binutils-gdb/gdb/gdbthread.h
Pedro Alves 5b6d1e4fa4 Multi-target support
This commit adds multi-target support to GDB.  What this means is that
with this commit, GDB can now be connected to different targets at the
same time.  E.g., you can debug a live native process and a core dump
at the same time, connect to multiple gdbservers, etc.

Actually, the word "target" is overloaded in gdb.  We already have a
target stack, with pushes several target_ops instances on top of one
another.  We also have "info target" already, which means something
completely different to what this patch does.

So from here on, I'll be using the "target connections" term, to mean
an open process_stratum target, pushed on a target stack.  This patch
makes gdb have multiple target stacks, and multiple process_stratum
targets open simultaneously.  The user-visible changes / commands will
also use this terminology, but of course it's all open to debate.

User-interface-wise, not that much changes.  The main difference is
that each inferior may have its own target connection.

A target connection (e.g., a target extended-remote connection) may
support debugging multiple processes, just as before.

Say you're debugging against gdbserver in extended-remote mode, and
you do "add-inferior" to prepare to spawn a new process, like:

 (gdb) target extended-remote :9999
 ...
 (gdb) start
 ...
 (gdb) add-inferior
 Added inferior 2
 (gdb) inferior 2
 [Switching to inferior 2 [<null>] (<noexec>)]
 (gdb) file a.out
 ...
 (gdb) start
 ...

At this point, you have two inferiors connected to the same gdbserver.

With this commit, GDB will maintain a target stack per inferior,
instead of a global target stack.

To preserve the behavior above, by default, "add-inferior" makes the
new inferior inherit a copy of the target stack of the current
inferior.  Same across a fork - the child inherits a copy of the
target stack of the parent.  While the target stacks are copied, the
targets themselves are not.  Instead, target_ops is made a
refcounted_object, which means that target_ops instances are
refcounted, which each inferior counting for a reference.

What if you want to create an inferior and connect it to some _other_
target?  For that, this commit introduces a new "add-inferior
-no-connection" option that makes the new inferior not share the
current inferior's target.  So you could do:

 (gdb) target extended-remote :9999
 Remote debugging using :9999
 ...
 (gdb) add-inferior -no-connection
 [New inferior 2]
 Added inferior 2
 (gdb) inferior 2
 [Switching to inferior 2 [<null>] (<noexec>)]
 (gdb) info inferiors
   Num  Description       Executable
   1    process 18401     target:/home/pedro/tmp/main
 * 2    <null>
 (gdb) tar extended-remote :10000
 Remote debugging using :10000
 ...
 (gdb) info inferiors
   Num  Description       Executable
   1    process 18401     target:/home/pedro/tmp/main
 * 2    process 18450     target:/home/pedro/tmp/main
 (gdb)

A following patch will extended "info inferiors" to include a column
indicating which connection an inferior is bound to, along with a
couple other UI tweaks.

Other than that, debugging is the same as before.  Users interact with
inferiors and threads as before.  The only difference is that
inferiors may be bound to processes running in different machines.

That's pretty much all there is to it in terms of noticeable UI
changes.

On to implementation.

Since we can be connected to different systems at the same time, a
ptid_t is no longer a unique identifier.  Instead a thread can be
identified by a pair of ptid_t and 'process_stratum_target *', the
later being the instance of the process_stratum target that owns the
process/thread.  Note that process_stratum_target inherits from
target_ops, and all process_stratum targets inherit from
process_stratum_target.  In earlier patches, many places in gdb were
converted to refer to threads by thread_info pointer instead of
ptid_t, but there are still places in gdb where we start with a
pid/tid and need to find the corresponding inferior or thread_info
objects.  So you'll see in the patch many places adding a
process_stratum_target parameter to functions that used to take only a
ptid_t.

Since each inferior has its own target stack now, we can always find
the process_stratum target for an inferior.  That is done via a
inf->process_target() convenience method.

Since each inferior has its own target stack, we need to handle the
"beneath" calls when servicing target calls.  The solution I settled
with is just to make sure to switch the current inferior to the
inferior you want before making a target call.  Not relying on global
context is just not feasible in current GDB.  Fortunately, there
aren't that many places that need to do that, because generally most
code that calls target methods already has the current context
pointing to the right inferior/thread.  Note, to emphasize -- there's
no method to "switch to this target stack".  Instead, you switch the
current inferior, and that implicitly switches the target stack.

In some spots, we need to iterate over all inferiors so that we reach
all target stacks.

Native targets are still singletons.  There's always only a single
instance of such targets.

Remote targets however, we'll have one instance per remote connection.

The exec target is still a singleton.  There's only one instance.  I
did not see the point of instanciating more than one exec_target
object.

After vfork, we need to make sure to push the exec target on the new
inferior.  See exec_on_vfork.

For type safety, functions that need a {target, ptid} pair to identify
a thread, take a process_stratum_target pointer for target parameter
instead of target_ops *.  Some shared code in gdb/nat/ also need to
gain a target pointer parameter.  This poses an issue, since gdbserver
doesn't have process_stratum_target, only target_ops.  To fix this,
this commit renames gdbserver's target_ops to process_stratum_target.
I think this makes sense.  There's no concept of target stack in
gdbserver, and gdbserver's target_ops really implements a
process_stratum-like target.

The thread and inferior iterator functions also gain
process_stratum_target parameters.  These are used to be able to
iterate over threads and inferiors of a given target.  Following usual
conventions, if the target pointer is null, then we iterate over
threads and inferiors of all targets.

I tried converting "add-inferior" to the gdb::option framework, as a
preparatory patch, but that stumbled on the fact that gdb::option does
not support file options yet, for "add-inferior -exec".  I have a WIP
patchset that adds that, but it's not a trivial patch, mainly due to
need to integrate readline's filename completion, so I deferred that
to some other time.

In infrun.c/infcmd.c, the main change is that we need to poll events
out of all targets.  See do_target_wait.  Right after collecting an
event, we switch the current inferior to an inferior bound to the
target that reported the event, so that target methods can be used
while handling the event.  This makes most of the code transparent to
multi-targets.  See fetch_inferior_event.

infrun.c:stop_all_threads is interesting -- in this function we need
to stop all threads of all targets.  What the function does is send an
asynchronous stop request to all threads, and then synchronously waits
for events, with target_wait, rinse repeat, until all it finds are
stopped threads.  Now that we have multiple targets, it's not
efficient to synchronously block in target_wait waiting for events out
of one target.  Instead, we implement a mini event loop, with
interruptible_select, select'ing on one file descriptor per target.
For this to work, we need to be able to ask the target for a waitable
file descriptor.  Such file descriptors already exist, they are the
descriptors registered in the main event loop with add_file_handler,
inside the target_async implementations.  This commit adds a new
target_async_wait_fd target method that just returns the file
descriptor in question.  See wait_one / stop_all_threads in infrun.c.

The 'threads_executing' global is made a per-target variable.  Since
it is only relevant to process_stratum_target targets, this is where
it is put, instead of in target_ops.

