unit_p (gdbarch))
|
||
return;
|
||
|
||
tdep = gdbarch_tdep (gdbarch);
|
||
offsets = regset->descr;
|
||
if (regnum == -1)
|
||
{
|
||
int i;
|
||
|
||
for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
|
||
i < tdep->ppc_fp0_regnum + ppc_num_fprs;
|
||
i++, offset += 8)
|
||
ppc_collect_reg (regcache, i, fpregs, offset, 8);
|
||
|
||
ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
|
||
fpregs, offsets->fpscr_offset, offsets->fpscr_size);
|
||
return;
|
||
}
|
||
|
||
offset = ppc_fpreg_offset (tdep, offsets, regnum);
|
||
ppc_collect_reg (regcache, regnum, fpregs, offset,
|
||
regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
|
||
}
|
||
|
||
/* Collect register REGNUM in the VSX register set
|
||
REGSET from register cache REGCACHE into the buffer specified by
|
||
VSXREGS and LEN. If REGNUM is -1, do this for all registers in
|
||
REGSET. */
|
||
|
||
void
|
||
ppc_collect_vsxregset (const struct regset *regset,
|
||
const struct regcache *regcache,
|
||
int regnum, void *vsxregs, size_t len)
|
||
{
|
||
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
||
struct gdbarch_tdep *tdep;
|
||
|
||
if (!ppc_vsx_support_p (gdbarch))
|
||
return;
|
||
|
||
tdep = gdbarch_tdep (gdbarch);
|
||
|
||
if (regnum == -1)
|
||
{
|
||
int i;
|
||
|
||
for (i = tdep->ppc_vsr0_upper_regnum;
|
||
i < tdep->ppc_vsr0_upper_regnum + 32;
|
||
i++)
|
||
ppc_collect_reg (regcache, i, vsxregs, 0, 8);
|
||
|
||
return;
|
||
}
|
||
else
|
||
ppc_collect_reg (regcache, regnum, vsxregs, 0, 8);
|
||
}
|
||
|
||
|
||
/* Collect register REGNUM in the Altivec register set
|
||
REGSET from register cache REGCACHE into the buffer specified by
|
||
VRREGS and LEN. If REGNUM is -1, do this for all registers in
|
||
REGSET. */
|
||
|
||
void
|
||
ppc_collect_vrregset (const struct regset *regset,
|
||
const struct regcache *regcache,
|
||
int regnum, void *vrregs, size_t len)
|
||
{
|
||
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
||
struct gdbarch_tdep *tdep;
|
||
const struct ppc_reg_offsets *offsets;
|
||
size_t offset;
|
||
|
||
if (!ppc_altivec_support_p (gdbarch))
|
||
return;
|
||
|
||
tdep = gdbarch_tdep (gdbarch);
|
||
offsets = regset->descr;
|
||
if (regnum == -1)
|
||
{
|
||
int i;
|
||
|
||
for (i = tdep->ppc_vr0_regnum, offset = offsets->vr0_offset;
|
||
i < tdep->ppc_vr0_regnum + ppc_num_vrs;
|
||
i++, offset += 16)
|
||
ppc_collect_reg (regcache, i, vrregs, offset, 16);
|
||
|
||
ppc_collect_reg (regcache, (tdep->ppc_vrsave_regnum - 1),
|
||
vrregs, offsets->vscr_offset, 4);
|
||
|
||
ppc_collect_reg (regcache, tdep->ppc_vrsave_regnum,
|
||
vrregs, offsets->vrsave_offset, 4);
|
||
return;
|
||
}
|
||
|
||
offset = ppc_vrreg_offset (tdep, offsets, regnum);
|
||
if (regnum != tdep->ppc_vrsave_regnum
|
||
&& regnum != tdep->ppc_vrsave_regnum - 1)
|
||
ppc_collect_reg (regcache, regnum, vrregs, offset, 16);
|
||
else
|
||
ppc_collect_reg (regcache, regnum,
|
||
vrregs, offset, 4);
|
||
}
|
||
|
||
|
||
static int
|
||
insn_changes_sp_or_jumps (unsigned long insn)
|
||
{
|
||
int opcode = (insn >> 26) & 0x03f;
|
||
int sd = (insn >> 21) & 0x01f;
|
||
int a = (insn >> 16) & 0x01f;
|
||
int subcode = (insn >> 1) & 0x3ff;
|
||
|
||
/* Changes the stack pointer. */
|
||
|
||
/* NOTE: There are many ways to change the value of a given register.
|
||
The ways below are those used when the register is R1, the SP,
|
||
in a funtion's epilogue. */
|
||
|
||
if (opcode == 31 && subcode == 444 && a == 1)
|
||
return 1; /* mr R1,Rn */
|
||
if (opcode == 14 && sd == 1)
|
||
return 1; /* addi R1,Rn,simm */
|
||
if (opcode == 58 && sd == 1)
|
||
return 1; /* ld R1,ds(Rn) */
|
||
|
||
/* Transfers control. */
|
||
|
||
if (opcode == 18)
|
||
return 1; /* b */
|
||
if (opcode == 16)
|
||
return 1; /* bc */
|
||
if (opcode == 19 && subcode == 16)
|
||
return 1; /* bclr */
|
||
if (opcode == 19 && subcode == 528)
|
||
return 1; /* bcctr */
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Return true if we are in the function's epilogue, i.e. after the
|
||
instruction that destroyed the function's stack frame.
|
||
|
||
1) scan forward from the point of execution:
|
||
a) If you find an instruction that modifies the stack pointer
|
||
or transfers control (except a return), execution is not in
|
||
an epilogue, return.
|
||
b) Stop scanning if you find a return instruction or reach the
|
||
end of the function or reach the hard limit for the size of
|
||
an epilogue.
|
||
2) scan backward from the point of execution:
|
||
a) If you find an instruction that modifies the stack pointer,
|
||
execution *is* in an epilogue, return.
|
||
b) Stop scanning if you reach an instruction that transfers
|
||
control or the beginning of the function or reach the hard
|
||
limit for the size of an epilogue. */
|
||
|
||
static int
|
||
rs6000_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
bfd_byte insn_buf[PPC_INSN_SIZE];
|
||
CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
|
||
unsigned long insn;
|
||
struct frame_info *curfrm;
|
||
|
||
/* Find the search limits based on function boundaries and hard limit. */
|
||
|
||
if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
|
||
return 0;
|
||
|
||
epilogue_start = pc - PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
|
||
if (epilogue_start < func_start) epilogue_start = func_start;
|
||
|
||
epilogue_end = pc + PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
|
||
if (epilogue_end > func_end) epilogue_end = func_end;
|
||
|
||
curfrm = get_current_frame ();
|
||
|
||
/* Scan forward until next 'blr'. */
|
||
|
||
for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += PPC_INSN_SIZE)
|
||
{
|
||
if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
|
||
return 0;
|
||
insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order);
|
||
if (insn == 0x4e800020)
|
||
break;
|
||
/* Assume a bctr is a tail call unless it points strictly within
|
||
this function. */
|
||
if (insn == 0x4e800420)
|
||
{
|
||
CORE_ADDR ctr = get_frame_register_unsigned (curfrm,
|
||
tdep->ppc_ctr_regnum);
|
||
if (ctr > func_start && ctr < func_end)
|
||
return 0;
|
||
else
|
||
break;
|
||
}
|
||
if (insn_changes_sp_or_jumps (insn))
|
||
return 0;
|
||
}
|
||
|
||
/* Scan backward until adjustment to stack pointer (R1). */
|
||
|
||
for (scan_pc = pc - PPC_INSN_SIZE;
|
||
scan_pc >= epilogue_start;
|
||
scan_pc -= PPC_INSN_SIZE)
|
||
{
|
||
if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
|
||
return 0;
|
||
insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order);
|
||
if (insn_changes_sp_or_jumps (insn))
|
||
return 1;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Get the ith function argument for the current function. */
|
||
static CORE_ADDR
|
||
rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
|
||
struct type *type)
|
||
{
|
||
return get_frame_register_unsigned (frame, 3 + argi);
|
||
}
|
||
|
||
/* Sequence of bytes for breakpoint instruction. */
|
||
|
||
const static unsigned char *
|
||
rs6000_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *bp_addr,
|
||
int *bp_size)
|
||
{
|
||
static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
|
||
static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
|
||
*bp_size = 4;
|
||
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
|
||
return big_breakpoint;
|
||
else
|
||
return little_breakpoint;
|
||
}
|
||
|
||
/* Instruction masks for displaced stepping. */
|
||
#define BRANCH_MASK 0xfc000000
|
||
#define BP_MASK 0xFC0007FE
|
||
#define B_INSN 0x48000000
|
||
#define BC_INSN 0x40000000
|
||
#define BXL_INSN 0x4c000000
|
||
#define BP_INSN 0x7C000008
|
||
|
||
/* Fix up the state of registers and memory after having single-stepped
|
||
a displaced instruction. */
|
||
static void
|
||
ppc_displaced_step_fixup (struct gdbarch *gdbarch,
|
||
struct displaced_step_closure *closure,
|
||
CORE_ADDR from, CORE_ADDR to,
|
||
struct regcache *regs)
|
||
{
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
/* Since we use simple_displaced_step_copy_insn, our closure is a
|
||
copy of the instruction. */
|
||
ULONGEST insn = extract_unsigned_integer ((gdb_byte *) closure,
|
||
PPC_INSN_SIZE, byte_order);
|
||
ULONGEST opcode = 0;
|
||
/* Offset for non PC-relative instructions. */
|
||
LONGEST offset = PPC_INSN_SIZE;
|
||
|
||
opcode = insn & BRANCH_MASK;
|
||
|
||
if (debug_displaced)
|
||
fprintf_unfiltered (gdb_stdlog,
|
||
"displaced: (ppc) fixup (%s, %s)\n",
|
||
paddress (gdbarch, from), paddress (gdbarch, to));
|
||
|
||
|
||
/* Handle PC-relative branch instructions. */
|
||
if (opcode == B_INSN || opcode == BC_INSN || opcode == BXL_INSN)
|
||
{
|
||
ULONGEST current_pc;
|
||
|
||
/* Read the current PC value after the instruction has been executed
|
||
in a displaced location. Calculate the offset to be applied to the
|
||
original PC value before the displaced stepping. */
|
||
regcache_cooked_read_unsigned (regs, gdbarch_pc_regnum (gdbarch),
|
||
¤t_pc);
|
||
offset = current_pc - to;
|
||
|
||
if (opcode != BXL_INSN)
|
||
{
|
||
/* Check for AA bit indicating whether this is an absolute
|
||
addressing or PC-relative (1: absolute, 0: relative). */
|
||
if (!(insn & 0x2))
|
||
{
|
||
/* PC-relative addressing is being used in the branch. */
|
||
if (debug_displaced)
|
||
fprintf_unfiltered
|
||
(gdb_stdlog,
|
||
"displaced: (ppc) branch instruction: %s\n"
|
||
"displaced: (ppc) adjusted PC from %s to %s\n",
|
||
paddress (gdbarch, insn), paddress (gdbarch, current_pc),
|
||
paddress (gdbarch, from + offset));
|
||
|
||
regcache_cooked_write_unsigned (regs,
|
||
gdbarch_pc_regnum (gdbarch),
|
||
from + offset);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* If we're here, it means we have a branch to LR or CTR. If the
|
||
branch was taken, the offset is probably greater than 4 (the next
|
||
instruction), so it's safe to assume that an offset of 4 means we
|
||
did not take the branch. */
|
||
if (offset == PPC_INSN_SIZE)
|
||
regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
|
||
from + PPC_INSN_SIZE);
|
||
}
|
||
|
||
/* Check for LK bit indicating whether we should set the link
|
||
register to point to the next instruction
|
||
(1: Set, 0: Don't set). */
|
||
if (insn & 0x1)
|
||
{
|
||
/* Link register needs to be set to the next instruction's PC. */
|
||
regcache_cooked_write_unsigned (regs,
|
||
gdbarch_tdep (gdbarch)->ppc_lr_regnum,
|
||
from + PPC_INSN_SIZE);
|
||
if (debug_displaced)
|
||
fprintf_unfiltered (gdb_stdlog,
|
||
"displaced: (ppc) adjusted LR to %s\n",
|
||
paddress (gdbarch, from + PPC_INSN_SIZE));
|
||
|
||
}
|
||
}
|
||
/* Check for breakpoints in the inferior. If we've found one, place the PC
|
||
right at the breakpoint instruction. */
|
||
else if ((insn & BP_MASK) == BP_INSN)
|
||
regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch), from);
|
||
else
|
||
/* Handle any other instructions that do not fit in the categories above. */
|
||
regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
|
||
from + offset);
|
||
}
|
||
|
||
/* Always use hardware single-stepping to execute the
|
||
displaced instruction. */
|
||
static int
|
||
ppc_displaced_step_hw_singlestep (struct gdbarch *gdbarch,
|
||
struct displaced_step_closure *closure)
|
||
{
|
||
return 1;
|
||
}
|
||
|
||
/* Instruction masks used during single-stepping of atomic sequences. */
|
||
#define LWARX_MASK 0xfc0007fe
|
||
#define LWARX_INSTRUCTION 0x7c000028
|
||
#define LDARX_INSTRUCTION 0x7c0000A8
|
||
#define STWCX_MASK 0xfc0007ff
|
||
#define STWCX_INSTRUCTION 0x7c00012d
|
||
#define STDCX_INSTRUCTION 0x7c0001ad
|
||
|
||
/* Checks for an atomic sequence of instructions beginning with a LWARX/LDARX
|
||
instruction and ending with a STWCX/STDCX instruction. If such a sequence
|
||
is found, attempt to step through it. A breakpoint is placed at the end of
|
||
the sequence. */
|
||
|
||
int
|
||
ppc_deal_with_atomic_sequence (struct frame_info *frame)
|
||
{
|
||
struct gdbarch *gdbarch = get_frame_arch (frame);
|
||
struct address_space *aspace = get_frame_address_space (frame);
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
CORE_ADDR pc = get_frame_pc (frame);
|
||
CORE_ADDR breaks[2] = {-1, -1};
|
||
CORE_ADDR loc = pc;
|
||
CORE_ADDR closing_insn; /* Instruction that closes the atomic sequence. */
|
||
int insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
|
||
int insn_count;
|
||
int index;
|
||
int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
|
||
const int atomic_sequence_length = 16; /* Instruction sequence length. */
|
||
int opcode; /* Branch instruction's OPcode. */
|
||
int bc_insn_count = 0; /* Conditional branch instruction count. */
|
||
|
||
/* Assume all atomic sequences start with a lwarx/ldarx instruction. */
|
||
if ((insn & LWARX_MASK) != LWARX_INSTRUCTION
|
||
&& (insn & LWARX_MASK) != LDARX_INSTRUCTION)
|
||
return 0;
|
||
|
||
/* Assume that no atomic sequence is longer than "atomic_sequence_length"
|
||
instructions. */
|
||
for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
|
||
{
|
||
loc += PPC_INSN_SIZE;
|
||
insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
|
||
|
||
/* Assume that there is at most one conditional branch in the atomic
|
||
sequence. If a conditional branch is found, put a breakpoint in
|
||
its destination address. */
|
||
if ((insn & BRANCH_MASK) == BC_INSN)
|
||
{
|
||
int immediate = ((insn & 0xfffc) ^ 0x8000) - 0x8000;
|
||
int absolute = insn & 2;
|
||
|
||
if (bc_insn_count >= 1)
|
||
return 0; /* More than one conditional branch found, fallback
|
||
to the standard single-step code. */
|
||
|
||
if (absolute)
|
||
breaks[1] = immediate;
|
||
else
|
||
breaks[1] = loc + immediate;
|
||
|
||
bc_insn_count++;
|
||
last_breakpoint++;
|
||
}
|
||
|
||
if ((insn & STWCX_MASK) == STWCX_INSTRUCTION
|
||
|| (insn & STWCX_MASK) == STDCX_INSTRUCTION)
|
||
break;
|
||
}
|
||
|
||
/* Assume that the atomic sequence ends with a stwcx/stdcx instruction. */
|
||
if ((insn & STWCX_MASK) != STWCX_INSTRUCTION
|
||
&& (insn & STWCX_MASK) != STDCX_INSTRUCTION)
|
||
return 0;
|
||
|
||
closing_insn = loc;
|
||
loc += PPC_INSN_SIZE;
|
||
insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
|
||
|
||
/* Insert a breakpoint right after the end of the atomic sequence. */
|
||
breaks[0] = loc;
|
||
|
||
/* Check for duplicated breakpoints. Check also for a breakpoint
|
||
placed (branch instruction's destination) anywhere in sequence. */
|
||
if (last_breakpoint
|
||
&& (breaks[1] == breaks[0]
|
||
|| (breaks[1] >= pc && breaks[1] <= closing_insn)))
|
||
last_breakpoint = 0;
|
||
|
||
/* Effectively inserts the breakpoints. */
|
||
for (index = 0; index <= last_breakpoint; index++)
|
||
insert_single_step_breakpoint (gdbarch, aspace, breaks[index]);
|
||
|
||
return 1;
|
||
}
|
||
|
||
|
||
#define SIGNED_SHORT(x) \
|
||
((sizeof (short) == 2) \
|
||
? ((int)(short)(x)) \
|
||
: ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
|
||
|
||
#define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
|
||
|
||
/* Limit the number of skipped non-prologue instructions, as the examining
|
||
of the prologue is expensive. */
|
||
static int max_skip_non_prologue_insns = 10;
|
||
|
||
/* Return nonzero if the given instruction OP can be part of the prologue
|
||
of a function and saves a parameter on the stack. FRAMEP should be
|
||
set if one of the previous instructions in the function has set the
|
||
Frame Pointer. */
|
||
|
||
static int
|
||
store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
|
||
{
|
||
/* Move parameters from argument registers to temporary register. */
|
||
if ((op & 0xfc0007fe) == 0x7c000378) /* mr(.) Rx,Ry */
|
||
{
|
||
/* Rx must be scratch register r0. */
|
||
const int rx_regno = (op >> 16) & 31;
|
||
/* Ry: Only r3 - r10 are used for parameter passing. */
|
||
const int ry_regno = GET_SRC_REG (op);
|
||
|
||
if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
|
||
{
|
||
*r0_contains_arg = 1;
|
||
return 1;
|
||
}
|
||
else
|
||
return 0;
|
||
}
|
||
|
||
/* Save a General Purpose Register on stack. */
|
||
|
||
if ((op & 0xfc1f0003) == 0xf8010000 || /* std Rx,NUM(r1) */
|
||
(op & 0xfc1f0000) == 0xd8010000) /* stfd Rx,NUM(r1) */
|
||
{
|
||
/* Rx: Only r3 - r10 are used for parameter passing. */
|
||
const int rx_regno = GET_SRC_REG (op);
|
||
|
||
return (rx_regno >= 3 && rx_regno <= 10);
|
||
}
|
||
|
||
/* Save a General Purpose Register on stack via the Frame Pointer. */
|
||
|
||
if (framep &&
|
||
((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */
|
||
(op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */
|
||
(op & 0xfc1f0000) == 0xd81f0000)) /* stfd Rx,NUM(r31) */
|
||
{
|
||
/* Rx: Usually, only r3 - r10 are used for parameter passing.
