mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-11-21 01:12:32 +08:00
ec45252592
Move the declarations out of defs.h, and the implementations out of findvar.c. I opted for a new file, because this functionality of converting integers to bytes and vice-versa seems a bit to generic to live in findvar.c. Change-Id: I524858fca33901ee2150c582bac16042148d2251 Approved-By: John Baldwin <jhb@FreeBSD.org>
1497 lines
39 KiB
C
1497 lines
39 KiB
C
/* Target-dependent code for the Renesas RL78 for GDB, the GNU debugger.
|
|
|
|
Copyright (C) 2011-2024 Free Software Foundation, Inc.
|
|
|
|
Contributed by Red Hat, Inc.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
|
|
|
#include "arch-utils.h"
|
|
#include "extract-store-integer.h"
|
|
#include "prologue-value.h"
|
|
#include "target.h"
|
|
#include "regcache.h"
|
|
#include "opcode/rl78.h"
|
|
#include "dis-asm.h"
|
|
#include "gdbtypes.h"
|
|
#include "frame.h"
|
|
#include "frame-unwind.h"
|
|
#include "frame-base.h"
|
|
#include "value.h"
|
|
#include "gdbcore.h"
|
|
#include "dwarf2/frame.h"
|
|
#include "reggroups.h"
|
|
#include "gdbarch.h"
|
|
#include "inferior.h"
|
|
|
|
#include "elf/rl78.h"
|
|
#include "elf-bfd.h"
|
|
|
|
/* Register Banks. */
|
|
|
|
enum
|
|
{
|
|
RL78_BANK0 = 0,
|
|
RL78_BANK1 = 1,
|
|
RL78_BANK2 = 2,
|
|
RL78_BANK3 = 3,
|
|
RL78_NUMBANKS = 4,
|
|
RL78_REGS_PER_BANK = 8
|
|
};
|
|
|
|
/* Register Numbers. */
|
|
|
|
enum
|
|
{
|
|
/* All general purpose registers are 8 bits wide. */
|
|
RL78_RAW_BANK0_R0_REGNUM = 0,
|
|
RL78_RAW_BANK0_R1_REGNUM,
|
|
RL78_RAW_BANK0_R2_REGNUM,
|
|
RL78_RAW_BANK0_R3_REGNUM,
|
|
RL78_RAW_BANK0_R4_REGNUM,
|
|
RL78_RAW_BANK0_R5_REGNUM,
|
|
RL78_RAW_BANK0_R6_REGNUM,
|
|
RL78_RAW_BANK0_R7_REGNUM,
|
|
|
|
RL78_RAW_BANK1_R0_REGNUM,
|
|
RL78_RAW_BANK1_R1_REGNUM,
|
|
RL78_RAW_BANK1_R2_REGNUM,
|
|
RL78_RAW_BANK1_R3_REGNUM,
|
|
RL78_RAW_BANK1_R4_REGNUM,
|
|
RL78_RAW_BANK1_R5_REGNUM,
|
|
RL78_RAW_BANK1_R6_REGNUM,
|
|
RL78_RAW_BANK1_R7_REGNUM,
|
|
|
|
RL78_RAW_BANK2_R0_REGNUM,
|
|
RL78_RAW_BANK2_R1_REGNUM,
|
|
RL78_RAW_BANK2_R2_REGNUM,
|
|
RL78_RAW_BANK2_R3_REGNUM,
|
|
RL78_RAW_BANK2_R4_REGNUM,
|
|
RL78_RAW_BANK2_R5_REGNUM,
|
|
RL78_RAW_BANK2_R6_REGNUM,
|
|
RL78_RAW_BANK2_R7_REGNUM,
|
|
|
|
RL78_RAW_BANK3_R0_REGNUM,
|
|
RL78_RAW_BANK3_R1_REGNUM,
|
|
RL78_RAW_BANK3_R2_REGNUM,
|
|
RL78_RAW_BANK3_R3_REGNUM,
|
|
RL78_RAW_BANK3_R4_REGNUM,
|
|
RL78_RAW_BANK3_R5_REGNUM,
|
|
RL78_RAW_BANK3_R6_REGNUM,
|
|
RL78_RAW_BANK3_R7_REGNUM,
|
|
|
|
RL78_PSW_REGNUM, /* 8 bits */
|
|
RL78_ES_REGNUM, /* 8 bits */
|
|
RL78_CS_REGNUM, /* 8 bits */
|
|
RL78_RAW_PC_REGNUM, /* 20 bits; we'll use 32 bits for it. */
|
|
|
|
/* Fixed address SFRs (some of those above are SFRs too.) */
|
|
RL78_SPL_REGNUM, /* 8 bits; lower half of SP */
|
|
RL78_SPH_REGNUM, /* 8 bits; upper half of SP */
|
|
RL78_PMC_REGNUM, /* 8 bits */
|
|
RL78_MEM_REGNUM, /* 8 bits ?? */
|
|
|
|
RL78_NUM_REGS,
|
|
|
|
/* Pseudo registers. */
|
|
RL78_PC_REGNUM = RL78_NUM_REGS,
|
|
RL78_SP_REGNUM,
|
|
|
|
RL78_X_REGNUM,
|
|
RL78_A_REGNUM,
|
|
RL78_C_REGNUM,
|
|
RL78_B_REGNUM,
|
|
RL78_E_REGNUM,
|
|
RL78_D_REGNUM,
|
|
RL78_L_REGNUM,
|
|
RL78_H_REGNUM,
|
|
|
|
RL78_AX_REGNUM,
|
|
RL78_BC_REGNUM,
|
|
RL78_DE_REGNUM,
|
|
RL78_HL_REGNUM,
|
|
|
|
RL78_BANK0_R0_REGNUM,
|
|
RL78_BANK0_R1_REGNUM,
|
|
RL78_BANK0_R2_REGNUM,
|
|
RL78_BANK0_R3_REGNUM,
|
|
RL78_BANK0_R4_REGNUM,
|
|
RL78_BANK0_R5_REGNUM,
|
|
RL78_BANK0_R6_REGNUM,
|
|
RL78_BANK0_R7_REGNUM,
|
|
|
|
RL78_BANK1_R0_REGNUM,
|
|
RL78_BANK1_R1_REGNUM,
|
|
RL78_BANK1_R2_REGNUM,
|
|
RL78_BANK1_R3_REGNUM,
|
|
RL78_BANK1_R4_REGNUM,
|
|
RL78_BANK1_R5_REGNUM,
|
|
RL78_BANK1_R6_REGNUM,
|
|
RL78_BANK1_R7_REGNUM,
|
|
|
|
RL78_BANK2_R0_REGNUM,
|
|
RL78_BANK2_R1_REGNUM,
|
|
RL78_BANK2_R2_REGNUM,
|
|
RL78_BANK2_R3_REGNUM,
|
|
RL78_BANK2_R4_REGNUM,
|
|
RL78_BANK2_R5_REGNUM,
|
|
RL78_BANK2_R6_REGNUM,
|
|
RL78_BANK2_R7_REGNUM,
|
|
|
|
RL78_BANK3_R0_REGNUM,
|
|
RL78_BANK3_R1_REGNUM,
|
|
RL78_BANK3_R2_REGNUM,
|
|
RL78_BANK3_R3_REGNUM,
|
|
RL78_BANK3_R4_REGNUM,
|
|
RL78_BANK3_R5_REGNUM,
|
|
RL78_BANK3_R6_REGNUM,
|
|
RL78_BANK3_R7_REGNUM,
|
|
|
|
RL78_BANK0_RP0_REGNUM,
|
|
RL78_BANK0_RP1_REGNUM,
|
|
RL78_BANK0_RP2_REGNUM,
|
|
RL78_BANK0_RP3_REGNUM,
|
|
|
|
RL78_BANK1_RP0_REGNUM,
|
|
RL78_BANK1_RP1_REGNUM,
|
|
RL78_BANK1_RP2_REGNUM,
|
|
RL78_BANK1_RP3_REGNUM,
|
|
|
|
RL78_BANK2_RP0_REGNUM,
|
|
RL78_BANK2_RP1_REGNUM,
|
|
RL78_BANK2_RP2_REGNUM,
|
|
RL78_BANK2_RP3_REGNUM,
|
|
|
|
RL78_BANK3_RP0_REGNUM,
|
|
RL78_BANK3_RP1_REGNUM,
|
|
RL78_BANK3_RP2_REGNUM,
|
|
RL78_BANK3_RP3_REGNUM,
|
|
|
|
/* These are the same as the above 16 registers, but have
|
|
a pointer type for use as base registers in expression
|
|
evaluation. These are not user visible registers. */
|
|
RL78_BANK0_RP0_PTR_REGNUM,
|
|
RL78_BANK0_RP1_PTR_REGNUM,
|
|
RL78_BANK0_RP2_PTR_REGNUM,
|
|