You'll notice that remote.c includes some FIXME notes.  These refer to
the fact that the global arrays that hold data for the remote packets
supported are still globals.  For example, if we connect to two
different servers/stubs, then each might support different remote
protocol features.  They might even be different architectures, like
e.g., one ARM baremetal stub, and a x86 gdbserver, to debug a
host/controller scenario as a single program.  That isn't going to
work correctly today, because of said globals.  I'm leaving fixing
that for another pass, since it does not appear to be trivial, and I'd
rather land the base work first.  It's already useful to be able to
debug multiple instances of the same server (e.g., a distributed
cluster, where you have full control over the servers installed), so I
think as is it's already reasonable incremental progress.

Current limitations:

 - You can only resume more that one target at the same time if all
   targets support asynchronous debugging, and support non-stop mode.
   It should be possible to support mixed all-stop + non-stop
   backends, but that is left for another time.  This means that
   currently in order to do multi-target with gdbserver you need to
   issue "maint set target-non-stop on".  I would like to make that
   mode be the default, but we're not there yet.  Note that I'm
   talking about how the target backend works, only.  User-visible
   all-stop mode works just fine.

 - As explained above, connecting to different remote servers at the
   same time is likely to produce bad results if they don't support the
   exact set of RSP features.

FreeBSD updates courtesy of John Baldwin.

gdb/ChangeLog:
2020-01-10  Pedro Alves  <palves@redhat.com>
	    John Baldwin  <jhb@FreeBSD.org>

