binutils-gdb/gdbsupport/range-chain.h
Andrew Burgess 1d506c26d9 Update copyright year range in header of all files managed by GDB
This commit is the result of the following actions:

  - Running gdb/copyright.py to update all of the copyright headers to
    include 2024,

  - Manually updating a few files the copyright.py script told me to
    update, these files had copyright headers embedded within the
    file,

  - Regenerating gdbsupport/Makefile.in to refresh it's copyright
    date,

  - Using grep to find other files that still mentioned 2023.  If
    these files were updated last year from 2022 to 2023 then I've
    updated them this year to 2024.

I'm sure I've probably missed some dates.  Feel free to fix them up as
you spot them.
2024-01-12 15:49:57 +00:00

122 lines
3.1 KiB
C++

/* A range adapter that wraps multiple ranges
Copyright (C) 2022-2024 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#ifndef GDBSUPPORT_RANGE_CHAIN_H
#define GDBSUPPORT_RANGE_CHAIN_H
/* A range adapter that presents a number of ranges as if it were a
single range. That is, iterating over a range_chain will iterate
over each sub-range in order. */
template<typename Range>
struct range_chain
{
/* The type of the iterator that is created by this range. */
class iterator
{
public:
iterator (const std::vector<Range> &ranges, size_t idx)
: m_index (idx),
m_ranges (ranges)
{
skip_empty ();
}
bool operator== (const iterator &other) const
{
if (m_index != other.m_index || &m_ranges != &other.m_ranges)
return false;
if (m_current.has_value () != other.m_current.has_value ())
return false;
if (m_current.has_value ())
return *m_current == *other.m_current;
return true;
}
bool operator!= (const iterator &other) const
{
return !(*this == other);
}
iterator &operator++ ()
{
++*m_current;
if (*m_current == m_ranges[m_index].end ())
{
++m_index;
skip_empty ();
}
return *this;
}
typename Range::iterator::value_type operator* () const
{
return **m_current;
}
private:
/* Skip empty sub-ranges. If this finds a valid sub-range,
m_current is updated to point to its start; otherwise,
m_current is reset. */
void skip_empty ()
{
for (; m_index < m_ranges.size (); ++m_index)
{
m_current = m_ranges[m_index].begin ();
if (*m_current != m_ranges[m_index].end ())
return;
}
m_current.reset ();
}
/* Index into the vector indicating where the current iterator
comes from. */
size_t m_index;
/* The current iterator into one of the vector ranges. If no
value then this (outer) iterator is at the end of the overall
range. */
std::optional<typename Range::iterator> m_current;
/* Vector of ranges. */
const std::vector<Range> &m_ranges;
};
/* Create a new range_chain. */
template<typename T>
range_chain (T &&ranges)
: m_ranges (std::forward<T> (ranges))
{
}
iterator begin () const
{
return iterator (m_ranges, 0);
}
iterator end () const
{
return iterator (m_ranges, m_ranges.size ());
}
private:
/* The sub-ranges. */
std::vector<Range> m_ranges;
};
#endif /* GDBSUPPORT_RANGE_CHAIN_H */