RL78_BANK0_RP3_PTR_REGNUM,
|
|
|
|
RL78_BANK1_RP0_PTR_REGNUM,
|
|
RL78_BANK1_RP1_PTR_REGNUM,
|
|
RL78_BANK1_RP2_PTR_REGNUM,
|
|
RL78_BANK1_RP3_PTR_REGNUM,
|
|
|
|
RL78_BANK2_RP0_PTR_REGNUM,
|
|
RL78_BANK2_RP1_PTR_REGNUM,
|
|
RL78_BANK2_RP2_PTR_REGNUM,
|
|
RL78_BANK2_RP3_PTR_REGNUM,
|
|
|
|
RL78_BANK3_RP0_PTR_REGNUM,
|
|
RL78_BANK3_RP1_PTR_REGNUM,
|
|
RL78_BANK3_RP2_PTR_REGNUM,
|
|
RL78_BANK3_RP3_PTR_REGNUM,
|
|
|
|
RL78_NUM_TOTAL_REGS,
|
|
RL78_NUM_PSEUDO_REGS = RL78_NUM_TOTAL_REGS - RL78_NUM_REGS
|
|
};
|
|
|
|
#define RL78_SP_ADDR 0xffff8
|
|
|
|
/* Architecture specific data. */
|
|
|
|
struct rl78_gdbarch_tdep : gdbarch_tdep_base
|
|
{
|
|
/* The ELF header flags specify the multilib used. */
|
|
int elf_flags = 0;
|
|
|
|
struct type *rl78_void = nullptr,
|
|
*rl78_uint8 = nullptr,
|
|
*rl78_int8 = nullptr,
|
|
*rl78_uint16 = nullptr,
|
|
*rl78_int16 = nullptr,
|
|
*rl78_uint32 = nullptr,
|
|
*rl78_int32 = nullptr,
|
|
*rl78_data_pointer = nullptr,
|
|
*rl78_code_pointer = nullptr,
|
|
*rl78_psw_type = nullptr;
|
|
};
|
|
|
|
/* This structure holds the results of a prologue analysis. */
|
|
|
|
struct rl78_prologue
|
|
{
|
|
/* The offset from the frame base to the stack pointer --- always
|
|
zero or negative.
|
|
|
|
Calling this a "size" is a bit misleading, but given that the
|
|
stack grows downwards, using offsets for everything keeps one
|
|
from going completely sign-crazy: you never change anything's
|
|
sign for an ADD instruction; always change the second operand's
|
|
sign for a SUB instruction; and everything takes care of
|
|
itself. */
|
|
int frame_size;
|
|
|
|
/* Non-zero if this function has initialized the frame pointer from
|
|
the stack pointer, zero otherwise. */
|
|
int has_frame_ptr;
|
|
|
|
/* If has_frame_ptr is non-zero, this is the offset from the frame
|
|
base to where the frame pointer points. This is always zero or
|
|
negative. */
|
|
int frame_ptr_offset;
|
|
|
|
/* The address of the first instruction at which the frame has been
|
|
set up and the arguments are where the debug info says they are
|
|
--- as best as we can tell. */
|
|
CORE_ADDR prologue_end;
|
|
|
|
/* reg_offset[R] is the offset from the CFA at which register R is
|
|
saved, or 1 if register R has not been saved. (Real values are
|
|
always zero or negative.) */
|
|
int reg_offset[RL78_NUM_TOTAL_REGS];
|
|
};
|
|
|
|
/* Construct type for PSW register. */
|
|
|
|
static struct type *
|
|
rl78_psw_type (struct gdbarch *gdbarch)
|
|
{
|
|
rl78_gdbarch_tdep *tdep = gdbarch_tdep<rl78_gdbarch_tdep> (gdbarch);
|
|
|
|
if (tdep->rl78_psw_type == NULL)
|
|
{
|
|
tdep->rl78_psw_type = arch_flags_type (gdbarch,
|
|
"builtin_type_rl78_psw", 8);
|
|
append_flags_type_flag (tdep->rl78_psw_type, 0, "CY");
|
|
append_flags_type_flag (tdep->rl78_psw_type, 1, "ISP0");
|
|
append_flags_type_flag (tdep->rl78_psw_type, 2, "ISP1");
|
|
append_flags_type_flag (tdep->rl78_psw_type, 3, "RBS0");
|
|
append_flags_type_flag (tdep->rl78_psw_type, 4, "AC");
|
|
append_flags_type_flag (tdep->rl78_psw_type, 5, "RBS1");
|
|
append_flags_type_flag (tdep->rl78_psw_type, 6, "Z");
|
|
append_flags_type_flag (tdep->rl78_psw_type, 7, "IE");
|
|
}
|
|
|
|
return tdep->rl78_psw_type;
|
|
}
|
|
|
|
/* Implement the "register_type" gdbarch method. */
|
|
|
|
static struct type *
|
|
rl78_register_type (struct gdbarch *gdbarch, int reg_nr)
|
|
{
|
|
rl78_gdbarch_tdep *tdep = gdbarch_tdep<rl78_gdbarch_tdep> (gdbarch);
|
|
|
|
if (reg_nr == RL78_PC_REGNUM)
|
|
return tdep->rl78_code_pointer;
|
|
else if (reg_nr == RL78_RAW_PC_REGNUM)
|
|
return tdep->rl78_uint32;
|
|
else if (reg_nr == RL78_PSW_REGNUM)
|
|
return rl78_psw_type (gdbarch);
|
|
else if (reg_nr <= RL78_MEM_REGNUM
|
|
|| (RL78_X_REGNUM <= reg_nr && reg_nr <= RL78_H_REGNUM)
|
|
|| (RL78_BANK0_R0_REGNUM <= reg_nr
|
|
&& reg_nr <= RL78_BANK3_R7_REGNUM))
|
|
return tdep->rl78_int8;
|
|
else if (reg_nr == RL78_SP_REGNUM
|
|
|| (RL78_BANK0_RP0_PTR_REGNUM <= reg_nr
|
|
&& reg_nr <= RL78_BANK3_RP3_PTR_REGNUM))
|
|
return tdep->rl78_data_pointer;
|
|
else
|
|
return tdep->rl78_int16;
|
|
}
|
|
|
|
/* Implement the "register_name" gdbarch method. */
|
|
|
|
static const char *
|
|
rl78_register_name (struct gdbarch *gdbarch, int regnr)
|
|
{
|
|
static const char *const reg_names[] =
|
|
{
|
|
"", /* bank0_r0 */
|
|
"", /* bank0_r1 */
|
|
"", /* bank0_r2 */
|
|
"", /* bank0_r3 */
|
|
"", /* bank0_r4 */
|
|
"", /* bank0_r5 */
|
|
"", /* bank0_r6 */
|
|
"", /* bank0_r7 */
|
|
|
|
"", /* bank1_r0 */
|
|
"", /* bank1_r1 */
|
|
"", /* bank1_r2 */
|
|
"", /* bank1_r3 */
|
|
"", /* bank1_r4 */
|
|
"", /* bank1_r5 */
|
|
"", /* bank1_r6 */
|
|
"", /* bank1_r7 */
|
|
|
|
"", /* bank2_r0 */
|
|
"", /* bank2_r1 */
|
|
"", /* bank2_r2 */
|
|
"", /* bank2_r3 */
|
|
"", /* bank2_r4 */
|
|
"", /* bank2_r5 */
|
|