	* aarch64-linux-nat.c
	(aarch64_linux_nat_target::thread_architecture): Adjust.
	* ada-tasks.c (print_ada_task_info): Adjust find_thread_ptid call.
	(task_command_1): Likewise.
	* aix-thread.c (sync_threadlists, aix_thread_target::resume)
	(aix_thread_target::wait, aix_thread_target::fetch_registers)
	(aix_thread_target::store_registers)
	(aix_thread_target::thread_alive): Adjust.
	* amd64-fbsd-tdep.c: Include "inferior.h".
	(amd64fbsd_get_thread_local_address): Pass down target.
	* amd64-linux-nat.c (ps_get_thread_area): Use ps_prochandle
	thread's gdbarch instead of target_gdbarch.
	* break-catch-sig.c (signal_catchpoint_print_it): Adjust call to
	get_last_target_status.
	* break-catch-syscall.c (print_it_catch_syscall): Likewise.
	* breakpoint.c (breakpoints_should_be_inserted_now): Consider all
	inferiors.
	(update_inserted_breakpoint_locations): Skip if inferiors with no
	execution.
	(update_global_location_list): When handling moribund locations,
	find representative inferior for location's pspace, and use thread
	count of its process_stratum target.
	* bsd-kvm.c (bsd_kvm_target_open): Pass target down.
	* bsd-uthread.c (bsd_uthread_target::wait): Use
	as_process_stratum_target and adjust thread_change_ptid and
	add_thread calls.
	(bsd_uthread_target::update_thread_list): Use
	as_process_stratum_target and adjust find_thread_ptid,
	thread_change_ptid and add_thread calls.
	* btrace.c (maint_btrace_packet_history_cmd): Adjust
	find_thread_ptid call.
	* corelow.c (add_to_thread_list): Adjust add_thread call.
	(core_target_open): Adjust add_thread_silent and thread_count
	calls.
	(core_target::pid_to_str): Adjust find_inferior_ptid call.
	* ctf.c (ctf_target_open): Adjust add_thread_silent call.
	* event-top.c (async_disconnect): Pop targets from all inferiors.
	* exec.c (add_target_sections): Push exec target on all inferiors
	sharing the program space.
	(remove_target_sections): Remove the exec target from all
	inferiors sharing the program space.
	(exec_on_vfork): New.
	* exec.h (exec_on_vfork): Declare.
	* fbsd-nat.c (fbsd_add_threads): Add fbsd_nat_target parameter.
	Pass it down.
	(fbsd_nat_target::update_thread_list): Adjust.
	(fbsd_nat_target::resume): Adjust.
	(fbsd_handle_debug_trap): Add fbsd_nat_target parameter.  Pass it
	down.
	(fbsd_nat_target::wait, fbsd_nat_target::post_attach): Adjust.
	* fbsd-tdep.c (fbsd_corefile_thread): Adjust
	get_thread_arch_regcache call.
	* fork-child.c (gdb_startup_inferior): Pass target down to
	startup_inferior and set_executing.
	* gdbthread.h (struct process_stratum_target): Forward declare.
	(add_thread, add_thread_silent, add_thread_with_info)
	(in_thread_list): Add process_stratum_target parameter.
	(find_thread_ptid(inferior*, ptid_t)): New overload.
	(find_thread_ptid, thread_change_ptid): Add process_stratum_target
	parameter.
	(all_threads()): Delete overload.
	(all_threads, all_non_exited_threads): Add process_stratum_target
	parameter.
	(all_threads_safe): Use brace initialization.
	(thread_count): Add process_stratum_target parameter.
	(set_resumed, set_running, set_stop_requested, set_executing)
	(threads_are_executing, finish_thread_state): Add
	process_stratum_target parameter.
	(switch_to_thread): Use is_current_thread.
	* i386-fbsd-tdep.c: Include "inferior.h".
	(i386fbsd_get_thread_local_address): Pass down target.
	* i386-linux-nat.c (i386_linux_nat_target::low_resume): Adjust.
	* inf-child.c (inf_child_target::maybe_unpush_target): Remove
	have_inferiors check.
	* inf-ptrace.c (inf_ptrace_target::create_inferior)
	(inf_ptrace_target::attach): Adjust.
	* infcall.c (run_inferior_call): Adjust.
	* infcmd.c (run_command_1): Pass target to
	scoped_finish_thread_state.
	(proceed_thread_callback): Skip inferiors with no execution.
	(continue_command): Rename 'all_threads' local to avoid hiding
	'all_threads' function.  Adjust get_last_target_status call.
	(prepare_one_step): Adjust set_running call.
	(signal_command): Use user_visible_resume_target.  Compare thread
	pointers instead of inferior_ptid.
	(info_program_command): Adjust to pass down target.
	(attach_command): Mark target's 'thread_executing' flag.
	(stop_current_target_threads_ns): New, factored out from ...
	(interrupt_target_1): ... this.  Switch inferior before making
	target calls.
	* inferior-iter.h
	(struct all_inferiors_iterator, struct all_inferiors_range)
	(struct all_inferiors_safe_range)
	(struct all_non_exited_inferiors_range): Filter on
	process_stratum_target too.  Remove explicit.
	* inferior.c (inferior::inferior): Push dummy target on target
	stack.
	(find_inferior_pid, find_inferior_ptid, number_of_live_inferiors):
	Add process_stratum_target parameter, and pass it down.
	(have_live_inferiors): Adjust.
	(switch_to_inferior_and_push_target): New.
	(add_inferior_command, clone_inferior_command): Handle
	"-no-connection" parameter.  Use
	switch_to_inferior_and_push_target.
	(_initialize_inferior): Mention "-no-connection" option in
	the help of "add-inferior" and "clone-inferior" commands.
	* inferior.h: Include "process-stratum-target.h".
	(interrupt_target_1): Use bool.
	(struct inferior) <push_target, unpush_target, target_is_pushed,
	find_target_beneath, top_target, process_target, target_at,
	m_stack>: New.
	(discard_all_inferiors): Delete.
	(find_inferior_pid, find_inferior_ptid, number_of_live_inferiors)
	(all_inferiors, all_non_exited_inferiors): Add
	process_stratum_target parameter.
	* infrun.c: Include "gdb_select.h" and <unordered_map>.
	(target_last_proc_target): New global.
	(follow_fork_inferior): Push target on new inferior.  Pass target
	to add_thread_silent.  Call exec_on_vfork.  Handle target's
	reference count.
	(follow_fork): Adjust get_last_target_status call.  Also consider
	target.
	(follow_exec): Push target on new inferior.
	(struct execution_control_state) <target>: New field.
	(user_visible_resume_target): New.
	(do_target_resume): Call target_async.
	(resume_1): Set target's threads_executing flag.  Consider resume
	target.
	(commit_resume_all_targets): New.
	(proceed): Also consider resume target.  Skip threads of inferiors
	with no execution.  Commit resumtion in all targets.
	(start_remote): Pass current inferior to wait_for_inferior.
	(infrun_thread_stop_requested): Consider target as well.  Pass
	thread_info pointer to clear_inline_frame_state instead of ptid.
	(infrun_thread_thread_exit): Consider target as well.
	(random_pending_event_thread): New inferior parameter.  Use it.
	(do_target_wait): Rename to ...
	(do_target_wait_1): ... this.  Add inferior parameter, and pass it