|
||
However, the compiler sometimes uses r0 to hold an argument. */
|
||
const int rx_regno = GET_SRC_REG (op);
|
||
|
||
return ((rx_regno >= 3 && rx_regno <= 10)
|
||
|| (rx_regno == 0 && *r0_contains_arg));
|
||
}
|
||
|
||
if ((op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
|
||
{
|
||
/* Only f2 - f8 are used for parameter passing. */
|
||
const int src_regno = GET_SRC_REG (op);
|
||
|
||
return (src_regno >= 2 && src_regno <= 8);
|
||
}
|
||
|
||
if (framep && ((op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */
|
||
{
|
||
/* Only f2 - f8 are used for parameter passing. */
|
||
const int src_regno = GET_SRC_REG (op);
|
||
|
||
return (src_regno >= 2 && src_regno <= 8);
|
||
}
|
||
|
||
/* Not an insn that saves a parameter on stack. */
|
||
return 0;
|
||
}
|
||
|
||
/* Assuming that INSN is a "bl" instruction located at PC, return
|
||
nonzero if the destination of the branch is a "blrl" instruction.
|
||
|
||
This sequence is sometimes found in certain function prologues.
|
||
It allows the function to load the LR register with a value that
|
||
they can use to access PIC data using PC-relative offsets. */
|
||
|
||
static int
|
||
bl_to_blrl_insn_p (CORE_ADDR pc, int insn, enum bfd_endian byte_order)
|
||
{
|
||
CORE_ADDR dest;
|
||
int immediate;
|
||
int absolute;
|
||
int dest_insn;
|
||
|
||
absolute = (int) ((insn >> 1) & 1);
|
||
immediate = ((insn & ~3) << 6) >> 6;
|
||
if (absolute)
|
||
dest = immediate;
|
||
else
|
||
dest = pc + immediate;
|
||
|
||
dest_insn = read_memory_integer (dest, 4, byte_order);
|
||
if ((dest_insn & 0xfc00ffff) == 0x4c000021) /* blrl */
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Masks for decoding a branch-and-link (bl) instruction.
|
||
|
||
BL_MASK and BL_INSTRUCTION are used in combination with each other.
|
||
The former is anded with the opcode in question; if the result of
|
||
this masking operation is equal to BL_INSTRUCTION, then the opcode in
|
||
question is a ``bl'' instruction.
|
||
|
||
BL_DISPLACMENT_MASK is anded with the opcode in order to extract
|
||
the branch displacement. */
|
||
|
||
#define BL_MASK 0xfc000001
|
||
#define BL_INSTRUCTION 0x48000001
|
||
#define BL_DISPLACEMENT_MASK 0x03fffffc
|
||
|
||
static unsigned long
|
||
rs6000_fetch_instruction (struct gdbarch *gdbarch, const CORE_ADDR pc)
|
||
{
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
gdb_byte buf[4];
|
||
unsigned long op;
|
||
|
||
/* Fetch the instruction and convert it to an integer. */
|
||
if (target_read_memory (pc, buf, 4))
|
||
return 0;
|
||
op = extract_unsigned_integer (buf, 4, byte_order);
|
||
|
||
return op;
|
||
}
|
||
|
||
/* GCC generates several well-known sequences of instructions at the begining
|
||
of each function prologue when compiling with -fstack-check. If one of
|
||
such sequences starts at START_PC, then return the address of the
|
||
instruction immediately past this sequence. Otherwise, return START_PC. */
|
||
|
||
static CORE_ADDR
|
||
rs6000_skip_stack_check (struct gdbarch *gdbarch, const CORE_ADDR start_pc)
|
||
{
|
||
CORE_ADDR pc = start_pc;
|
||
unsigned long op = rs6000_fetch_instruction (gdbarch, pc);
|
||
|
||
/* First possible sequence: A small number of probes.
|
||
stw 0, -<some immediate>(1)
|
||
[repeat this instruction any (small) number of times]. */
|
||
|
||
if ((op & 0xffff0000) == 0x90010000)
|
||
{
|
||
while ((op & 0xffff0000) == 0x90010000)
|
||
{
|
||
pc = pc + 4;
|
||
op = rs6000_fetch_instruction (gdbarch, pc);
|
||
}
|
||
return pc;
|
||
}
|
||
|
||
/* Second sequence: A probing loop.
|
||
addi 12,1,-<some immediate>
|
||
lis 0,-<some immediate>
|
||
[possibly ori 0,0,<some immediate>]
|
||
add 0,12,0
|
||
cmpw 0,12,0
|
||
beq 0,<disp>
|
||
addi 12,12,-<some immediate>
|
||
stw 0,0(12)
|
||
b <disp>
|
||
[possibly one last probe: stw 0,<some immediate>(12)]. */
|
||
|
||
while (1)
|
||
{
|
||
/* addi 12,1,-<some immediate> */
|
||
if ((op & 0xffff0000) != 0x39810000)
|
||
break;
|
||
|
||
/* lis 0,-<some immediate> */
|
||
pc = pc + 4;
|
||
op = rs6000_fetch_instruction (gdbarch, pc);
|
||
if ((op & 0xffff0000) != 0x3c000000)
|
||
break;
|
||
|
||
pc = pc + 4;
|
||
op = rs6000_fetch_instruction (gdbarch, pc);
|
||
/* [possibly ori 0,0,<some immediate>] */
|
||
if ((op & 0xffff0000) == 0x60000000)
|
||
{
|
||
pc = pc + 4;
|
||
op = rs6000_fetch_instruction (gdbarch, pc);
|
||
}
|
||
/* add 0,12,0 */
|
||
if (op != 0x7c0c0214)
|
||
break;
|
||
|
||
/* cmpw 0,12,0 */
|
||
pc = pc + 4;
|
||
op = rs6000_fetch_instruction (gdbarch, pc);
|
||
if (op != 0x7c0c0000)
|
||
break;
|
||
|
||
/* beq 0,<disp> */
|
||
pc = pc + 4;
|
||
op = rs6000_fetch_instruction (gdbarch, pc);
|
||
if ((op & 0xff9f0001) != 0x41820000)
|
||
break;
|
||
|
||
/* addi 12,12,-<some immediate> */
|
||
pc = pc + 4;
|
||
op = rs6000_fetch_instruction (gdbarch, pc);
|
||
if ((op & 0xffff0000) != 0x398c0000)
|
||
break;
|
||
|
||
/* stw 0,0(12) */
|
||
pc = pc + 4;
|
||
op = rs6000_fetch_instruction (gdbarch, pc);
|
||
if (op != 0x900c0000)
|
||
break;
|
||
|
||
/* b <disp> */
|
||
pc = pc + 4;
|
||
op = rs6000_fetch_instruction (gdbarch, pc);
|
||
if ((op & 0xfc000001) != 0x48000000)
|
||
break;
|
||
|
||
/* [possibly one last probe: stw 0,<some immediate>(12)]. */
|
||
pc = pc + 4;
|
||
op = rs6000_fetch_instruction (gdbarch, pc);
|
||
if ((op & 0xffff0000) == 0x900c0000)
|
||
{
|
||
pc = pc + 4;
|
||
op = rs6000_fetch_instruction (gdbarch, pc);
|
||
}
|
||
|
||
/* We found a valid stack-check sequence, return the new PC. */
|
||
return pc;
|
||
}
|
||
|
||
/* Third sequence: No probe; instead, a comparizon between the stack size
|
||
limit (saved in a run-time global variable) and the current stack
|
||
pointer:
|
||
|
||
addi 0,1,-<some immediate>
|
||
lis 12,__gnat_stack_limit@ha
|
||
lwz 12,__gnat_stack_limit@l(12)
|
||
twllt 0,12
|
||
|
||
or, with a small variant in the case of a bigger stack frame:
|
||
addis 0,1,<some immediate>
|
||
addic 0,0,-<some immediate>
|
||
lis 12,__gnat_stack_limit@ha
|
||
lwz 12,__gnat_stack_limit@l(12)
|
||
twllt 0,12
|
||
*/
|
||
while (1)
|
||
{
|
||
/* addi 0,1,-<some immediate> */
|
||
if ((op & 0xffff0000) != 0x38010000)
|
||
{
|
||
/* small stack frame variant not recognized; try the
|
||
big stack frame variant: */
|
||
|
||
/* addis 0,1,<some immediate> */
|
||
if ((op & 0xffff0000) != 0x3c010000)
|
||
break;
|
||
|
||
/* addic 0,0,-<some immediate> */
|
||
pc = pc + 4;
|
||
op = rs6000_fetch_instruction (gdbarch, pc);
|
||
if ((op & 0xffff0000) != 0x30000000)
|
||
break;
|
||
}
|
||
|
||
/* lis 12,<some immediate> */
|
||
pc = pc + 4;
|
||
op = rs6000_fetch_instruction (gdbarch, pc);
|
||
if ((op & 0xffff0000) != 0x3d800000)
|
||
break;
|
||
|
||
/* lwz 12,<some immediate>(12) */
|
||
pc = pc + 4;
|
||
op = rs6000_fetch_instruction (gdbarch, pc);
|
||
if ((op & 0xffff0000) != 0x818c0000)
|
||
break;
|
||
|
||
/* twllt 0,12 */
|
||
pc = pc + 4;
|
||
op = rs6000_fetch_instruction (gdbarch, pc);
|
||
if ((op & 0xfffffffe) != 0x7c406008)
|
||
break;
|
||
|
||
/* We found a valid stack-check sequence, return the new PC. */
|
||
return pc;
|
||
}
|
||
|
||
/* No stack check code in our prologue, return the start_pc. */
|
||
return start_pc;
|
||
}
|
||
|
||
/* return pc value after skipping a function prologue and also return
|
||
information about a function frame.
|
||
|
||
in struct rs6000_framedata fdata:
|
||
- frameless is TRUE, if function does not have a frame.
|
||
- nosavedpc is TRUE, if function does not save %pc value in its frame.
|
||
- offset is the initial size of this stack frame --- the amount by
|
||
which we decrement the sp to allocate the frame.
|
||
- saved_gpr is the number of the first saved gpr.
|
||
- saved_fpr is the number of the first saved fpr.
|
||
- saved_vr is the number of the first saved vr.
|
||
- saved_ev is the number of the first saved ev.
|
||
- alloca_reg is the number of the register used for alloca() handling.
|
||
Otherwise -1.
|
||
- gpr_offset is the offset of the first saved gpr from the previous frame.
|
||
- fpr_offset is the offset of the first saved fpr from the previous frame.
|
||
- vr_offset is the offset of the first saved vr from the previous frame.
|
||
- ev_offset is the offset of the first saved ev from the previous frame.
|
||
- lr_offset is the offset of the saved lr
|
||
- cr_offset is the offset of the saved cr
|
||
- vrsave_offset is the offset of the saved vrsave register. */
|
||
|
||
static CORE_ADDR
|
||
skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR lim_pc,
|
||
struct rs6000_framedata *fdata)
|
||
{
|
||
CORE_ADDR orig_pc = pc;
|
||
CORE_ADDR last_prologue_pc = pc;
|
||
CORE_ADDR li_found_pc = 0;
|
||
gdb_byte buf[4];
|
||
unsigned long op;
|
||
long offset = 0;
|
||
long vr_saved_offset = 0;
|
||
int lr_reg = -1;
|
||
int cr_reg = -1;
|
||
int vr_reg = -1;
|
||
int ev_reg = -1;
|
||
long ev_offset = 0;
|
||
int vrsave_reg = -1;
|
||
int reg;
|
||
int framep = 0;
|
||
int minimal_toc_loaded = 0;
|
||
int prev_insn_was_prologue_insn = 1;
|
||
int num_skip_non_prologue_insns = 0;
|
||
int r0_contains_arg = 0;
|
||
const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (gdbarch);
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
|
||
memset (fdata, 0, sizeof (struct rs6000_framedata));
|
||
fdata->saved_gpr = -1;
|
||
fdata->saved_fpr = -1;
|
||
fdata->saved_vr = -1;
|
||
fdata->saved_ev = -1;
|
||
fdata->alloca_reg = -1;
|
||
fdata->frameless = 1;
|
||
fdata->nosavedpc = 1;
|
||
fdata->lr_register = -1;
|
||
|
||
pc = rs6000_skip_stack_check (gdbarch, pc);
|
||
if (pc >= lim_pc)
|
||
pc = lim_pc;
|
||
|
||
for (;; pc += 4)
|
||
{
|
||
/* Sometimes it isn't clear if an instruction is a prologue
|
||
instruction or not. When we encounter one of these ambiguous
|
||
cases, we'll set prev_insn_was_prologue_insn to 0 (false).
|
||
Otherwise, we'll assume that it really is a prologue instruction. */
|
||
if (prev_insn_was_prologue_insn)
|
||
last_prologue_pc = pc;
|
||
|
||
/* Stop scanning if we've hit the limit. */
|
||
if (pc >= lim_pc)
|
||
break;
|
||
|
||
prev_insn_was_prologue_insn = 1;
|
||
|
||
/* Fetch the instruction and convert it to an integer. */
|
||
if (target_read_memory (pc, buf, 4))
|
||
break;
|
||
op = extract_unsigned_integer (buf, 4, byte_order);
|
||
|
||
if ((op & 0xfc1fffff) == 0x7c0802a6)
|
||
{ /* mflr Rx */
|
||
/* Since shared library / PIC code, which needs to get its
|
||
address at runtime, can appear to save more than one link
|
||
register vis:
|
||
|
||
*INDENT-OFF*
|
||
stwu r1,-304(r1)
|
||
mflr r3
|
||
bl 0xff570d0 (blrl)
|
||
stw r30,296(r1)
|
||
mflr r30
|
||
stw r31,300(r1)
|
||
stw r3,308(r1);
|
||
...
|
||
*INDENT-ON*
|
||
|
||
remember just the first one, but skip over additional
|
||
ones. */
|
||
if (lr_reg == -1)
|
||
lr_reg = (op & 0x03e00000) >> 21;
|
||
if (lr_reg == 0)
|
||
r0_contains_arg = 0;
|
||
continue;
|
||
}
|
||
else if ((op & 0xfc1fffff) == 0x7c000026)
|
||
{ /* mfcr Rx */
|
||
cr_reg = (op & 0x03e00000);
|
||
if (cr_reg == 0)
|
||
r0_contains_arg = 0;
|
||
continue;
|
||
|
||
}
|
||
else if ((op & 0xfc1f0000) == 0xd8010000)
|
||
{ /* stfd Rx,NUM(r1) */
|
||
reg = GET_SRC_REG (op);
|
||
if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
|
||
{
|
||
fdata->saved_fpr = reg;
|
||
fdata->fpr_offset = SIGNED_SHORT (op) + offset;
|
||
}
|
||
continue;
|
||
|
||
}
|
||
else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
|
||
(((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
|
||
(op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
|
||
(op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
|
||
{
|
||
|
||
reg = GET_SRC_REG (op);
|
||
if ((op & 0xfc1f0000) == 0xbc010000)
|
||
fdata->gpr_mask |= ~((1U << reg) - 1);
|
||
else
|
||
fdata->gpr_mask |= 1U << reg;
|
||
if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
|
||
{
|
||
fdata->saved_gpr = reg;
|
||
if ((op & 0xfc1f0003) == 0xf8010000)
|
||
op &= ~3UL;
|
||
fdata->gpr_offset = SIGNED_SHORT (op) + offset;
|
||
}
|
||
continue;
|
||
|
||
}
|
||
else if ((op & 0xffff0000) == 0x60000000)
|
||
{
|
||
/* nop */
|
||
/* Allow nops in the prologue, but do not consider them to
|
||
be part of the prologue unless followed by other prologue
|
||
instructions. */
|
||
prev_insn_was_prologue_insn = 0;
|
||
continue;
|
||
|
||
}
|
||
else if ((op & 0xffff0000) == 0x3c000000)
|
||
{ /* addis 0,0,NUM, used
|
||
for >= 32k frames */
|
||
fdata->offset = (op & 0x0000ffff) << 16;
|
||
fdata->frameless = 0;
|
||
r0_contains_arg = 0;
|
||
continue;
|
||
|
||
}
|
||
else if ((op & 0xffff0000) == 0x60000000)
|
||
{ /* ori 0,0,NUM, 2nd ha
|
||
lf of >= 32k frames */
|
||
fdata->offset |= (op & 0x0000ffff);
|
||
fdata->frameless = 0;
|
||
r0_contains_arg = 0;
|
||
continue;
|
||
|
||
}
|
||
else if (lr_reg >= 0 &&
|
||
/* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
|
||
(((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
|
||
/* stw Rx, NUM(r1) */
|
||
((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
|
||
/* stwu Rx, NUM(r1) */
|
||
((op & 0xffff0000) == (lr_reg | 0x94010000))))
|
||
{ /* where Rx == lr */
|
||
fdata->lr_offset = offset;
|
||
fdata->nosavedpc = 0;
|
||
/* Invalidate lr_reg, but don't set it to -1.