"", /* bank2_r6 */
|
|
"", /* bank2_r7 */
|
|
|
|
"", /* bank3_r0 */
|
|
"", /* bank3_r1 */
|
|
"", /* bank3_r2 */
|
|
"", /* bank3_r3 */
|
|
"", /* bank3_r4 */
|
|
"", /* bank3_r5 */
|
|
"", /* bank3_r6 */
|
|
"", /* bank3_r7 */
|
|
|
|
"psw",
|
|
"es",
|
|
"cs",
|
|
"",
|
|
|
|
"", /* spl */
|
|
"", /* sph */
|
|
"pmc",
|
|
"mem",
|
|
|
|
"pc",
|
|
"sp",
|
|
|
|
"x",
|
|
"a",
|
|
"c",
|
|
"b",
|
|
"e",
|
|
"d",
|
|
"l",
|
|
"h",
|
|
|
|
"ax",
|
|
"bc",
|
|
"de",
|
|
"hl",
|
|
|
|
"bank0_r0",
|
|
"bank0_r1",
|
|
"bank0_r2",
|
|
"bank0_r3",
|
|
"bank0_r4",
|
|
"bank0_r5",
|
|
"bank0_r6",
|
|
"bank0_r7",
|
|
|
|
"bank1_r0",
|
|
"bank1_r1",
|
|
"bank1_r2",
|
|
"bank1_r3",
|
|
"bank1_r4",
|
|
"bank1_r5",
|
|
"bank1_r6",
|
|
"bank1_r7",
|
|
|
|
"bank2_r0",
|
|
"bank2_r1",
|
|
"bank2_r2",
|
|
"bank2_r3",
|
|
"bank2_r4",
|
|
"bank2_r5",
|
|
"bank2_r6",
|
|
"bank2_r7",
|
|
|
|
"bank3_r0",
|
|
"bank3_r1",
|
|
"bank3_r2",
|
|
"bank3_r3",
|
|
"bank3_r4",
|
|
"bank3_r5",
|
|
"bank3_r6",
|
|
"bank3_r7",
|
|
|
|
"bank0_rp0",
|
|
"bank0_rp1",
|
|
"bank0_rp2",
|
|
"bank0_rp3",
|
|
|
|
"bank1_rp0",
|
|
"bank1_rp1",
|
|
"bank1_rp2",
|
|
"bank1_rp3",
|
|
|
|
"bank2_rp0",
|
|
"bank2_rp1",
|
|
"bank2_rp2",
|
|
"bank2_rp3",
|
|
|
|
"bank3_rp0",
|
|
"bank3_rp1",
|
|
"bank3_rp2",
|
|
"bank3_rp3",
|
|
|
|
/* The 16 register slots would be named
|
|
bank0_rp0_ptr_regnum ... bank3_rp3_ptr_regnum, but we don't
|
|
want these to be user visible registers. */
|
|
"", "", "", "", "", "", "", "", "", "", "", "", "", "", "", ""
|
|
};
|
|
|
|
return reg_names[regnr];
|
|
}
|
|
|
|
/* Implement the "register_name" gdbarch method for the g10 variant. */
|
|
|
|
static const char *
|
|
rl78_g10_register_name (struct gdbarch *gdbarch, int regnr)
|
|
{
|
|
static const char *const reg_names[] =
|
|
{
|
|
"", /* bank0_r0 */
|
|
"", /* bank0_r1 */
|
|
"", /* bank0_r2 */
|
|
"", /* bank0_r3 */
|
|
"", /* bank0_r4 */
|
|
"", /* bank0_r5 */
|
|
"", /* bank0_r6 */
|
|
"", /* bank0_r7 */
|
|
|
|
"", /* bank1_r0 */
|
|
"", /* bank1_r1 */
|
|
"", /* bank1_r2 */
|
|
"", /* bank1_r3 */
|
|
"", /* bank1_r4 */
|
|
"", /* bank1_r5 */
|
|
"", /* bank1_r6 */
|
|
"", /* bank1_r7 */
|
|
|
|
"", /* bank2_r0 */
|
|
"", /* bank2_r1 */
|
|
"", /* bank2_r2 */
|
|
"", /* bank2_r3 */
|
|
"", /* bank2_r4 */
|
|
"", /* bank2_r5 */
|
|
"", /* bank2_r6 */
|
|
"", /* bank2_r7 */
|
|
|
|
"", /* bank3_r0 */
|
|
"", /* bank3_r1 */
|
|
"", /* bank3_r2 */
|
|
"", /* bank3_r3 */
|
|
"", /* bank3_r4 */
|
|
"", /* bank3_r5 */
|
|
"", /* bank3_r6 */
|
|
"", /* bank3_r7 */
|
|
|
|
"psw",
|
|
"es",
|
|
"cs",
|
|
"",
|
|
|
|
"", /* spl */
|
|
"", /* sph */
|
|
"pmc",
|
|
"mem",
|
|
|
|
"pc",
|
|
"sp",
|
|
|
|
"x",
|
|
"a",
|
|
"c",
|
|
"b",
|
|
"e",
|
|
"d",
|
|
"l",
|
|
"h",
|
|
|
|
"ax",
|
|
"bc",
|
|
"de",
|
|
"hl",
|
|
|
|
"bank0_r0",
|
|
"bank0_r1",
|
|
"bank0_r2",
|
|
"bank0_r3",
|
|
"bank0_r4",
|
|
"bank0_r5",
|
|
"bank0_r6",
|
|
"bank0_r7",
|
|
|
|
"",
|
|
"",
|
|
"",
|
|
"",
|
|
"",
|
|
"",
|
|
"",
|
|
"",
|
|
|
|
"",
|
|
"",
|
|
"",
|
|
"",
|
|
"",
|
|
"",
|
|
"",
|
|
"",
|
|
|
|
"",
|
|
"",
|
|
"",
|
|
"",
|
|
"",
|
|
"",
|
|
"",
|
|
"",
|
|
|
|
"bank0_rp0",
|
|
"bank0_rp1",
|
|
"bank0_rp2",
|
|
"bank0_rp3",
|
|
|
|
"",
|
|
"",
|
|
"",
|
|
"",
|
|
|
|
"",
|
|
"",
|
|
"",
|
|
"",
|
|
|
|
"",
|
|
"",
|
|
"",
|
|
"",
|
|
|
|
/* The 16 register slots would be named
|
|
bank0_rp0_ptr_regnum ... bank3_rp3_ptr_regnum, but we don't
|
|
want these to be user visible registers. */
|
|
"", "", "", "", "", "", "", "", "", "", "", "", "", "", "", ""
|
|
};
|
|
|
|
return reg_names[regnr];
|
|
}
|
|
|
|
/* Implement the "register_reggroup_p" gdbarch method. */
|
|
|
|
static int
|
|
rl78_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
|
|
const struct reggroup *group)
|
|
{
|
|
if (group == all_reggroup)
|
|
return 1;
|
|
|
|
/* All other registers are saved and restored. */
|
|
if (group == save_reggroup || group == restore_reggroup)
|
|
{
|
|
if ((regnum < RL78_NUM_REGS
|
|
&& regnum != RL78_SPL_REGNUM
|
|
&& regnum != RL78_SPH_REGNUM
|
|
&& regnum != RL78_RAW_PC_REGNUM)
|
|
|| regnum == RL78_SP_REGNUM
|
|
|| regnum == RL78_PC_REGNUM)
|
|
return 1;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
if ((RL78_BANK0_R0_REGNUM <= regnum && regnum <= RL78_BANK3_R7_REGNUM)
|
|
|| regnum == RL78_ES_REGNUM
|
|
|| regnum == RL78_CS_REGNUM
|
|
|| regnum == RL78_SPL_REGNUM
|
|
|| regnum == RL78_SPH_REGNUM
|
|
|| regnum == RL78_PMC_REGNUM
|
|
|| regnum == RL78_MEM_REGNUM
|
|
|| regnum == RL78_RAW_PC_REGNUM
|
|
|| (RL78_BANK0_RP0_REGNUM <= regnum && regnum <= RL78_BANK3_RP3_REGNUM))
|
|
return group == system_reggroup;
|
|
|
|
return group == general_reggroup;
|
|
}
|
|
|
|
/* Strip bits to form an instruction address. (When fetching a
|
|
32-bit address from the stack, the high eight bits are garbage.
