mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-11-21 01:12:32 +08:00
50fb268a6f
When running test-case gdb.fortran/intrinsics.exp on arm-linux, I get: ... (gdb) p cmplx (4,4,16)^M /home/linux/gdb/src/gdb/f-lang.c:1002: internal-error: eval_op_f_cmplx: \ Assertion `kind_arg->code () == TYPE_CODE_COMPLEX' failed.^M A problem internal to GDB has been detected,^M further debugging may prove unreliable.^M ----- Backtrace -----^M FAIL: gdb.fortran/intrinsics.exp: p cmplx (4,4,16) (GDB internal error) ... The problem is that 16-byte floats are unsupported: ... $ gfortran test.f90 test.f90:2:17: 2 | REAL(kind=16) :: foo = 1 | 1 Error: Kind 16 not supported for type REAL at (1) ... and consequently we end up with a builtin_real_s16 and builtin_complex_s16 with code TYPE_CODE_ERROR. Fix this by bailing out asap when encountering such a type. Without this patch we're able to do the rather useless: ... (gdb) ptype real*16 type = real*16 (gdb) ptype real_16 type = real*16 ... but with this patch we get: ... (gdb) ptype real*16 unsupported kind 16 for type real*4 (gdb) ptype real_16 unsupported type real*16 ... Tested on arm-linux. PR fortran/30537 Bug: https://sourceware.org/bugzilla/show_bug.cgi?id=30537
1752 lines
45 KiB
Plaintext
1752 lines
45 KiB
Plaintext
|
||
/* YACC parser for Fortran expressions, for GDB.
|
||
Copyright (C) 1986-2024 Free Software Foundation, Inc.
|
||
|
||
Contributed by Motorola. Adapted from the C parser by Farooq Butt
|
||
(fmbutt@engage.sps.mot.com).
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||
|
||
/* This was blantantly ripped off the C expression parser, please
|
||
be aware of that as you look at its basic structure -FMB */
|
||
|
||
/* Parse a F77 expression from text in a string,
|
||
and return the result as a struct expression pointer.
|
||
That structure contains arithmetic operations in reverse polish,
|
||
with constants represented by operations that are followed by special data.
|
||
See expression.h for the details of the format.
|
||
What is important here is that it can be built up sequentially
|
||
during the process of parsing; the lower levels of the tree always
|
||
come first in the result.
|
||
|
||
Note that malloc's and realloc's in this file are transformed to
|
||
xmalloc and xrealloc respectively by the same sed command in the
|
||
makefile that remaps any other malloc/realloc inserted by the parser
|
||
generator. Doing this with #defines and trying to control the interaction
|
||
with include files (<malloc.h> and <stdlib.h> for example) just became
|
||
too messy, particularly when such includes can be inserted at random
|
||
times by the parser generator. */
|
||
|
||
%{
|
||
|
||
#include "expression.h"
|
||
#include "value.h"
|
||
#include "parser-defs.h"
|
||
#include "language.h"
|
||
#include "f-lang.h"
|
||
#include "block.h"
|
||
#include <ctype.h>
|
||
#include <algorithm>
|
||
#include "type-stack.h"
|
||
#include "f-exp.h"
|
||
|
||
#define parse_type(ps) builtin_type (ps->gdbarch ())
|
||
#define parse_f_type(ps) builtin_f_type (ps->gdbarch ())
|
||
|
||
/* Remap normal yacc parser interface names (yyparse, yylex, yyerror,
|
||
etc). */
|
||
#define GDB_YY_REMAP_PREFIX f_
|
||
#include "yy-remap.h"
|
||
|
||
/* The state of the parser, used internally when we are parsing the
|
||
expression. */
|
||
|
||
static struct parser_state *pstate = NULL;
|
||
|
||
/* Depth of parentheses. */
|
||
static int paren_depth;
|
||
|
||
/* The current type stack. */
|
||
static struct type_stack *type_stack;
|
||
|
||
int yyparse (void);
|
||
|
||
static int yylex (void);
|
||
|
||
static void yyerror (const char *);
|
||
|
||
static void growbuf_by_size (int);
|
||
|
||
static int match_string_literal (void);
|
||
|
||
static void push_kind_type (LONGEST val, struct type *type);
|
||
|
||
static struct type *convert_to_kind_type (struct type *basetype, int kind);
|
||
|
||
static void wrap_unop_intrinsic (exp_opcode opcode);
|
||
|
||
static void wrap_binop_intrinsic (exp_opcode opcode);
|
||
|
||
static void wrap_ternop_intrinsic (exp_opcode opcode);
|
||
|
||
template<typename T>
|
||
static void fortran_wrap2_kind (type *base_type);
|
||
|
||
template<typename T>
|
||
static void fortran_wrap3_kind (type *base_type);
|
||
|
||
using namespace expr;
|
||
%}
|
||
|
||
/* Although the yacc "value" of an expression is not used,
|
||
since the result is stored in the structure being created,
|
||
other node types do have values. */
|
||
|
||
%union
|
||
{
|
||
LONGEST lval;
|
||
struct {
|
||
LONGEST val;
|
||
struct type *type;
|
||
} typed_val;
|
||
struct {
|
||
gdb_byte val[16];
|
||
struct type *type;
|
||
} typed_val_float;
|
||
struct symbol *sym;
|
||
struct type *tval;
|
||
struct stoken sval;
|
||
struct ttype tsym;
|
||
struct symtoken ssym;
|
||
int voidval;
|
||
enum exp_opcode opcode;
|
||
struct internalvar *ivar;
|
||
|
||
struct type **tvec;
|
||
int *ivec;
|
||
}
|
||
|
||
%{
|
||
/* YYSTYPE gets defined by %union */
|
||
static int parse_number (struct parser_state *, const char *, int,
|
||
int, YYSTYPE *);
|
||
%}
|
||
|
||
%type <voidval> exp type_exp start variable
|
||
%type <tval> type typebase
|
||
%type <tvec> nonempty_typelist
|
||
/* %type <bval> block */
|
||
|
||
/* Fancy type parsing. */
|
||
%type <voidval> func_mod direct_abs_decl abs_decl
|
||
%type <tval> ptype
|
||
|
||
%token <typed_val> INT
|
||
%token <typed_val_float> FLOAT
|
||
|
||
/* Both NAME and TYPENAME tokens represent symbols in the input,
|
||
and both convey their data as strings.
|
||
But a TYPENAME is a string that happens to be defined as a typedef
|
||
or builtin type name (such as int or char)
|
||
and a NAME is any other symbol.
|
||
Contexts where this distinction is not important can use the
|
||
nonterminal "name", which matches either NAME or TYPENAME. */
|
||
|
||
%token <sval> STRING_LITERAL
|
||
%token <lval> BOOLEAN_LITERAL
|
||
%token <ssym> NAME
|
||
%token <tsym> TYPENAME
|
||
%token <voidval> COMPLETE
|
||
%type <sval> name
|
||
%type <ssym> name_not_typename
|
||
|
||
/* A NAME_OR_INT is a symbol which is not known in the symbol table,
|
||
but which would parse as a valid number in the current input radix.
|
||
E.g. "c" when input_radix==16. Depending on the parse, it will be
|
||
turned into a name or into a number. */
|
||
|
||
%token <ssym> NAME_OR_INT
|
||
|
||
%token SIZEOF KIND
|
||
%token ERROR
|
||
|
||
/* Special type cases, put in to allow the parser to distinguish different
|
||
legal basetypes. */
|
||
%token INT_S1_KEYWORD INT_S2_KEYWORD INT_KEYWORD INT_S4_KEYWORD INT_S8_KEYWORD
|
||
%token LOGICAL_S1_KEYWORD LOGICAL_S2_KEYWORD LOGICAL_KEYWORD LOGICAL_S4_KEYWORD
|
||
%token LOGICAL_S8_KEYWORD
|
||
%token REAL_KEYWORD REAL_S4_KEYWORD REAL_S8_KEYWORD REAL_S16_KEYWORD
|
||
%token COMPLEX_KEYWORD COMPLEX_S4_KEYWORD COMPLEX_S8_KEYWORD
|
||
%token COMPLEX_S16_KEYWORD
|
||
%token BOOL_AND BOOL_OR BOOL_NOT
|
||
%token SINGLE DOUBLE PRECISION
|
||
%token <lval> CHARACTER
|
||
|
||
%token <sval> DOLLAR_VARIABLE
|
||
|
||
%token <opcode> ASSIGN_MODIFY
|
||
%token <opcode> UNOP_INTRINSIC BINOP_INTRINSIC
|
||
%token <opcode> UNOP_OR_BINOP_INTRINSIC UNOP_OR_BINOP_OR_TERNOP_INTRINSIC
|
||
|
||
%left ','
|
||
%left ABOVE_COMMA
|
||
%right '=' ASSIGN_MODIFY
|
||
%right '?'
