mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2025-01-06 12:09:26 +08:00
401 lines
14 KiB
C
401 lines
14 KiB
C
/* Definitions to make GDB target for an ARM under RISCiX (4.3bsd).
|
||
Copyright 1986, 1987, 1989, 1991, 1993 Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
|
||
|
||
#define TARGET_BYTE_ORDER LITTLE_ENDIAN
|
||
|
||
/* IEEE format floating point */
|
||
|
||
#define IEEE_FLOAT
|
||
|
||
/* I provide my own xfer_core_file to cope with shared libraries */
|
||
|
||
#define XFER_CORE_FILE
|
||
|
||
/* Offset from address of function to start of its code.
|
||
Zero on most machines. */
|
||
|
||
#define FUNCTION_START_OFFSET 0
|
||
|
||
/* Advance PC across any function entry prologue instructions
|
||
to reach some "real" code. */
|
||
|
||
#define SKIP_PROLOGUE(pc) pc = skip_prologue(pc)
|
||
|
||
/* Immediately after a function call, return the saved pc.
|
||
Can't always go through the frames for this because on some machines
|
||
the new frame is not set up until the new function executes
|
||
some instructions. */
|
||
|
||
#define SAVED_PC_AFTER_CALL(frame) (read_register (LR_REGNUM) & 0x03fffffc)
|
||
|
||
/* I don't know the real values for these. */
|
||
#define TARGET_UPAGES UPAGES
|
||
#define TARGET_NBPG NBPG
|
||
|
||
/* Address of end of stack space. */
|
||
|
||
#define STACK_END_ADDR (0x01000000 - (TARGET_UPAGES * TARGET_NBPG))
|
||
|
||
/* Stack grows downward. */
|
||
|
||
#define INNER_THAN <
|
||
|
||
/* Sequence of bytes for breakpoint instruction. */
|
||
|
||
#define BREAKPOINT {0x00,0x00,0x18,0xef} /* BKPT_SWI from <sys/ptrace.h> */
|
||
|
||
/* Amount PC must be decremented by after a breakpoint.
|
||
This is often the number of bytes in BREAKPOINT
|
||
but not always. */
|
||
|
||
#define DECR_PC_AFTER_BREAK 0
|
||
|
||
/* Nonzero if instruction at PC is a return instruction. */
|
||
|
||
#define ABOUT_TO_RETURN(pc) \
|
||
((read_memory_integer(pc, 4) & 0x0fffffff == 0x01b0f00e) || \
|
||
(read_memory_integer(pc, 4) & 0x0ffff800 == 0x09eba800))
|
||
|
||
/* Return 1 if P points to an invalid floating point value.
|
||
LEN is the length in bytes. */
|
||
|
||
#define INVALID_FLOAT(p, len) 0
|
||
|
||
/* code to execute to print interesting information about the
|
||
* floating point processor (if any)
|
||
* No need to define if there is nothing to do.
|
||
*/
|
||
#define FLOAT_INFO { arm_float_info (); }
|
||
|
||
/* Say how long (ordinary) registers are. */
|
||
|
||
#define REGISTER_TYPE long
|
||
|
||
/* Number of machine registers */
|
||
|
||
/* Note: I make a fake copy of the pc in register 25 (calling it ps) so
|
||
that I can clear the status bits from pc (register 15) */
|
||
|
||
#define NUM_REGS 26
|
||
|
||
/* Initializer for an array of names of registers.
|
||
There should be NUM_REGS strings in this initializer. */
|
||
|
||
#define REGISTER_NAMES \
|
||
{ "a1", "a2", "a3", "a4", \
|
||
"v1", "v2", "v3", "v4", "v5", "v6", \
|
||
"sl", "fp", "ip", "sp", "lr", "pc", \
|
||
"f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", "fps", "ps" }
|
||
|
||
/* Register numbers of various important registers.