|
|
This function strips off those unused bits.) */
|
|
|
|
static CORE_ADDR
|
|
rl78_make_instruction_address (CORE_ADDR addr)
|
|
{
|
|
return addr & 0xffffff;
|
|
}
|
|
|
|
/* Set / clear bits necessary to make a data address. */
|
|
|
|
static CORE_ADDR
|
|
rl78_make_data_address (CORE_ADDR addr)
|
|
{
|
|
return (addr & 0xffff) | 0xf0000;
|
|
}
|
|
|
|
/* Implement the "pseudo_register_read" gdbarch method. */
|
|
|
|
static enum register_status
|
|
rl78_pseudo_register_read (struct gdbarch *gdbarch,
|
|
readable_regcache *regcache,
|
|
int reg, gdb_byte *buffer)
|
|
{
|
|
enum register_status status;
|
|
|
|
if (RL78_BANK0_R0_REGNUM <= reg && reg <= RL78_BANK3_R7_REGNUM)
|
|
{
|
|
int raw_regnum = RL78_RAW_BANK0_R0_REGNUM
|
|
+ (reg - RL78_BANK0_R0_REGNUM);
|
|
|
|
status = regcache->raw_read (raw_regnum, buffer);
|
|
}
|
|
else if (RL78_BANK0_RP0_REGNUM <= reg && reg <= RL78_BANK3_RP3_REGNUM)
|
|
{
|
|
int raw_regnum = 2 * (reg - RL78_BANK0_RP0_REGNUM)
|
|
+ RL78_RAW_BANK0_R0_REGNUM;
|
|
|
|
status = regcache->raw_read (raw_regnum, buffer);
|
|
if (status == REG_VALID)
|
|
status = regcache->raw_read (raw_regnum + 1, buffer + 1);
|
|
}
|
|
else if (RL78_BANK0_RP0_PTR_REGNUM <= reg && reg <= RL78_BANK3_RP3_PTR_REGNUM)
|
|
{
|
|
int raw_regnum = 2 * (reg - RL78_BANK0_RP0_PTR_REGNUM)
|
|
+ RL78_RAW_BANK0_R0_REGNUM;
|
|
|
|
status = regcache->raw_read (raw_regnum, buffer);
|
|
if (status == REG_VALID)
|
|
status = regcache->raw_read (raw_regnum + 1, buffer + 1);
|
|
}
|
|
else if (reg == RL78_SP_REGNUM)
|
|
{
|
|
status = regcache->raw_read (RL78_SPL_REGNUM, buffer);
|
|
if (status == REG_VALID)
|
|
status = regcache->raw_read (RL78_SPH_REGNUM, buffer + 1);
|
|
}
|
|
else if (reg == RL78_PC_REGNUM)
|
|
{
|
|
gdb_byte rawbuf[4];
|
|
|
|
status = regcache->raw_read (RL78_RAW_PC_REGNUM, rawbuf);
|
|
memcpy (buffer, rawbuf, 3);
|
|
}
|
|
else if (RL78_X_REGNUM <= reg && reg <= RL78_H_REGNUM)
|
|
{
|
|
ULONGEST psw;
|
|
|
|
status = regcache->raw_read (RL78_PSW_REGNUM, &psw);
|
|
if (status == REG_VALID)
|
|
{
|
|
/* RSB0 is at bit 3; RSBS1 is at bit 5. */
|
|
int bank = ((psw >> 3) & 1) | ((psw >> 4) & 1);
|
|
int raw_regnum = RL78_RAW_BANK0_R0_REGNUM + bank * RL78_REGS_PER_BANK
|
|
+ (reg - RL78_X_REGNUM);
|
|
status = regcache->raw_read (raw_regnum, buffer);
|
|
}
|
|
}
|
|
else if (RL78_AX_REGNUM <= reg && reg <= RL78_HL_REGNUM)
|
|
{
|
|
ULONGEST psw;
|
|
|
|
status = regcache->raw_read (RL78_PSW_REGNUM, &psw);
|
|
if (status == REG_VALID)
|
|
{
|
|
/* RSB0 is at bit 3; RSBS1 is at bit 5. */
|
|
int bank = ((psw >> 3) & 1) | ((psw >> 4) & 1);
|
|
int raw_regnum = RL78_RAW_BANK0_R0_REGNUM + bank * RL78_REGS_PER_BANK
|
|
+ 2 * (reg - RL78_AX_REGNUM);
|
|
status = regcache->raw_read (raw_regnum, buffer);
|
|
if (status == REG_VALID)
|
|
status = regcache->raw_read (raw_regnum + 1, buffer + 1);
|
|
}
|
|
}
|
|
else
|
|
gdb_assert_not_reached ("invalid pseudo register number");
|
|
return status;
|
|
}
|
|
|
|
/* Implement the "pseudo_register_write" gdbarch method. */
|
|
|
|
static void
|
|
rl78_pseudo_register_write (struct gdbarch *gdbarch,
|
|
struct regcache *regcache,
|
|
int reg, const gdb_byte *buffer)
|
|
{
|
|
if (RL78_BANK0_R0_REGNUM <= reg && reg <= RL78_BANK3_R7_REGNUM)
|
|
{
|
|
int raw_regnum = RL78_RAW_BANK0_R0_REGNUM
|
|
+ (reg - RL78_BANK0_R0_REGNUM);
|
|
|
|
regcache->raw_write (raw_regnum, buffer);
|
|
}
|
|
else if (RL78_BANK0_RP0_REGNUM <= reg && reg <= RL78_BANK3_RP3_REGNUM)
|
|
{
|
|
int raw_regnum = 2 * (reg - RL78_BANK0_RP0_REGNUM)
|
|
+ RL78_RAW_BANK0_R0_REGNUM;
|
|
|
|
regcache->raw_write (raw_regnum, buffer);
|
|
regcache->raw_write (raw_regnum + 1, buffer + 1);
|
|
}
|
|
else if (RL78_BANK0_RP0_PTR_REGNUM <= reg && reg <= RL78_BANK3_RP3_PTR_REGNUM)
|
|
{
|
|
int raw_regnum = 2 * (reg - RL78_BANK0_RP0_PTR_REGNUM)
|
|
+ RL78_RAW_BANK0_R0_REGNUM;
|
|
|
|
regcache->raw_write (raw_regnum, buffer);
|
|
regcache->raw_write (raw_regnum + 1, buffer + 1);
|
|
}
|
|
else if (reg == RL78_SP_REGNUM)
|
|
{
|
|
regcache->raw_write (RL78_SPL_REGNUM, buffer);
|
|
regcache->raw_write (RL78_SPH_REGNUM, buffer + 1);
|
|
}
|
|
else if (reg == RL78_PC_REGNUM)
|
|
{
|
|
gdb_byte rawbuf[4];
|
|
|
|
memcpy (rawbuf, buffer, 3);
|
|
rawbuf[3] = 0;
|
|
regcache->raw_write (RL78_RAW_PC_REGNUM, rawbuf);
|
|
}
|
|
else if (RL78_X_REGNUM <= reg && reg <= RL78_H_REGNUM)
|
|
{
|
|
ULONGEST psw;
|
|
int bank;
|
|
int raw_regnum;
|
|
|
|
regcache_raw_read_unsigned (regcache, RL78_PSW_REGNUM, &psw);
|
|
bank = ((psw >> 3) & 1) | ((psw >> 4) & 1);
|
|
/* RSB0 is at bit 3; RSBS1 is at bit 5. */
|
|
raw_regnum = RL78_RAW_BANK0_R0_REGNUM + bank * RL78_REGS_PER_BANK
|
|
+ (reg - RL78_X_REGNUM);
|
|
regcache->raw_write (raw_regnum, buffer);
|
|
}
|
|
else if (RL78_AX_REGNUM <= reg && reg <= RL78_HL_REGNUM)
|
|
{
|
|
ULONGEST psw;
|
|
int bank, raw_regnum;
|
|
|
|
regcache_raw_read_unsigned (regcache, RL78_PSW_REGNUM, &psw);
|
|
bank = ((psw >> 3) & 1) | ((psw >> 4) & 1);
|
|
/* RSB0 is at bit 3; RSBS1 is at bit 5. */
|
|
raw_regnum = RL78_RAW_BANK0_R0_REGNUM + bank * RL78_REGS_PER_BANK
|
|
+ 2 * (reg - RL78_AX_REGNUM);
|
|
regcache->raw_write (raw_regnum, buffer);
|
|
regcache->raw_write (raw_regnum + 1, buffer + 1);
|
|
}
|
|
else
|
|
gdb_assert_not_reached ("invalid pseudo register number");
|
|
}
|
|
|
|
/* The documented BRK instruction is actually a two byte sequence,
|
|
{0x61, 0xcc}, but instructions may be as short as one byte.