|
||
%left BOOL_OR
|
||
%right BOOL_NOT
|
||
%left BOOL_AND
|
||
%left '|'
|
||
%left '^'
|
||
%left '&'
|
||
%left EQUAL NOTEQUAL
|
||
%left LESSTHAN GREATERTHAN LEQ GEQ
|
||
%left LSH RSH
|
||
%left '@'
|
||
%left '+' '-'
|
||
%left '*' '/'
|
||
%right STARSTAR
|
||
%right '%'
|
||
%right UNARY
|
||
%right '('
|
||
|
||
|
||
%%
|
||
|
||
start : exp
|
||
| type_exp
|
||
;
|
||
|
||
type_exp: type
|
||
{ pstate->push_new<type_operation> ($1); }
|
||
;
|
||
|
||
exp : '(' exp ')'
|
||
{ }
|
||
;
|
||
|
||
/* Expressions, not including the comma operator. */
|
||
exp : '*' exp %prec UNARY
|
||
{ pstate->wrap<unop_ind_operation> (); }
|
||
;
|
||
|
||
exp : '&' exp %prec UNARY
|
||
{ pstate->wrap<unop_addr_operation> (); }
|
||
;
|
||
|
||
exp : '-' exp %prec UNARY
|
||
{ pstate->wrap<unary_neg_operation> (); }
|
||
;
|
||
|
||
exp : BOOL_NOT exp %prec UNARY
|
||
{ pstate->wrap<unary_logical_not_operation> (); }
|
||
;
|
||
|
||
exp : '~' exp %prec UNARY
|
||
{ pstate->wrap<unary_complement_operation> (); }
|
||
;
|
||
|
||
exp : SIZEOF exp %prec UNARY
|
||
{ pstate->wrap<unop_sizeof_operation> (); }
|
||
;
|
||
|
||
exp : KIND '(' exp ')' %prec UNARY
|
||
{ pstate->wrap<fortran_kind_operation> (); }
|
||
;
|
||
|
||
/* No more explicit array operators, we treat everything in F77 as
|
||
a function call. The disambiguation as to whether we are
|
||
doing a subscript operation or a function call is done
|
||
later in eval.c. */
|
||
|
||
exp : exp '('
|
||
{ pstate->start_arglist (); }
|
||
arglist ')'
|
||
{
|
||
std::vector<operation_up> args
|
||
= pstate->pop_vector (pstate->end_arglist ());
|
||
pstate->push_new<fortran_undetermined>
|
||
(pstate->pop (), std::move (args));
|
||
}
|
||
;
|
||
|
||
exp : UNOP_INTRINSIC '(' exp ')'
|
||
{
|
||
wrap_unop_intrinsic ($1);
|
||
}
|
||
;
|
||
|
||
exp : BINOP_INTRINSIC '(' exp ',' exp ')'
|
||
{
|
||
wrap_binop_intrinsic ($1);
|
||
}
|
||
;
|
||
|
||
exp : UNOP_OR_BINOP_INTRINSIC '('
|
||
{ pstate->start_arglist (); }
|
||
arglist ')'
|
||
{
|
||
const int n = pstate->end_arglist ();
|
||
|
||
switch (n)
|
||
{
|
||
case 1:
|
||
wrap_unop_intrinsic ($1);
|
||
break;
|
||
case 2:
|
||
wrap_binop_intrinsic ($1);
|
||
break;
|
||
default:
|
||
gdb_assert_not_reached
|
||
("wrong number of arguments for intrinsics");
|
||
}
|
||
}
|
||
|
||
exp : UNOP_OR_BINOP_OR_TERNOP_INTRINSIC '('
|
||
{ pstate->start_arglist (); }
|
||
arglist ')'
|
||
{
|
||
const int n = pstate->end_arglist ();
|
||
|
||
switch (n)
|
||
{
|
||
case 1:
|
||
wrap_unop_intrinsic ($1);
|
||
break;
|
||
case 2:
|
||
wrap_binop_intrinsic ($1);
|
||
break;
|
||
case 3:
|
||
wrap_ternop_intrinsic ($1);
|
||
break;
|
||
default:
|
||
gdb_assert_not_reached
|
||
("wrong number of arguments for intrinsics");
|
||
}
|
||
}
|
||
;
|
||
|
||
arglist :
|
||
;
|
||
|
||
arglist : exp
|
||
{ pstate->arglist_len = 1; }
|
||
;
|
||
|
||
arglist : subrange
|
||
{ pstate->arglist_len = 1; }
|
||
;
|
||
|
||
arglist : arglist ',' exp %prec ABOVE_COMMA
|
||
{ pstate->arglist_len++; }
|
||
;
|
||
|
||
arglist : arglist ',' subrange %prec ABOVE_COMMA
|
||
{ pstate->arglist_len++; }
|
||
;
|
||
|
||
/* There are four sorts of subrange types in F90. */
|
||
|
||
subrange: exp ':' exp %prec ABOVE_COMMA
|
||
{
|
||
operation_up high = pstate->pop ();
|
||
operation_up low = pstate->pop ();
|
||
pstate->push_new<fortran_range_operation>
|
||
(RANGE_STANDARD, std::move (low),
|
||
std::move (high), operation_up ());
|
||
}
|
||
;
|
||
|
||
subrange: exp ':' %prec ABOVE_COMMA
|
||
{
|
||
operation_up low = pstate->pop ();
|
||
pstate->push_new<fortran_range_operation>
|
||
(RANGE_HIGH_BOUND_DEFAULT, std::move (low),
|
||
operation_up (), operation_up ());
|
||
}
|
||
;
|
||
|
||
subrange: ':' exp %prec ABOVE_COMMA
|
||
{
|
||
operation_up high = pstate->pop ();
|
||
pstate->push_new<fortran_range_operation>
|
||
(RANGE_LOW_BOUND_DEFAULT, operation_up (),
|
||
std::move (high), operation_up ());
|
||
}
|
||
;
|
||
|
||
subrange: ':' %prec ABOVE_COMMA
|
||
{
|
||
pstate->push_new<fortran_range_operation>
|
||
(RANGE_LOW_BOUND_DEFAULT
|
||
| RANGE_HIGH_BOUND_DEFAULT,
|
||
operation_up (), operation_up (),
|
||
operation_up ());
|
||
}
|
||
;
|
||
|
||
/* And each of the four subrange types can also have a stride. */
|
||
subrange: exp ':' exp ':' exp %prec ABOVE_COMMA
|
||
{
|
||
operation_up stride = pstate->pop ();
|
||
operation_up high = pstate->pop ();
|
||
operation_up low = pstate->pop ();
|
||
pstate->push_new<fortran_range_operation>
|
||
(RANGE_STANDARD | RANGE_HAS_STRIDE,
|
||
std::move (low), std::move (high),
|
||
std::move (stride));
|
||
}
|
||
;
|
||
|
||
subrange: exp ':' ':' exp %prec ABOVE_COMMA
|
||
{
|
||
operation_up stride = pstate->pop ();
|
||
operation_up low = pstate->pop ();
|
||
pstate->push_new<fortran_range_operation>
|
||
(RANGE_HIGH_BOUND_DEFAULT
|
||
| RANGE_HAS_STRIDE,
|
||
std::move (low), operation_up (),
|
||
std::move (stride));
|
||
}
|
||
;
|
||
|
||
subrange: ':' exp ':' exp %prec ABOVE_COMMA
|
||
{
|
||
operation_up stride = pstate->pop ();
|
||
operation_up high = pstate->pop ();
|
||
pstate->push_new<fortran_range_operation>
|
||
(RANGE_LOW_BOUND_DEFAULT
|
||
| RANGE_HAS_STRIDE,
|
||
operation_up (), std::move (high),
|
||
std::move (stride));
|
||
}
|
||
;
|
||
|
||
subrange: ':' ':' exp %prec ABOVE_COMMA
|
||
{
|
||
operation_up stride = pstate->pop ();
|
||
pstate->push_new<fortran_range_operation>
|
||
(RANGE_LOW_BOUND_DEFAULT
|
||
| RANGE_HIGH_BOUND_DEFAULT
|
||
| RANGE_HAS_STRIDE,
|
||
operation_up (), operation_up (),
|
||
std::move (stride));
|
||
}
|
||
;
|
||
|
||
complexnum: exp ',' exp
|
||
{ }
|
||
;
|
||
|
||
exp : '(' complexnum ')'
|
||
{
|
||
operation_up rhs = pstate->pop ();