	down.
	(threads_are_resumed_pending_p, do_target_wait): New.
	(prepare_for_detach): Adjust calls.
	(wait_for_inferior): New inferior parameter.  Handle it.  Use
	do_target_wait_1 instead of do_target_wait.
	(fetch_inferior_event): Adjust.  Switch to representative
	inferior.  Pass target down.
	(set_last_target_status): Add process_stratum_target parameter.
	Save target in global.
	(get_last_target_status): Add process_stratum_target parameter and
	handle it.
	(nullify_last_target_wait_ptid): Clear 'target_last_proc_target'.
	(context_switch): Check inferior_ptid == null_ptid before calling
	inferior_thread().
	(get_inferior_stop_soon): Pass down target.
	(wait_one): Rename to ...
	(poll_one_curr_target): ... this.
	(struct wait_one_event): New.
	(wait_one): New.
	(stop_all_threads): Adjust.
	(handle_no_resumed, handle_inferior_event): Adjust to consider the
	event's target.
	(switch_back_to_stepped_thread): Also consider target.
	(print_stop_event): Update.
	(normal_stop): Update.  Also consider the resume target.
	* infrun.h (wait_for_inferior): Remove declaration.
	(user_visible_resume_target): New declaration.
	(get_last_target_status, set_last_target_status): New
	process_stratum_target parameter.
	* inline-frame.c (clear_inline_frame_state(ptid_t)): Add
	process_stratum_target parameter, and use it.
	(clear_inline_frame_state (thread_info*)): New.
	* inline-frame.c (clear_inline_frame_state(ptid_t)): Add
	process_stratum_target parameter.
	(clear_inline_frame_state (thread_info*)): Declare.
	* linux-fork.c (delete_checkpoint_command): Pass target down to
	find_thread_ptid.
	(checkpoint_command): Adjust.
	* linux-nat.c (linux_nat_target::follow_fork): Switch to thread
	instead of just tweaking inferior_ptid.
	(linux_nat_switch_fork): Pass target down to thread_change_ptid.
	(exit_lwp): Pass target down to find_thread_ptid.
	(attach_proc_task_lwp_callback): Pass target down to
	add_thread/set_running/set_executing.
	(linux_nat_target::attach): Pass target down to
	thread_change_ptid.
	(get_detach_signal): Pass target down to find_thread_ptid.
	Consider last target status's target.
	(linux_resume_one_lwp_throw, resume_lwp)
	(linux_handle_syscall_trap, linux_handle_extended_wait, wait_lwp)
	(stop_wait_callback, save_stop_reason, linux_nat_filter_event)
	(linux_nat_wait_1, resume_stopped_resumed_lwps): Pass target down.
	(linux_nat_target::async_wait_fd): New.
	(linux_nat_stop_lwp, linux_nat_target::thread_address_space): Pass
	target down.
	* linux-nat.h (linux_nat_target::async_wait_fd): Declare.
	* linux-tdep.c (get_thread_arch_regcache): Pass target down.
	* linux-thread-db.c (struct thread_db_info::process_target): New
	field.
	(add_thread_db_info): Save target.
	(get_thread_db_info): New process_stratum_target parameter.  Also
	match target.
	(delete_thread_db_info): New process_stratum_target parameter.
	Also match target.
	(thread_from_lwp): Adjust to pass down target.
	(thread_db_notice_clone): Pass down target.
	(check_thread_db_callback): Pass down target.
	(try_thread_db_load_1): Always push the thread_db target.
	(try_thread_db_load, record_thread): Pass target down.
	(thread_db_target::detach): Pass target down.  Always unpush the
	thread_db target.
	(thread_db_target::wait, thread_db_target::mourn_inferior): Pass
	target down.  Always unpush the thread_db target.
	(find_new_threads_callback, thread_db_find_new_threads_2)
	(thread_db_target::update_thread_list): Pass target down.
	(thread_db_target::pid_to_str): Pass current inferior down.
	(thread_db_target::get_thread_local_address): Pass target down.
	(thread_db_target::resume, maintenance_check_libthread_db): Pass
	target down.
	* nto-procfs.c (nto_procfs_target::update_thread_list): Adjust.
	* procfs.c (procfs_target::procfs_init_inferior): Declare.
	(proc_set_current_signal, do_attach, procfs_target::wait): Adjust.
	(procfs_init_inferior): Rename to ...
	(procfs_target::procfs_init_inferior): ... this and adjust.
	(procfs_target::create_inferior, procfs_notice_thread)
	(procfs_do_thread_registers): Adjust.
	* ppc-fbsd-tdep.c: Include "inferior.h".
	(ppcfbsd_get_thread_local_address): Pass down target.
	* proc-service.c (ps_xfer_memory): Switch current inferior and
	program space as well.
	(get_ps_regcache): Pass target down.
	* process-stratum-target.c
	(process_stratum_target::thread_address_space)
	(process_stratum_target::thread_architecture): Pass target down.
	* process-stratum-target.h
	(process_stratum_target::threads_executing): New field.
	(as_process_stratum_target): New.
	* ravenscar-thread.c
	(ravenscar_thread_target::update_inferior_ptid): Pass target down.
	(ravenscar_thread_target::wait, ravenscar_add_thread): Pass target
	down.
	* record-btrace.c (record_btrace_target::info_record): Adjust.
	(record_btrace_target::record_method)
	(record_btrace_target::record_is_replaying)
	(record_btrace_target::fetch_registers)
	(get_thread_current_frame_id, record_btrace_target::resume)
	(record_btrace_target::wait, record_btrace_target::stop): Pass
	target down.
	* record-full.c (record_full_wait_1): Switch to event thread.
	Pass target down.
	* regcache.c (regcache::regcache)
	(get_thread_arch_aspace_regcache, get_thread_arch_regcache): Add
	process_stratum_target parameter and handle it.
	(current_thread_target): New global.
	(get_thread_regcache): Add process_stratum_target parameter and
	handle it.  Switch inferior before calling target method.
	(get_thread_regcache): Pass target down.
	(get_thread_regcache_for_ptid): Pass target down.
	(registers_changed_ptid): Add process_stratum_target parameter and
	handle it.
	(registers_changed_thread, registers_changed): Pass target down.
	(test_get_thread_arch_aspace_regcache): New.
	(current_regcache_test): Define a couple local test_target_ops
	instances and use them for testing.
	(readwrite_regcache): Pass process_stratum_target parameter.
	(cooked_read_test, cooked_write_test): Pass mock_target down.
	* regcache.h (get_thread_regcache, get_thread_arch_regcache)
	(get_thread_arch_aspace_regcache): Add process_stratum_target
	parameter.
	(regcache::target): New method.
	(regcache::regcache, regcache::get_thread_arch_aspace_regcache)
	(regcache::registers_changed_ptid): Add process_stratum_target
	parameter.
	(regcache::m_target): New field.
	(registers_changed_ptid): Add process_stratum_target parameter.
	* remote.c (remote_state::supports_vCont_probed): New field.
	(remote_target::async_wait_fd): New method.
	(remote_unpush_and_throw): Add remote_target parameter.