|
|
Correspondence with Renesas revealed that the one byte sequence
|
|
0xff is used when a one byte breakpoint instruction is required. */
|
|
constexpr gdb_byte rl78_break_insn[] = { 0xff };
|
|
|
|
typedef BP_MANIPULATION (rl78_break_insn) rl78_breakpoint;
|
|
|
|
/* Define a "handle" struct for fetching the next opcode. */
|
|
|
|
struct rl78_get_opcode_byte_handle
|
|
{
|
|
CORE_ADDR pc;
|
|
};
|
|
|
|
static int
|
|
opc_reg_to_gdb_regnum (int opcreg)
|
|
{
|
|
switch (opcreg)
|
|
{
|
|
case RL78_Reg_X:
|
|
return RL78_X_REGNUM;
|
|
case RL78_Reg_A:
|
|
return RL78_A_REGNUM;
|
|
case RL78_Reg_C:
|
|
return RL78_C_REGNUM;
|
|
case RL78_Reg_B:
|
|
return RL78_B_REGNUM;
|
|
case RL78_Reg_E:
|
|
return RL78_E_REGNUM;
|
|
case RL78_Reg_D:
|
|
return RL78_D_REGNUM;
|
|
case RL78_Reg_L:
|
|
return RL78_L_REGNUM;
|
|
case RL78_Reg_H:
|
|
return RL78_H_REGNUM;
|
|
case RL78_Reg_AX:
|
|
return RL78_AX_REGNUM;
|
|
case RL78_Reg_BC:
|
|
return RL78_BC_REGNUM;
|
|
case RL78_Reg_DE:
|
|
return RL78_DE_REGNUM;
|
|
case RL78_Reg_HL:
|
|
return RL78_HL_REGNUM;
|
|
case RL78_Reg_SP:
|
|
return RL78_SP_REGNUM;
|
|
case RL78_Reg_PSW:
|
|
return RL78_PSW_REGNUM;
|
|
case RL78_Reg_CS:
|
|
return RL78_CS_REGNUM;
|
|
case RL78_Reg_ES:
|
|
return RL78_ES_REGNUM;
|
|
case RL78_Reg_PMC:
|
|
return RL78_PMC_REGNUM;
|
|
case RL78_Reg_MEM:
|
|
return RL78_MEM_REGNUM;
|
|
default:
|
|
internal_error (_("Undefined mapping for opc reg %d"),
|
|
opcreg);
|
|
}
|
|
|
|
/* Not reached. */
|
|
return 0;
|
|
}
|
|
|
|
/* Fetch a byte on behalf of the opcode decoder. HANDLE contains
|
|
the memory address of the next byte to fetch. If successful,
|
|
the address in the handle is updated and the byte fetched is
|
|
returned as the value of the function. If not successful, -1
|
|
is returned. */
|
|
|
|
static int
|
|
rl78_get_opcode_byte (void *handle)
|
|
{
|
|
struct rl78_get_opcode_byte_handle *opcdata
|
|
= (struct rl78_get_opcode_byte_handle *) handle;
|
|
int status;
|
|
gdb_byte byte;
|
|
|
|
status = target_read_memory (opcdata->pc, &byte, 1);
|
|
if (status == 0)
|
|
{
|
|
opcdata->pc += 1;
|
|
return byte;
|
|
}
|
|
else
|
|
return -1;
|
|
}
|
|
|
|
/* Function for finding saved registers in a 'struct pv_area'; this
|
|
function is passed to pv_area::scan.
|
|
|
|
If VALUE is a saved register, ADDR says it was saved at a constant
|
|
offset from the frame base, and SIZE indicates that the whole
|
|
register was saved, record its offset. */
|
|
|
|
static void
|
|
check_for_saved (void *result_untyped, pv_t addr, CORE_ADDR size,
|
|
pv_t value)
|
|
{
|
|
struct rl78_prologue *result = (struct rl78_prologue *) result_untyped;
|
|
|
|
if (value.kind == pvk_register
|
|
&& value.k == 0
|
|
&& pv_is_register (addr, RL78_SP_REGNUM)
|
|
&& size == register_size (current_inferior ()->arch (), value.reg))
|
|
result->reg_offset[value.reg] = addr.k;
|
|
}
|
|
|
|
/* Analyze a prologue starting at START_PC, going no further than
|
|
LIMIT_PC. Fill in RESULT as appropriate. */
|
|
|
|
static void
|
|
rl78_analyze_prologue (CORE_ADDR start_pc,
|
|
CORE_ADDR limit_pc, struct rl78_prologue *result)
|
|
{
|
|
CORE_ADDR pc, next_pc;
|
|
int rn;
|
|
pv_t reg[RL78_NUM_TOTAL_REGS];
|
|
CORE_ADDR after_last_frame_setup_insn = start_pc;
|
|
int bank = 0;
|
|
|
|
memset (result, 0, sizeof (*result));
|
|
|
|
for (rn = 0; rn < RL78_NUM_TOTAL_REGS; rn++)
|
|
{
|
|
reg[rn] = pv_register (rn, 0);
|
|
result->reg_offset[rn] = 1;
|
|
}
|
|
|
|
pv_area stack (RL78_SP_REGNUM,
|
|
gdbarch_addr_bit (current_inferior ()->arch ()));
|
|
|
|
/* The call instruction has saved the return address on the stack. */
|
|
reg[RL78_SP_REGNUM] = pv_add_constant (reg[RL78_SP_REGNUM], -4);
|
|
stack.store (reg[RL78_SP_REGNUM], 4, reg[RL78_PC_REGNUM]);
|
|
|
|
pc = start_pc;
|
|
while (pc < limit_pc)
|
|
{
|
|
int bytes_read;
|
|
struct rl78_get_opcode_byte_handle opcode_handle;
|
|
RL78_Opcode_Decoded opc;
|
|
|
|
opcode_handle.pc = pc;
|
|
bytes_read = rl78_decode_opcode (pc, &opc, rl78_get_opcode_byte,
|
|
&opcode_handle, RL78_ISA_DEFAULT);
|
|
next_pc = pc + bytes_read;
|
|
|
|
if (opc.id == RLO_sel)
|
|
{
|
|
bank = opc.op[1].addend;
|
|
}
|
|
else if (opc.id == RLO_mov
|
|
&& opc.op[0].type == RL78_Operand_PreDec
|
|
&& opc.op[0].reg == RL78_Reg_SP
|
|
&& opc.op[1].type == RL78_Operand_Register)
|
|
{
|
|
int rsrc = (bank * RL78_REGS_PER_BANK)
|
|
+ 2 * (opc.op[1].reg - RL78_Reg_AX);
|
|
|
|
reg[RL78_SP_REGNUM] = pv_add_constant (reg[RL78_SP_REGNUM], -1);
|
|
stack.store (reg[RL78_SP_REGNUM], 1, reg[rsrc]);
|
|
reg[RL78_SP_REGNUM] = pv_add_constant (reg[RL78_SP_REGNUM], -1);
|
|
stack.store (reg[RL78_SP_REGNUM], 1, reg[rsrc + 1]);
|
|
after_last_frame_setup_insn = next_pc;
|
|
}
|
|
else if (opc.id == RLO_sub
|
|
&& opc.op[0].type == RL78_Operand_Register
|
|
&& opc.op[0].reg == RL78_Reg_SP
|
|
&& opc.op[1].type == RL78_Operand_Immediate)
|
|
{
|
|
int addend = opc.op[1].addend;
|
|
|
|
reg[RL78_SP_REGNUM] = pv_add_constant (reg[RL78_SP_REGNUM],
|
|
-addend);
|
|
after_last_frame_setup_insn = next_pc;
|
|
}
|
|
else if (opc.id == RLO_mov
|
|
&& opc.size == RL78_Word
|
|
&& opc.op[0].type == RL78_Operand_Register
|
|
&& opc.op[1].type == RL78_Operand_Indirect
|
|
&& opc.op[1].addend == RL78_SP_ADDR)
|
|
{
|
|
reg[opc_reg_to_gdb_regnum (opc.op[0].reg)]
|
|
= reg[RL78_SP_REGNUM];
|
|
}
|
|
else if (opc.id == RLO_sub