|
||
operation_up lhs = pstate->pop ();
|
||
pstate->push_new<complex_operation>
|
||
(std::move (lhs), std::move (rhs),
|
||
parse_f_type (pstate)->builtin_complex_s16);
|
||
}
|
||
;
|
||
|
||
exp : '(' type ')' exp %prec UNARY
|
||
{
|
||
pstate->push_new<unop_cast_operation>
|
||
(pstate->pop (), $2);
|
||
}
|
||
;
|
||
|
||
exp : exp '%' name
|
||
{
|
||
pstate->push_new<fortran_structop_operation>
|
||
(pstate->pop (), copy_name ($3));
|
||
}
|
||
;
|
||
|
||
exp : exp '%' name COMPLETE
|
||
{
|
||
structop_base_operation *op
|
||
= new fortran_structop_operation (pstate->pop (),
|
||
copy_name ($3));
|
||
pstate->mark_struct_expression (op);
|
||
pstate->push (operation_up (op));
|
||
}
|
||
;
|
||
|
||
exp : exp '%' COMPLETE
|
||
{
|
||
structop_base_operation *op
|
||
= new fortran_structop_operation (pstate->pop (),
|
||
"");
|
||
pstate->mark_struct_expression (op);
|
||
pstate->push (operation_up (op));
|
||
}
|
||
;
|
||
|
||
/* Binary operators in order of decreasing precedence. */
|
||
|
||
exp : exp '@' exp
|
||
{ pstate->wrap2<repeat_operation> (); }
|
||
;
|
||
|
||
exp : exp STARSTAR exp
|
||
{ pstate->wrap2<exp_operation> (); }
|
||
;
|
||
|
||
exp : exp '*' exp
|
||
{ pstate->wrap2<mul_operation> (); }
|
||
;
|
||
|
||
exp : exp '/' exp
|
||
{ pstate->wrap2<div_operation> (); }
|
||
;
|
||
|
||
exp : exp '+' exp
|
||
{ pstate->wrap2<add_operation> (); }
|
||
;
|
||
|
||
exp : exp '-' exp
|
||
{ pstate->wrap2<sub_operation> (); }
|
||
;
|
||
|
||
exp : exp LSH exp
|
||
{ pstate->wrap2<lsh_operation> (); }
|
||
;
|
||
|
||
exp : exp RSH exp
|
||
{ pstate->wrap2<rsh_operation> (); }
|
||
;
|
||
|
||
exp : exp EQUAL exp
|
||
{ pstate->wrap2<equal_operation> (); }
|
||
;
|
||
|
||
exp : exp NOTEQUAL exp
|
||
{ pstate->wrap2<notequal_operation> (); }
|
||
;
|
||
|
||
exp : exp LEQ exp
|
||
{ pstate->wrap2<leq_operation> (); }
|
||
;
|
||
|
||
exp : exp GEQ exp
|
||
{ pstate->wrap2<geq_operation> (); }
|
||
;
|
||
|
||
exp : exp LESSTHAN exp
|
||
{ pstate->wrap2<less_operation> (); }
|
||
;
|
||
|
||
exp : exp GREATERTHAN exp
|
||
{ pstate->wrap2<gtr_operation> (); }
|
||
;
|
||
|
||
exp : exp '&' exp
|
||
{ pstate->wrap2<bitwise_and_operation> (); }
|
||
;
|
||
|
||
exp : exp '^' exp
|
||
{ pstate->wrap2<bitwise_xor_operation> (); }
|
||
;
|
||
|
||
exp : exp '|' exp
|
||
{ pstate->wrap2<bitwise_ior_operation> (); }
|
||
;
|
||
|
||
exp : exp BOOL_AND exp
|
||
{ pstate->wrap2<logical_and_operation> (); }
|
||
;
|
||
|
||
|
||
exp : exp BOOL_OR exp
|
||
{ pstate->wrap2<logical_or_operation> (); }
|
||
;
|
||
|
||
exp : exp '=' exp
|
||
{ pstate->wrap2<assign_operation> (); }
|
||
;
|
||
|
||
exp : exp ASSIGN_MODIFY exp
|
||
{
|
||
operation_up rhs = pstate->pop ();
|
||
operation_up lhs = pstate->pop ();
|
||
pstate->push_new<assign_modify_operation>
|
||
($2, std::move (lhs), std::move (rhs));
|
||
}
|
||
;
|
||
|
||
exp : INT
|
||
{
|
||
pstate->push_new<long_const_operation>
|
||
($1.type, $1.val);
|
||
}
|
||
;
|
||
|
||
exp : NAME_OR_INT
|
||
{ YYSTYPE val;
|
||
parse_number (pstate, $1.stoken.ptr,
|
||
$1.stoken.length, 0, &val);
|
||
pstate->push_new<long_const_operation>
|
||
(val.typed_val.type,
|
||
val.typed_val.val);
|
||
}
|
||
;
|
||
|
||
exp : FLOAT
|
||
{
|
||
float_data data;
|
||
std::copy (std::begin ($1.val), std::end ($1.val),
|
||
std::begin (data));
|
||
pstate->push_new<float_const_operation> ($1.type, data);
|
||
}
|
||
;
|
||
|
||
exp : variable
|
||
;
|
||
|
||
exp : DOLLAR_VARIABLE
|
||
{ pstate->push_dollar ($1); }
|
||
;
|
||
|
||
exp : SIZEOF '(' type ')' %prec UNARY
|
||
{
|
||
$3 = check_typedef ($3);
|
||
pstate->push_new<long_const_operation>
|
||
(parse_f_type (pstate)->builtin_integer,
|
||
$3->length ());
|
||
}
|
||
;
|
||
|
||
exp : BOOLEAN_LITERAL
|
||
{ pstate->push_new<bool_operation> ($1); }
|
||
;
|
||
|
||
exp : STRING_LITERAL
|
||
{
|
||
pstate->push_new<string_operation>
|
||
(copy_name ($1));
|
||
}
|
||
;
|
||
|
||
variable: name_not_typename
|
||
{ struct block_symbol sym = $1.sym;
|
||
std::string name = copy_name ($1.stoken);
|
||
pstate->push_symbol (name.c_str (), sym);
|
||
}
|
||
;
|
||
|
||
|
||
type : ptype
|
||
;
|
||
|
||
ptype : typebase
|
||
| typebase abs_decl
|
||
{
|
||
/* This is where the interesting stuff happens. */
|
||
int done = 0;
|
||
int array_size;
|
||
struct type *follow_type = $1;
|
||
struct type *range_type;
|
||
|
||
while (!done)
|
||
switch (type_stack->pop ())
|
||
{
|
||
case tp_end:
|
||
done = 1;
|
||
break;
|
||
case tp_pointer:
|
||
follow_type = lookup_pointer_type (follow_type);
|
||
break;
|
||
case tp_reference:
|
||
follow_type = lookup_lvalue_reference_type (follow_type);
|
||
break;
|
||
case tp_array:
|
||
array_size = type_stack->pop_int ();
|
||
if (array_size != -1)
|
||
{
|
||
struct type *idx_type
|
||
= parse_f_type (pstate)->builtin_integer;
|
||
type_allocator alloc (idx_type);
|
||
range_type =
|
||
create_static_range_type (alloc, idx_type,
|
||
0, array_size - 1);
|
||
follow_type = create_array_type (alloc,
|
||
follow_type,
|
||
range_type);
|
||
}
|
||
else
|
||
follow_type = lookup_pointer_type (follow_type);
|
||
break;
|
||
case tp_function:
|
||
follow_type = lookup_function_type (follow_type);
|
||
break;
|
||
case tp_kind:
|
||
{
|
||
int kind_val = type_stack->pop_int ();
|
||
follow_type
|
||
= convert_to_kind_type (follow_type, kind_val);
|
||
}
|
||
break;
|
||
}
|
||
$$ = follow_type;
|
||
}
|
||
;
|
||
|
||
abs_decl: '*'
|
||
{ type_stack->push (tp_pointer); $$ = 0; }
|
||
| '*' abs_decl
|
||
{ type_stack->push (tp_pointer); $$ = $2; }
|
||
| '&'
|
||
{ type_stack->push (tp_reference); $$ = 0; }
|
||
| '&' abs_decl
|
||
{ type_stack->push (tp_reference); $$ = $2; }