	(get_current_remote_target): Adjust.
	(remote_target::remote_add_inferior): Push target.
	(remote_target::remote_add_thread)
	(remote_target::remote_notice_new_inferior)
	(get_remote_thread_info): Pass target down.
	(remote_target::update_thread_list): Skip threads of inferiors
	bound to other targets.  (remote_target::close): Don't discard
	inferiors.  (remote_target::add_current_inferior_and_thread)
	(remote_target::process_initial_stop_replies)
	(remote_target::start_remote)
	(remote_target::remote_serial_quit_handler): Pass down target.
	(remote_target::remote_unpush_target): New remote_target
	parameter.  Unpush the target from all inferiors.
	(remote_target::remote_unpush_and_throw): New remote_target
	parameter.  Pass it down.
	(remote_target::open_1): Check whether the current inferior has
	execution instead of checking whether any inferior is live.  Pass
	target down.
	(remote_target::remote_detach_1): Pass down target.  Use
	remote_unpush_target.
	(extended_remote_target::attach): Pass down target.
	(remote_target::remote_vcont_probe): Set supports_vCont_probed.
	(remote_target::append_resumption): Pass down target.
	(remote_target::append_pending_thread_resumptions)
	(remote_target::remote_resume_with_hc, remote_target::resume)
	(remote_target::commit_resume): Pass down target.
	(remote_target::remote_stop_ns): Check supports_vCont_probed.
	(remote_target::interrupt_query)
	(remote_target::remove_new_fork_children)
	(remote_target::check_pending_events_prevent_wildcard_vcont)
	(remote_target::remote_parse_stop_reply)
	(remote_target::process_stop_reply): Pass down target.
	(first_remote_resumed_thread): New remote_target parameter.  Pass
	it down.
	(remote_target::wait_as): Pass down target.
	(unpush_and_perror): New remote_target parameter.  Pass it down.
	(remote_target::readchar, remote_target::remote_serial_write)
	(remote_target::getpkt_or_notif_sane_1)
	(remote_target::kill_new_fork_children, remote_target::kill): Pass
	down target.
	(remote_target::mourn_inferior): Pass down target.  Use
	remote_unpush_target.
	(remote_target::core_of_thread)
	(remote_target::remote_btrace_maybe_reopen): Pass down target.
	(remote_target::pid_to_exec_file)
	(remote_target::thread_handle_to_thread_info): Pass down target.
	(remote_target::async_wait_fd): New.
	* riscv-fbsd-tdep.c: Include "inferior.h".
	(riscv_fbsd_get_thread_local_address): Pass down target.
	* sol2-tdep.c (sol2_core_pid_to_str): Pass down target.
	* sol-thread.c (sol_thread_target::wait, ps_lgetregs, ps_lsetregs)
	(ps_lgetfpregs, ps_lsetfpregs, sol_update_thread_list_callback):
	Adjust.
	* solib-spu.c (spu_skip_standalone_loader): Pass down target.
	* solib-svr4.c (enable_break): Pass down target.
	* spu-multiarch.c (parse_spufs_run): Pass down target.
	* spu-tdep.c (spu2ppu_sniffer): Pass down target.
	* target-delegates.c: Regenerate.
	* target.c (g_target_stack): Delete.
	(current_top_target): Return the current inferior's top target.
	(target_has_execution_1): Refer to the passed-in inferior's top
	target.
	(target_supports_terminal_ours): Check whether the initial
	inferior was already created.
	(decref_target): New.
	(target_stack::push): Incref/decref the target.
	(push_target, push_target, unpush_target): Adjust.
	(target_stack::unpush): Defref target.
	(target_is_pushed): Return bool.  Adjust to refer to the current
	inferior's target stack.
	(dispose_inferior): Delete, and inline parts ...
	(target_preopen): ... here.  Only dispose of the current inferior.
	(target_detach): Hold strong target reference while detaching.
	Pass target down.
	(target_thread_name): Add assertion.
	(target_resume): Pass down target.
	(target_ops::beneath, find_target_at): Adjust to refer to the
	current inferior's target stack.
	(get_dummy_target): New.
	(target_pass_ctrlc): Pass the Ctrl-C to the first inferior that
	has a thread running.
	(initialize_targets): Rename to ...
	(_initialize_target): ... this.
	* target.h: Include "gdbsupport/refcounted-object.h".
	(struct target_ops): Inherit refcounted_object.
	(target_ops::shortname, target_ops::longname): Make const.
	(target_ops::async_wait_fd): New method.
	(decref_target): Declare.
	(struct target_ops_ref_policy): New.
	(target_ops_ref): New typedef.
	(get_dummy_target): Declare function.
	(target_is_pushed): Return bool.
	* thread-iter.c (all_matching_threads_iterator::m_inf_matches)
	(all_matching_threads_iterator::all_matching_threads_iterator):
	Handle filter target.
	* thread-iter.h (struct all_matching_threads_iterator, struct
	all_matching_threads_range, class all_non_exited_threads_range):
	Filter by target too.  Remove explicit.
	* thread.c (threads_executing): Delete.
	(inferior_thread): Pass down current inferior.
	(clear_thread_inferior_resources): Pass down thread pointer
	instead of ptid_t.
	(add_thread_silent, add_thread_with_info, add_thread): Add
	process_stratum_target parameter.  Use it for thread and inferior
	searches.
	(is_current_thread): New.
	(thread_info::deletable): Use it.
	(find_thread_ptid, thread_count, in_thread_list)
	(thread_change_ptid, set_resumed, set_running): New
	process_stratum_target parameter.  Pass it down.
	(set_executing): New process_stratum_target parameter.  Pass it
	down.  Adjust reference to 'threads_executing'.
	(threads_are_executing): New process_stratum_target parameter.
	Adjust reference to 'threads_executing'.
	(set_stop_requested, finish_thread_state): New
	process_stratum_target parameter.  Pass it down.
	(switch_to_thread): Also match inferior.
	(switch_to_thread): New process_stratum_target parameter.  Pass it
	down.
	(update_threads_executing): Reimplement.
	* top.c (quit_force): Pop targets from all inferior.
	(gdb_init): Don't call initialize_targets.
	* windows-nat.c (windows_nat_target) <get_windows_debug_event>:
	Declare.
	(windows_add_thread, windows_delete_thread): Adjust.
	(get_windows_debug_event): Rename to ...
	(windows_nat_target::get_windows_debug_event): ... this.  Adjust.
	* tracefile-tfile.c (tfile_target_open): Pass down target.
	* gdbsupport/common-gdbthread.h (struct process_stratum_target):
	Forward declare.
	(switch_to_thread): Add process_stratum_target parameter.
	* mi/mi-interp.c (mi_on_resume_1): Add process_stratum_target
	parameter.  Use it.
	(mi_on_resume): Pass target down.
	* nat/fork-inferior.c (startup_inferior): Add
	process_stratum_target parameter.  Pass it down.
	* nat/fork-inferior.h (startup_inferior): Add
	process_stratum_target parameter.
	* python/py-threadevent.c (py_get_event_thread): Pass target down.