|
||
Note that some of these values are "real" register numbers,
|
||
and correspond to the general registers of the machine,
|
||
and some are "phony" register numbers which are too large
|
||
to be actual register numbers as far as the user is concerned
|
||
but do serve to get the desired values when passed to read_register. */
|
||
|
||
#define AP_REGNUM 11
|
||
#define FP_REGNUM 11 /* Contains address of executing stack frame */
|
||
#define SP_REGNUM 13 /* Contains address of top of stack */
|
||
#define LR_REGNUM 14 /* address to return to from a function call */
|
||
#define PC_REGNUM 15 /* Contains program counter */
|
||
#define F0_REGNUM 16 /* first floating point register */
|
||
#define FPS_REGNUM 24 /* floating point status register */
|
||
#define PS_REGNUM 25 /* Contains processor status */
|
||
|
||
|
||
/* Total amount of space needed to store our copies of the machine's
|
||
register state, the array `registers'. */
|
||
#define REGISTER_BYTES (16*4 + 12*8 + 4 + 4)
|
||
|
||
/* Index within `registers' of the first byte of the space for
|
||
register N. */
|
||
|
||
#define REGISTER_BYTE(N) (((N) < F0_REGNUM) ? (N)*4 : \
|
||
(((N) < PS_REGNUM) ? 16*4 + ((N) - 16)*12 : \
|
||
16*4 + 8*12 + ((N) - FPS_REGNUM) * 4))
|
||
|
||
/* Number of bytes of storage in the actual machine representation
|
||
for register N. On the vax, all regs are 4 bytes. */
|
||
|
||
#define REGISTER_RAW_SIZE(N) (((N) < F0_REGNUM || (N) >= FPS_REGNUM) ? 4 : 12)
|
||
|
||
/* Number of bytes of storage in the program's representation
|
||
for register N. On the vax, all regs are 4 bytes. */
|
||
|
||
#define REGISTER_VIRTUAL_SIZE(N) (((N) < F0_REGNUM || (N) >= FPS_REGNUM) ? 4 : 8)
|
||
|
||
/* Largest value REGISTER_RAW_SIZE can have. */
|
||
|
||
#define MAX_REGISTER_RAW_SIZE 12
|
||
|
||
/* Largest value REGISTER_VIRTUAL_SIZE can have. */
|
||
|
||
#define MAX_REGISTER_VIRTUAL_SIZE 8
|
||
|
||
/* Nonzero if register N requires conversion
|
||
from raw format to virtual format. */
|
||
|
||
#define REGISTER_CONVERTIBLE(N) ((unsigned)(N) - F0_REGNUM < 8)
|
||
|
||
/* Convert data from raw format for register REGNUM
|
||
to virtual format for register REGNUM. */
|
||
|
||
#define REGISTER_CONVERT_TO_VIRTUAL(REGNUM,FROM,TO) \
|
||
if (REGISTER_CONVERTIBLE(REGNUM)) \
|
||
convert_from_extended((FROM), (TO)); \
|
||
else \
|
||
memcpy ((TO), (FROM), 4);
|
||
|
||
/* Convert data from virtual format for register REGNUM
|
||
to raw format for register REGNUM. */
|
||
|
||
#define REGISTER_CONVERT_TO_RAW(REGNUM,FROM,TO) \
|
||
if (REGISTER_CONVERTIBLE(REGNUM)) \
|
||
convert_to_extended((FROM), (TO)); \
|
||
else \
|
||
memcpy ((TO), (FROM), 4);
|
||
|
||
/* Return the GDB type object for the "standard" data type
|
||
of data in register N. */
|
||
|
||
#define REGISTER_VIRTUAL_TYPE(N) \
|
||
(((unsigned)(N) - F0_REGNUM) < 8 ? builtin_type_double : builtin_type_int)
|
||
|
||
/* The system C compiler uses a similar structure return convention to gcc */
|
||
|
||
#define USE_STRUCT_CONVENTION(gcc_p, type) (TYPE_LENGTH (type) > 4)
|
||
|
||
/* Store the address of the place in which to copy the structure the
|
||
subroutine will return. This is called from call_function. */
|
||
|
||
#define STORE_STRUCT_RETURN(ADDR, SP) \
|
||
{ write_register (0, (ADDR)); }
|
||
|
||
/* Extract from an array REGBUF containing the (raw) register state
|
||
a function return value of type TYPE, and copy that, in virtual format,
|
||
into VALBUF. */
|
||
|
||
#define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
|
||
if (TYPE_CODE (TYPE) == TYPE_CODE_FLT) \
|
||
convert_from_extended(REGBUF + REGISTER_BYTE (F0_REGNUM), VALBUF); \
|
||
else \
|
||
memcpy (VALBUF, REGBUF, TYPE_LENGTH (TYPE))
|
||
|
||
/* Write into appropriate registers a function return value
|
||
of type TYPE, given in virtual format. */
|
||
|
||
#define STORE_RETURN_VALUE(TYPE,VALBUF) \
|
||
if (TYPE_CODE (TYPE) == TYPE_CODE_FLT) { \
|
||
char _buf[MAX_REGISTER_RAW_SIZE]; \
|
||
convert_to_extended(VALBUF, _buf); \
|
||
write_register_bytes (REGISTER_BYTE (F0_REGNUM), _buf, MAX_REGISTER_RAW_SIZE); \
|
||
} else \
|
||
write_register_bytes (0, VALBUF, TYPE_LENGTH (TYPE))
|
||
|
||
/* Extract from an array REGBUF containing the (raw) register state
|
||
the address in which a function should return its structure value,
|
||
as a CORE_ADDR (or an expression that can be used as one). */
|
||
|
||
#define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) (*(int *)(REGBUF))
|
||
|
||
/* Specify that for the native compiler variables for a particular
|
||
lexical context are listed after the beginning LBRAC instead of
|
||
before in the executables list of symbols. */
|
||
#define VARIABLES_INSIDE_BLOCK(desc, gcc_p) (!(gcc_p))
|
||
|
||
|
||
/* Describe the pointer in each stack frame to the previous stack frame
|
||
(its caller). */
|
||
|
||
/* FRAME_CHAIN takes a frame's nominal address
|
||
and produces the frame's chain-pointer.