|
||
| direct_abs_decl
|
||
;
|
||
|
||
direct_abs_decl: '(' abs_decl ')'
|
||
{ $$ = $2; }
|
||
| '(' KIND '=' INT ')'
|
||
{ push_kind_type ($4.val, $4.type); }
|
||
| '*' INT
|
||
{ push_kind_type ($2.val, $2.type); }
|
||
| direct_abs_decl func_mod
|
||
{ type_stack->push (tp_function); }
|
||
| func_mod
|
||
{ type_stack->push (tp_function); }
|
||
;
|
||
|
||
func_mod: '(' ')'
|
||
{ $$ = 0; }
|
||
| '(' nonempty_typelist ')'
|
||
{ free ($2); $$ = 0; }
|
||
;
|
||
|
||
typebase /* Implements (approximately): (type-qualifier)* type-specifier */
|
||
: TYPENAME
|
||
{ $$ = $1.type; }
|
||
| INT_S1_KEYWORD
|
||
{ $$ = parse_f_type (pstate)->builtin_integer_s1; }
|
||
| INT_S2_KEYWORD
|
||
{ $$ = parse_f_type (pstate)->builtin_integer_s2; }
|
||
| INT_KEYWORD
|
||
{ $$ = parse_f_type (pstate)->builtin_integer; }
|
||
| INT_S4_KEYWORD
|
||
{ $$ = parse_f_type (pstate)->builtin_integer; }
|
||
| INT_S8_KEYWORD
|
||
{ $$ = parse_f_type (pstate)->builtin_integer_s8; }
|
||
| CHARACTER
|
||
{ $$ = parse_f_type (pstate)->builtin_character; }
|
||
| LOGICAL_S1_KEYWORD
|
||
{ $$ = parse_f_type (pstate)->builtin_logical_s1; }
|
||
| LOGICAL_S2_KEYWORD
|
||
{ $$ = parse_f_type (pstate)->builtin_logical_s2; }
|
||
| LOGICAL_KEYWORD
|
||
{ $$ = parse_f_type (pstate)->builtin_logical; }
|
||
| LOGICAL_S4_KEYWORD
|
||
{ $$ = parse_f_type (pstate)->builtin_logical; }
|
||
| LOGICAL_S8_KEYWORD
|
||
{ $$ = parse_f_type (pstate)->builtin_logical_s8; }
|
||
| REAL_KEYWORD
|
||
{ $$ = parse_f_type (pstate)->builtin_real; }
|
||
| REAL_S4_KEYWORD
|
||
{ $$ = parse_f_type (pstate)->builtin_real; }
|
||
| REAL_S8_KEYWORD
|
||
{ $$ = parse_f_type (pstate)->builtin_real_s8; }
|
||
| REAL_S16_KEYWORD
|
||
{ $$ = parse_f_type (pstate)->builtin_real_s16;
|
||
if ($$->code () == TYPE_CODE_ERROR)
|
||
error (_("unsupported type %s"),
|
||
TYPE_SAFE_NAME ($$));
|
||
}
|
||
| COMPLEX_KEYWORD
|
||
{ $$ = parse_f_type (pstate)->builtin_complex; }
|
||
| COMPLEX_S4_KEYWORD
|
||
{ $$ = parse_f_type (pstate)->builtin_complex; }
|
||
| COMPLEX_S8_KEYWORD
|
||
{ $$ = parse_f_type (pstate)->builtin_complex_s8; }
|
||
| COMPLEX_S16_KEYWORD
|
||
{ $$ = parse_f_type (pstate)->builtin_complex_s16;
|
||
if ($$->code () == TYPE_CODE_ERROR)
|
||
error (_("unsupported type %s"),
|
||
TYPE_SAFE_NAME ($$));
|
||
}
|
||
| SINGLE PRECISION
|
||
{ $$ = parse_f_type (pstate)->builtin_real;}
|
||
| DOUBLE PRECISION
|
||
{ $$ = parse_f_type (pstate)->builtin_real_s8;}
|
||
| SINGLE COMPLEX_KEYWORD
|
||
{ $$ = parse_f_type (pstate)->builtin_complex;}
|
||
| DOUBLE COMPLEX_KEYWORD
|
||
{ $$ = parse_f_type (pstate)->builtin_complex_s8;}
|
||
;
|
||
|
||
nonempty_typelist
|
||
: type
|
||
{ $$ = (struct type **) malloc (sizeof (struct type *) * 2);
|
||
$<ivec>$[0] = 1; /* Number of types in vector */
|
||
$$[1] = $1;
|
||
}
|
||
| nonempty_typelist ',' type
|
||
{ int len = sizeof (struct type *) * (++($<ivec>1[0]) + 1);
|
||
$$ = (struct type **) realloc ((char *) $1, len);
|
||
$$[$<ivec>$[0]] = $3;
|
||
}
|
||
;
|
||
|
||
name
|
||
: NAME
|
||
{ $$ = $1.stoken; }
|
||
| TYPENAME
|
||
{ $$ = $1.stoken; }
|
||
;
|
||
|
||
name_not_typename : NAME
|
||
/* These would be useful if name_not_typename was useful, but it is just
|
||
a fake for "variable", so these cause reduce/reduce conflicts because
|
||
the parser can't tell whether NAME_OR_INT is a name_not_typename (=variable,
|
||
=exp) or just an exp. If name_not_typename was ever used in an lvalue
|
||
context where only a name could occur, this might be useful.
|
||
| NAME_OR_INT
|
||
*/
|
||
;
|
||
|
||
%%
|
||
|
||
/* Called to match intrinsic function calls with one argument to their
|
||
respective implementation and push the operation. */
|
||
|
||
static void
|
||
wrap_unop_intrinsic (exp_opcode code)
|
||
{
|
||
switch (code)
|
||
{
|
||
case UNOP_ABS:
|
||
pstate->wrap<fortran_abs_operation> ();
|
||
break;
|
||
case FORTRAN_FLOOR:
|
||
pstate->wrap<fortran_floor_operation_1arg> ();
|
||
break;
|
||
case FORTRAN_CEILING:
|
||
pstate->wrap<fortran_ceil_operation_1arg> ();
|
||
break;
|
||
case UNOP_FORTRAN_ALLOCATED:
|
||
pstate->wrap<fortran_allocated_operation> ();
|
||
break;
|
||
case UNOP_FORTRAN_RANK:
|
||
pstate->wrap<fortran_rank_operation> ();
|
||
break;
|
||
case UNOP_FORTRAN_SHAPE:
|
||
pstate->wrap<fortran_array_shape_operation> ();
|
||
break;
|
||
case UNOP_FORTRAN_LOC:
|
||
pstate->wrap<fortran_loc_operation> ();
|
||
break;
|
||
case FORTRAN_ASSOCIATED:
|
||
pstate->wrap<fortran_associated_1arg> ();
|
||
break;
|
||
case FORTRAN_ARRAY_SIZE:
|
||
pstate->wrap<fortran_array_size_1arg> ();
|
||
break;
|
||
case FORTRAN_CMPLX:
|
||
pstate->wrap<fortran_cmplx_operation_1arg> ();
|
||
break;
|
||
case FORTRAN_LBOUND:
|
||
case FORTRAN_UBOUND:
|
||
pstate->push_new<fortran_bound_1arg> (code, pstate->pop ());
|
||
break;
|
||
default:
|
||
gdb_assert_not_reached ("unhandled intrinsic");
|
||
}
|
||
}
|
||
|
||
/* Called to match intrinsic function calls with two arguments to their
|
||
respective implementation and push the operation. */
|
||
|
||
static void
|
||
wrap_binop_intrinsic (exp_opcode code)
|
||
{
|
||
switch (code)
|
||
{
|
||
case FORTRAN_FLOOR:
|
||
fortran_wrap2_kind<fortran_floor_operation_2arg>
|
||
(parse_f_type (pstate)->builtin_integer);
|
||
break;
|
||
case FORTRAN_CEILING:
|
||
fortran_wrap2_kind<fortran_ceil_operation_2arg>
|
||
(parse_f_type (pstate)->builtin_integer);
|
||
break;
|
||
case BINOP_MOD:
|
||
pstate->wrap2<fortran_mod_operation> ();
|
||
break;
|
||
case BINOP_FORTRAN_MODULO:
|
||
pstate->wrap2<fortran_modulo_operation> ();
|
||
break;
|
||
case FORTRAN_CMPLX:
|
||
pstate->wrap2<fortran_cmplx_operation_2arg> ();
|
||
break;
|
||
case FORTRAN_ASSOCIATED:
|
||
pstate->wrap2<fortran_associated_2arg> ();
|
||
break;
|
||
case FORTRAN_ARRAY_SIZE:
|
||
pstate->wrap2<fortran_array_size_2arg> ();
|
||
break;
|
||
case FORTRAN_LBOUND:
|
||
case FORTRAN_UBOUND:
|
||
{
|
||
operation_up arg2 = pstate->pop ();
|
||
operation_up arg1 = pstate->pop ();
|
||
pstate->push_new<fortran_bound_2arg> (code, std::move (arg1),
|
||
std::move (arg2));
|
||
}
|
||
break;
|
||
default:
|
||
gdb_assert_not_reached ("unhandled intrinsic");
|
||
}
|
||
}
|
||
|
||
/* Called to match intrinsic function calls with three arguments to their
|
||
respective implementation and push the operation. */
|
||
|
||
static void
|
||
wrap_ternop_intrinsic (exp_opcode code)
|
||
{
|
||
switch (code)
|
||
{
|
||
case FORTRAN_LBOUND:
|
||
case FORTRAN_UBOUND:
|
||
{
|
||
operation_up kind_arg = pstate->pop ();
|
||
operation_up arg2 = pstate->pop ();
|
||
operation_up arg1 = pstate->pop ();
|
||
|
||
value *val = kind_arg->evaluate (nullptr, pstate->expout.get (),
|
||
EVAL_AVOID_SIDE_EFFECTS);
|
||
gdb_assert (val != nullptr);
|
||
|
||
type *follow_type
|
||
= convert_to_kind_type (parse_f_type (pstate)->builtin_integer,
|
||
value_as_long (val));
|
||
|
||
pstate->push_new<fortran_bound_3arg> (code, std::move (arg1),
|
||
std::move (arg2), follow_type);
|
||
}
|
||
break;
|
||
case FORTRAN_ARRAY_SIZE:
|
||
fortran_wrap3_kind<fortran_array_size_3arg>
|
||
(parse_f_type (pstate)->builtin_integer);
|
||
break;
|
||
case FORTRAN_CMPLX:
|
||
fortran_wrap3_kind<fortran_cmplx_operation_3arg>
|
||
(parse_f_type (pstate)->builtin_complex);
|
||
break;
|
||
default:
|
||
gdb_assert_not_reached ("unhandled intrinsic");
|
||
}
|
||
}
|
||
|
||
/* A helper that pops two operations (similar to wrap2), evaluates the last one
|
||
assuming it is a kind parameter, and wraps them in some other operation
|
||
pushing it to the stack. */
|
||
|
||
template<typename T>
|
||
static void
|
||
fortran_wrap2_kind (type *base_type)
|
||
{
|
||
operation_up kind_arg = pstate->pop ();
|
||
operation_up arg = pstate->pop ();
|
||
|
||
value *val = kind_arg->evaluate (nullptr, pstate->expout.get (),
|
||
EVAL_AVOID_SIDE_EFFECTS);
|
||
gdb_assert (val != nullptr);
|
||
|
||
type *follow_type = convert_to_kind_type (base_type, value_as_long (val));
|
||
|
||
pstate->push_new<T> (std::move (arg), follow_type);
|
||
}
|
||
|
||
/* A helper that pops three operations, evaluates the last one assuming it is a
|
||
kind parameter, and wraps them in some other operation pushing it to the
|
||
stack. */
|
||
|
||
template<typename T>
|
||
static void
|
||
fortran_wrap3_kind (type *base_type)
|
||
{
|
||
operation_up kind_arg = pstate->pop ();
|
||
operation_up arg2 = pstate->pop ();
|
||
operation_up arg1 = pstate->pop ();
|
||
|
||
value *val = kind_arg->evaluate (nullptr, pstate->expout.get (),
|
||
EVAL_AVOID_SIDE_EFFECTS);
|
||
gdb_assert (val != nullptr);
|
||
|
||
type *follow_type = convert_to_kind_type (base_type, value_as_long (val));
|
||
|
||
pstate->push_new<T> (std::move (arg1), std::move (arg2), follow_type);
|
||
}
|
||
|
||
/* Take care of parsing a number (anything that starts with a digit).
|
||
Set yylval and return the token type; update lexptr.
|
||
LEN is the number of characters in it. */
|
||
|
||
/*** Needs some error checking for the float case ***/
|
||
|
||
static int
|
||
parse_number (struct parser_state *par_state,
|
||
const char *p, int len, int parsed_float, YYSTYPE *putithere)
|
||
{
|
||
ULONGEST n = 0;
|
||
ULONGEST prevn = 0;
|
||
int c;
|
||
int base = input_radix;
|
||
int unsigned_p = 0;
|
||
int long_p = 0;
|
||
ULONGEST high_bit;
|
||
struct type *signed_type;
|
||
struct type *unsigned_type;
|
||
|
||
if (parsed_float)
|
||
{
|
||
/* It's a float since it contains a point or an exponent. */
|
||
/* [dD] is not understood as an exponent by parse_float,
|
||
change it to 'e'. */
|
||
char *tmp, *tmp2;
|
||
|
||
tmp = xstrdup (p);
|
||
for (tmp2 = tmp; *tmp2; ++tmp2)
|
||
if (*tmp2 == 'd' || *tmp2 == 'D')
|
||
*tmp2 = 'e';
|
||
|
||
/* FIXME: Should this use different types? */
|
||
putithere->typed_val_float.type = parse_f_type (pstate)->builtin_real_s8;
|
||
bool parsed = parse_float (tmp, len,
|
||
putithere->typed_val_float.type,
|
||
putithere->typed_val_float.val);
|
||
free (tmp);
|
||
return parsed? FLOAT : ERROR;
|
||
}
|
||
|
||
/* Handle base-switching prefixes 0x, 0t, 0d, 0 */
|
||
if (p[0] == '0' && len > 1)
|
||
switch (p[1])
|
||
{
|
||
case 'x':
|
||
case 'X':
|
||
if (len >= 3)
|
||
{
|
||
p += 2;
|
||
base = 16;
|
||
len -= 2;
|
||
}
|
||
break;
|
||
|
||
case 't':
|
||
case 'T':
|
||
case 'd':
|
||
case 'D':
|
||
if (len >= 3)
|
||
{
|
||
p += 2;
|
||
base = 10;
|
||
len -= 2;
|
||
}
|
||
break;
|
||
|
||
default:
|
||
base = 8;
|
||
break;
|
||
}
|
||
|
||
while (len-- > 0)
|
||
{
|
||
c = *p++;
|
||
if (isupper (c))
|
||
c = tolower (c);
|
||
if (len == 0 && c == 'l')
|
||
long_p = 1;
|
||
else if (len == 0 && c == 'u')
|
||
unsigned_p = 1;
|
||
else
|
||
{
|
||
int i;
|
||
if (c >= '0' && c <= '9')
|
||
i = c - '0';
|
||
else if (c >= 'a' && c <= 'f')
|
||
i = c - 'a' + 10;
|
||
else
|
||
return ERROR; /* Char not a digit */
|
||
if (i >= base)
|
||
return ERROR; /* Invalid digit in this base */
|
||
n *= base;
|
||
n += i;
|
||
}
|
||
/* Test for overflow. */
|
||
if (prevn == 0 && n == 0)
|
||
;
|
||
else if (RANGE_CHECK && prevn >= n)
|
||
range_error (_("Overflow on numeric constant."));
|
||
prevn = n;
|
||
}
|
||
|
||
/* If the number is too big to be an int, or it's got an l suffix
|
||
then it's a long. Work out if this has to be a long by
|
||
shifting right and seeing if anything remains, and the
|
||
target int size is different to the target long size.