gdb/gdbserver/ChangeLog:
2020-01-10  Pedro Alves  <palves@redhat.com>

	* fork-child.c (post_fork_inferior): Pass target down to
	startup_inferior.
	* inferiors.c (switch_to_thread): Add process_stratum_target
	parameter.
	* lynx-low.c (lynx_target_ops): Now a process_stratum_target.
	* nto-low.c (nto_target_ops): Now a process_stratum_target.
	* linux-low.c (linux_target_ops): Now a process_stratum_target.
	* remote-utils.c (prepare_resume_reply): Pass the target to
	switch_to_thread.
	* target.c (the_target): Now a process_stratum_target.
	(done_accessing_memory): Pass the target to switch_to_thread.
	(set_target_ops): Ajust to use process_stratum_target.
	* target.h (struct target_ops): Rename to ...
	(struct process_stratum_target): ... this.
	(the_target, set_target_ops): Adjust.
	(prepare_to_access_memory): Adjust comment.
	* win32-low.c (child_xfer_memory): Adjust to use
	process_stratum_target.
	(win32_target_ops): Now a process_stratum_target.
2020-01-10 20:06:08 +00:00

797 lines
29 KiB
C++

/* Multi-process/thread control defs for GDB, the GNU debugger.
Copyright (C) 1987-2020 Free Software Foundation, Inc.
Contributed by Lynx Real-Time Systems, Inc. Los Gatos, CA.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#ifndef GDBTHREAD_H
#define GDBTHREAD_H
struct symtab;
#include "breakpoint.h"
#include "frame.h"
#include "ui-out.h"
#include "btrace.h"
#include "target/waitstatus.h"
#include "cli/cli-utils.h"
#include "gdbsupport/refcounted-object.h"
#include "gdbsupport/common-gdbthread.h"
#include "gdbsupport/forward-scope-exit.h"
struct inferior;
struct process_stratum_target;
/* Frontend view of the thread state. Possible extensions: stepping,
finishing, until(ling),...
NOTE: Since the thread state is not a boolean, most times, you do
not want to check it with negation. If you really want to check if
the thread is stopped,
use (good):
if (tp->state == THREAD_STOPPED)
instead of (bad):
if (tp->state != THREAD_RUNNING)
The latter is also true for exited threads, most likely not what
you want. */
enum thread_state
{
/* In the frontend's perpective, the thread is stopped. */
THREAD_STOPPED,
/* In the frontend's perpective, the thread is running. */
THREAD_RUNNING,
/* The thread is listed, but known to have exited. We keep it
listed (but not visible) until it's safe to delete it. */
THREAD_EXITED,
};
/* STEP_OVER_ALL means step over all subroutine calls.
STEP_OVER_UNDEBUGGABLE means step over calls to undebuggable functions.
STEP_OVER_NONE means don't step over any subroutine calls. */
enum step_over_calls_kind
{
STEP_OVER_NONE,
STEP_OVER_ALL,
STEP_OVER_UNDEBUGGABLE
};
/* Inferior thread specific part of `struct infcall_control_state'.
Inferior process counterpart is `struct inferior_control_state'. */
struct thread_control_state
{
/* User/external stepping state. */
/* Step-resume or longjmp-resume breakpoint. */
struct breakpoint *step_resume_breakpoint = nullptr;
/* Exception-resume breakpoint. */
struct breakpoint *exception_resume_breakpoint = nullptr;
/* Breakpoints used for software single stepping. Plural, because
it may have multiple locations. E.g., if stepping over a
conditional branch instruction we can't decode the condition for,
we'll need to put a breakpoint at the branch destination, and
another at the instruction after the branch. */
struct breakpoint *single_step_breakpoints = nullptr;
/* Range to single step within.
If this is nonzero, respond to a single-step signal by continuing
to step if the pc is in this range.
If step_range_start and step_range_end are both 1, it means to
step for a single instruction (FIXME: it might clean up
wait_for_inferior in a minor way if this were changed to the
address of the instruction and that address plus one. But maybe
not). */
CORE_ADDR step_range_start = 0; /* Inclusive */
CORE_ADDR step_range_end = 0; /* Exclusive */
/* Function the thread was in as of last it started stepping. */
struct symbol *step_start_function = nullptr;
/* If GDB issues a target step request, and this is nonzero, the
target should single-step this thread once, and then continue
single-stepping it without GDB core involvement as long as the
thread stops in the step range above. If this is zero, the
target should ignore the step range, and only issue one single
step. */
int may_range_step = 0;
/* Stack frame address as of when stepping command was issued.
This is how we know when we step into a subroutine call, and how
to set the frame for the breakpoint used to step out. */
struct frame_id step_frame_id {};
/* Similarly, the frame ID of the underlying stack frame (skipping
any inlined frames). */
struct frame_id step_stack_frame_id {};
/* Nonzero if we are presently stepping over a breakpoint.
If we hit a breakpoint or watchpoint, and then continue, we need
to single step the current thread with breakpoints disabled, to
avoid hitting the same breakpoint or watchpoint again. And we
should step just a single thread and keep other threads stopped,
so that other threads don't miss breakpoints while they are
removed.
So, this variable simultaneously means that we need to single
step the current thread, keep other threads stopped, and that
breakpoints should be removed while we step.
This variable is set either:
- in proceed, when we resume inferior on user's explicit request
- in keep_going, if handle_inferior_event decides we need to
step over breakpoint.
The variable is cleared in normal_stop. The proceed calls
wait_for_inferior, which calls handle_inferior_event in a loop,
and until wait_for_inferior exits, this variable is changed only
by keep_going. */
int trap_expected = 0;
/* Nonzero if the thread is being proceeded for a "finish" command
or a similar situation when return value should be printed. */
int proceed_to_finish = 0;
/* Nonzero if the thread is being proceeded for an inferior function
call. */
int in_infcall = 0;
enum step_over_calls_kind step_over_calls = STEP_OVER_NONE;
/* Nonzero if stopped due to a step command. */
int stop_step = 0;
/* Chain containing status of breakpoint(s) the thread stopped
at. */
bpstat stop_bpstat = nullptr;
/* Whether the command that started the thread was a stepping
command. This is used to decide whether "set scheduler-locking
step" behaves like "on" or "off". */
int stepping_command = 0;
};
/* Inferior thread specific part of `struct infcall_suspend_state'. */
struct thread_suspend_state
{
/* Last signal that the inferior received (why it stopped). When
the thread is resumed, this signal is delivered. Note: the
target should not check whether the signal is in pass state,
because the signal may have been explicitly passed with the
"signal" command, which overrides "handle nopass". If the signal
should be suppressed, the core will take care of clearing this
before the target is resumed. */
enum gdb_signal stop_signal = GDB_SIGNAL_0;
/* The reason the thread last stopped, if we need to track it
(breakpoint, watchpoint, etc.) */
enum target_stop_reason stop_reason = TARGET_STOPPED_BY_NO_REASON;
/* The waitstatus for this thread's last event. */
struct target_waitstatus waitstatus {};
/* If true WAITSTATUS hasn't been handled yet. */
int waitstatus_pending_p = 0;
/* Record the pc of the thread the last time it stopped. (This is
not the current thread's PC as that may have changed since the
last stop, e.g., "return" command, or "p $pc = 0xf000").
- If the thread's PC has not changed since the thread last
stopped, then proceed skips a breakpoint at the current PC,
otherwise we let the thread run into the breakpoint.
- If the thread has an unprocessed event pending, as indicated by
waitstatus_pending_p, this is used in coordination with
stop_reason: if the thread's PC has changed since the thread
last stopped, a pending breakpoint waitstatus is discarded.
- If the thread is running, this is set to -1, to avoid leaving
it with a stale value, to make it easier to catch bugs. */
CORE_ADDR stop_pc = 0;
};
/* Base class for target-specific thread data. */
struct private_thread_info
{
virtual ~private_thread_info () = 0;
};
/* Threads are intrusively refcounted objects. Being the
user-selected thread is normally considered an implicit strong
reference and is thus not accounted in the refcount, unlike
inferior objects. This is necessary, because there's no "current
thread" pointer. Instead the current thread is inferred from the
inferior_ptid global. However, when GDB needs to remember the
selected thread to later restore it, GDB bumps the thread object's
refcount, to prevent something deleting the thread object before
reverting back (e.g., due to a "kill" command). If the thread
meanwhile exits before being re-selected, then the thread object is
left listed in the thread list, but marked with state
THREAD_EXITED. (See scoped_restore_current_thread and
delete_thread). All other thread references are considered weak
references. Placing a thread in the thread list is an implicit
strong reference, and is thus not accounted for in the thread's
refcount. */
class thread_info : public refcounted_object
{
public:
explicit thread_info (inferior *inf, ptid_t ptid);
~thread_info ();
bool deletable () const;
/* Mark this thread as running and notify observers. */
void set_running (bool running);
struct thread_info *next = NULL;
ptid_t ptid; /* "Actual process id";
In fact, this may be overloaded with
kernel thread id, etc. */
/* Each thread has two GDB IDs.