|
||
That would mean that it had never been set. */
|
||
lr_reg = -2;
|
||
if ((op & 0xfc000003) == 0xf8000000 || /* std */
|
||
(op & 0xfc000000) == 0x90000000) /* stw */
|
||
{
|
||
/* Does not update r1, so add displacement to lr_offset. */
|
||
fdata->lr_offset += SIGNED_SHORT (op);
|
||
}
|
||
continue;
|
||
|
||
}
|
||
else if (cr_reg >= 0 &&
|
||
/* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
|
||
(((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
|
||
/* stw Rx, NUM(r1) */
|
||
((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
|
||
/* stwu Rx, NUM(r1) */
|
||
((op & 0xffff0000) == (cr_reg | 0x94010000))))
|
||
{ /* where Rx == cr */
|
||
fdata->cr_offset = offset;
|
||
/* Invalidate cr_reg, but don't set it to -1.
|
||
That would mean that it had never been set. */
|
||
cr_reg = -2;
|
||
if ((op & 0xfc000003) == 0xf8000000 ||
|
||
(op & 0xfc000000) == 0x90000000)
|
||
{
|
||
/* Does not update r1, so add displacement to cr_offset. */
|
||
fdata->cr_offset += SIGNED_SHORT (op);
|
||
}
|
||
continue;
|
||
|
||
}
|
||
else if ((op & 0xfe80ffff) == 0x42800005 && lr_reg != -1)
|
||
{
|
||
/* bcl 20,xx,.+4 is used to get the current PC, with or without
|
||
prediction bits. If the LR has already been saved, we can
|
||
skip it. */
|
||
continue;
|
||
}
|
||
else if (op == 0x48000005)
|
||
{ /* bl .+4 used in
|
||
-mrelocatable */
|
||
fdata->used_bl = 1;
|
||
continue;
|
||
|
||
}
|
||
else if (op == 0x48000004)
|
||
{ /* b .+4 (xlc) */
|
||
break;
|
||
|
||
}
|
||
else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
|
||
in V.4 -mminimal-toc */
|
||
(op & 0xffff0000) == 0x3bde0000)
|
||
{ /* addi 30,30,foo@l */
|
||
continue;
|
||
|
||
}
|
||
else if ((op & 0xfc000001) == 0x48000001)
|
||
{ /* bl foo,
|
||
to save fprs??? */
|
||
|
||
fdata->frameless = 0;
|
||
|
||
/* If the return address has already been saved, we can skip
|
||
calls to blrl (for PIC). */
|
||
if (lr_reg != -1 && bl_to_blrl_insn_p (pc, op, byte_order))
|
||
{
|
||
fdata->used_bl = 1;
|
||
continue;
|
||
}
|
||
|
||
/* Don't skip over the subroutine call if it is not within
|
||
the first three instructions of the prologue and either
|
||
we have no line table information or the line info tells
|
||
us that the subroutine call is not part of the line
|
||
associated with the prologue. */
|
||
if ((pc - orig_pc) > 8)
|
||
{
|
||
struct symtab_and_line prologue_sal = find_pc_line (orig_pc, 0);
|
||
struct symtab_and_line this_sal = find_pc_line (pc, 0);
|
||
|
||
if ((prologue_sal.line == 0)
|
||
|| (prologue_sal.line != this_sal.line))
|
||
break;
|
||
}
|
||
|
||
op = read_memory_integer (pc + 4, 4, byte_order);
|
||
|
||
/* At this point, make sure this is not a trampoline
|
||
function (a function that simply calls another functions,
|
||
and nothing else). If the next is not a nop, this branch
|
||
was part of the function prologue. */
|
||
|
||
if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
|
||
break; /* Don't skip over
|
||
this branch. */
|
||
|
||
fdata->used_bl = 1;
|
||
continue;
|
||
}
|
||
/* update stack pointer */
|
||
else if ((op & 0xfc1f0000) == 0x94010000)
|
||
{ /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
|
||
fdata->frameless = 0;
|
||
fdata->offset = SIGNED_SHORT (op);
|
||
offset = fdata->offset;
|
||
continue;
|
||
}
|
||
else if ((op & 0xfc1f016a) == 0x7c01016e)
|
||
{ /* stwux rX,r1,rY */
|
||
/* No way to figure out what r1 is going to be. */
|
||
fdata->frameless = 0;
|
||
offset = fdata->offset;
|
||
continue;
|
||
}
|
||
else if ((op & 0xfc1f0003) == 0xf8010001)
|
||
{ /* stdu rX,NUM(r1) */
|
||
fdata->frameless = 0;
|
||
fdata->offset = SIGNED_SHORT (op & ~3UL);
|
||
offset = fdata->offset;
|
||
continue;
|
||
}
|
||
else if ((op & 0xfc1f016a) == 0x7c01016a)
|
||
{ /* stdux rX,r1,rY */
|
||
/* No way to figure out what r1 is going to be. */
|
||
fdata->frameless = 0;
|
||
offset = fdata->offset;
|
||
continue;
|
||
}
|
||
else if ((op & 0xffff0000) == 0x38210000)
|
||
{ /* addi r1,r1,SIMM */
|
||
fdata->frameless = 0;
|
||
fdata->offset += SIGNED_SHORT (op);
|
||
offset = fdata->offset;
|
||
continue;
|
||
}
|
||
/* Load up minimal toc pointer. Do not treat an epilogue restore
|
||
of r31 as a minimal TOC load. */
|
||
else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
|
||
(op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
|
||
&& !framep
|
||
&& !minimal_toc_loaded)
|
||
{
|
||
minimal_toc_loaded = 1;
|
||
continue;
|
||
|
||
/* move parameters from argument registers to local variable
|
||
registers */
|
||
}
|
||
else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
|
||
(((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
|
||
(((op >> 21) & 31) <= 10) &&
|
||
((long) ((op >> 16) & 31)
|
||
>= fdata->saved_gpr)) /* Rx: local var reg */
|
||
{
|
||
continue;
|
||
|
||
/* store parameters in stack */
|
||
}
|
||
/* Move parameters from argument registers to temporary register. */
|
||
else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
|
||
{
|
||
continue;
|
||
|
||
/* Set up frame pointer */
|
||
}
|
||
else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
|
||
|| op == 0x7c3f0b78)
|
||
{ /* mr r31, r1 */
|
||
fdata->frameless = 0;
|
||
framep = 1;
|
||
fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
|
||
continue;
|
||
|
||
/* Another way to set up the frame pointer. */
|
||
}
|
||
else if ((op & 0xfc1fffff) == 0x38010000)
|
||
{ /* addi rX, r1, 0x0 */
|
||
fdata->frameless = 0;
|
||
framep = 1;
|
||
fdata->alloca_reg = (tdep->ppc_gp0_regnum
|
||
+ ((op & ~0x38010000) >> 21));
|
||
continue;
|
||
}
|
||
/* AltiVec related instructions. */
|
||
/* Store the vrsave register (spr 256) in another register for
|
||
later manipulation, or load a register into the vrsave
|
||
register. 2 instructions are used: mfvrsave and
|
||
mtvrsave. They are shorthand notation for mfspr Rn, SPR256
|
||
and mtspr SPR256, Rn. */
|
||
/* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
|
||
mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
|
||
else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
|
||
{
|
||
vrsave_reg = GET_SRC_REG (op);
|
||
continue;
|
||
}
|
||
else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
|
||
{
|
||
continue;
|
||
}
|
||
/* Store the register where vrsave was saved to onto the stack:
|
||
rS is the register where vrsave was stored in a previous
|
||
instruction. */
|
||
/* 100100 sssss 00001 dddddddd dddddddd */
|
||
else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
|
||
{
|
||
if (vrsave_reg == GET_SRC_REG (op))
|
||
{
|
||
fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
|
||
vrsave_reg = -1;
|
||
}
|
||
continue;
|
||
}
|
||
/* Compute the new value of vrsave, by modifying the register
|
||
where vrsave was saved to. */
|
||
else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
|
||
|| ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
|
||
{
|
||
continue;
|
||
}
|
||
/* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
|
||
in a pair of insns to save the vector registers on the
|
||
stack. */
|
||
/* 001110 00000 00000 iiii iiii iiii iiii */
|
||
/* 001110 01110 00000 iiii iiii iiii iiii */
|
||
else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
|
||
|| (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
|
||
{
|
||
if ((op & 0xffff0000) == 0x38000000)
|
||
r0_contains_arg = 0;
|
||
li_found_pc = pc;
|
||
vr_saved_offset = SIGNED_SHORT (op);
|
||
|
||
/* This insn by itself is not part of the prologue, unless
|
||
if part of the pair of insns mentioned above. So do not
|
||
record this insn as part of the prologue yet. */
|
||
prev_insn_was_prologue_insn = 0;
|
||
}
|
||
/* Store vector register S at (r31+r0) aligned to 16 bytes. */
|
||
/* 011111 sssss 11111 00000 00111001110 */
|
||
else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
|
||
{
|
||
if (pc == (li_found_pc + 4))
|
||
{
|
||
vr_reg = GET_SRC_REG (op);
|
||
/* If this is the first vector reg to be saved, or if
|
||
it has a lower number than others previously seen,
|
||
reupdate the frame info. */
|
||
if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
|
||
{
|
||
fdata->saved_vr = vr_reg;
|
||
fdata->vr_offset = vr_saved_offset + offset;
|
||
}
|
||
vr_saved_offset = -1;
|
||
vr_reg = -1;
|
||
li_found_pc = 0;
|
||
}
|
||
}
|
||
/* End AltiVec related instructions. */
|
||
|
||
/* Start BookE related instructions. */
|
||
/* Store gen register S at (r31+uimm).
|
||
Any register less than r13 is volatile, so we don't care. */
|
||
/* 000100 sssss 11111 iiiii 01100100001 */
|
||
else if (arch_info->mach == bfd_mach_ppc_e500
|
||
&& (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
|
||
{
|
||
if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
|
||
{
|
||
unsigned int imm;
|
||
ev_reg = GET_SRC_REG (op);
|
||
imm = (op >> 11) & 0x1f;
|
||
ev_offset = imm * 8;
|
||
/* If this is the first vector reg to be saved, or if
|
||
it has a lower number than others previously seen,
|
||
reupdate the frame info. */
|
||
if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
|
||
{
|
||
fdata->saved_ev = ev_reg;
|
||
fdata->ev_offset = ev_offset + offset;
|
||
}
|
||
}
|
||
continue;
|
||
}
|
||
/* Store gen register rS at (r1+rB). */
|
||
/* 000100 sssss 00001 bbbbb 01100100000 */
|
||
else if (arch_info->mach == bfd_mach_ppc_e500
|
||
&& (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
|
||
{
|
||
if (pc == (li_found_pc + 4))
|
||
{
|
||
ev_reg = GET_SRC_REG (op);
|
||
/* If this is the first vector reg to be saved, or if
|
||
it has a lower number than others previously seen,
|
||
reupdate the frame info. */
|
||
/* We know the contents of rB from the previous instruction. */
|
||
if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
|
||
{
|
||
fdata->saved_ev = ev_reg;
|
||
fdata->ev_offset = vr_saved_offset + offset;
|
||
}
|
||
vr_saved_offset = -1;
|
||
ev_reg = -1;
|
||
li_found_pc = 0;
|
||
}
|
||
continue;
|
||
}
|
||
/* Store gen register r31 at (rA+uimm). */
|
||
/* 000100 11111 aaaaa iiiii 01100100001 */
|
||
else if (arch_info->mach == bfd_mach_ppc_e500
|
||
&& (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
|
||
{
|
||
/* Wwe know that the source register is 31 already, but
|
||
it can't hurt to compute it. */
|
||
ev_reg = GET_SRC_REG (op);
|
||
ev_offset = ((op >> 11) & 0x1f) * 8;
|
||
/* If this is the first vector reg to be saved, or if
|
||
it has a lower number than others previously seen,
|
||
reupdate the frame info. */
|
||
if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
|
||
{
|
||
fdata->saved_ev = ev_reg;
|
||
fdata->ev_offset = ev_offset + offset;
|
||
}
|
||
|
||
continue;
|
||
}
|
||
/* Store gen register S at (r31+r0).
|
||
Store param on stack when offset from SP bigger than 4 bytes. */
|
||
/* 000100 sssss 11111 00000 01100100000 */
|
||
else if (arch_info->mach == bfd_mach_ppc_e500
|
||
&& (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
|
||
{
|
||
if (pc == (li_found_pc + 4))
|
||
{
|
||
if ((op & 0x03e00000) >= 0x01a00000)
|
||
{
|
||
ev_reg = GET_SRC_REG (op);
|
||
/* If this is the first vector reg to be saved, or if
|
||
it has a lower number than others previously seen,
|
||
reupdate the frame info. */
|
||
/* We know the contents of r0 from the previous
|
||
instruction. */
|
||
if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
|
||
{
|
||
fdata->saved_ev = ev_reg;
|
||
fdata->ev_offset = vr_saved_offset + offset;
|
||
}
|
||
ev_reg = -1;
|
||
}
|
||
vr_saved_offset = -1;
|
||
li_found_pc = 0;
|
||
continue;
|
||
}
|
||
}
|
||
/* End BookE related instructions. */
|
||
|
||
else
|
||
{
|
||
unsigned int all_mask = ~((1U << fdata->saved_gpr) - 1);
|
||
|
||
/* Not a recognized prologue instruction.
|
||
Handle optimizer code motions into the prologue by continuing
|
||
the search if we have no valid frame yet or if the return
|
||
address is not yet saved in the frame. Also skip instructions
|
||
if some of the GPRs expected to be saved are not yet saved. */
|
||
if (fdata->frameless == 0 && fdata->nosavedpc == 0
|
||
&& (fdata->gpr_mask & all_mask) == all_mask)
|
||
break;
|
||
|
||
if (op == 0x4e800020 /* blr */
|
||
|| op == 0x4e800420) /* bctr */
|
||
/* Do not scan past epilogue in frameless functions or
|
||
trampolines. */
|
||
break;
|
||
if ((op & 0xf4000000) == 0x40000000) /* bxx */
|
||
/* Never skip branches. */
|
||
break;
|
||
|
||
if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
|
||
/* Do not scan too many insns, scanning insns is expensive with
|
||
remote targets. */
|
||
break;
|
||
|
||
/* Continue scanning. */
|
||
prev_insn_was_prologue_insn = 0;
|
||
continue;
|
||
}
|
||
}
|
||
|
||
#if 0
|
||
/* I have problems with skipping over __main() that I need to address
|
||
* sometime. Previously, I used to use misc_function_vector which
|
||
* didn't work as well as I wanted to be. -MGO */
|
||
|
||
/* If the first thing after skipping a prolog is a branch to a function,
|
||
this might be a call to an initializer in main(), introduced by gcc2.
|
||
We'd like to skip over it as well. Fortunately, xlc does some extra
|
||
work before calling a function right after a prologue, thus we can
|
||
single out such gcc2 behaviour. */
|
||
|
||
|
||
if ((op & 0xfc000001) == 0x48000001)
|
||
{ /* bl foo, an initializer function? */
|
||
op = read_memory_integer (pc + 4, 4, byte_order);
|
||
|
||
if (op == 0x4def7b82)
|
||
{ /* cror 0xf, 0xf, 0xf (nop) */
|
||
|
||
/* Check and see if we are in main. If so, skip over this
|
||
initializer function as well. */
|
||
|
||
tmp = find_pc_misc_function (pc);
|
||
if (tmp >= 0
|
||
&& strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
|
||
return pc + 8;
|
||
}
|
||
}
|
||
#endif /* 0 */
|
||
|
||
if (pc == lim_pc && lr_reg >= 0)
|
||
fdata->lr_register = lr_reg;
|
||
|
||
fdata->offset = -fdata->offset;
|
||
return last_prologue_pc;
|
||
}
|
||
|
||
static CORE_ADDR
|
||
rs6000_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
|
||
{
|
||
struct rs6000_framedata frame;
|
||
CORE_ADDR limit_pc, func_addr, func_end_addr = 0;
|
||
|
||
/* See if we can determine the end of the prologue via the symbol table.
|
||
If so, then return either PC, or the PC after the prologue, whichever
|
||
is greater. */
|
||
if (find_pc_partial_function (pc, NULL, &func_addr, &func_end_addr))
|
||
{
|
||
CORE_ADDR post_prologue_pc
|
||
= skip_prologue_using_sal (gdbarch, func_addr);
|
||
if (post_prologue_pc != 0)
|
||
return max (pc, post_prologue_pc);
|
||
}
|
||
|
||
/* Can't determine prologue from the symbol table, need to examine
|
||
instructions. */
|
||
|
||
/* Find an upper limit on the function prologue using the debug
|
||
information. If the debug information could not be used to provide
|
||
that bound, then use an arbitrary large number as the upper bound. */
|
||
limit_pc = skip_prologue_using_sal (gdbarch, pc);
|
||
if (limit_pc == 0)
|
||
limit_pc = pc + 100; /* Magic. */
|
||
|
||
/* Do not allow limit_pc to be past the function end, if we know
|
||
where that end is... */
|
||
if (func_end_addr && limit_pc > func_end_addr)
|
||
limit_pc = func_end_addr;
|
||
|
||
pc = skip_prologue (gdbarch, pc, limit_pc, &frame);
|
||
return pc;
|
||
}
|
||
|
||
/* When compiling for EABI, some versions of GCC emit a call to __eabi
|
||
in the prologue of main().