|
||
|
||
In the expression below, we could have tested
|
||
(n >> gdbarch_int_bit (parse_gdbarch))
|
||
to see if it was zero,
|
||
but too many compilers warn about that, when ints and longs
|
||
are the same size. So we shift it twice, with fewer bits
|
||
each time, for the same result. */
|
||
|
||
int bits_available;
|
||
if ((gdbarch_int_bit (par_state->gdbarch ())
|
||
!= gdbarch_long_bit (par_state->gdbarch ())
|
||
&& ((n >> 2)
|
||
>> (gdbarch_int_bit (par_state->gdbarch ())-2))) /* Avoid
|
||
shift warning */
|
||
|| long_p)
|
||
{
|
||
bits_available = gdbarch_long_bit (par_state->gdbarch ());
|
||
unsigned_type = parse_type (par_state)->builtin_unsigned_long;
|
||
signed_type = parse_type (par_state)->builtin_long;
|
||
}
|
||
else
|
||
{
|
||
bits_available = gdbarch_int_bit (par_state->gdbarch ());
|
||
unsigned_type = parse_type (par_state)->builtin_unsigned_int;
|
||
signed_type = parse_type (par_state)->builtin_int;
|
||
}
|
||
high_bit = ((ULONGEST)1) << (bits_available - 1);
|
||
|
||
if (RANGE_CHECK
|
||
&& ((n >> 2) >> (bits_available - 2)))
|
||
range_error (_("Overflow on numeric constant."));
|
||
|
||
putithere->typed_val.val = n;
|
||
|
||
/* If the high bit of the worked out type is set then this number
|
||
has to be unsigned. */
|
||
|
||
if (unsigned_p || (n & high_bit))
|
||
putithere->typed_val.type = unsigned_type;
|
||
else
|
||
putithere->typed_val.type = signed_type;
|
||
|
||
return INT;
|
||
}
|
||
|
||
/* Called to setup the type stack when we encounter a '(kind=N)' type
|
||
modifier, performs some bounds checking on 'N' and then pushes this to
|
||
the type stack followed by the 'tp_kind' marker. */
|
||
static void
|
||
push_kind_type (LONGEST val, struct type *type)
|
||
{
|
||
int ival;
|
||
|
||
if (type->is_unsigned ())
|
||
{
|
||
ULONGEST uval = static_cast <ULONGEST> (val);
|
||
if (uval > INT_MAX)
|
||
error (_("kind value out of range"));
|
||
ival = static_cast <int> (uval);
|
||
}
|
||
else
|
||
{
|
||
if (val > INT_MAX || val < 0)
|
||
error (_("kind value out of range"));
|
||
ival = static_cast <int> (val);
|
||
}
|
||
|
||
type_stack->push (ival);
|
||
type_stack->push (tp_kind);
|
||
}
|
||
|
||
/* Helper function for convert_to_kind_type. */
|
||
static struct type *
|
||
convert_to_kind_type_1 (struct type *basetype, int kind)
|
||
{
|
||
if (basetype == parse_f_type (pstate)->builtin_character)
|
||
{
|
||
/* Character of kind 1 is a special case, this is the same as the
|
||
base character type. */
|
||
if (kind == 1)
|
||
return parse_f_type (pstate)->builtin_character;
|
||
}
|
||
else if (basetype == parse_f_type (pstate)->builtin_complex)
|
||
{
|
||
if (kind == 4)
|
||
return parse_f_type (pstate)->builtin_complex;
|
||
else if (kind == 8)
|
||
return parse_f_type (pstate)->builtin_complex_s8;
|
||
else if (kind == 16)
|
||
return parse_f_type (pstate)->builtin_complex_s16;
|
||
}
|
||
else if (basetype == parse_f_type (pstate)->builtin_real)
|
||
{
|
||
if (kind == 4)
|
||
return parse_f_type (pstate)->builtin_real;
|
||
else if (kind == 8)
|
||
return parse_f_type (pstate)->builtin_real_s8;
|
||
else if (kind == 16)
|
||
return parse_f_type (pstate)->builtin_real_s16;
|
||
}
|
||
else if (basetype == parse_f_type (pstate)->builtin_logical)
|
||
{
|
||
if (kind == 1)
|
||
return parse_f_type (pstate)->builtin_logical_s1;
|
||
else if (kind == 2)
|
||
return parse_f_type (pstate)->builtin_logical_s2;
|
||
else if (kind == 4)
|
||
return parse_f_type (pstate)->builtin_logical;
|
||
else if (kind == 8)
|
||
return parse_f_type (pstate)->builtin_logical_s8;
|
||
}
|
||
else if (basetype == parse_f_type (pstate)->builtin_integer)
|
||
{
|
||
if (kind == 1)
|
||
return parse_f_type (pstate)->builtin_integer_s1;
|
||
else if (kind == 2)
|
||
return parse_f_type (pstate)->builtin_integer_s2;
|
||
else if (kind == 4)
|
||
return parse_f_type (pstate)->builtin_integer;
|
||
else if (kind == 8)
|
||
return parse_f_type (pstate)->builtin_integer_s8;
|
||
}
|
||
|
||
return nullptr;
|
||
}
|
||
|
||
/* Called when a type has a '(kind=N)' modifier after it, for example
|
||
'character(kind=1)'. The BASETYPE is the type described by 'character'
|
||
in our example, and KIND is the integer '1'. This function returns a
|
||
new type that represents the basetype of a specific kind. */
|
||
static struct type *
|
||
convert_to_kind_type (struct type *basetype, int kind)
|
||
{
|
||
struct type *res = convert_to_kind_type_1 (basetype, kind);
|
||
|
||
if (res == nullptr || res->code () == TYPE_CODE_ERROR)
|
||
error (_("unsupported kind %d for type %s"),
|
||
kind, TYPE_SAFE_NAME (basetype));
|
||
|
||
return res;
|
||
}
|
||
|
||
struct f_token
|
||
{
|
||
/* The string to match against. */
|
||
const char *oper;
|
||
|
||
/* The lexer token to return. */
|
||
int token;
|
||
|
||
/* The expression opcode to embed within the token. */
|
||
enum exp_opcode opcode;
|
||
|
||
/* When this is true the string in OPER is matched exactly including
|
||
case, when this is false OPER is matched case insensitively. */
|
||
bool case_sensitive;
|
||
};
|
||
|
||
/* List of Fortran operators. */
|
||
|
||
static const struct f_token fortran_operators[] =
|
||
{
|
||
{ ".and.", BOOL_AND, OP_NULL, false },
|
||
{ ".or.", BOOL_OR, OP_NULL, false },
|
||
{ ".not.", BOOL_NOT, OP_NULL, false },
|
||
{ ".eq.", EQUAL, OP_NULL, false },
|
||
{ ".eqv.", EQUAL, OP_NULL, false },
|
||
{ ".neqv.", NOTEQUAL, OP_NULL, false },
|
||
{ ".xor.", NOTEQUAL, OP_NULL, false },
|
||
{ "==", EQUAL, OP_NULL, false },
|
||
{ ".ne.", NOTEQUAL, OP_NULL, false },
|
||
{ "/=", NOTEQUAL, OP_NULL, false },
|
||
{ ".le.", LEQ, OP_NULL, false },
|
||
{ "<=", LEQ, OP_NULL, false },
|
||
{ ".ge.", GEQ, OP_NULL, false },
|
||
{ ">=", GEQ, OP_NULL, false },
|
||
{ ".gt.", GREATERTHAN, OP_NULL, false },
|
||
{ ">", GREATERTHAN, OP_NULL, false },
|
||
{ ".lt.", LESSTHAN, OP_NULL, false },
|
||
{ "<", LESSTHAN, OP_NULL, false },
|
||
{ "**", STARSTAR, BINOP_EXP, false },
|
||
};
|
||
|
||
/* Holds the Fortran representation of a boolean, and the integer value we
|
||
substitute in when one of the matching strings is parsed. */
|
||
struct f77_boolean_val
|
||
{
|
||
/* The string representing a Fortran boolean. */
|
||
const char *name;
|
||
|
||
/* The integer value to replace it with. */
|
||
int value;
|
||
};
|
||
|
||
/* The set of Fortran booleans. These are matched case insensitively. */
|
||
static const struct f77_boolean_val boolean_values[] =
|
||
{
|
||
{ ".true.", 1 },
|
||
{ ".false.", 0 }
|
||
};
|
||
|
||
static const struct f_token f_intrinsics[] =
|
||
{
|
||
/* The following correspond to actual functions in Fortran and are case
|
||
insensitive. */
|
||
{ "kind", KIND, OP_NULL, false },
|
||
{ "abs", UNOP_INTRINSIC, UNOP_ABS, false },
|
||
{ "mod", BINOP_INTRINSIC, BINOP_MOD, false },
|
||
{ "floor", UNOP_OR_BINOP_INTRINSIC, FORTRAN_FLOOR, false },
|
||
{ "ceiling", UNOP_OR_BINOP_INTRINSIC, FORTRAN_CEILING, false },
|
||
{ "modulo", BINOP_INTRINSIC, BINOP_FORTRAN_MODULO, false },
|
||
{ "cmplx", UNOP_OR_BINOP_OR_TERNOP_INTRINSIC, FORTRAN_CMPLX, false },
|
||
{ "lbound", UNOP_OR_BINOP_OR_TERNOP_INTRINSIC, FORTRAN_LBOUND, false },
|
||
{ "ubound", UNOP_OR_BINOP_OR_TERNOP_INTRINSIC, FORTRAN_UBOUND, false },