|
|
&& opc.size == RL78_Word
|
|
&& opc.op[0].type == RL78_Operand_Register
|
|
&& opc.op[1].type == RL78_Operand_Immediate)
|
|
{
|
|
int addend = opc.op[1].addend;
|
|
int regnum = opc_reg_to_gdb_regnum (opc.op[0].reg);
|
|
|
|
reg[regnum] = pv_add_constant (reg[regnum], -addend);
|
|
}
|
|
else if (opc.id == RLO_mov
|
|
&& opc.size == RL78_Word
|
|
&& opc.op[0].type == RL78_Operand_Indirect
|
|
&& opc.op[0].addend == RL78_SP_ADDR
|
|
&& opc.op[1].type == RL78_Operand_Register)
|
|
{
|
|
reg[RL78_SP_REGNUM]
|
|
= reg[opc_reg_to_gdb_regnum (opc.op[1].reg)];
|
|
after_last_frame_setup_insn = next_pc;
|
|
}
|
|
else
|
|
{
|
|
/* Terminate the prologue scan. */
|
|
break;
|
|
}
|
|
|
|
pc = next_pc;
|
|
}
|
|
|
|
/* Is the frame size (offset, really) a known constant? */
|
|
if (pv_is_register (reg[RL78_SP_REGNUM], RL78_SP_REGNUM))
|
|
result->frame_size = reg[RL78_SP_REGNUM].k;
|
|
|
|
/* Record where all the registers were saved. */
|
|
stack.scan (check_for_saved, (void *) result);
|
|
|
|
result->prologue_end = after_last_frame_setup_insn;
|
|
}
|
|
|
|
/* Implement the "addr_bits_remove" gdbarch method. */
|
|
|
|
static CORE_ADDR
|
|
rl78_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
|
|
{
|
|
return addr & 0xffffff;
|
|
}
|
|
|
|
/* Implement the "address_to_pointer" gdbarch method. */
|
|
|
|
static void
|
|
rl78_address_to_pointer (struct gdbarch *gdbarch,
|
|
struct type *type, gdb_byte *buf, CORE_ADDR addr)
|
|
{
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
|
|
store_unsigned_integer (buf, type->length (), byte_order,
|
|
addr & 0xffffff);
|
|
}
|
|
|
|
/* Implement the "pointer_to_address" gdbarch method. */
|
|
|
|
static CORE_ADDR
|
|
rl78_pointer_to_address (struct gdbarch *gdbarch,
|
|
struct type *type, const gdb_byte *buf)
|
|
{
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
CORE_ADDR addr
|
|
= extract_unsigned_integer (buf, type->length (), byte_order);
|
|
|
|
/* Is it a code address? */
|
|
if (type->target_type ()->code () == TYPE_CODE_FUNC
|
|
|| type->target_type ()->code () == TYPE_CODE_METHOD
|
|
|| TYPE_CODE_SPACE (type->target_type ())
|
|
|| type->length () == 4)
|
|
return rl78_make_instruction_address (addr);
|
|
else
|
|
return rl78_make_data_address (addr);
|
|
}
|
|
|
|
/* Implement the "skip_prologue" gdbarch method. */
|
|
|
|
static CORE_ADDR
|
|
rl78_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
|
|
{
|
|
const char *name;
|
|
CORE_ADDR func_addr, func_end;
|
|
struct rl78_prologue p;
|
|
|
|
/* Try to find the extent of the function that contains PC. */
|
|
if (!find_pc_partial_function (pc, &name, &func_addr, &func_end))
|
|
return pc;
|
|
|
|
rl78_analyze_prologue (pc, func_end, &p);
|
|
return p.prologue_end;
|
|
}
|
|
|
|
/* Implement the "unwind_pc" gdbarch method. */
|
|
|
|
static CORE_ADDR
|
|
rl78_unwind_pc (struct gdbarch *arch, const frame_info_ptr &next_frame)
|
|
{
|
|
return rl78_addr_bits_remove
|
|
(arch, frame_unwind_register_unsigned (next_frame,
|
|
RL78_PC_REGNUM));
|
|
}
|
|
|
|
/* Given a frame described by THIS_FRAME, decode the prologue of its
|
|
associated function if there is not cache entry as specified by
|
|
THIS_PROLOGUE_CACHE. Save the decoded prologue in the cache and
|
|
return that struct as the value of this function. */
|
|
|
|
static struct rl78_prologue *
|
|
rl78_analyze_frame_prologue (const frame_info_ptr &this_frame,
|
|
void **this_prologue_cache)
|
|
{
|
|
if (!*this_prologue_cache)
|
|
{
|
|
CORE_ADDR func_start, stop_addr;
|
|
|
|
*this_prologue_cache = FRAME_OBSTACK_ZALLOC (struct rl78_prologue);
|
|
|
|
func_start = get_frame_func (this_frame);
|
|
stop_addr = get_frame_pc (this_frame);
|
|
|
|
/* If we couldn't find any function containing the PC, then
|
|
just initialize the prologue cache, but don't do anything. */
|
|
if (!func_start)
|
|
stop_addr = func_start;
|
|
|
|
rl78_analyze_prologue (func_start, stop_addr,
|
|
(struct rl78_prologue *) *this_prologue_cache);
|
|
}
|
|
|
|
return (struct rl78_prologue *) *this_prologue_cache;
|
|
}
|
|
|
|
/* Given a frame and a prologue cache, return this frame's base. */
|
|
|
|
static CORE_ADDR
|
|
rl78_frame_base (const frame_info_ptr &this_frame, void **this_prologue_cache)
|
|
{
|
|
struct rl78_prologue *p
|
|
= rl78_analyze_frame_prologue (this_frame, this_prologue_cache);
|
|
CORE_ADDR sp = get_frame_register_unsigned (this_frame, RL78_SP_REGNUM);
|
|
|
|
return rl78_make_data_address (sp - p->frame_size);
|
|
}
|
|
|
|
/* Implement the "frame_this_id" method for unwinding frames. */
|
|
|
|
static void
|
|
rl78_this_id (const frame_info_ptr &this_frame,
|
|
void **this_prologue_cache, struct frame_id *this_id)
|
|
{
|
|
*this_id = frame_id_build (rl78_frame_base (this_frame,
|
|
this_prologue_cache),
|
|
get_frame_func (this_frame));
|
|
}
|
|
|
|
/* Implement the "frame_prev_register" method for unwinding frames. */
|
|
|
|
static struct value *
|
|
rl78_prev_register (const frame_info_ptr &this_frame,
|
|
void **this_prologue_cache, int regnum)
|
|
{
|
|
struct rl78_prologue *p
|
|
= rl78_analyze_frame_prologue (this_frame, this_prologue_cache);
|
|
CORE_ADDR frame_base = rl78_frame_base (this_frame, this_prologue_cache);
|
|
|
|
if (regnum == RL78_SP_REGNUM)
|
|
return frame_unwind_got_constant (this_frame, regnum, frame_base);
|
|
|
|
else if (regnum == RL78_SPL_REGNUM)