|
||
|
||
The function below examines the code pointed at by PC and checks to
|
||
see if it corresponds to a call to __eabi. If so, it returns the
|
||
address of the instruction following that call. Otherwise, it simply
|
||
returns PC. */
|
||
|
||
static CORE_ADDR
|
||
rs6000_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
|
||
{
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
gdb_byte buf[4];
|
||
unsigned long op;
|
||
|
||
if (target_read_memory (pc, buf, 4))
|
||
return pc;
|
||
op = extract_unsigned_integer (buf, 4, byte_order);
|
||
|
||
if ((op & BL_MASK) == BL_INSTRUCTION)
|
||
{
|
||
CORE_ADDR displ = op & BL_DISPLACEMENT_MASK;
|
||
CORE_ADDR call_dest = pc + 4 + displ;
|
||
struct minimal_symbol *s = lookup_minimal_symbol_by_pc (call_dest);
|
||
|
||
/* We check for ___eabi (three leading underscores) in addition
|
||
to __eabi in case the GCC option "-fleading-underscore" was
|
||
used to compile the program. */
|
||
if (s != NULL
|
||
&& SYMBOL_LINKAGE_NAME (s) != NULL
|
||
&& (strcmp (SYMBOL_LINKAGE_NAME (s), "__eabi") == 0
|
||
|| strcmp (SYMBOL_LINKAGE_NAME (s), "___eabi") == 0))
|
||
pc += 4;
|
||
}
|
||
return pc;
|
||
}
|
||
|
||
/* All the ABI's require 16 byte alignment. */
|
||
static CORE_ADDR
|
||
rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
|
||
{
|
||
return (addr & -16);
|
||
}
|
||
|
||
/* Return whether handle_inferior_event() should proceed through code
|
||
starting at PC in function NAME when stepping.
|
||
|
||
The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
|
||
handle memory references that are too distant to fit in instructions
|
||
generated by the compiler. For example, if 'foo' in the following
|
||
instruction:
|
||
|
||
lwz r9,foo(r2)
|
||
|
||
is greater than 32767, the linker might replace the lwz with a branch to
|
||
somewhere in @FIX1 that does the load in 2 instructions and then branches
|
||
back to where execution should continue.
|
||
|
||
GDB should silently step over @FIX code, just like AIX dbx does.
|
||
Unfortunately, the linker uses the "b" instruction for the
|
||
branches, meaning that the link register doesn't get set.
|
||
Therefore, GDB's usual step_over_function () mechanism won't work.
|
||
|
||
Instead, use the gdbarch_skip_trampoline_code and
|
||
gdbarch_skip_trampoline_code hooks in handle_inferior_event() to skip past
|
||
@FIX code. */
|
||
|
||
static int
|
||
rs6000_in_solib_return_trampoline (struct gdbarch *gdbarch,
|
||
CORE_ADDR pc, char *name)
|
||
{
|
||
return name && !strncmp (name, "@FIX", 4);
|
||
}
|
||
|
||
/* Skip code that the user doesn't want to see when stepping:
|
||
|
||
1. Indirect function calls use a piece of trampoline code to do context
|
||
switching, i.e. to set the new TOC table. Skip such code if we are on
|
||
its first instruction (as when we have single-stepped to here).
|
||
|
||
2. Skip shared library trampoline code (which is different from
|
||
indirect function call trampolines).
|
||
|
||
3. Skip bigtoc fixup code.
|
||
|
||
Result is desired PC to step until, or NULL if we are not in
|
||
code that should be skipped. */
|
||
|
||
static CORE_ADDR
|
||
rs6000_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
|
||
{
|
||
struct gdbarch *gdbarch = get_frame_arch (frame);
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
unsigned int ii, op;
|
||
int rel;
|
||
CORE_ADDR solib_target_pc;
|
||
struct minimal_symbol *msymbol;
|
||
|
||
static unsigned trampoline_code[] =
|
||
{
|
||
0x800b0000, /* l r0,0x0(r11) */
|
||
0x90410014, /* st r2,0x14(r1) */
|
||
0x7c0903a6, /* mtctr r0 */
|
||
0x804b0004, /* l r2,0x4(r11) */
|
||
0x816b0008, /* l r11,0x8(r11) */
|
||
0x4e800420, /* bctr */
|
||
0x4e800020, /* br */
|
||
0
|
||
};
|
||
|
||
/* Check for bigtoc fixup code. */
|
||
msymbol = lookup_minimal_symbol_by_pc (pc);
|
||
if (msymbol
|
||
&& rs6000_in_solib_return_trampoline (gdbarch, pc,
|
||
SYMBOL_LINKAGE_NAME (msymbol)))
|
||
{
|
||
/* Double-check that the third instruction from PC is relative "b". */
|
||
op = read_memory_integer (pc + 8, 4, byte_order);
|
||
if ((op & 0xfc000003) == 0x48000000)
|
||
{
|
||
/* Extract bits 6-29 as a signed 24-bit relative word address and
|
||
add it to the containing PC. */
|
||
rel = ((int)(op << 6) >> 6);
|
||
return pc + 8 + rel;
|
||
}
|
||
}
|
||
|
||
/* If pc is in a shared library trampoline, return its target. */
|
||
solib_target_pc = find_solib_trampoline_target (frame, pc);
|
||
if (solib_target_pc)
|
||
return solib_target_pc;
|
||
|
||
for (ii = 0; trampoline_code[ii]; ++ii)
|
||
{
|
||
op = read_memory_integer (pc + (ii * 4), 4, byte_order);
|
||
if (op != trampoline_code[ii])
|
||
return 0;
|
||
}
|
||
ii = get_frame_register_unsigned (frame, 11); /* r11 holds destination
|
||
addr. */
|
||
pc = read_memory_unsigned_integer (ii, tdep->wordsize, byte_order);
|
||
return pc;
|
||
}
|
||
|
||
/* ISA-specific vector types. */
|
||
|
||
static struct type *
|
||
rs6000_builtin_type_vec64 (struct gdbarch *gdbarch)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
|
||
if (!tdep->ppc_builtin_type_vec64)
|
||
{
|
||
const struct builtin_type *bt = builtin_type (gdbarch);
|
||
|
||
/* The type we're building is this: */
|
||
#if 0
|
||
union __gdb_builtin_type_vec64
|
||
{
|
||
int64_t uint64;
|
||
float v2_float[2];
|
||
int32_t v2_int32[2];
|
||
int16_t v4_int16[4];
|
||
int8_t v8_int8[8];
|
||
};
|
||
#endif
|
||
|
||
struct type *t;
|
||
|
||
t = arch_composite_type (gdbarch,
|
||
"__ppc_builtin_type_vec64", TYPE_CODE_UNION);
|
||
append_composite_type_field (t, "uint64", bt->builtin_int64);
|
||
append_composite_type_field (t, "v2_float",
|
||
init_vector_type (bt->builtin_float, 2));
|
||
append_composite_type_field (t, "v2_int32",
|
||
init_vector_type (bt->builtin_int32, 2));
|
||
append_composite_type_field (t, "v4_int16",
|
||
init_vector_type (bt->builtin_int16, 4));
|
||
append_composite_type_field (t, "v8_int8",
|
||
init_vector_type (bt->builtin_int8, 8));
|
||
|
||
TYPE_VECTOR (t) = 1;
|
||
TYPE_NAME (t) = "ppc_builtin_type_vec64";
|
||
tdep->ppc_builtin_type_vec64 = t;
|
||
}
|
||
|
||
return tdep->ppc_builtin_type_vec64;
|
||
}
|
||
|
||
/* Vector 128 type. */
|
||
|
||
static struct type *
|
||
rs6000_builtin_type_vec128 (struct gdbarch *gdbarch)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
|
||
if (!tdep->ppc_builtin_type_vec128)
|
||
{
|
||
const struct builtin_type *bt = builtin_type (gdbarch);
|
||
|
||
/* The type we're building is this
|
||
|
||
type = union __ppc_builtin_type_vec128 {
|
||
uint128_t uint128;
|
||
double v2_double[2];
|
||
float v4_float[4];
|
||
int32_t v4_int32[4];
|
||
int16_t v8_int16[8];
|
||
int8_t v16_int8[16];
|
||
}
|
||
*/
|
||
|
||
struct type *t;
|
||
|
||
t = arch_composite_type (gdbarch,
|
||
"__ppc_builtin_type_vec128", TYPE_CODE_UNION);
|
||
append_composite_type_field (t, "uint128", bt->builtin_uint128);
|
||
append_composite_type_field (t, "v2_double",
|
||
init_vector_type (bt->builtin_double, 2));
|
||
append_composite_type_field (t, "v4_float",
|
||
init_vector_type (bt->builtin_float, 4));
|
||
append_composite_type_field (t, "v4_int32",
|
||
init_vector_type (bt->builtin_int32, 4));
|
||
append_composite_type_field (t, "v8_int16",
|
||
init_vector_type (bt->builtin_int16, 8));
|
||
append_composite_type_field (t, "v16_int8",
|
||
init_vector_type (bt->builtin_int8, 16));
|
||
|
||
TYPE_VECTOR (t) = 1;
|
||
TYPE_NAME (t) = "ppc_builtin_type_vec128";
|
||
tdep->ppc_builtin_type_vec128 = t;
|
||
}
|
||
|
||
return tdep->ppc_builtin_type_vec128;
|
||
}
|
||
|
||
/* Return the name of register number REGNO, or the empty string if it
|
||
is an anonymous register. */
|
||
|
||
static const char *
|
||
rs6000_register_name (struct gdbarch *gdbarch, int regno)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
|
||
/* The upper half "registers" have names in the XML description,
|
||
but we present only the low GPRs and the full 64-bit registers
|
||
to the user. */
|
||
if (tdep->ppc_ev0_upper_regnum >= 0
|
||
&& tdep->ppc_ev0_upper_regnum <= regno
|
||
&& regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
|
||
return "";
|
||
|
||
/* Hide the upper halves of the vs0~vs31 registers. */
|
||
if (tdep->ppc_vsr0_regnum >= 0
|
||
&& tdep->ppc_vsr0_upper_regnum <= regno
|
||
&& regno < tdep->ppc_vsr0_upper_regnum + ppc_num_gprs)
|
||
return "";
|
||
|
||
/* Check if the SPE pseudo registers are available. */
|
||
if (IS_SPE_PSEUDOREG (tdep, regno))
|
||
{
|
||
static const char *const spe_regnames[] = {
|
||
"ev0", "ev1", "ev2", "ev3", "ev4", "ev5", "ev6", "ev7",
|
||
"ev8", "ev9", "ev10", "ev11", "ev12", "ev13", "ev14", "ev15",
|
||
"ev16", "ev17", "ev18", "ev19", "ev20", "ev21", "ev22", "ev23",
|
||
"ev24", "ev25", "ev26", "ev27", "ev28", "ev29", "ev30", "ev31",
|
||
};
|
||
return spe_regnames[regno - tdep->ppc_ev0_regnum];
|
||
}
|
||
|
||
/* Check if the decimal128 pseudo-registers are available. */
|
||
if (IS_DFP_PSEUDOREG (tdep, regno))
|
||
{
|
||
static const char *const dfp128_regnames[] = {
|
||
"dl0", "dl1", "dl2", "dl3",
|
||
"dl4", "dl5", "dl6", "dl7",
|
||
"dl8", "dl9", "dl10", "dl11",
|
||
"dl12", "dl13", "dl14", "dl15"
|
||
};
|
||
return dfp128_regnames[regno - tdep->ppc_dl0_regnum];
|
||
}
|
||
|
||
/* Check if this is a VSX pseudo-register. */
|
||
if (IS_VSX_PSEUDOREG (tdep, regno))
|
||
{
|
||
static const char *const vsx_regnames[] = {
|
||
"vs0", "vs1", "vs2", "vs3", "vs4", "vs5", "vs6", "vs7",
|
||
"vs8", "vs9", "vs10", "vs11", "vs12", "vs13", "vs14",
|
||
"vs15", "vs16", "vs17", "vs18", "vs19", "vs20", "vs21",
|
||
"vs22", "vs23", "vs24", "vs25", "vs26", "vs27", "vs28",
|
||
"vs29", "vs30", "vs31", "vs32", "vs33", "vs34", "vs35",
|
||
"vs36", "vs37", "vs38", "vs39", "vs40", "vs41", "vs42",
|
||
"vs43", "vs44", "vs45", "vs46", "vs47", "vs48", "vs49",
|
||
"vs50", "vs51", "vs52", "vs53", "vs54", "vs55", "vs56",
|
||
"vs57", "vs58", "vs59", "vs60", "vs61", "vs62", "vs63"
|
||
};
|
||
return vsx_regnames[regno - tdep->ppc_vsr0_regnum];
|
||
}
|
||
|
||
/* Check if the this is a Extended FP pseudo-register. */
|
||
if (IS_EFP_PSEUDOREG (tdep, regno))
|
||
{
|
||
static const char *const efpr_regnames[] = {
|
||
"f32", "f33", "f34", "f35", "f36", "f37", "f38",
|
||
"f39", "f40", "f41", "f42", "f43", "f44", "f45",
|
||
"f46", "f47", "f48", "f49", "f50", "f51",
|
||
"f52", "f53", "f54", "f55", "f56", "f57",
|
||
"f58", "f59", "f60", "f61", "f62", "f63"
|
||
};
|
||
return efpr_regnames[regno - tdep->ppc_efpr0_regnum];
|
||
}
|
||
|
||
return tdesc_register_name (gdbarch, regno);
|
||
}
|
||
|
||
/* Return the GDB type object for the "standard" data type of data in
|
||
register N. */
|
||
|
||
static struct type *
|
||
rs6000_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
|
||
/* These are the only pseudo-registers we support. */
|
||
gdb_assert (IS_SPE_PSEUDOREG (tdep, regnum)
|
||
|| IS_DFP_PSEUDOREG (tdep, regnum)
|
||
|| IS_VSX_PSEUDOREG (tdep, regnum)
|
||
|| IS_EFP_PSEUDOREG (tdep, regnum));
|
||
|
||
/* These are the e500 pseudo-registers. */
|
||
if (IS_SPE_PSEUDOREG (tdep, regnum))
|
||
return rs6000_builtin_type_vec64 (gdbarch);
|
||
else if (IS_DFP_PSEUDOREG (tdep, regnum))
|
||
/* PPC decimal128 pseudo-registers. */
|
||
return builtin_type (gdbarch)->builtin_declong;
|
||
else if (IS_VSX_PSEUDOREG (tdep, regnum))
|
||
/* POWER7 VSX pseudo-registers. */
|
||
return rs6000_builtin_type_vec128 (gdbarch);
|
||
else
|
||
/* POWER7 Extended FP pseudo-registers. */
|
||
return builtin_type (gdbarch)->builtin_double;
|
||
}
|
||
|
||
/* Is REGNUM a member of REGGROUP? */
|
||
static int
|
||
rs6000_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
|
||
struct reggroup *group)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
|
||
/* These are the only pseudo-registers we support. */
|
||
gdb_assert (IS_SPE_PSEUDOREG (tdep, regnum)
|
||
|| IS_DFP_PSEUDOREG (tdep, regnum)
|
||
|| IS_VSX_PSEUDOREG (tdep, regnum)
|
||
|| IS_EFP_PSEUDOREG (tdep, regnum));
|
||
|
||
/* These are the e500 pseudo-registers or the POWER7 VSX registers. */
|
||
if (IS_SPE_PSEUDOREG (tdep, regnum) || IS_VSX_PSEUDOREG (tdep, regnum))
|
||
return group == all_reggroup || group == vector_reggroup;
|
||
else
|
||
/* PPC decimal128 or Extended FP pseudo-registers. */
|
||
return group == all_reggroup || group == float_reggroup;
|
||
}
|
||
|
||
/* The register format for RS/6000 floating point registers is always
|
||
double, we need a conversion if the memory format is float. */
|
||
|
||
static int
|
||
rs6000_convert_register_p (struct gdbarch *gdbarch, int regnum,
|
||
struct type *type)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
|
||
return (tdep->ppc_fp0_regnum >= 0
|
||
&& regnum >= tdep->ppc_fp0_regnum
|
||
&& regnum < tdep->ppc_fp0_regnum + ppc_num_fprs
|
||
&& TYPE_CODE (type) == TYPE_CODE_FLT
|
||
&& TYPE_LENGTH (type)
|
||
!= TYPE_LENGTH (builtin_type (gdbarch)->builtin_double));
|
||
}
|
||
|
||
static int
|
||
rs6000_register_to_value (struct frame_info *frame,
|
||
int regnum,
|
||
struct type *type,
|
||
gdb_byte *to,
|
||
int *optimizedp, int *unavailablep)
|
||
{
|
||
struct gdbarch *gdbarch = get_frame_arch (frame);
|
||
gdb_byte from[MAX_REGISTER_SIZE];
|
||
|
||
gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
|
||
|
||
if (!get_frame_register_bytes (frame, regnum, 0,
|
||
register_size (gdbarch, regnum),
|
||
from, optimizedp, unavailablep))
|
||
return 0;
|
||
|
||
convert_typed_floating (from, builtin_type (gdbarch)->builtin_double,
|
||
to, type);
|
||
*optimizedp = *unavailablep = 0;
|
||
return 1;
|
||
}
|
||
|
||
static void
|
||
rs6000_value_to_register (struct frame_info *frame,
|
||
int regnum,
|
||
struct type *type,
|
||
const gdb_byte *from)
|
||
{
|
||
struct gdbarch *gdbarch = get_frame_arch (frame);
|
||
gdb_byte to[MAX_REGISTER_SIZE];
|
||
|
||
gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
|
||
|
||
convert_typed_floating (from, type,
|
||
to, builtin_type (gdbarch)->builtin_double);
|
||
put_frame_register (frame, regnum, to);
|
||
}
|
||
|
||
/* The type of a function that moves the value of REG between CACHE
|
||
or BUF --- in either direction. */
|
||
typedef enum register_status (*move_ev_register_func) (struct regcache *,
|
||
int, void *);
|
||
|
||
/* Move SPE vector register values between a 64-bit buffer and the two
|
||
32-bit raw register halves in a regcache. This function handles
|
||
both splitting a 64-bit value into two 32-bit halves, and joining
|
||
two halves into a whole 64-bit value, depending on the function
|
||
passed as the MOVE argument.