|
||
{ "allocated", UNOP_INTRINSIC, UNOP_FORTRAN_ALLOCATED, false },
|
||
{ "associated", UNOP_OR_BINOP_INTRINSIC, FORTRAN_ASSOCIATED, false },
|
||
{ "rank", UNOP_INTRINSIC, UNOP_FORTRAN_RANK, false },
|
||
{ "size", UNOP_OR_BINOP_OR_TERNOP_INTRINSIC, FORTRAN_ARRAY_SIZE, false },
|
||
{ "shape", UNOP_INTRINSIC, UNOP_FORTRAN_SHAPE, false },
|
||
{ "loc", UNOP_INTRINSIC, UNOP_FORTRAN_LOC, false },
|
||
{ "sizeof", SIZEOF, OP_NULL, false },
|
||
};
|
||
|
||
static const f_token f_keywords[] =
|
||
{
|
||
/* Historically these have always been lowercase only in GDB. */
|
||
{ "character", CHARACTER, OP_NULL, true },
|
||
{ "complex", COMPLEX_KEYWORD, OP_NULL, true },
|
||
{ "complex_4", COMPLEX_S4_KEYWORD, OP_NULL, true },
|
||
{ "complex_8", COMPLEX_S8_KEYWORD, OP_NULL, true },
|
||
{ "complex_16", COMPLEX_S16_KEYWORD, OP_NULL, true },
|
||
{ "integer_1", INT_S1_KEYWORD, OP_NULL, true },
|
||
{ "integer_2", INT_S2_KEYWORD, OP_NULL, true },
|
||
{ "integer_4", INT_S4_KEYWORD, OP_NULL, true },
|
||
{ "integer", INT_KEYWORD, OP_NULL, true },
|
||
{ "integer_8", INT_S8_KEYWORD, OP_NULL, true },
|
||
{ "logical_1", LOGICAL_S1_KEYWORD, OP_NULL, true },
|
||
{ "logical_2", LOGICAL_S2_KEYWORD, OP_NULL, true },
|
||
{ "logical", LOGICAL_KEYWORD, OP_NULL, true },
|
||
{ "logical_4", LOGICAL_S4_KEYWORD, OP_NULL, true },
|
||
{ "logical_8", LOGICAL_S8_KEYWORD, OP_NULL, true },
|
||
{ "real", REAL_KEYWORD, OP_NULL, true },
|
||
{ "real_4", REAL_S4_KEYWORD, OP_NULL, true },
|
||
{ "real_8", REAL_S8_KEYWORD, OP_NULL, true },
|
||
{ "real_16", REAL_S16_KEYWORD, OP_NULL, true },
|
||
{ "single", SINGLE, OP_NULL, true },
|
||
{ "double", DOUBLE, OP_NULL, true },
|
||
{ "precision", PRECISION, OP_NULL, true },
|
||
};
|
||
|
||
/* Implementation of a dynamically expandable buffer for processing input
|
||
characters acquired through lexptr and building a value to return in
|
||
yylval. Ripped off from ch-exp.y */
|
||
|
||
static char *tempbuf; /* Current buffer contents */
|
||
static int tempbufsize; /* Size of allocated buffer */
|
||
static int tempbufindex; /* Current index into buffer */
|
||
|
||
#define GROWBY_MIN_SIZE 64 /* Minimum amount to grow buffer by */
|
||
|
||
#define CHECKBUF(size) \
|
||
do { \
|
||
if (tempbufindex + (size) >= tempbufsize) \
|
||
{ \
|
||
growbuf_by_size (size); \
|
||
} \
|
||
} while (0);
|
||
|
||
|
||
/* Grow the static temp buffer if necessary, including allocating the
|
||
first one on demand. */
|
||
|
||
static void
|
||
growbuf_by_size (int count)
|
||
{
|
||
int growby;
|
||
|
||
growby = std::max (count, GROWBY_MIN_SIZE);
|
||
tempbufsize += growby;
|
||
if (tempbuf == NULL)
|
||
tempbuf = (char *) malloc (tempbufsize);
|
||
else
|
||
tempbuf = (char *) realloc (tempbuf, tempbufsize);
|
||
}
|
||
|
||
/* Blatantly ripped off from ch-exp.y. This routine recognizes F77
|
||
string-literals.
|
||
|
||
Recognize a string literal. A string literal is a nonzero sequence
|
||
of characters enclosed in matching single quotes, except that
|
||
a single character inside single quotes is a character literal, which
|
||
we reject as a string literal. To embed the terminator character inside
|
||
a string, it is simply doubled (I.E. 'this''is''one''string') */
|
||
|
||
static int
|
||
match_string_literal (void)
|
||
{
|
||
const char *tokptr = pstate->lexptr;
|
||
|
||
for (tempbufindex = 0, tokptr++; *tokptr != '\0'; tokptr++)
|
||
{
|
||
CHECKBUF (1);
|
||
if (*tokptr == *pstate->lexptr)
|
||
{
|
||
if (*(tokptr + 1) == *pstate->lexptr)
|
||
tokptr++;
|
||
else
|
||
break;
|
||
}
|
||
tempbuf[tempbufindex++] = *tokptr;
|
||
}
|
||
if (*tokptr == '\0' /* no terminator */
|
||
|| tempbufindex == 0) /* no string */
|
||
return 0;
|
||
else
|
||
{
|
||
tempbuf[tempbufindex] = '\0';
|
||
yylval.sval.ptr = tempbuf;
|
||
yylval.sval.length = tempbufindex;
|
||
pstate->lexptr = ++tokptr;
|
||
return STRING_LITERAL;
|
||
}
|
||
}
|
||
|
||
/* This is set if a NAME token appeared at the very end of the input
|
||
string, with no whitespace separating the name from the EOF. This
|
||
is used only when parsing to do field name completion. */
|
||
static bool saw_name_at_eof;
|
||
|
||
/* This is set if the previously-returned token was a structure
|
||
operator '%'. */
|
||
static bool last_was_structop;
|
||
|
||
/* Read one token, getting characters through lexptr. */
|
||
|
||
static int
|
||
yylex (void)
|
||
{
|
||
int c;
|
||
int namelen;
|
||
unsigned int token;
|
||
const char *tokstart;
|
||
bool saw_structop = last_was_structop;
|
||
|
||
last_was_structop = false;
|
||
|
||
retry:
|
||
|
||
pstate->prev_lexptr = pstate->lexptr;
|
||
|
||
tokstart = pstate->lexptr;
|
||
|
||
/* First of all, let us make sure we are not dealing with the
|
||
special tokens .true. and .false. which evaluate to 1 and 0. */
|
||
|
||
if (*pstate->lexptr == '.')
|
||
{
|
||
for (const auto &candidate : boolean_values)
|
||
{
|
||
if (strncasecmp (tokstart, candidate.name,
|
||
strlen (candidate.name)) == 0)
|
||
{
|
||
pstate->lexptr += strlen (candidate.name);
|
||
yylval.lval = candidate.value;
|
||
return BOOLEAN_LITERAL;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* See if it is a Fortran operator. */
|
||
for (const auto &candidate : fortran_operators)
|
||
if (strncasecmp (tokstart, candidate.oper,
|
||
strlen (candidate.oper)) == 0)
|
||
{
|
||
gdb_assert (!candidate.case_sensitive);
|
||
pstate->lexptr += strlen (candidate.oper);
|
||
yylval.opcode = candidate.opcode;
|
||
return candidate.token;
|
||
}
|
||
|
||
switch (c = *tokstart)
|
||
{
|
||
case 0:
|
||
if (saw_name_at_eof)
|
||
{
|
||
saw_name_at_eof = false;
|
||
return COMPLETE;
|
||
}
|
||
else if (pstate->parse_completion && saw_structop)
|
||
return COMPLETE;
|
||
return 0;
|
||
|
||
case ' ':
|
||
case '\t':
|
||
case '\n':
|
||
pstate->lexptr++;
|
||
goto retry;
|
||
|
||
case '\'':
|
||
token = match_string_literal ();
|
||
if (token != 0)
|
||
return (token);
|
||
break;
|
||
|
||
case '(':
|
||
paren_depth++;
|
||
pstate->lexptr++;
|
||
return c;
|
||
|
||
case ')':
|
||
if (paren_depth == 0)
|
||
return 0;
|
||
paren_depth--;
|
||
pstate->lexptr++;
|
||
return c;
|
||
|
||
case ',':
|
||
if (pstate->comma_terminates && paren_depth == 0)
|
||
return 0;
|
||
pstate->lexptr++;
|
||
return c;
|
||
|
||
case '.':
|
||
/* Might be a floating point number. */
|
||
if (pstate->lexptr[1] < '0' || pstate->lexptr[1] > '9')
|
||
goto symbol; /* Nope, must be a symbol. */
|
||
[[fallthrough]];
|
||
|
||
case '0':
|
||
case '1':
|
||
case '2':
|
||
case '3':
|
||
case '4':
|
||
case '5':
|
||
case '6':
|
||
case '7':
|
||
case '8':
|
||
case '9':
|
||
{
|
||
/* It's a number. */
|
||
int got_dot = 0, got_e = 0, got_d = 0, toktype;
|
||
const char *p = tokstart;
|
||
int hex = input_radix > 10;
|
||
|
||
if (c == '0' && (p[1] == 'x' || p[1] == 'X'))
|
||
{
|
||
p += 2;
|
||
hex = 1;
|
||
}
|
||
else if (c == '0' && (p[1]=='t' || p[1]=='T'
|
||
|| p[1]=='d' || p[1]=='D'))
|
||
{
|
||
p += 2;
|
||
hex = 0;
|
||
}
|
||
|
||
for (;; ++p)
|
||
{
|
||
if (!hex && !got_e && (*p == 'e' || *p == 'E'))
|
||
got_dot = got_e = 1;
|
||
else if (!hex && !got_d && (*p == 'd' || *p == 'D'))
|
||
got_dot = got_d = 1;
|
||
else if (!hex && !got_dot && *p == '.')