|
|
return frame_unwind_got_constant (this_frame, regnum,
|
|
(frame_base & 0xff));
|
|
|
|
else if (regnum == RL78_SPH_REGNUM)
|
|
return frame_unwind_got_constant (this_frame, regnum,
|
|
((frame_base >> 8) & 0xff));
|
|
|
|
/* If prologue analysis says we saved this register somewhere,
|
|
return a description of the stack slot holding it. */
|
|
else if (p->reg_offset[regnum] != 1)
|
|
{
|
|
struct value *rv =
|
|
frame_unwind_got_memory (this_frame, regnum,
|
|
frame_base + p->reg_offset[regnum]);
|
|
|
|
if (regnum == RL78_PC_REGNUM)
|
|
{
|
|
ULONGEST pc = rl78_make_instruction_address (value_as_long (rv));
|
|
|
|
return frame_unwind_got_constant (this_frame, regnum, pc);
|
|
}
|
|
return rv;
|
|
}
|
|
|
|
/* Otherwise, presume we haven't changed the value of this
|
|
register, and get it from the next frame. */
|
|
else
|
|
return frame_unwind_got_register (this_frame, regnum, regnum);
|
|
}
|
|
|
|
static const struct frame_unwind rl78_unwind =
|
|
{
|
|
"rl78 prologue",
|
|
NORMAL_FRAME,
|
|
default_frame_unwind_stop_reason,
|
|
rl78_this_id,
|
|
rl78_prev_register,
|
|
NULL,
|
|
default_frame_sniffer
|
|
};
|
|
|
|
/* Implement the "dwarf_reg_to_regnum" gdbarch method. */
|
|
|
|
static int
|
|
rl78_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
|
|
{
|
|
if (0 <= reg && reg <= 31)
|
|
{
|
|
if ((reg & 1) == 0)
|
|
/* Map even registers to their 16-bit counterparts which have a
|
|
pointer type. This is usually what is required from the DWARF
|
|
info. */
|
|
return (reg >> 1) + RL78_BANK0_RP0_PTR_REGNUM;
|
|
else
|
|
return reg;
|
|
}
|
|
else if (reg == 32)
|
|
return RL78_SP_REGNUM;
|
|
else if (reg == 33)
|
|
return -1; /* ap */
|
|
else if (reg == 34)
|
|
return RL78_PSW_REGNUM;
|
|
else if (reg == 35)
|
|
return RL78_ES_REGNUM;
|
|
else if (reg == 36)
|
|
return RL78_CS_REGNUM;
|
|
else if (reg == 37)
|
|
return RL78_PC_REGNUM;
|
|
else
|
|
return -1;
|
|
}
|
|
|
|
/* Implement the `register_sim_regno' gdbarch method. */
|
|
|
|
static int
|
|
rl78_register_sim_regno (struct gdbarch *gdbarch, int regnum)
|
|
{
|
|
gdb_assert (regnum < RL78_NUM_REGS);
|
|
|
|
/* So long as regnum is in [0, RL78_NUM_REGS), it's valid. We
|
|
just want to override the default here which disallows register
|
|
numbers which have no names. */
|
|
return regnum;
|
|
}
|
|
|
|
/* Implement the "return_value" gdbarch method. */
|
|
|
|
static enum return_value_convention
|
|
rl78_return_value (struct gdbarch *gdbarch,
|
|
struct value *function,
|
|
struct type *valtype,
|
|
struct regcache *regcache,
|
|
gdb_byte *readbuf, const gdb_byte *writebuf)
|
|
{
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
ULONGEST valtype_len = valtype->length ();
|
|
rl78_gdbarch_tdep *tdep = gdbarch_tdep<rl78_gdbarch_tdep> (gdbarch);
|
|
int is_g10 = tdep->elf_flags & E_FLAG_RL78_G10;
|
|
|
|
if (valtype_len > 8)
|
|
return RETURN_VALUE_STRUCT_CONVENTION;
|
|
|
|
if (readbuf)
|
|
{
|
|
ULONGEST u;
|
|
int argreg = RL78_RAW_BANK1_R0_REGNUM;
|
|
CORE_ADDR g10_raddr = 0xffec8;
|
|
int offset = 0;
|
|
|
|
while (valtype_len > 0)
|
|
{
|
|
if (is_g10)
|
|
u = read_memory_integer (g10_raddr, 1,
|
|
gdbarch_byte_order (gdbarch));
|
|
else
|
|
regcache_cooked_read_unsigned (regcache, argreg, &u);
|
|
store_unsigned_integer (readbuf + offset, 1, byte_order, u);
|
|
valtype_len -= 1;
|
|
offset += 1;
|
|
argreg++;
|
|
g10_raddr++;
|
|
}
|
|
}
|
|
|
|
if (writebuf)
|
|
{
|
|
ULONGEST u;
|
|
int argreg = RL78_RAW_BANK1_R0_REGNUM;
|
|
CORE_ADDR g10_raddr = 0xffec8;
|
|
int offset = 0;
|
|
|
|
while (valtype_len > 0)
|
|
{
|
|
u = extract_unsigned_integer (writebuf + offset, 1, byte_order);
|
|
if (is_g10) {
|
|
gdb_byte b = u & 0xff;
|
|
write_memory (g10_raddr, &b, 1);
|
|
}
|
|
else
|
|
regcache_cooked_write_unsigned (regcache, argreg, u);
|
|
valtype_len -= 1;
|
|
offset += 1;
|
|
argreg++;
|
|
g10_raddr++;
|
|
}
|
|
}
|
|
|
|
return RETURN_VALUE_REGISTER_CONVENTION;
|
|
}
|
|
|
|
|
|
/* Implement the "frame_align" gdbarch method. */
|
|
|
|
static CORE_ADDR
|
|
rl78_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
|
|
{
|
|
return rl78_make_data_address (align_down (sp, 2));
|
|
}
|
|
|
|
|
|
/* Implement the "dummy_id" gdbarch method. */
|
|
|
|
static struct frame_id
|
|
rl78_dummy_id (struct gdbarch *gdbarch, const frame_info_ptr &this_frame)
|
|
{
|
|
return
|
|
frame_id_build (rl78_make_data_address
|
|
(get_frame_register_unsigned
|
|
(this_frame, RL78_SP_REGNUM)),
|
|
get_frame_pc (this_frame));
|
|
}
|
|
|
|
|
|
/* Implement the "push_dummy_call" gdbarch method. */
|
|
|
|
static CORE_ADDR
|
|
rl78_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
|
|
struct regcache *regcache, CORE_ADDR bp_addr,
|
|
int nargs, struct value **args, CORE_ADDR sp,
|
|
function_call_return_method return_method,
|
|
CORE_ADDR struct_addr)
|
|
{
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
gdb_byte buf[4];
|
|
int i;
|
|
|
|
/* Push arguments in reverse order. */
|
|
for (i = nargs - 1; i >= 0; i--)
|
|
{
|
|
struct type *value_type = args[i]->enclosing_type ();
|
|
int len = value_type->length ();
|
|
int container_len = (len + 1) & ~1;
|
|
|
|
sp -= container_len;
|
|
write_memory (rl78_make_data_address (sp),
|
|
args[i]->contents_all ().data (), len);
|
|
}
|
|
|
|
/* Store struct value address. */
|
|
if (return_method == return_method_struct)
|
|
{
|
|