a) The thread ID (Id). This consists of the pair of:
- the number of the thread's inferior and,
- the thread's thread number in its inferior, aka, the
per-inferior thread number. This number is unique in the
inferior but not unique between inferiors.
b) The global ID (GId). This is a a single integer unique
between all inferiors.
E.g.:
(gdb) info threads -gid
Id GId Target Id Frame
* 1.1 1 Thread A 0x16a09237 in foo () at foo.c:10
1.2 3 Thread B 0x15ebc6ed in bar () at foo.c:20
1.3 5 Thread C 0x15ebc6ed in bar () at foo.c:20
2.1 2 Thread A 0x16a09237 in foo () at foo.c:10
2.2 4 Thread B 0x15ebc6ed in bar () at foo.c:20
2.3 6 Thread C 0x15ebc6ed in bar () at foo.c:20
Above, both inferiors 1 and 2 have threads numbered 1-3, but each
thread has its own unique global ID. */
/* The thread's global GDB thread number. This is exposed to MI,
Python/Scheme, visible with "info threads -gid", and is also what
the $_gthread convenience variable is bound to. */
int global_num;
/* The per-inferior thread number. This is unique in the inferior
the thread belongs to, but not unique between inferiors. This is
what the $_thread convenience variable is bound to. */
int per_inf_num;
/* The inferior this thread belongs to. */
struct inferior *inf;
/* The name of the thread, as specified by the user. This is NULL
if the thread does not have a user-given name. */
char *name = NULL;
/* Non-zero means the thread is executing. Note: this is different
from saying that there is an active target and we are stopped at
a breakpoint, for instance. This is a real indicator whether the
thread is off and running. */
bool executing = false;
/* Non-zero if this thread is resumed from infrun's perspective.
Note that a thread can be marked both as not-executing and
resumed at the same time. This happens if we try to resume a
thread that has a wait status pending. We shouldn't let the
thread really run until that wait status has been processed, but
we should not process that wait status if we didn't try to let
the thread run. */
int resumed = 0;
/* Frontend view of the thread state. Note that the THREAD_RUNNING/
THREAD_STOPPED states are different from EXECUTING. When the
thread is stopped internally while handling an internal event,
like a software single-step breakpoint, EXECUTING will be false,
but STATE will still be THREAD_RUNNING. */
enum thread_state state = THREAD_STOPPED;
/* State of GDB control of inferior thread execution.
See `struct thread_control_state'. */
thread_control_state control;
/* State of inferior thread to restore after GDB is done with an inferior
call. See `struct thread_suspend_state'. */
thread_suspend_state suspend;
int current_line = 0;
struct symtab *current_symtab = NULL;
/* Internal stepping state. */
/* Record the pc of the thread the last time it was resumed. (It
can't be done on stop as the PC may change since the last stop,
e.g., "return" command, or "p $pc = 0xf000"). This is maintained
by proceed and keep_going, and among other things, it's used in
adjust_pc_after_break to distinguish a hardware single-step
SIGTRAP from a breakpoint SIGTRAP. */
CORE_ADDR prev_pc = 0;
/* Did we set the thread stepping a breakpoint instruction? This is
used in conjunction with PREV_PC to decide whether to adjust the
PC. */
int stepped_breakpoint = 0;
/* Should we step over breakpoint next time keep_going is called? */
int stepping_over_breakpoint = 0;
/* Should we step over a watchpoint next time keep_going is called?
This is needed on targets with non-continuable, non-steppable
watchpoints. */
int stepping_over_watchpoint = 0;
/* Set to TRUE if we should finish single-stepping over a breakpoint
after hitting the current step-resume breakpoint. The context here
is that GDB is to do `next' or `step' while signal arrives.
When stepping over a breakpoint and signal arrives, GDB will attempt
to skip signal handler, so it inserts a step_resume_breakpoint at the
signal return address, and resume inferior.
step_after_step_resume_breakpoint is set to TRUE at this moment in
order to keep GDB in mind that there is still a breakpoint to step over
when GDB gets back SIGTRAP from step_resume_breakpoint. */
int step_after_step_resume_breakpoint = 0;
/* Pointer to the state machine manager object that handles what is
left to do for the thread's execution command after the target
stops. Several execution commands use it. */
struct thread_fsm *thread_fsm = NULL;
/* This is used to remember when a fork or vfork event was caught by
a catchpoint, and thus the event is to be followed at the next
resume of the thread, and not immediately. */
struct target_waitstatus pending_follow;
/* True if this thread has been explicitly requested to stop. */
int stop_requested = 0;
/* The initiating frame of a nexting operation, used for deciding
which exceptions to intercept. If it is null_frame_id no
bp_longjmp or bp_exception but longjmp has been caught just for
bp_longjmp_call_dummy. */
struct frame_id initiating_frame = null_frame_id;
/* Private data used by the target vector implementation. */
std::unique_ptr<private_thread_info> priv;
/* Branch trace information for this thread. */
struct btrace_thread_info btrace {};
/* Flag which indicates that the stack temporaries should be stored while
evaluating expressions. */
bool stack_temporaries_enabled = false;
/* Values that are stored as temporaries on stack while evaluating
expressions. */
std::vector<struct value *> stack_temporaries;
/* Step-over chain. A thread is in the step-over queue if these are
non-NULL. If only a single thread is in the chain, then these
fields point to self. */
struct thread_info *step_over_prev = NULL;
struct thread_info *step_over_next = NULL;
};
/* A gdb::ref_ptr pointer to a thread_info. */
using thread_info_ref
= gdb::ref_ptr<struct thread_info, refcounted_object_ref_policy>;
/* Create an empty thread list, or empty the existing one. */
extern void init_thread_list (void);
/* Add a thread to the thread list, print a message
that a new thread is found, and return the pointer to
the new thread. Caller my use this pointer to
initialize the private thread data. */
extern struct thread_info *add_thread (process_stratum_target *targ,
ptid_t ptid);
/* Same as add_thread, but does not print a message about new
thread. */
extern struct thread_info *add_thread_silent (process_stratum_target *targ,
ptid_t ptid);
/* Same as add_thread, and sets the private info. */
extern struct thread_info *add_thread_with_info (process_stratum_target *targ,
ptid_t ptid,
private_thread_info *);
/* Delete an existing thread list entry. */
extern void delete_thread (struct thread_info *thread);
/* Delete an existing thread list entry, and be quiet about it. Used
after the process this thread having belonged to having already
exited, for example. */
extern void delete_thread_silent (struct thread_info *thread);
/* Delete a step_resume_breakpoint from the thread database. */
extern void delete_step_resume_breakpoint (struct thread_info *);
/* Delete an exception_resume_breakpoint from the thread database. */
extern void delete_exception_resume_breakpoint (struct thread_info *);
/* Delete the single-step breakpoints of thread TP, if any. */
extern void delete_single_step_breakpoints (struct thread_info *tp);
/* Check if the thread has software single stepping breakpoints
set. */
extern int thread_has_single_step_breakpoints_set (struct thread_info *tp);
/* Check whether the thread has software single stepping breakpoints
set at PC. */
extern int thread_has_single_step_breakpoint_here (struct thread_info *tp,
const address_space *aspace,
CORE_ADDR addr);
/* Returns whether to show inferior-qualified thread IDs, or plain
thread numbers. Inferior-qualified IDs are shown whenever we have
multiple inferiors, or the only inferior left has number > 1. */
extern int show_inferior_qualified_tids (void);
/* Return a string version of THR's thread ID. If there are multiple
inferiors, then this prints the inferior-qualifier form, otherwise
it only prints the thread number. The result is stored in a
circular static buffer, NUMCELLS deep. */
const char *print_thread_id (struct thread_info *thr);
/* Boolean test for an already-known ptid. */
extern bool in_thread_list (process_stratum_target *targ, ptid_t ptid);
/* Boolean test for an already-known global thread id (GDB's homegrown
global id, not the system's). */
extern int valid_global_thread_id (int global_id);
/* Find thread PTID of inferior INF. */
extern thread_info *find_thread_ptid (inferior *inf, ptid_t ptid);
/* Search function to lookup a thread by 'pid'. */
extern struct thread_info *find_thread_ptid (process_stratum_target *targ,
ptid_t ptid);
/* Search function to lookup a thread by 'ptid'. Only searches in
threads of INF. */
extern struct thread_info *find_thread_ptid (inferior *inf, ptid_t ptid);
/* Find thread by GDB global thread ID. */
struct thread_info *find_thread_global_id (int global_id);
/* Find thread by thread library specific handle in inferior INF. */
struct thread_info *find_thread_by_handle
(gdb::array_view<const gdb_byte> handle, struct inferior *inf);
/* Finds the first thread of the specified inferior. */
extern struct thread_info *first_thread_of_inferior (inferior *inf);
/* Returns any thread of inferior INF, giving preference to the
current thread. */
extern struct thread_info *any_thread_of_inferior (inferior *inf);
/* Returns any non-exited thread of inferior INF, giving preference to