|
||
|
||
EV_REG must be the number of an SPE evN vector register --- a
|
||
pseudoregister. REGCACHE must be a regcache, and BUFFER must be a
|
||
64-bit buffer.
|
||
|
||
Call MOVE once for each 32-bit half of that register, passing
|
||
REGCACHE, the number of the raw register corresponding to that
|
||
half, and the address of the appropriate half of BUFFER.
|
||
|
||
For example, passing 'regcache_raw_read' as the MOVE function will
|
||
fill BUFFER with the full 64-bit contents of EV_REG. Or, passing
|
||
'regcache_raw_supply' will supply the contents of BUFFER to the
|
||
appropriate pair of raw registers in REGCACHE.
|
||
|
||
You may need to cast away some 'const' qualifiers when passing
|
||
MOVE, since this function can't tell at compile-time which of
|
||
REGCACHE or BUFFER is acting as the source of the data. If C had
|
||
co-variant type qualifiers, ... */
|
||
|
||
static enum register_status
|
||
e500_move_ev_register (move_ev_register_func move,
|
||
struct regcache *regcache, int ev_reg, void *buffer)
|
||
{
|
||
struct gdbarch *arch = get_regcache_arch (regcache);
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
|
||
int reg_index;
|
||
gdb_byte *byte_buffer = buffer;
|
||
enum register_status status;
|
||
|
||
gdb_assert (IS_SPE_PSEUDOREG (tdep, ev_reg));
|
||
|
||
reg_index = ev_reg - tdep->ppc_ev0_regnum;
|
||
|
||
if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
|
||
{
|
||
status = move (regcache, tdep->ppc_ev0_upper_regnum + reg_index,
|
||
byte_buffer);
|
||
if (status == REG_VALID)
|
||
status = move (regcache, tdep->ppc_gp0_regnum + reg_index,
|
||
byte_buffer + 4);
|
||
}
|
||
else
|
||
{
|
||
status = move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
|
||
if (status == REG_VALID)
|
||
status = move (regcache, tdep->ppc_ev0_upper_regnum + reg_index,
|
||
byte_buffer + 4);
|
||
}
|
||
|
||
return status;
|
||
}
|
||
|
||
static enum register_status
|
||
do_regcache_raw_read (struct regcache *regcache, int regnum, void *buffer)
|
||
{
|
||
return regcache_raw_read (regcache, regnum, buffer);
|
||
}
|
||
|
||
static enum register_status
|
||
do_regcache_raw_write (struct regcache *regcache, int regnum, void *buffer)
|
||
{
|
||
regcache_raw_write (regcache, regnum, buffer);
|
||
|
||
return REG_VALID;
|
||
}
|
||
|
||
static enum register_status
|
||
e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
|
||
int reg_nr, gdb_byte *buffer)
|
||
{
|
||
return e500_move_ev_register (do_regcache_raw_read, regcache, reg_nr, buffer);
|
||
}
|
||
|
||
static void
|
||
e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
|
||
int reg_nr, const gdb_byte *buffer)
|
||
{
|
||
e500_move_ev_register (do_regcache_raw_write, regcache,
|
||
reg_nr, (void *) buffer);
|
||
}
|
||
|
||
/* Read method for DFP pseudo-registers. */
|
||
static enum register_status
|
||
dfp_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
|
||
int reg_nr, gdb_byte *buffer)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
int reg_index = reg_nr - tdep->ppc_dl0_regnum;
|
||
enum register_status status;
|
||
|
||
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
|
||
{
|
||
/* Read two FP registers to form a whole dl register. */
|
||
status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
|
||
2 * reg_index, buffer);
|
||
if (status == REG_VALID)
|
||
status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
|
||
2 * reg_index + 1, buffer + 8);
|
||
}
|
||
else
|
||
{
|
||
status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
|
||
2 * reg_index + 1, buffer + 8);
|
||
if (status == REG_VALID)
|
||
status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
|
||
2 * reg_index, buffer);
|
||
}
|
||
|
||
return status;
|
||
}
|
||
|
||
/* Write method for DFP pseudo-registers. */
|
||
static void
|
||
dfp_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
|
||
int reg_nr, const gdb_byte *buffer)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
int reg_index = reg_nr - tdep->ppc_dl0_regnum;
|
||
|
||
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
|
||
{
|
||
/* Write each half of the dl register into a separate
|
||
FP register. */
|
||
regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
|
||
2 * reg_index, buffer);
|
||
regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
|
||
2 * reg_index + 1, buffer + 8);
|
||
}
|
||
else
|
||
{
|
||
regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
|
||
2 * reg_index + 1, buffer + 8);
|
||
regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
|
||
2 * reg_index, buffer);
|
||
}
|
||
}
|
||
|
||
/* Read method for POWER7 VSX pseudo-registers. */
|
||
static enum register_status
|
||
vsx_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
|
||
int reg_nr, gdb_byte *buffer)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
int reg_index = reg_nr - tdep->ppc_vsr0_regnum;
|
||
enum register_status status;
|
||
|
||
/* Read the portion that overlaps the VMX registers. */
|
||
if (reg_index > 31)
|
||
status = regcache_raw_read (regcache, tdep->ppc_vr0_regnum +
|
||
reg_index - 32, buffer);
|
||
else
|
||
/* Read the portion that overlaps the FPR registers. */
|
||
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
|
||
{
|
||
status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
|
||
reg_index, buffer);
|
||
if (status == REG_VALID)
|
||
status = regcache_raw_read (regcache, tdep->ppc_vsr0_upper_regnum +
|
||
reg_index, buffer + 8);
|
||
}
|
||
else
|
||
{
|
||
status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
|
||
reg_index, buffer + 8);
|
||
if (status == REG_VALID)
|
||
status = regcache_raw_read (regcache, tdep->ppc_vsr0_upper_regnum +
|
||
reg_index, buffer);
|
||
}
|
||
|
||
return status;
|
||
}
|
||
|
||
/* Write method for POWER7 VSX pseudo-registers. */
|
||
static void
|
||
vsx_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
|
||
int reg_nr, const gdb_byte *buffer)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
int reg_index = reg_nr - tdep->ppc_vsr0_regnum;
|
||
|
||
/* Write the portion that overlaps the VMX registers. */
|
||
if (reg_index > 31)
|
||
regcache_raw_write (regcache, tdep->ppc_vr0_regnum +
|
||
reg_index - 32, buffer);
|
||
else
|
||
/* Write the portion that overlaps the FPR registers. */
|
||
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
|
||
{
|
||
regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
|
||
reg_index, buffer);
|
||
regcache_raw_write (regcache, tdep->ppc_vsr0_upper_regnum +
|
||
reg_index, buffer + 8);
|
||
}
|
||
else
|
||
{
|
||
regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
|
||
reg_index, buffer + 8);
|
||
regcache_raw_write (regcache, tdep->ppc_vsr0_upper_regnum +
|
||
reg_index, buffer);
|
||
}
|
||
}
|
||
|
||
/* Read method for POWER7 Extended FP pseudo-registers. */
|
||
static enum register_status
|
||
efpr_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
|
||
int reg_nr, gdb_byte *buffer)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
int reg_index = reg_nr - tdep->ppc_efpr0_regnum;
|
||
|
||
/* Read the portion that overlaps the VMX register. */
|
||
return regcache_raw_read_part (regcache, tdep->ppc_vr0_regnum + reg_index, 0,
|
||
register_size (gdbarch, reg_nr), buffer);
|
||
}
|
||
|
||
/* Write method for POWER7 Extended FP pseudo-registers. */
|
||
static void
|
||
efpr_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
|
||
int reg_nr, const gdb_byte *buffer)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
int reg_index = reg_nr - tdep->ppc_efpr0_regnum;
|
||
|
||
/* Write the portion that overlaps the VMX register. */
|
||
regcache_raw_write_part (regcache, tdep->ppc_vr0_regnum + reg_index, 0,
|
||
register_size (gdbarch, reg_nr), buffer);
|
||
}
|
||
|
||
static enum register_status
|
||
rs6000_pseudo_register_read (struct gdbarch *gdbarch,
|
||
struct regcache *regcache,
|
||
int reg_nr, gdb_byte *buffer)
|
||
{
|
||
struct gdbarch *regcache_arch = get_regcache_arch (regcache);
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
|
||
gdb_assert (regcache_arch == gdbarch);
|
||
|
||
if (IS_SPE_PSEUDOREG (tdep, reg_nr))
|
||
return e500_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
|
||
else if (IS_DFP_PSEUDOREG (tdep, reg_nr))
|
||
return dfp_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
|
||
else if (IS_VSX_PSEUDOREG (tdep, reg_nr))
|
||
return vsx_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
|
||
else if (IS_EFP_PSEUDOREG (tdep, reg_nr))
|
||
return efpr_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
|
||
else
|
||
internal_error (__FILE__, __LINE__,
|
||
_("rs6000_pseudo_register_read: "
|
||
"called on unexpected register '%s' (%d)"),
|
||
gdbarch_register_name (gdbarch, reg_nr), reg_nr);
|
||
}
|
||
|
||
static void
|
||
rs6000_pseudo_register_write (struct gdbarch *gdbarch,
|
||
struct regcache *regcache,
|
||
int reg_nr, const gdb_byte *buffer)
|
||
{
|
||
struct gdbarch *regcache_arch = get_regcache_arch (regcache);
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
|
||
gdb_assert (regcache_arch == gdbarch);
|
||
|
||
if (IS_SPE_PSEUDOREG (tdep, reg_nr))
|
||
e500_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
|
||
else if (IS_DFP_PSEUDOREG (tdep, reg_nr))
|
||
dfp_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
|
||
else if (IS_VSX_PSEUDOREG (tdep, reg_nr))
|
||
vsx_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
|
||
else if (IS_EFP_PSEUDOREG (tdep, reg_nr))
|
||
efpr_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
|
||
else
|
||
internal_error (__FILE__, __LINE__,
|
||
_("rs6000_pseudo_register_write: "
|
||
"called on unexpected register '%s' (%d)"),
|
||
gdbarch_register_name (gdbarch, reg_nr), reg_nr);
|
||
}
|
||
|
||
/* Convert a DBX STABS register number to a GDB register number. */
|
||
static int
|
||
rs6000_stab_reg_to_regnum (struct gdbarch *gdbarch, int num)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
|
||
if (0 <= num && num <= 31)
|
||
return tdep->ppc_gp0_regnum + num;
|
||
else if (32 <= num && num <= 63)
|
||
/* FIXME: jimb/2004-05-05: What should we do when the debug info
|
||
specifies registers the architecture doesn't have? Our
|
||
callers don't check the value we return. */
|
||
return tdep->ppc_fp0_regnum + (num - 32);
|
||
else if (77 <= num && num <= 108)
|
||
return tdep->ppc_vr0_regnum + (num - 77);
|
||
else if (1200 <= num && num < 1200 + 32)
|
||
return tdep->ppc_ev0_regnum + (num - 1200);
|
||
else
|
||
switch (num)
|
||
{
|
||
case 64:
|
||
return tdep->ppc_mq_regnum;
|
||
case 65:
|
||
return tdep->ppc_lr_regnum;
|
||
case 66:
|
||
return tdep->ppc_ctr_regnum;
|
||
case 76:
|
||
return tdep->ppc_xer_regnum;
|
||
case 109:
|
||
return tdep->ppc_vrsave_regnum;
|
||
case 110:
|
||
return tdep->ppc_vrsave_regnum - 1; /* vscr */
|
||
case 111:
|
||
return tdep->ppc_acc_regnum;
|
||
case 112:
|
||
return tdep->ppc_spefscr_regnum;
|
||
default:
|
||
return num;
|
||
}
|
||
}
|
||
|
||
|
||
/* Convert a Dwarf 2 register number to a GDB register number. */
|
||
static int
|
||
rs6000_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int num)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
|
||
if (0 <= num && num <= 31)
|
||
return tdep->ppc_gp0_regnum + num;
|
||
else if (32 <= num && num <= 63)
|
||
/* FIXME: jimb/2004-05-05: What should we do when the debug info
|
||
specifies registers the architecture doesn't have? Our
|
||
callers don't check the value we return. */
|
||
return tdep->ppc_fp0_regnum + (num - 32);
|
||
else if (1124 <= num && num < 1124 + 32)
|
||
return tdep->ppc_vr0_regnum + (num - 1124);
|
||
else if (1200 <= num && num < 1200 + 32)
|
||
return tdep->ppc_ev0_regnum + (num - 1200);
|
||
else
|
||
switch (num)
|
||
{
|
||
case 64:
|
||
return tdep->ppc_cr_regnum;
|
||
case 67:
|
||
return tdep->ppc_vrsave_regnum - 1; /* vscr */
|
||
case 99:
|
||
return tdep->ppc_acc_regnum;
|
||
case 100:
|
||
return tdep->ppc_mq_regnum;
|
||
case 101:
|
||
return tdep->ppc_xer_regnum;
|
||
case 108:
|
||
return tdep->ppc_lr_regnum;
|
||
case 109:
|
||
return tdep->ppc_ctr_regnum;
|
||
case 356:
|
||
return tdep->ppc_vrsave_regnum;
|
||
case 612:
|
||
return tdep->ppc_spefscr_regnum;
|
||
default:
|
||
return num;
|
||
}
|
||
}
|
||
|
||
/* Translate a .eh_frame register to DWARF register, or adjust a
|
||
.debug_frame register. */
|
||
|
||
static int
|
||
rs6000_adjust_frame_regnum (struct gdbarch *gdbarch, int num, int eh_frame_p)
|
||
{
|
||
/* GCC releases before 3.4 use GCC internal register numbering in
|
||
.debug_frame (and .debug_info, et cetera). The numbering is
|
||
different from the standard SysV numbering for everything except
|
||
for GPRs and FPRs. We can not detect this problem in most cases
|
||
- to get accurate debug info for variables living in lr, ctr, v0,
|
||
et cetera, use a newer version of GCC. But we must detect
|
||
one important case - lr is in column 65 in .debug_frame output,
|
||
instead of 108.
|
||
|
||
GCC 3.4, and the "hammer" branch, have a related problem. They
|
||
record lr register saves in .debug_frame as 108, but still record
|
||
the return column as 65. We fix that up too.