|
||
|
||
However, if FRAME_CHAIN_VALID returns zero,
|
||
it means the given frame is the outermost one and has no caller. */
|
||
|
||
/* In the case of the ARM, the frame's nominal address is the FP value,
|
||
and 12 bytes before comes the saved previous FP value as a 4-byte word. */
|
||
|
||
#define FRAME_CHAIN(thisframe) \
|
||
((thisframe)->pc >= first_object_file_end ? \
|
||
read_memory_integer ((thisframe)->frame - 12, 4) :\
|
||
0)
|
||
|
||
#define FRAME_CHAIN_VALID(chain, thisframe) \
|
||
(chain != 0 && (FRAME_SAVED_PC (thisframe) >= first_object_file_end))
|
||
|
||
/* Define other aspects of the stack frame. */
|
||
|
||
/* A macro that tells us whether the function invocation represented
|
||
by FI does not have a frame on the stack associated with it. If it
|
||
does not, FRAMELESS is set to 1, else 0. */
|
||
#define FRAMELESS_FUNCTION_INVOCATION(FI, FRAMELESS) \
|
||
{ \
|
||
CORE_ADDR func_start, after_prologue; \
|
||
func_start = (get_pc_function_start ((FI)->pc) + \
|
||
FUNCTION_START_OFFSET); \
|
||
after_prologue = func_start; \
|
||
SKIP_PROLOGUE (after_prologue); \
|
||
(FRAMELESS) = (after_prologue == func_start); \
|
||
}
|
||
|
||
/* Saved Pc. */
|
||
|
||
#define FRAME_SAVED_PC(FRAME) \
|
||
(read_memory_integer ((FRAME)->frame - 4, 4) & 0x03fffffc)
|
||
|
||
#define FRAME_ARGS_ADDRESS(fi) (fi->frame)
|
||
|
||
#define FRAME_LOCALS_ADDRESS(fi) ((fi)->frame)
|
||
|
||
/* Return number of args passed to a frame.
|
||
Can return -1, meaning no way to tell. */
|
||
|
||
#define FRAME_NUM_ARGS(numargs, fi) (numargs = -1)
|
||
|
||
/* Return number of bytes at start of arglist that are not really args. */
|
||
|
||
#define FRAME_ARGS_SKIP 0
|
||
|
||
/* Put here the code to store, into a struct frame_saved_regs,
|
||
the addresses of the saved registers of frame described by FRAME_INFO.
|
||
This includes special registers such as pc and fp saved in special
|
||
ways in the stack frame. sp is even more special:
|
||
the address we return for it IS the sp for the next frame. */
|
||
|
||
#define FRAME_FIND_SAVED_REGS(frame_info, frame_saved_regs) \
|
||
{ \
|
||
register int regnum; \
|
||
register int frame; \
|
||
register int next_addr; \
|
||
register int return_data_save; \
|
||
register int saved_register_mask; \
|
||
bzero (&frame_saved_regs, sizeof frame_saved_regs); \
|
||
frame = (frame_info)->frame; \
|
||
return_data_save = read_memory_integer(frame, 4) & 0x03fffffc - 12; \
|
||
saved_register_mask = \
|
||
read_memory_integer(return_data_save, 4); \
|
||
next_addr = frame - 12; \
|
||
for (regnum = 4; regnum < 10; regnum++) \
|
||
if (saved_register_mask & (1<<regnum)) { \
|
||
next_addr -= 4; \
|
||
(frame_saved_regs).regs[regnum] = next_addr; \
|
||
} \
|
||
if (read_memory_integer(return_data_save + 4, 4) == 0xed6d7103) { \
|
||
next_addr -= 12; \
|
||
(frame_saved_regs).regs[F0_REGNUM + 7] = next_addr; \
|
||
} \
|
||
if (read_memory_integer(return_data_save + 8, 4) == 0xed6d6103) { \
|
||
next_addr -= 12; \
|
||
(frame_saved_regs).regs[F0_REGNUM + 6] = next_addr; \
|
||
} \
|
||
if (read_memory_integer(return_data_save + 12, 4) == 0xed6d5103) { \
|
||
next_addr -= 12; \
|
||
(frame_saved_regs).regs[F0_REGNUM + 5] = next_addr; \
|
||
} \
|
||
if (read_memory_integer(return_data_save + 16, 4) == 0xed6d4103) { \
|
||
next_addr -= 12; \
|
||
(frame_saved_regs).regs[F0_REGNUM + 4] = next_addr; \
|
||