store_unsigned_integer (buf, 2, byte_order, struct_addr);
|
|
sp -= 2;
|
|
write_memory (rl78_make_data_address (sp), buf, 2);
|
|
}
|
|
|
|
/* Store return address. */
|
|
sp -= 4;
|
|
store_unsigned_integer (buf, 4, byte_order, bp_addr);
|
|
write_memory (rl78_make_data_address (sp), buf, 4);
|
|
|
|
/* Finally, update the stack pointer... */
|
|
regcache_cooked_write_unsigned (regcache, RL78_SP_REGNUM, sp);
|
|
|
|
/* DWARF2/GCC uses the stack address *before* the function call as a
|
|
frame's CFA. */
|
|
return rl78_make_data_address (sp + 4);
|
|
}
|
|
|
|
/* Allocate and initialize a gdbarch object. */
|
|
|
|
static struct gdbarch *
|
|
rl78_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
|
|
{
|
|
int elf_flags;
|
|
|
|
/* Extract the elf_flags if available. */
|
|
if (info.abfd != NULL
|
|
&& bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
|
|
elf_flags = elf_elfheader (info.abfd)->e_flags;
|
|
else
|
|
elf_flags = 0;
|
|
|
|
|
|
/* Try to find the architecture in the list of already defined
|
|
architectures. */
|
|
for (arches = gdbarch_list_lookup_by_info (arches, &info);
|
|
arches != NULL;
|
|
arches = gdbarch_list_lookup_by_info (arches->next, &info))
|
|
{
|
|
rl78_gdbarch_tdep *tdep
|
|
= gdbarch_tdep<rl78_gdbarch_tdep> (arches->gdbarch);
|
|
|
|
if (tdep->elf_flags != elf_flags)
|
|
continue;
|
|
|
|
return arches->gdbarch;
|
|
}
|
|
|
|
/* None found, create a new architecture from the information
|
|
provided. */
|
|
gdbarch *gdbarch
|
|
= gdbarch_alloc (&info, gdbarch_tdep_up (new rl78_gdbarch_tdep));
|
|
rl78_gdbarch_tdep *tdep = gdbarch_tdep<rl78_gdbarch_tdep> (gdbarch);
|
|
|
|
tdep->elf_flags = elf_flags;
|
|
|
|
/* Initialize types. */
|
|
type_allocator alloc (gdbarch);
|
|
tdep->rl78_void = alloc.new_type (TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
|
|
tdep->rl78_uint8 = init_integer_type (alloc, 8, 1, "uint8_t");
|
|
tdep->rl78_int8 = init_integer_type (alloc, 8, 0, "int8_t");
|
|
tdep->rl78_uint16 = init_integer_type (alloc, 16, 1, "uint16_t");
|
|
tdep->rl78_int16 = init_integer_type (alloc, 16, 0, "int16_t");
|
|
tdep->rl78_uint32 = init_integer_type (alloc, 32, 1, "uint32_t");
|
|
tdep->rl78_int32 = init_integer_type (alloc, 32, 0, "int32_t");
|
|
|
|
tdep->rl78_data_pointer
|
|
= init_pointer_type (alloc, 16, "rl78_data_addr_t", tdep->rl78_void);
|
|
tdep->rl78_code_pointer
|
|
= init_pointer_type (alloc, 32, "rl78_code_addr_t", tdep->rl78_void);
|
|
|
|
/* Registers. */
|
|
set_gdbarch_num_regs (gdbarch, RL78_NUM_REGS);
|
|
set_gdbarch_num_pseudo_regs (gdbarch, RL78_NUM_PSEUDO_REGS);
|
|
if (tdep->elf_flags & E_FLAG_RL78_G10)
|
|
set_gdbarch_register_name (gdbarch, rl78_g10_register_name);
|
|
else
|
|
set_gdbarch_register_name (gdbarch, rl78_register_name);
|
|
set_gdbarch_register_type (gdbarch, rl78_register_type);
|
|
set_gdbarch_pc_regnum (gdbarch, RL78_PC_REGNUM);
|
|
set_gdbarch_sp_regnum (gdbarch, RL78_SP_REGNUM);
|
|
set_gdbarch_pseudo_register_read (gdbarch, rl78_pseudo_register_read);
|
|
set_gdbarch_deprecated_pseudo_register_write (gdbarch,
|
|
rl78_pseudo_register_write);
|
|
set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rl78_dwarf_reg_to_regnum);
|
|
set_gdbarch_register_reggroup_p (gdbarch, rl78_register_reggroup_p);
|
|
set_gdbarch_register_sim_regno (gdbarch, rl78_register_sim_regno);
|
|
|
|
/* Data types. */
|
|
set_gdbarch_char_signed (gdbarch, 0);
|
|
set_gdbarch_short_bit (gdbarch, 16);
|
|
set_gdbarch_int_bit (gdbarch, 16);
|
|
set_gdbarch_long_bit (gdbarch, 32);
|
|
set_gdbarch_long_long_bit (gdbarch, 64);
|
|
set_gdbarch_ptr_bit (gdbarch, 16);
|
|
set_gdbarch_addr_bit (gdbarch, 32);
|
|
set_gdbarch_dwarf2_addr_size (gdbarch, 4);
|
|
set_gdbarch_float_bit (gdbarch, 32);
|
|
set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
|
|
set_gdbarch_double_bit (gdbarch, 32);
|
|
set_gdbarch_long_double_bit (gdbarch, 64);
|
|
set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
|
|
set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
|
|
set_gdbarch_pointer_to_address (gdbarch, rl78_pointer_to_address);
|
|
set_gdbarch_address_to_pointer (gdbarch, rl78_address_to_pointer);
|
|
set_gdbarch_addr_bits_remove (gdbarch, rl78_addr_bits_remove);
|
|
|
|
/* Breakpoints. */
|
|
set_gdbarch_breakpoint_kind_from_pc (gdbarch, rl78_breakpoint::kind_from_pc);
|
|
set_gdbarch_sw_breakpoint_from_kind (gdbarch, rl78_breakpoint::bp_from_kind);
|
|
set_gdbarch_decr_pc_after_break (gdbarch, 1);
|
|
|
|
/* Frames, prologues, etc. */
|
|
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
|
|
set_gdbarch_skip_prologue (gdbarch, rl78_skip_prologue);
|
|
set_gdbarch_unwind_pc (gdbarch, rl78_unwind_pc);
|
|
set_gdbarch_frame_align (gdbarch, rl78_frame_align);
|
|
|
|
dwarf2_append_unwinders (gdbarch);
|
|
frame_unwind_append_unwinder (gdbarch, &rl78_unwind);
|
|
|
|
/* Dummy frames, return values. */
|
|
set_gdbarch_dummy_id (gdbarch, rl78_dummy_id);
|
|
set_gdbarch_push_dummy_call (gdbarch, rl78_push_dummy_call);
|
|
set_gdbarch_return_value (gdbarch, rl78_return_value);
|
|
|
|
/* Virtual tables. */
|
|
set_gdbarch_vbit_in_delta (gdbarch, 1);
|
|
|
|
return gdbarch;
|
|
}
|
|
|
|
/* Register the above initialization routine. */
|
|
|
|
void _initialize_rl78_tdep ();
|
|
void
|
|
_initialize_rl78_tdep ()
|
|
{
|
|
gdbarch_register (bfd_arch_rl78, rl78_gdbarch_init);
|
|
}
|