|
||
|
||
We can do this because 65 is assigned to fpsr, and GCC never
|
||
generates debug info referring to it. To add support for
|
||
handwritten debug info that restores fpsr, we would need to add a
|
||
producer version check to this. */
|
||
if (!eh_frame_p)
|
||
{
|
||
if (num == 65)
|
||
return 108;
|
||
else
|
||
return num;
|
||
}
|
||
|
||
/* .eh_frame is GCC specific. For binary compatibility, it uses GCC
|
||
internal register numbering; translate that to the standard DWARF2
|
||
register numbering. */
|
||
if (0 <= num && num <= 63) /* r0-r31,fp0-fp31 */
|
||
return num;
|
||
else if (68 <= num && num <= 75) /* cr0-cr8 */
|
||
return num - 68 + 86;
|
||
else if (77 <= num && num <= 108) /* vr0-vr31 */
|
||
return num - 77 + 1124;
|
||
else
|
||
switch (num)
|
||
{
|
||
case 64: /* mq */
|
||
return 100;
|
||
case 65: /* lr */
|
||
return 108;
|
||
case 66: /* ctr */
|
||
return 109;
|
||
case 76: /* xer */
|
||
return 101;
|
||
case 109: /* vrsave */
|
||
return 356;
|
||
case 110: /* vscr */
|
||
return 67;
|
||
case 111: /* spe_acc */
|
||
return 99;
|
||
case 112: /* spefscr */
|
||
return 612;
|
||
default:
|
||
return num;
|
||
}
|
||
}
|
||
|
||
|
||
/* Handling the various POWER/PowerPC variants. */
|
||
|
||
/* Information about a particular processor variant. */
|
||
|
||
struct variant
|
||
{
|
||
/* Name of this variant. */
|
||
char *name;
|
||
|
||
/* English description of the variant. */
|
||
char *description;
|
||
|
||
/* bfd_arch_info.arch corresponding to variant. */
|
||
enum bfd_architecture arch;
|
||
|
||
/* bfd_arch_info.mach corresponding to variant. */
|
||
unsigned long mach;
|
||
|
||
/* Target description for this variant. */
|
||
struct target_desc **tdesc;
|
||
};
|
||
|
||
static struct variant variants[] =
|
||
{
|
||
{"powerpc", "PowerPC user-level", bfd_arch_powerpc,
|
||
bfd_mach_ppc, &tdesc_powerpc_altivec32},
|
||
{"power", "POWER user-level", bfd_arch_rs6000,
|
||
bfd_mach_rs6k, &tdesc_rs6000},
|
||
{"403", "IBM PowerPC 403", bfd_arch_powerpc,
|
||
bfd_mach_ppc_403, &tdesc_powerpc_403},
|
||
{"405", "IBM PowerPC 405", bfd_arch_powerpc,
|
||
bfd_mach_ppc_405, &tdesc_powerpc_405},
|
||
{"601", "Motorola PowerPC 601", bfd_arch_powerpc,
|
||
bfd_mach_ppc_601, &tdesc_powerpc_601},
|
||
{"602", "Motorola PowerPC 602", bfd_arch_powerpc,
|
||
bfd_mach_ppc_602, &tdesc_powerpc_602},
|
||
{"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
|
||
bfd_mach_ppc_603, &tdesc_powerpc_603},
|
||
{"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
|
||
604, &tdesc_powerpc_604},
|
||
{"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
|
||
bfd_mach_ppc_403gc, &tdesc_powerpc_403gc},
|
||
{"505", "Motorola PowerPC 505", bfd_arch_powerpc,
|
||
bfd_mach_ppc_505, &tdesc_powerpc_505},
|
||
{"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
|
||
bfd_mach_ppc_860, &tdesc_powerpc_860},
|
||
{"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
|
||
bfd_mach_ppc_750, &tdesc_powerpc_750},
|
||
{"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
|
||
bfd_mach_ppc_7400, &tdesc_powerpc_7400},
|
||
{"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
|
||
bfd_mach_ppc_e500, &tdesc_powerpc_e500},
|
||
|
||
/* 64-bit */
|
||
{"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
|
||
bfd_mach_ppc64, &tdesc_powerpc_altivec64},
|
||
{"620", "Motorola PowerPC 620", bfd_arch_powerpc,
|
||
bfd_mach_ppc_620, &tdesc_powerpc_64},
|
||
{"630", "Motorola PowerPC 630", bfd_arch_powerpc,
|
||
bfd_mach_ppc_630, &tdesc_powerpc_64},
|
||
{"a35", "PowerPC A35", bfd_arch_powerpc,
|
||
bfd_mach_ppc_a35, &tdesc_powerpc_64},
|
||
{"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
|
||
bfd_mach_ppc_rs64ii, &tdesc_powerpc_64},
|
||
{"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
|
||
bfd_mach_ppc_rs64iii, &tdesc_powerpc_64},
|
||
|
||
/* FIXME: I haven't checked the register sets of the following. */
|
||
{"rs1", "IBM POWER RS1", bfd_arch_rs6000,
|
||
bfd_mach_rs6k_rs1, &tdesc_rs6000},
|
||
{"rsc", "IBM POWER RSC", bfd_arch_rs6000,
|
||
bfd_mach_rs6k_rsc, &tdesc_rs6000},
|
||
{"rs2", "IBM POWER RS2", bfd_arch_rs6000,
|
||
bfd_mach_rs6k_rs2, &tdesc_rs6000},
|
||
|
||
{0, 0, 0, 0, 0}
|
||
};
|
||
|
||
/* Return the variant corresponding to architecture ARCH and machine number
|
||
MACH. If no such variant exists, return null. */
|
||
|
||
static const struct variant *
|
||
find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
|
||
{
|
||
const struct variant *v;
|
||
|
||
for (v = variants; v->name; v++)
|
||
if (arch == v->arch && mach == v->mach)
|
||
return v;
|
||
|
||
return NULL;
|
||
}
|
||
|
||
static int
|
||
gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
|
||
{
|
||
if (!info->disassembler_options)
|
||
{
|
||
/* When debugging E500 binaries and disassembling code containing
|
||
E500-specific (SPE) instructions, one sometimes sees AltiVec
|
||
instructions instead. The opcode spaces for SPE instructions
|
||
and AltiVec instructions overlap, and specifiying the "any" cpu
|
||
looks for AltiVec instructions first. If we know we're
|
||
debugging an E500 binary, however, we can specify the "e500x2"
|
||
cpu and get much more sane disassembly output. */
|
||
if (info->mach == bfd_mach_ppc_e500)
|
||
info->disassembler_options = "e500x2";
|
||
else
|
||
info->disassembler_options = "any";
|
||
}
|
||
|
||
if (info->endian == BFD_ENDIAN_BIG)
|
||
return print_insn_big_powerpc (memaddr, info);
|
||
else
|
||
return print_insn_little_powerpc (memaddr, info);
|
||
}
|
||
|
||
static CORE_ADDR
|
||
rs6000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
|
||
{
|
||
return frame_unwind_register_unsigned (next_frame,
|
||
gdbarch_pc_regnum (gdbarch));
|
||
}
|
||
|
||
static struct frame_id
|
||
rs6000_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
|
||
{
|
||
return frame_id_build (get_frame_register_unsigned
|
||
(this_frame, gdbarch_sp_regnum (gdbarch)),
|
||
get_frame_pc (this_frame));
|
||
}
|
||
|
||
struct rs6000_frame_cache
|
||
{
|
||
CORE_ADDR base;
|
||
CORE_ADDR initial_sp;
|
||
struct trad_frame_saved_reg *saved_regs;
|
||
};
|
||
|
||
static struct rs6000_frame_cache *
|
||
rs6000_frame_cache (struct frame_info *this_frame, void **this_cache)
|
||
{
|
||
struct rs6000_frame_cache *cache;
|
||
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
struct rs6000_framedata fdata;
|
||
int wordsize = tdep->wordsize;
|
||
CORE_ADDR func, pc;
|
||
|
||
if ((*this_cache) != NULL)
|
||
return (*this_cache);
|
||
cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
|
||
(*this_cache) = cache;
|
||
cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
|
||
|
||
func = get_frame_func (this_frame);
|
||
pc = get_frame_pc (this_frame);
|
||
skip_prologue (gdbarch, func, pc, &fdata);
|
||
|
||
/* Figure out the parent's stack pointer. */
|
||
|
||
/* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
|
||
address of the current frame. Things might be easier if the
|
||
->frame pointed to the outer-most address of the frame. In
|
||
the mean time, the address of the prev frame is used as the
|
||
base address of this frame. */
|
||
cache->base = get_frame_register_unsigned
|
||
(this_frame, gdbarch_sp_regnum (gdbarch));
|
||
|
||
/* If the function appears to be frameless, check a couple of likely
|
||
indicators that we have simply failed to find the frame setup.
|
||
Two common cases of this are missing symbols (i.e.
|
||
get_frame_func returns the wrong address or 0), and assembly
|
||
stubs which have a fast exit path but set up a frame on the slow
|
||
path.
|
||
|
||
If the LR appears to return to this function, then presume that
|
||
we have an ABI compliant frame that we failed to find. */
|
||
if (fdata.frameless && fdata.lr_offset == 0)
|
||
{
|
||
CORE_ADDR saved_lr;
|
||
int make_frame = 0;
|
||
|
||
saved_lr = get_frame_register_unsigned (this_frame, tdep->ppc_lr_regnum);
|
||
if (func == 0 && saved_lr == pc)
|
||
make_frame = 1;
|
||
else if (func != 0)
|
||
{
|
||
CORE_ADDR saved_func = get_pc_function_start (saved_lr);
|
||
if (func == saved_func)
|
||
make_frame = 1;
|
||
}
|
||
|
||
if (make_frame)
|
||
{
|
||
fdata.frameless = 0;
|
||
fdata.lr_offset = tdep->lr_frame_offset;
|
||
}
|
||
}
|
||
|
||
if (!fdata.frameless)
|
||
/* Frameless really means stackless. */
|
||
cache->base
|
||
= read_memory_unsigned_integer (cache->base, wordsize, byte_order);
|
||
|
||
trad_frame_set_value (cache->saved_regs,
|
||
gdbarch_sp_regnum (gdbarch), cache->base);
|
||
|
||
/* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
|
||
All fpr's from saved_fpr to fp31 are saved. */
|
||
|
||
if (fdata.saved_fpr >= 0)
|
||
{
|
||
int i;
|
||
CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
|
||
|
||
/* If skip_prologue says floating-point registers were saved,
|
||
but the current architecture has no floating-point registers,
|
||
then that's strange. But we have no indices to even record
|
||
the addresses under, so we just ignore it. */
|
||
if (ppc_floating_point_unit_p (gdbarch))
|
||
for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
|
||
{
|
||
cache->saved_regs[tdep->ppc_fp0_regnum + i].addr = fpr_addr;
|
||
fpr_addr += 8;
|
||
}
|
||
}
|
||
|
||
/* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
|
||
All gpr's from saved_gpr to gpr31 are saved (except during the
|
||
prologue). */
|
||
|
||
if (fdata.saved_gpr >= 0)
|
||
{
|
||
int i;
|
||
CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
|
||
for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
|
||
{
|
||
if (fdata.gpr_mask & (1U << i))
|
||
cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr;
|
||
gpr_addr += wordsize;
|
||
}
|
||
}
|
||
|
||
/* if != -1, fdata.saved_vr is the smallest number of saved_vr.
|
||
All vr's from saved_vr to vr31 are saved. */
|
||
if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
|
||
{
|
||
if (fdata.saved_vr >= 0)
|
||
{
|
||
int i;
|
||
CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
|
||
for (i = fdata.saved_vr; i < 32; i++)
|
||
{
|
||
cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr;
|
||
vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* if != -1, fdata.saved_ev is the smallest number of saved_ev.
|
||
All vr's from saved_ev to ev31 are saved. ????? */
|
||
if (tdep->ppc_ev0_regnum != -1)
|
||
{
|
||
if (fdata.saved_ev >= 0)
|
||
{
|
||
int i;
|
||
CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
|
||
for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
|
||
{
|
||
cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr;
|
||
cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + 4;
|
||
ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* If != 0, fdata.cr_offset is the offset from the frame that
|
||
holds the CR. */
|
||
if (fdata.cr_offset != 0)
|
||
cache->saved_regs[tdep->ppc_cr_regnum].addr
|
||
= cache->base + fdata.cr_offset;
|
||
|
||
/* If != 0, fdata.lr_offset is the offset from the frame that
|
||
holds the LR. */
|
||
if (fdata.lr_offset != 0)
|
||
cache->saved_regs[tdep->ppc_lr_regnum].addr
|
||
= cache->base + fdata.lr_offset;
|
||
else if (fdata.lr_register != -1)
|
||
cache->saved_regs[tdep->ppc_lr_regnum].realreg = fdata.lr_register;
|
||
/* The PC is found in the link register. */
|
||
cache->saved_regs[gdbarch_pc_regnum (gdbarch)] =
|
||
cache->saved_regs[tdep->ppc_lr_regnum];
|
||
|
||
/* If != 0, fdata.vrsave_offset is the offset from the frame that
|
||
holds the VRSAVE. */
|
||
if (fdata.vrsave_offset != 0)
|
||
cache->saved_regs[tdep->ppc_vrsave_regnum].addr
|
||
= cache->base + fdata.vrsave_offset;
|
||
|
||
if (fdata.alloca_reg < 0)
|
||
/* If no alloca register used, then fi->frame is the value of the
|
||
%sp for this frame, and it is good enough. */
|
||
cache->initial_sp
|
||
= get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
|
||
else
|
||
cache->initial_sp
|
||
= get_frame_register_unsigned (this_frame, fdata.alloca_reg);
|
||
|
||
return cache;
|
||
}
|
||
|
||
static void
|
||
rs6000_frame_this_id (struct frame_info *this_frame, void **this_cache,
|
||
struct frame_id *this_id)
|
||
{
|
||
struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
|
||
this_cache);
|
||
/* This marks the outermost frame. */
|
||
if (info->base == 0)
|
||
return;
|
||
|
||
(*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
|
||
}
|
||
|
||
static struct value *
|
||
rs6000_frame_prev_register (struct frame_info *this_frame,
|
||
void **this_cache, int regnum)
|
||
{
|
||
struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
|
||
this_cache);
|
||
return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
|
||
}
|
||
|
||
static const struct frame_unwind rs6000_frame_unwind =
|
||
{
|
||
NORMAL_FRAME,
|
||
default_frame_unwind_stop_reason,
|
||
rs6000_frame_this_id,
|
||
rs6000_frame_prev_register,
|
||
NULL,
|
||
default_frame_sniffer
|
||
};
|
||
|
||
|
||
static CORE_ADDR
|
||
rs6000_frame_base_address (struct frame_info *this_frame, void **this_cache)
|
||
{
|
||
struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
|
||
this_cache);
|
||
return info->initial_sp;
|
||
}
|
||
|
||
static const struct frame_base rs6000_frame_base = {
|
||
&rs6000_frame_unwind,
|
||
rs6000_frame_base_address,
|
||
rs6000_frame_base_address,
|
||
rs6000_frame_base_address
|
||
};
|
||
|
||
static const struct frame_base *
|
||
rs6000_frame_base_sniffer (struct frame_info *this_frame)
|
||
{
|
||
return &rs6000_frame_base;
|
||
}
|
||
|
||
/* DWARF-2 frame support. Used to handle the detection of
|
||
clobbered registers during function calls. */
|
||
|
||
static void
|
||
ppc_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
|
||
struct dwarf2_frame_state_reg *reg,
|
||
struct frame_info *this_frame)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
|
||
/* PPC32 and PPC64 ABI's are the same regarding volatile and
|
||
non-volatile registers. We will use the same code for both. */
|
||
|
||
/* Call-saved GP registers. */
|
||
if ((regnum >= tdep->ppc_gp0_regnum + 14
|
||
&& regnum <= tdep->ppc_gp0_regnum + 31)
|
||
|| (regnum == tdep->ppc_gp0_regnum + 1))
|
||
reg->how = DWARF2_FRAME_REG_SAME_VALUE;
|
||
|
||
/* Call-clobbered GP registers. */
|
||
if ((regnum >= tdep->ppc_gp0_regnum + 3
|
||
&& regnum <= tdep->ppc_gp0_regnum + 12)
|
||
|| (regnum == tdep->ppc_gp0_regnum))
|
||
reg->how = DWARF2_FRAME_REG_UNDEFINED;
|
||
|
||
/* Deal with FP registers, if supported. */
|
||
if (tdep->ppc_fp0_regnum >= 0)
|
||
{
|
||
/* Call-saved FP registers. */
|
||
if ((regnum >= tdep->ppc_fp0_regnum + 14
|
||
&& regnum <= tdep->ppc_fp0_regnum + 31))
|
||
reg->how = DWARF2_FRAME_REG_SAME_VALUE;
|
||
|
||
/* Call-clobbered FP registers. */
|
||
if ((regnum >= tdep->ppc_fp0_regnum
|
||
&& regnum <= tdep->ppc_fp0_regnum + 13))
|
||
reg->how = DWARF2_FRAME_REG_UNDEFINED;
|
||
}
|
||
|
||
/* Deal with ALTIVEC registers, if supported. */
|
||
if (tdep->ppc_vr0_regnum > 0 && tdep->ppc_vrsave_regnum > 0)
|
||
{
|
||
/* Call-saved Altivec registers. */
|
||
if ((regnum >= tdep->ppc_vr0_regnum + 20
|
||
&& regnum <= tdep->ppc_vr0_regnum + 31)
|
||
|| regnum == tdep->ppc_vrsave_regnum)
|
||
reg->how = DWARF2_FRAME_REG_SAME_VALUE;
|
||
|
||
/* Call-clobbered Altivec registers. */
|
||
if ((regnum >= tdep->ppc_vr0_regnum
|
||
&& regnum <= tdep->ppc_vr0_regnum + 19))
|
||
reg->how = DWARF2_FRAME_REG_UNDEFINED;
|
||
}
|
||
|
||
/* Handle PC register and Stack Pointer correctly. */
|
||
if (regnum == gdbarch_pc_regnum (gdbarch))
|
||
reg->how = DWARF2_FRAME_REG_RA;
|
||
else if (regnum == gdbarch_sp_regnum (gdbarch))
|
||
reg->how = DWARF2_FRAME_REG_CFA;
|
||
}
|
||
|
||
|
||
/* Return true if a .gnu_attributes section exists in BFD and it
|
||
indicates we are using SPE extensions OR if a .PPC.EMB.apuinfo
|
||
section exists in BFD and it indicates that SPE extensions are in
|
||
use. Check the .gnu.attributes section first, as the binary might be
|
||
compiled for SPE, but not actually using SPE instructions. */
|
||
|
||
static int
|
||
bfd_uses_spe_extensions (bfd *abfd)
|
||
{
|
||
asection *sect;
|
||
gdb_byte *contents = NULL;
|
||
bfd_size_type size;
|
||
gdb_byte *ptr;
|
||
int success = 0;
|
||
int vector_abi;
|
||
|
||
if (!abfd)
|
||
return 0;
|
||
|
||
#ifdef HAVE_ELF
|
||
/* Using Tag_GNU_Power_ABI_Vector here is a bit of a hack, as the user
|
||
could be using the SPE vector abi without actually using any spe
|
||
bits whatsoever. But it's close enough for now. */
|
||
vector_abi = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_GNU,
|
||
Tag_GNU_Power_ABI_Vector);
|
||
if (vector_abi == 3)
|
||
return 1;
|
||
#endif
|
||
|
||
sect = bfd_get_section_by_name (abfd, ".PPC.EMB.apuinfo");
|
||
if (!sect)
|
||
return 0;
|
||
|
||
size = bfd_get_section_size (sect);
|
||
contents = xmalloc (size);
|
||
if (!bfd_get_section_contents (abfd, sect, contents, 0, size))
|
||
{
|
||
xfree (contents);
|
||
return 0;
|
||
}
|
||
|
||
/* Parse the .PPC.EMB.apuinfo section. The layout is as follows:
|
||
|
||
struct {
|
||
uint32 name_len;
|
||
uint32 data_len;
|
||
uint32 type;
|
||
char name[name_len rounded up to 4-byte alignment];
|
||
char data[data_len];
|
||
};
|
||
|
||
Technically, there's only supposed to be one such structure in a
|
||
given apuinfo section, but the linker is not always vigilant about
|
||
merging apuinfo sections from input files. Just go ahead and parse
|
||
them all, exiting early when we discover the binary uses SPE
|
||
insns.