} \
|
||
(frame_saved_regs).regs[SP_REGNUM] = next_addr; \
|
||
(frame_saved_regs).regs[PC_REGNUM] = frame - 4; \
|
||
(frame_saved_regs).regs[PS_REGNUM] = frame - 4; \
|
||
(frame_saved_regs).regs[FP_REGNUM] = frame - 12; \
|
||
}
|
||
|
||
/* Things needed for making the inferior call functions. */
|
||
|
||
/* Push an empty stack frame, to record the current PC, etc. */
|
||
|
||
#define PUSH_DUMMY_FRAME \
|
||
{ \
|
||
register CORE_ADDR sp = read_register (SP_REGNUM); \
|
||
register int regnum; \
|
||
/* opcode for ldmdb fp,{v1-v6,fp,ip,lr,pc}^ */ \
|
||
sp = push_word(sp, 0xe92dbf0); /* dummy return_data_save ins */ \
|
||
/* push a pointer to the dummy instruction minus 12 */ \
|
||
sp = push_word(sp, read_register (SP_REGNUM) - 16); \
|
||
sp = push_word(sp, read_register (PS_REGNUM)); \
|
||
sp = push_word(sp, read_register (SP_REGNUM)); \
|
||
sp = push_word(sp, read_register (FP_REGNUM)); \
|
||
for (regnum = 9; regnum >= 4; regnum --) \
|
||
sp = push_word(sp, read_register (regnum)); \
|
||
write_register (FP_REGNUM, read_register (SP_REGNUM) - 8); \
|
||
write_register (SP_REGNUM, sp); }
|
||
|
||
/* Discard from the stack the innermost frame, restoring all registers. */
|
||
|
||
#define POP_FRAME \
|
||
{ \
|
||
register CORE_ADDR fp = read_register (FP_REGNUM); \
|
||
register unsigned long return_data_save = \
|
||
read_memory_integer ( (read_memory_integer (fp, 4) & \
|
||
0x03fffffc) - 12, 4); \
|
||
register int regnum; \
|
||
write_register (PS_REGNUM, read_memory_integer (fp - 4, 4)); \
|
||
write_register (PC_REGNUM, read_register (PS_REGNUM) & 0x03fffffc); \
|
||
write_register (SP_REGNUM, read_memory_integer (fp - 8, 4)); \
|
||
write_register (FP_REGNUM, read_memory_integer (fp - 12, 4)); \
|
||
fp -= 12; \
|
||
for (regnum = 9; regnum >= 4; regnum--) \
|
||
if (return_data_save & (1<<regnum)) { \
|
||
fp -= 4; \
|
||
write_register (regnum, read_memory_integer(fp, 4)); \
|
||
} \
|
||
flush_cached_frames (); \
|
||
set_current_frame (create_new_frame (read_register (FP_REGNUM), \
|
||
read_pc ())); \
|
||
}
|
||
|
||
/* This sequence of words is the instructions
|
||
|
||
ldmia sp!,{a1-a4}
|
||
mov lk,pc
|
||
bl *+8
|
||
swi bkpt_swi
|
||
|
||
Note this is 16 bytes. */
|
||
|
||
#define CALL_DUMMY {0xe8bd000f, 0xe1a0e00f, 0xeb000000, 0xef180000}
|
||
|
||
#define CALL_DUMMY_START_OFFSET 0 /* Start execution at beginning of dummy */
|
||
|
||
/* Insert the specified number of args and function address
|
||
into a call sequence of the above form stored at DUMMYNAME. */
|
||
|
||
#define FIX_CALL_DUMMY(dummyname, pc, fun, nargs, args, type, gcc_p) \
|
||
{ \
|
||
register enum type_code code = TYPE_CODE (type); \
|
||
register nargs_in_registers, struct_return = 0; \
|
||
/* fix the load-arguments mask to move the first 4 or less arguments \
|
||
into a1-a4 but make sure the structure return address in a1 is \
|
||
not disturbed if the function is returning a structure */ \
|
||
if ((code == TYPE_CODE_STRUCT || \
|
||
code == TYPE_CODE_UNION || \
|
||
code == TYPE_CODE_ARRAY) && \
|
||
TYPE_LENGTH (type) > 4) { \
|
||
nargs_in_registers = min(nargs + 1, 4); \
|
||
struct_return = 1; \
|
||
} else \
|
||
nargs_in_registers = min(nargs, 4); \
|
||
*(char *) dummyname = (1 << nargs_in_registers) - 1 - struct_return; \
|
||
*(int *)((char *) dummyname + 8) = \
|
||
(((fun - (pc + 16)) / 4) & 0x00ffffff) | 0xeb000000; }
|