the current thread, and to not executing threads. */
extern struct thread_info *any_live_thread_of_inferior (inferior *inf);
/* Change the ptid of thread OLD_PTID to NEW_PTID. */
void thread_change_ptid (process_stratum_target *targ,
ptid_t old_ptid, ptid_t new_ptid);
/* Iterator function to call a user-provided callback function
once for each known thread. */
typedef int (*thread_callback_func) (struct thread_info *, void *);
extern struct thread_info *iterate_over_threads (thread_callback_func, void *);
/* Pull in the internals of the inferiors/threads ranges and
iterators. Must be done after struct thread_info is defined. */
#include "thread-iter.h"
/* Return a range that can be used to walk over threads, with
range-for.
Used like this, it walks over all threads of all inferiors of all
targets:
for (thread_info *thr : all_threads ())
{ .... }
FILTER_PTID can be used to filter out threads that don't match.
FILTER_PTID can be:
- minus_one_ptid, meaning walk all threads of all inferiors of
PROC_TARGET. If PROC_TARGET is NULL, then of all targets.
- A process ptid, in which case walk all threads of the specified
process. PROC_TARGET must be non-NULL in this case.
- A thread ptid, in which case walk that thread only. PROC_TARGET
must be non-NULL in this case.
*/
inline all_matching_threads_range
all_threads (process_stratum_target *proc_target = nullptr,
ptid_t filter_ptid = minus_one_ptid)
{
return all_matching_threads_range (proc_target, filter_ptid);
}
/* Return a range that can be used to walk over all non-exited threads
of all inferiors, with range-for. Arguments are like all_threads
above. */
inline all_non_exited_threads_range
all_non_exited_threads (process_stratum_target *proc_target = nullptr,
ptid_t filter_ptid = minus_one_ptid)
{
return all_non_exited_threads_range (proc_target, filter_ptid);
}
/* Return a range that can be used to walk over all threads of all
inferiors, with range-for, safely. I.e., it is safe to delete the
currently-iterated thread. When combined with range-for, this
allow convenient patterns like this:
for (thread_info *t : all_threads_safe ())
if (some_condition ())
delete f;
*/
inline all_threads_safe_range
all_threads_safe ()
{
return {};
}
extern int thread_count (process_stratum_target *proc_target);
/* Return true if we have any thread in any inferior. */
extern bool any_thread_p ();
/* Switch context to thread THR. Also sets the STOP_PC global. */
extern void switch_to_thread (struct thread_info *thr);
/* Switch context to no thread selected. */
extern void switch_to_no_thread ();
/* Switch from one thread to another. Does not read registers. */
extern void switch_to_thread_no_regs (struct thread_info *thread);
/* Marks or clears thread(s) PTID of TARG as resumed. If PTID is
MINUS_ONE_PTID, applies to all threads of TARG. If
ptid_is_pid(PTID) is true, applies to all threads of the process
pointed at by {TARG,PTID}. */
extern void set_resumed (process_stratum_target *targ,
ptid_t ptid, bool resumed);
/* Marks thread PTID of TARG as running, or as stopped. If PTID is
minus_one_ptid, marks all threads of TARG. */
extern void set_running (process_stratum_target *targ,
ptid_t ptid, bool running);
/* Marks or clears thread(s) PTID of TARG as having been requested to
stop. If PTID is MINUS_ONE_PTID, applies to all threads of TARG.
If ptid_is_pid(PTID) is true, applies to all threads of the process
pointed at by {TARG, PTID}. If STOP, then the
THREAD_STOP_REQUESTED observer is called with PTID as argument. */
extern void set_stop_requested (process_stratum_target *targ,
ptid_t ptid, bool stop);
/* Marks thread PTID of TARG as executing, or not. If PTID is
minus_one_ptid, marks all threads of TARG.
Note that this is different from the running state. See the
description of state and executing fields of struct
thread_info. */
extern void set_executing (process_stratum_target *targ,
ptid_t ptid, bool executing);
/* True if any (known or unknown) thread of TARG is or may be
executing. */
extern bool threads_are_executing (process_stratum_target *targ);
/* Merge the executing property of thread PTID of TARG over to its
thread state property (frontend running/stopped view).
"not executing" -> "stopped"
"executing" -> "running"
"exited" -> "exited"
If PTID is minus_one_ptid, go over all threads of TARG.
Notifications are only emitted if the thread state did change. */
extern void finish_thread_state (process_stratum_target *targ, ptid_t ptid);
/* Calls finish_thread_state on scope exit, unless release() is called
to disengage. */
using scoped_finish_thread_state
= FORWARD_SCOPE_EXIT (finish_thread_state);
/* Commands with a prefix of `thread'. */
extern struct cmd_list_element *thread_cmd_list;
extern void thread_command (const char *tidstr, int from_tty);
/* Print notices on thread events (attach, detach, etc.), set with
`set print thread-events'. */
extern bool print_thread_events;
/* Prints the list of threads and their details on UIOUT. If
REQUESTED_THREADS, a list of GDB ids/ranges, is not NULL, only
print threads whose ID is included in the list. If PID is not -1,
only print threads from the process PID. Otherwise, threads from
all attached PIDs are printed. If both REQUESTED_THREADS is not
NULL and PID is not -1, then the thread is printed if it belongs to
the specified process. Otherwise, an error is raised. */
extern void print_thread_info (struct ui_out *uiout,
const char *requested_threads,
int pid);
/* Save/restore current inferior/thread/frame. */
class scoped_restore_current_thread
{
public:
scoped_restore_current_thread ();
~scoped_restore_current_thread ();
DISABLE_COPY_AND_ASSIGN (scoped_restore_current_thread);
/* Cancel restoring on scope exit. */
void dont_restore () { m_dont_restore = true; }
private:
void restore ();
bool m_dont_restore = false;
/* Use the "class" keyword here, because of a clash with a "thread_info"
function in the Darwin API. */
class thread_info *m_thread;
inferior *m_inf;
frame_id m_selected_frame_id;
int m_selected_frame_level;
bool m_was_stopped;
};
/* Returns a pointer into the thread_info corresponding to
INFERIOR_PTID. INFERIOR_PTID *must* be in the thread list. */
extern struct thread_info* inferior_thread (void);
extern void update_thread_list (void);
/* Delete any thread the target says is no longer alive. */
extern void prune_threads (void);
/* Delete threads marked THREAD_EXITED. Unlike prune_threads, this
does not consult the target about whether the thread is alive right
now. */
extern void delete_exited_threads (void);
/* Return true if PC is in the stepping range of THREAD. */
int pc_in_thread_step_range (CORE_ADDR pc, struct thread_info *thread);
/* Enable storing stack temporaries for thread THR and disable and
clear the stack temporaries on destruction. Holds a strong
reference to THR. */
class enable_thread_stack_temporaries
{
public:
explicit enable_thread_stack_temporaries (struct thread_info *thr)
: m_thr (thr)
{
gdb_assert (m_thr != NULL);
m_thr->incref ();
m_thr->stack_temporaries_enabled = true;
m_thr->stack_temporaries.clear ();
}
~enable_thread_stack_temporaries ()
{
m_thr->stack_temporaries_enabled = false;
m_thr->stack_temporaries.clear ();
m_thr->decref ();
}
DISABLE_COPY_AND_ASSIGN (enable_thread_stack_temporaries);
private:
struct thread_info *m_thr;
};
extern bool thread_stack_temporaries_enabled_p (struct thread_info *tp);
extern void push_thread_stack_temporary (struct thread_info *tp, struct value *v);
extern value *get_last_thread_stack_temporary (struct thread_info *tp);
extern bool value_in_thread_stack_temporaries (struct value *,
struct thread_info *thr);
/* Add TP to the end of its inferior's pending step-over chain. */
extern void thread_step_over_chain_enqueue (struct thread_info *tp);
/* Remove TP from its inferior's pending step-over chain. */
extern void thread_step_over_chain_remove (struct thread_info *tp);
/* Return the next thread in the step-over chain starting at TP. NULL
if TP is the last entry in the chain. */
extern struct thread_info *thread_step_over_chain_next (struct thread_info *tp);
/* Return true if TP is in the step-over chain. */
extern int thread_is_in_step_over_chain (struct thread_info *tp);
/* Cancel any ongoing execution command. */
extern void thread_cancel_execution_command (struct thread_info *thr);
/* Check whether it makes sense to access a register of the current
thread at this point. If not, throw an error (e.g., the thread is
executing). */
extern void validate_registers_access (void);
/* Check whether it makes sense to access a register of THREAD at this point.
Returns true if registers may be accessed; false otherwise. */
extern bool can_access_registers_thread (struct thread_info *thread);
/* Returns whether to show which thread hit the breakpoint, received a
signal, etc. and ended up causing a user-visible stop. This is
true iff we ever detected multiple threads. */
extern int show_thread_that_caused_stop (void);
/* Print the message for a thread or/and frame selected. */
extern void print_selected_thread_frame (struct ui_out *uiout,
user_selected_what selection);
/* Helper for the CLI's "thread" command and for MI's -thread-select.
Selects thread THR. TIDSTR is the original string the thread ID
was parsed from. This is used in the error message if THR is not
alive anymore. */
extern void thread_select (const char *tidstr, class thread_info *thr);
#endif /* GDBTHREAD_H */