|
||
|
||
It's not specified in what endianness the information in this
|
||
section is stored. Assume that it's the endianness of the BFD. */
|
||
ptr = contents;
|
||
while (1)
|
||
{
|
||
unsigned int name_len;
|
||
unsigned int data_len;
|
||
unsigned int type;
|
||
|
||
/* If we can't read the first three fields, we're done. */
|
||
if (size < 12)
|
||
break;
|
||
|
||
name_len = bfd_get_32 (abfd, ptr);
|
||
name_len = (name_len + 3) & ~3U; /* Round to 4 bytes. */
|
||
data_len = bfd_get_32 (abfd, ptr + 4);
|
||
type = bfd_get_32 (abfd, ptr + 8);
|
||
ptr += 12;
|
||
|
||
/* The name must be "APUinfo\0". */
|
||
if (name_len != 8
|
||
&& strcmp ((const char *) ptr, "APUinfo") != 0)
|
||
break;
|
||
ptr += name_len;
|
||
|
||
/* The type must be 2. */
|
||
if (type != 2)
|
||
break;
|
||
|
||
/* The data is stored as a series of uint32. The upper half of
|
||
each uint32 indicates the particular APU used and the lower
|
||
half indicates the revision of that APU. We just care about
|
||
the upper half. */
|
||
|
||
/* Not 4-byte quantities. */
|
||
if (data_len & 3U)
|
||
break;
|
||
|
||
while (data_len)
|
||
{
|
||
unsigned int apuinfo = bfd_get_32 (abfd, ptr);
|
||
unsigned int apu = apuinfo >> 16;
|
||
ptr += 4;
|
||
data_len -= 4;
|
||
|
||
/* The SPE APU is 0x100; the SPEFP APU is 0x101. Accept
|
||
either. */
|
||
if (apu == 0x100 || apu == 0x101)
|
||
{
|
||
success = 1;
|
||
data_len = 0;
|
||
}
|
||
}
|
||
|
||
if (success)
|
||
break;
|
||
}
|
||
|
||
xfree (contents);
|
||
return success;
|
||
}
|
||
|
||
/* Initialize the current architecture based on INFO. If possible, re-use an
|
||
architecture from ARCHES, which is a list of architectures already created
|
||
during this debugging session.
|
||
|
||
Called e.g. at program startup, when reading a core file, and when reading
|
||
a binary file. */
|
||
|
||
static struct gdbarch *
|
||
rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
|
||
{
|
||
struct gdbarch *gdbarch;
|
||
struct gdbarch_tdep *tdep;
|
||
int wordsize, from_xcoff_exec, from_elf_exec;
|
||
enum bfd_architecture arch;
|
||
unsigned long mach;
|
||
bfd abfd;
|
||
asection *sect;
|
||
enum auto_boolean soft_float_flag = powerpc_soft_float_global;
|
||
int soft_float;
|
||
enum powerpc_vector_abi vector_abi = powerpc_vector_abi_global;
|
||
int have_fpu = 1, have_spe = 0, have_mq = 0, have_altivec = 0, have_dfp = 0,
|
||
have_vsx = 0;
|
||
int tdesc_wordsize = -1;
|
||
const struct target_desc *tdesc = info.target_desc;
|
||
struct tdesc_arch_data *tdesc_data = NULL;
|
||
int num_pseudoregs = 0;
|
||
int cur_reg;
|
||
|
||
/* INFO may refer to a binary that is not of the PowerPC architecture,
|
||
e.g. when debugging a stand-alone SPE executable on a Cell/B.E. system.
|
||
In this case, we must not attempt to infer properties of the (PowerPC
|
||
side) of the target system from properties of that executable. Trust
|
||
the target description instead. */
|
||
if (info.abfd
|
||
&& bfd_get_arch (info.abfd) != bfd_arch_powerpc
|
||
&& bfd_get_arch (info.abfd) != bfd_arch_rs6000)
|
||
info.abfd = NULL;
|
||
|
||
from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
|
||
bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
|
||
|
||
from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
|
||
bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
|
||
|
||
/* Check word size. If INFO is from a binary file, infer it from
|
||
that, else choose a likely default. */
|
||
if (from_xcoff_exec)
|
||
{
|
||
if (bfd_xcoff_is_xcoff64 (info.abfd))
|
||
wordsize = 8;
|
||
else
|
||
wordsize = 4;
|
||
}
|
||
else if (from_elf_exec)
|
||
{
|
||
if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
|
||
wordsize = 8;
|
||
else
|
||
wordsize = 4;
|
||
}
|
||
else if (tdesc_has_registers (tdesc))
|
||
wordsize = -1;
|
||
else
|
||
{
|
||
if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
|
||
wordsize = info.bfd_arch_info->bits_per_word /
|
||
info.bfd_arch_info->bits_per_byte;
|
||
else
|
||
wordsize = 4;
|
||
}
|
||
|
||
/* Get the architecture and machine from the BFD. */
|
||
arch = info.bfd_arch_info->arch;
|
||
mach = info.bfd_arch_info->mach;
|
||
|
||
/* For e500 executables, the apuinfo section is of help here. Such
|
||
section contains the identifier and revision number of each
|
||
Application-specific Processing Unit that is present on the
|
||
chip. The content of the section is determined by the assembler
|
||
which looks at each instruction and determines which unit (and
|
||
which version of it) can execute it. Grovel through the section
|
||
looking for relevant e500 APUs. */
|
||
|
||
if (bfd_uses_spe_extensions (info.abfd))
|
||
{
|
||
arch = info.bfd_arch_info->arch;
|
||
mach = bfd_mach_ppc_e500;
|
||
bfd_default_set_arch_mach (&abfd, arch, mach);
|
||
info.bfd_arch_info = bfd_get_arch_info (&abfd);
|
||
}
|
||
|
||
/* Find a default target description which describes our register
|
||
layout, if we do not already have one. */
|
||
if (! tdesc_has_registers (tdesc))
|
||
{
|
||
const struct variant *v;
|
||
|
||
/* Choose variant. */
|
||
v = find_variant_by_arch (arch, mach);
|
||
if (!v)
|
||
return NULL;
|
||
|
||
tdesc = *v->tdesc;
|
||
}
|
||
|
||
gdb_assert (tdesc_has_registers (tdesc));
|
||
|
||
/* Check any target description for validity. */
|
||
if (tdesc_has_registers (tdesc))
|
||
{
|
||
static const char *const gprs[] = {
|
||
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
||
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
|
||
"r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
|
||
"r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
|
||
};
|
||
static const char *const segment_regs[] = {
|
||
"sr0", "sr1", "sr2", "sr3", "sr4", "sr5", "sr6", "sr7",
|
||
"sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15"
|
||
};
|
||
const struct tdesc_feature *feature;
|
||
int i, valid_p;
|
||
static const char *const msr_names[] = { "msr", "ps" };
|
||
static const char *const cr_names[] = { "cr", "cnd" };
|
||
static const char *const ctr_names[] = { "ctr", "cnt" };
|
||
|
||
feature = tdesc_find_feature (tdesc,
|
||
"org.gnu.gdb.power.core");
|
||
if (feature == NULL)
|
||
return NULL;
|
||
|
||
tdesc_data = tdesc_data_alloc ();
|
||
|
||
valid_p = 1;
|
||
for (i = 0; i < ppc_num_gprs; i++)
|
||
valid_p &= tdesc_numbered_register (feature, tdesc_data, i, gprs[i]);
|
||
valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_PC_REGNUM,
|
||
"pc");
|
||
valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_LR_REGNUM,
|
||
"lr");
|
||
valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_XER_REGNUM,
|
||
"xer");
|
||
|
||
/* Allow alternate names for these registers, to accomodate GDB's
|
||
historic naming. */
|
||
valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
|
||
PPC_MSR_REGNUM, msr_names);
|
||
valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
|
||
PPC_CR_REGNUM, cr_names);
|
||
valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
|
||
PPC_CTR_REGNUM, ctr_names);
|
||
|
||
if (!valid_p)
|
||
{
|
||
tdesc_data_cleanup (tdesc_data);
|
||
return NULL;
|
||
}
|
||
|
||
have_mq = tdesc_numbered_register (feature, tdesc_data, PPC_MQ_REGNUM,
|
||
"mq");
|
||
|
||
tdesc_wordsize = tdesc_register_size (feature, "pc") / 8;
|
||
if (wordsize == -1)
|
||
wordsize = tdesc_wordsize;
|
||
|
||
feature = tdesc_find_feature (tdesc,
|
||
"org.gnu.gdb.power.fpu");
|
||
if (feature != NULL)
|
||
{
|
||
static const char *const fprs[] = {
|
||
"f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
|
||
"f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
|
||
"f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
|
||
"f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31"
|
||
};
|
||
valid_p = 1;
|
||
for (i = 0; i < ppc_num_fprs; i++)
|
||
valid_p &= tdesc_numbered_register (feature, tdesc_data,
|
||
PPC_F0_REGNUM + i, fprs[i]);
|
||
valid_p &= tdesc_numbered_register (feature, tdesc_data,
|
||
PPC_FPSCR_REGNUM, "fpscr");
|
||
|
||
if (!valid_p)
|
||
{
|
||
tdesc_data_cleanup (tdesc_data);
|
||
return NULL;
|
||
}
|
||
have_fpu = 1;
|
||
}
|
||
else
|
||
have_fpu = 0;
|
||
|
||
/* The DFP pseudo-registers will be available when there are floating
|
||
point registers. */
|
||
have_dfp = have_fpu;
|
||
|
||
feature = tdesc_find_feature (tdesc,
|
||
"org.gnu.gdb.power.altivec");
|
||
if (feature != NULL)
|
||
{
|
||
static const char *const vector_regs[] = {
|
||
"vr0", "vr1", "vr2", "vr3", "vr4", "vr5", "vr6", "vr7",
|
||
"vr8", "vr9", "vr10", "vr11", "vr12", "vr13", "vr14", "vr15",
|
||
"vr16", "vr17", "vr18", "vr19", "vr20", "vr21", "vr22", "vr23",
|
||
"vr24", "vr25", "vr26", "vr27", "vr28", "vr29", "vr30", "vr31"
|
||
};
|
||
|
||
valid_p = 1;
|
||
for (i = 0; i < ppc_num_gprs; i++)
|
||
valid_p &= tdesc_numbered_register (feature, tdesc_data,
|
||
PPC_VR0_REGNUM + i,
|
||
vector_regs[i]);
|
||
valid_p &= tdesc_numbered_register (feature, tdesc_data,
|
||
PPC_VSCR_REGNUM, "vscr");
|
||
valid_p &= tdesc_numbered_register (feature, tdesc_data,
|
||
PPC_VRSAVE_REGNUM, "vrsave");
|
||
|
||
if (have_spe || !valid_p)
|
||
{
|
||
tdesc_data_cleanup (tdesc_data);
|
||
return NULL;
|
||
}
|
||
have_altivec = 1;
|
||
}
|
||
else
|
||
have_altivec = 0;
|
||
|
||
/* Check for POWER7 VSX registers support. */
|
||
feature = tdesc_find_feature (tdesc,
|
||
"org.gnu.gdb.power.vsx");
|
||
|
||
if (feature != NULL)
|
||
{
|
||
static const char *const vsx_regs[] = {
|
||
"vs0h", "vs1h", "vs2h", "vs3h", "vs4h", "vs5h",
|
||
"vs6h", "vs7h", "vs8h", "vs9h", "vs10h", "vs11h",
|
||
"vs12h", "vs13h", "vs14h", "vs15h", "vs16h", "vs17h",
|
||
"vs18h", "vs19h", "vs20h", "vs21h", "vs22h", "vs23h",
|
||
"vs24h", "vs25h", "vs26h", "vs27h", "vs28h", "vs29h",
|
||
"vs30h", "vs31h"
|
||
};
|
||
|
||
valid_p = 1;
|
||
|
||
for (i = 0; i < ppc_num_vshrs; i++)
|
||
valid_p &= tdesc_numbered_register (feature, tdesc_data,
|
||
PPC_VSR0_UPPER_REGNUM + i,
|
||
vsx_regs[i]);
|
||
if (!valid_p)
|
||
{
|
||
tdesc_data_cleanup (tdesc_data);
|
||
return NULL;
|
||
}
|
||
|
||
have_vsx = 1;
|
||
}
|
||
else
|
||
have_vsx = 0;
|
||
|
||
/* On machines supporting the SPE APU, the general-purpose registers
|
||
are 64 bits long. There are SIMD vector instructions to treat them
|
||
as pairs of floats, but the rest of the instruction set treats them
|
||
as 32-bit registers, and only operates on their lower halves.
|
||
|
||
In the GDB regcache, we treat their high and low halves as separate
|
||
registers. The low halves we present as the general-purpose
|
||
registers, and then we have pseudo-registers that stitch together
|
||
the upper and lower halves and present them as pseudo-registers.
|
||
|
||
Thus, the target description is expected to supply the upper
|
||
halves separately. */
|
||
|
||
feature = tdesc_find_feature (tdesc,
|
||
"org.gnu.gdb.power.spe");
|
||
if (feature != NULL)
|
||
{
|
||
static const char *const upper_spe[] = {
|
||
"ev0h", "ev1h", "ev2h", "ev3h",
|
||
"ev4h", "ev5h", "ev6h", "ev7h",
|
||
"ev8h", "ev9h", "ev10h", "ev11h",
|
||
"ev12h", "ev13h", "ev14h", "ev15h",
|
||
"ev16h", "ev17h", "ev18h", "ev19h",
|
||
"ev20h", "ev21h", "ev22h", "ev23h",
|
||
"ev24h", "ev25h", "ev26h", "ev27h",
|
||
"ev28h", "ev29h", "ev30h", "ev31h"
|
||
};
|
||
|
||
valid_p = 1;
|
||
for (i = 0; i < ppc_num_gprs; i++)
|
||
valid_p &= tdesc_numbered_register (feature, tdesc_data,
|
||
PPC_SPE_UPPER_GP0_REGNUM + i,
|
||
upper_spe[i]);
|
||
valid_p &= tdesc_numbered_register (feature, tdesc_data,
|
||
PPC_SPE_ACC_REGNUM, "acc");
|
||
valid_p &= tdesc_numbered_register (feature, tdesc_data,
|
||
PPC_SPE_FSCR_REGNUM, "spefscr");
|
||
|
||
if (have_mq || have_fpu || !valid_p)
|
||
{
|
||
tdesc_data_cleanup (tdesc_data);
|
||
return NULL;
|
||
}
|
||
have_spe = 1;
|
||
}
|
||
else
|
||
have_spe = 0;
|
||
}
|
||
|
||
/* If we have a 64-bit binary on a 32-bit target, complain. Also
|
||
complain for a 32-bit binary on a 64-bit target; we do not yet
|
||
support that. For instance, the 32-bit ABI routines expect
|
||
32-bit GPRs.
|
||
|
||
As long as there isn't an explicit target description, we'll
|
||
choose one based on the BFD architecture and get a word size
|
||
matching the binary (probably powerpc:common or
|
||
powerpc:common64). So there is only trouble if a 64-bit target
|
||
supplies a 64-bit description while debugging a 32-bit
|
||
binary. */
|
||
if (tdesc_wordsize != -1 && tdesc_wordsize != wordsize)
|
||
{
|
||
tdesc_data_cleanup (tdesc_data);
|
||
return NULL;
|
||
}
|
||
|
||
#ifdef HAVE_ELF
|
||
if (soft_float_flag == AUTO_BOOLEAN_AUTO && from_elf_exec)
|
||
{
|
||
switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
|
||
Tag_GNU_Power_ABI_FP))
|
||
{
|
||
case 1:
|
||
soft_float_flag = AUTO_BOOLEAN_FALSE;
|
||
break;
|
||
case 2:
|
||
soft_float_flag = AUTO_BOOLEAN_TRUE;
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (vector_abi == POWERPC_VEC_AUTO && from_elf_exec)
|
||
{
|
||
switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
|
||
Tag_GNU_Power_ABI_Vector))
|
||
{
|
||
case 1:
|
||
vector_abi = POWERPC_VEC_GENERIC;
|
||
break;
|
||
case 2:
|
||
vector_abi = POWERPC_VEC_ALTIVEC;
|
||
break;
|
||
case 3:
|
||
vector_abi = POWERPC_VEC_SPE;
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
#endif
|
||
|
||
if (soft_float_flag == AUTO_BOOLEAN_TRUE)
|
||
soft_float = 1;
|
||
else if (soft_float_flag == AUTO_BOOLEAN_FALSE)
|
||
soft_float = 0;
|
||
else
|
||
soft_float = !have_fpu;
|
||
|
||
/* If we have a hard float binary or setting but no floating point
|
||
registers, downgrade to soft float anyway. We're still somewhat
|
||
useful in this scenario. */
|
||
if (!soft_float && !have_fpu)
|
||
soft_float = 1;
|
||
|
||
/* Similarly for vector registers. */
|
||
if (vector_abi == POWERPC_VEC_ALTIVEC && !have_altivec)
|
||
vector_abi = POWERPC_VEC_GENERIC;
|
||
|
||
if (vector_abi == POWERPC_VEC_SPE && !have_spe)
|
||
vector_abi = POWERPC_VEC_GENERIC;
|
||
|
||
if (vector_abi == POWERPC_VEC_AUTO)
|
||
{
|
||
if (have_altivec)
|
||
vector_abi = POWERPC_VEC_ALTIVEC;
|
||
else if (have_spe)
|
||
vector_abi = POWERPC_VEC_SPE;
|
||
else
|
||
vector_abi = POWERPC_VEC_GENERIC;
|
||
}
|
||
|
||
/* Do not limit the vector ABI based on available hardware, since we
|
||
do not yet know what hardware we'll decide we have. Yuck! FIXME! */
|
||
|
||
/* Find a candidate among extant architectures. */
|
||
for (arches = gdbarch_list_lookup_by_info (arches, &info);
|
||
arches != NULL;
|
||
arches = gdbarch_list_lookup_by_info (arches->next, &info))
|
||
{
|
||
/* Word size in the various PowerPC bfd_arch_info structs isn't
|
||
meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
|
||
separate word size check. */
|
||
tdep = gdbarch_tdep (arches->gdbarch);
|
||
if (tdep && tdep->soft_float != soft_float)
|
||
continue;
|
||
if (tdep && tdep->vector_abi != vector_abi)
|
||
continue;
|
||
if (tdep && tdep->wordsize == wordsize)
|
||
{
|
||
if (tdesc_data != NULL)
|
||
tdesc_data_cleanup (tdesc_data);
|
||
return arches->gdbarch;
|
||
}
|
||
}
|
||
|
||
/* None found, create a new architecture from INFO, whose bfd_arch_info
|
||
validity depends on the source:
|
||
- executable useless
|
||
- rs6000_host_arch() good
|
||
- core file good
|
||
- "set arch" trust blindly
|
||
- GDB startup useless but harmless */
|
||
|
||
tdep = XCALLOC (1, struct gdbarch_tdep);
|
||
tdep->wordsize = wordsize;
|
||
tdep->soft_float = soft_float;
|
||
tdep->vector_abi = vector_abi;
|
||
|
||
gdbarch = gdbarch_alloc (&info, tdep);
|
||
|
||
tdep->ppc_gp0_regnum = PPC_R0_REGNUM;
|
||
tdep->ppc_toc_regnum = PPC_R0_REGNUM + 2;
|
||
tdep->ppc_ps_regnum = PPC_MSR_REGNUM;
|
||
tdep->ppc_cr_regnum = PPC_CR_REGNUM;
|
||
tdep->ppc_lr_regnum = PPC_LR_REGNUM;
|
||
tdep->ppc_ctr_regnum = PPC_CTR_REGNUM;
|
||
tdep->ppc_xer_regnum = PPC_XER_REGNUM;
|
||
tdep->ppc_mq_regnum = have_mq ? PPC_MQ_REGNUM : -1;
|
||
|
||
tdep->ppc_fp0_regnum = have_fpu ? PPC_F0_REGNUM : -1;
|
||
tdep->ppc_fpscr_regnum = have_fpu ? PPC_FPSCR_REGNUM : -1;
|
||
tdep->ppc_vsr0_upper_regnum = have_vsx ? PPC_VSR0_UPPER_REGNUM : -1;
|
||
tdep->ppc_vr0_regnum = have_altivec ? PPC_VR0_REGNUM : -1;
|
||
tdep->ppc_vrsave_regnum = have_altivec ? PPC_VRSAVE_REGNUM : -1;
|
||
tdep->ppc_ev0_upper_regnum = have_spe ? PPC_SPE_UPPER_GP0_REGNUM : -1;
|
||
tdep->ppc_acc_regnum = have_spe ? PPC_SPE_ACC_REGNUM : -1;
|
||
tdep->ppc_spefscr_regnum = have_spe ? PPC_SPE_FSCR_REGNUM : -1;
|
||
|
||
set_gdbarch_pc_regnum (gdbarch, PPC_PC_REGNUM);
|
||
set_gdbarch_sp_regnum (gdbarch, PPC_R0_REGNUM + 1);
|
||
set_gdbarch_deprecated_fp_regnum (gdbarch, PPC_R0_REGNUM + 1);
|
||
set_gdbarch_fp0_regnum (gdbarch, tdep->ppc_fp0_regnum);
|
||
set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno);
|
||
|
||
/* The XML specification for PowerPC sensibly calls the MSR "msr".
|
||
GDB traditionally called it "ps", though, so let GDB add an
|
||
alias. */
|
||
set_gdbarch_ps_regnum (gdbarch, tdep->ppc_ps_regnum);
|
||
|
||
if (wordsize == 8)
|
||
set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
|
||
else
|
||
set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
|
||
|
||
/* Set lr_frame_offset. */
|
||
if (wordsize == 8)
|
||
tdep->lr_frame_offset = 16;
|
||
else
|
||
tdep->lr_frame_offset = 4;
|
||
|
||
if (have_spe || have_dfp || have_vsx)
|
||
{
|
||
set_gdbarch_pseudo_register_read (gdbarch, rs6000_pseudo_register_read);
|
||
set_gdbarch_pseudo_register_write (gdbarch,
|
||
rs6000_pseudo_register_write);
|
||
}
|
||
|
||
set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
|
||
|
||
/* Select instruction printer. */
|
||
if (arch == bfd_arch_rs6000)
|
||
set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
|
||
else
|
||
set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
|
||
|
||
set_gdbarch_num_regs (gdbarch, PPC_NUM_REGS);
|
||
|
||
if (have_spe)
|
||
num_pseudoregs += 32;
|
||
if (have_dfp)
|
||
num_pseudoregs += 16;
|
||
if (have_vsx)
|
||
/* Include both VSX and Extended FP registers. */
|
||
num_pseudoregs += 96;
|
||
|
||
set_gdbarch_num_pseudo_regs (gdbarch, num_pseudoregs);
|
||
|
||
set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
|
||
set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
|
||
set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
|
||
set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
|
||
set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
|
||
set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
|
||
set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
|
||
set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
|
||
set_gdbarch_char_signed (gdbarch, 0);
|
||
|
||
set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
|
||
if (wordsize == 8)
|
||
/* PPC64 SYSV. */
|
||
set_gdbarch_frame_red_zone_size (gdbarch, 288);
|
||
|
||
set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
|
||
set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
|
||
set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);
|
||
|
||
set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
|
||
set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
|
||
|
||
if (wordsize == 4)
|
||
set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
|
||
else if (wordsize == 8)
|
||
set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
|
||
|
||
set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
|
||
set_gdbarch_in_function_epilogue_p (gdbarch, rs6000_in_function_epilogue_p);
|
||
set_gdbarch_skip_main_prologue (gdbarch, rs6000_skip_main_prologue);
|
||
|
||
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
|
||
set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
|
||
|
||
/* The value of symbols of type N_SO and N_FUN maybe null when
|
||
it shouldn't be. */
|
||
set_gdbarch_sofun_address_maybe_missing (gdbarch, 1);
|
||
|
||
/* Handles single stepping of atomic sequences. */
|
||
set_gdbarch_software_single_step (gdbarch, ppc_deal_with_atomic_sequence);
|
||
|
||
/* Not sure on this. FIXMEmgo */
|
||
set_gdbarch_frame_args_skip (gdbarch, 8);
|
||
|
||
/* Helpers for function argument information. */
|
||
set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
|
||
|
||
/* Trampoline. */
|
||
set_gdbarch_in_solib_return_trampoline
|
||
(gdbarch, rs6000_in_solib_return_trampoline);
|
||
set_gdbarch_skip_trampoline_code (gdbarch, rs6000_skip_trampoline_code);
|
||
|
||
/* Hook in the DWARF CFI frame unwinder. */
|
||
dwarf2_append_unwinders (gdbarch);
|
||
dwarf2_frame_set_adjust_regnum (gdbarch, rs6000_adjust_frame_regnum);
|
||
|
||
/* Frame handling. */
|
||
dwarf2_frame_set_init_reg (gdbarch, ppc_dwarf2_frame_init_reg);
|
||
|
||
/* Setup displaced stepping. */
|
||
set_gdbarch_displaced_step_copy_insn (gdbarch,
|
||
simple_displaced_step_copy_insn);
|
||
set_gdbarch_displaced_step_hw_singlestep (gdbarch,
|
||
ppc_displaced_step_hw_singlestep);
|
||
set_gdbarch_displaced_step_fixup (gdbarch, ppc_displaced_step_fixup);
|
||
set_gdbarch_displaced_step_free_closure (gdbarch,
|
||
simple_displaced_step_free_closure);
|
||
set_gdbarch_displaced_step_location (gdbarch,
|
||
displaced_step_at_entry_point);
|
||
|
||
set_gdbarch_max_insn_length (gdbarch, PPC_INSN_SIZE);
|
||
|
||
/* Hook in ABI-specific overrides, if they have been registered. */
|
||
info.target_desc = tdesc;
|
||
info.tdep_info = (void *) tdesc_data;
|
||
gdbarch_init_osabi (info, gdbarch);
|
||
|
||
switch (info.osabi)
|
||
{
|
||
case GDB_OSABI_LINUX:
|
||
case GDB_OSABI_NETBSD_AOUT:
|
||
case GDB_OSABI_NETBSD_ELF:
|
||
case GDB_OSABI_UNKNOWN:
|
||
set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
|
||
frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
|
||
set_gdbarch_dummy_id (gdbarch, rs6000_dummy_id);
|
||
frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
|
||
break;
|
||
default:
|
||
set_gdbarch_believe_pcc_promotion (gdbarch, 1);
|
||
|
||
set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
|
||
frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
|
||
set_gdbarch_dummy_id (gdbarch, rs6000_dummy_id);
|
||
frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
|
||
}
|
||
|
||
set_tdesc_pseudo_register_type (gdbarch, rs6000_pseudo_register_type);
|
||
set_tdesc_pseudo_register_reggroup_p (gdbarch,
|
||
rs6000_pseudo_register_reggroup_p);
|
||
tdesc_use_registers (gdbarch, tdesc, tdesc_data);
|
||
|
||
/* Override the normal target description method to make the SPE upper
|
||
halves anonymous. */
|
||
set_gdbarch_register_name (gdbarch, rs6000_register_name);
|
||
|
||
/* Choose register numbers for all supported pseudo-registers. */
|
||
tdep->ppc_ev0_regnum = -1;
|
||
tdep->ppc_dl0_regnum = -1;
|
||
tdep->ppc_vsr0_regnum = -1;
|
||
tdep->ppc_efpr0_regnum = -1;
|
||
|
||
cur_reg = gdbarch_num_regs (gdbarch);
|
||
|
||
if (have_spe)
|
||
{
|
||
tdep->ppc_ev0_regnum = cur_reg;
|
||
cur_reg += 32;
|
||
}
|
||
if (have_dfp)
|
||
{
|
||
tdep->ppc_dl0_regnum = cur_reg;
|
||
cur_reg += 16;
|
||
}
|
||
if (have_vsx)
|
||
{
|
||
tdep->ppc_vsr0_regnum = cur_reg;
|
||
cur_reg += 64;
|
||
tdep->ppc_efpr0_regnum = cur_reg;
|
||
cur_reg += 32;
|
||
}
|
||
|
||
gdb_assert (gdbarch_num_regs (gdbarch)
|
||
+ gdbarch_num_pseudo_regs (gdbarch) == cur_reg);
|
||
|
||
return gdbarch;
|
||
}
|
||
|
||
static void
|
||
rs6000_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
|
||
if (tdep == NULL)
|
||
return;
|
||
|
||
/* FIXME: Dump gdbarch_tdep. */
|
||
}
|
||
|
||
/* PowerPC-specific commands. */
|
||
|
||
static void
|
||
set_powerpc_command (char *args, int from_tty)
|
||
{
|
||
printf_unfiltered (_("\
|
||
\"set powerpc\" must be followed by an appropriate subcommand.\n"));
|
||
help_list (setpowerpccmdlist, "set powerpc ", all_commands, gdb_stdout);
|
||
}
|
||
|
||
static void
|
||
show_powerpc_command (char *args, int from_tty)
|
||
{
|
||
cmd_show_list (showpowerpccmdlist, from_tty, "");
|
||
}
|
||
|
||
static void
|
||
powerpc_set_soft_float (char *args, int from_tty,
|
||
struct cmd_list_element *c)
|
||
{
|
||
struct gdbarch_info info;
|
||
|
||
/* Update the architecture. */
|
||
gdbarch_info_init (&info);
|
||
if (!gdbarch_update_p (info))
|
||
internal_error (__FILE__, __LINE__, _("could not update architecture"));
|
||
}
|
||
|
||
static void
|
||
powerpc_set_vector_abi (char *args, int from_tty,
|
||
struct cmd_list_element *c)
|
||
{
|
||
struct gdbarch_info info;
|
||
enum powerpc_vector_abi vector_abi;
|
||
|
||
for (vector_abi = POWERPC_VEC_AUTO;
|
||
vector_abi != POWERPC_VEC_LAST;
|
||
vector_abi++)
|
||
if (strcmp (powerpc_vector_abi_string,
|
||
powerpc_vector_strings[vector_abi]) == 0)
|
||
{
|
||
powerpc_vector_abi_global = vector_abi;
|
||
break;
|
||
}
|
||
|
||
if (vector_abi == POWERPC_VEC_LAST)
|
||
internal_error (__FILE__, __LINE__, _("Invalid vector ABI accepted: %s."),
|
||
powerpc_vector_abi_string);
|
||
|
||
/* Update the architecture. */
|
||
gdbarch_info_init (&info);
|
||
if (!gdbarch_update_p (info))
|
||
internal_error (__FILE__, __LINE__, _("could not update architecture"));
|
||
}
|
||
|
||
/* Show the current setting of the exact watchpoints flag. */
|
||
|
||
static void
|
||
show_powerpc_exact_watchpoints (struct ui_file *file, int from_tty,
|
||
struct cmd_list_element *c,
|
||
const char *value)
|
||
{
|
||
fprintf_filtered (file, _("Use of exact watchpoints is %s.\n"), value);
|
||
}
|
||
|
||
/* Initialization code. */
|
||
|
||
/* -Wmissing-prototypes */
|
||
extern initialize_file_ftype _initialize_rs6000_tdep;
|
||
|
||
void
|
||
_initialize_rs6000_tdep (void)
|
||
{
|
||
gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
|
||
gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
|
||
|
||
/* Initialize the standard target descriptions. */
|
||
initialize_tdesc_powerpc_32 ();
|
||
initialize_tdesc_powerpc_altivec32 ();
|
||
initialize_tdesc_powerpc_vsx32 ();
|
||
initialize_tdesc_powerpc_403 ();
|
||
initialize_tdesc_powerpc_403gc ();
|
||
initialize_tdesc_powerpc_405 ();
|
||
initialize_tdesc_powerpc_505 ();
|
||
initialize_tdesc_powerpc_601 ();
|
||
initialize_tdesc_powerpc_602 ();
|
||
initialize_tdesc_powerpc_603 ();
|
||
initialize_tdesc_powerpc_604 ();
|
||
initialize_tdesc_powerpc_64 ();
|
||
initialize_tdesc_powerpc_altivec64 ();
|
||
initialize_tdesc_powerpc_vsx64 ();
|
||
initialize_tdesc_powerpc_7400 ();
|
||
initialize_tdesc_powerpc_750 ();
|
||
initialize_tdesc_powerpc_860 ();
|
||
initialize_tdesc_powerpc_e500 ();
|
||
initialize_tdesc_rs6000 ();
|
||
|
||
/* Add root prefix command for all "set powerpc"/"show powerpc"
|
||
commands. */
|
||
add_prefix_cmd ("powerpc", no_class, set_powerpc_command,
|
||
_("Various PowerPC-specific commands."),
|
||
&setpowerpccmdlist, "set powerpc ", 0, &setlist);
|
||
|
||
add_prefix_cmd ("powerpc", no_class, show_powerpc_command,
|
||
_("Various PowerPC-specific commands."),
|
||
&showpowerpccmdlist, "show powerpc ", 0, &showlist);
|
||
|
||
/* Add a command to allow the user to force the ABI. */
|
||
add_setshow_auto_boolean_cmd ("soft-float", class_support,
|
||
&powerpc_soft_float_global,
|
||
_("Set whether to use a soft-float ABI."),
|
||
_("Show whether to use a soft-float ABI."),
|
||
NULL,
|
||
powerpc_set_soft_float, NULL,
|
||
&setpowerpccmdlist, &showpowerpccmdlist);
|
||
|
||
add_setshow_enum_cmd ("vector-abi", class_support, powerpc_vector_strings,
|
||
&powerpc_vector_abi_string,
|
||
_("Set the vector ABI."),
|
||
_("Show the vector ABI."),
|
||
NULL, powerpc_set_vector_abi, NULL,
|
||
&setpowerpccmdlist, &showpowerpccmdlist);
|
||
|
||
add_setshow_boolean_cmd ("exact-watchpoints", class_support,
|
||
&target_exact_watchpoints,
|
||
_("\
|
||
Set whether to use just one debug register for watchpoints on scalars."),
|
||
_("\
|
||
Show whether to use just one debug register for watchpoints on scalars."),
|
||
_("\
|
||
If true, GDB will use only one debug register when watching a variable of\n\
|
||
scalar type, thus assuming that the variable is accessed through the address\n\
|
||
of its first byte."),
|
||
NULL, show_powerpc_exact_watchpoints,
|
||
&setpowerpccmdlist, &showpowerpccmdlist);
|
||
}
|