|
||
got_dot = 1;
|
||
else if (((got_e && (p[-1] == 'e' || p[-1] == 'E'))
|
||
|| (got_d && (p[-1] == 'd' || p[-1] == 'D')))
|
||
&& (*p == '-' || *p == '+'))
|
||
/* This is the sign of the exponent, not the end of the
|
||
number. */
|
||
continue;
|
||
/* We will take any letters or digits. parse_number will
|
||
complain if past the radix, or if L or U are not final. */
|
||
else if ((*p < '0' || *p > '9')
|
||
&& ((*p < 'a' || *p > 'z')
|
||
&& (*p < 'A' || *p > 'Z')))
|
||
break;
|
||
}
|
||
toktype = parse_number (pstate, tokstart, p - tokstart,
|
||
got_dot|got_e|got_d,
|
||
&yylval);
|
||
if (toktype == ERROR)
|
||
error (_("Invalid number \"%.*s\"."), (int) (p - tokstart),
|
||
tokstart);
|
||
pstate->lexptr = p;
|
||
return toktype;
|
||
}
|
||
|
||
case '%':
|
||
last_was_structop = true;
|
||
[[fallthrough]];
|
||
case '+':
|
||
case '-':
|
||
case '*':
|
||
case '/':
|
||
case '|':
|
||
case '&':
|
||
case '^':
|
||
case '~':
|
||
case '!':
|
||
case '@':
|
||
case '<':
|
||
case '>':
|
||
case '[':
|
||
case ']':
|
||
case '?':
|
||
case ':':
|
||
case '=':
|
||
case '{':
|
||
case '}':
|
||
symbol:
|
||
pstate->lexptr++;
|
||
return c;
|
||
}
|
||
|
||
if (!(c == '_' || c == '$' || c ==':'
|
||
|| (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z')))
|
||
/* We must have come across a bad character (e.g. ';'). */
|
||
error (_("Invalid character '%c' in expression."), c);
|
||
|
||
namelen = 0;
|
||
for (c = tokstart[namelen];
|
||
(c == '_' || c == '$' || c == ':' || (c >= '0' && c <= '9')
|
||
|| (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z'));
|
||
c = tokstart[++namelen]);
|
||
|
||
/* The token "if" terminates the expression and is NOT
|
||
removed from the input stream. */
|
||
|
||
if (namelen == 2 && tokstart[0] == 'i' && tokstart[1] == 'f')
|
||
return 0;
|
||
|
||
pstate->lexptr += namelen;
|
||
|
||
/* Catch specific keywords. */
|
||
|
||
for (const auto &keyword : f_keywords)
|
||
if (strlen (keyword.oper) == namelen
|
||
&& ((!keyword.case_sensitive
|
||
&& strncasecmp (tokstart, keyword.oper, namelen) == 0)
|
||
|| (keyword.case_sensitive
|
||
&& strncmp (tokstart, keyword.oper, namelen) == 0)))
|
||
{
|
||
yylval.opcode = keyword.opcode;
|
||
return keyword.token;
|
||
}
|
||
|
||
yylval.sval.ptr = tokstart;
|
||
yylval.sval.length = namelen;
|
||
|
||
if (*tokstart == '$')
|
||
return DOLLAR_VARIABLE;
|
||
|
||
/* Use token-type TYPENAME for symbols that happen to be defined
|
||
currently as names of types; NAME for other symbols.
|
||
The caller is not constrained to care about the distinction. */
|
||
{
|
||
std::string tmp = copy_name (yylval.sval);
|
||
struct block_symbol result;
|
||
const domain_search_flags lookup_domains[] =
|
||
{
|
||
SEARCH_STRUCT_DOMAIN,
|
||
SEARCH_VFT,
|
||
SEARCH_MODULE_DOMAIN
|
||
};
|
||
int hextype;
|
||
|
||
for (const auto &domain : lookup_domains)
|
||
{
|
||
result = lookup_symbol (tmp.c_str (), pstate->expression_context_block,
|
||
domain, NULL);
|
||
if (result.symbol && result.symbol->aclass () == LOC_TYPEDEF)
|
||
{
|
||
yylval.tsym.type = result.symbol->type ();
|
||
return TYPENAME;
|
||
}
|
||
|
||
if (result.symbol)
|
||
break;
|
||
}
|
||
|
||
yylval.tsym.type
|
||
= language_lookup_primitive_type (pstate->language (),
|
||
pstate->gdbarch (), tmp.c_str ());
|
||
if (yylval.tsym.type != NULL)
|
||
return TYPENAME;
|
||
|
||
/* This is post the symbol search as symbols can hide intrinsics. Also,
|
||
give Fortran intrinsics priority over C symbols. This prevents
|
||
non-Fortran symbols from hiding intrinsics, for example abs. */
|
||
if (!result.symbol || result.symbol->language () != language_fortran)
|
||
for (const auto &intrinsic : f_intrinsics)
|
||
{
|
||
gdb_assert (!intrinsic.case_sensitive);
|
||
if (strlen (intrinsic.oper) == namelen
|
||
&& strncasecmp (tokstart, intrinsic.oper, namelen) == 0)
|
||
{
|
||
yylval.opcode = intrinsic.opcode;
|
||
return intrinsic.token;
|
||
}
|
||
}
|
||
|
||
/* Input names that aren't symbols but ARE valid hex numbers,
|
||
when the input radix permits them, can be names or numbers
|
||
depending on the parse. Note we support radixes > 16 here. */
|
||
if (!result.symbol
|
||
&& ((tokstart[0] >= 'a' && tokstart[0] < 'a' + input_radix - 10)
|
||
|| (tokstart[0] >= 'A' && tokstart[0] < 'A' + input_radix - 10)))
|
||
{
|
||
YYSTYPE newlval; /* Its value is ignored. */
|
||
hextype = parse_number (pstate, tokstart, namelen, 0, &newlval);
|
||
if (hextype == INT)
|
||
{
|
||
yylval.ssym.sym = result;
|
||
yylval.ssym.is_a_field_of_this = false;
|
||
return NAME_OR_INT;
|
||
}
|
||
}
|
||
|
||
if (pstate->parse_completion && *pstate->lexptr == '\0')
|
||
saw_name_at_eof = true;
|
||
|
||
/* Any other kind of symbol */
|
||
yylval.ssym.sym = result;
|
||
yylval.ssym.is_a_field_of_this = false;
|
||
return NAME;
|
||
}
|
||
}
|
||
|
||
int
|
||
f_language::parser (struct parser_state *par_state) const
|
||
{
|
||
/* Setting up the parser state. */
|
||
scoped_restore pstate_restore = make_scoped_restore (&pstate);
|
||
scoped_restore restore_yydebug = make_scoped_restore (&yydebug,
|
||
par_state->debug);
|
||
gdb_assert (par_state != NULL);
|
||
pstate = par_state;
|
||
last_was_structop = false;
|
||
saw_name_at_eof = false;
|
||
paren_depth = 0;
|
||
|
||
struct type_stack stack;
|
||
scoped_restore restore_type_stack = make_scoped_restore (&type_stack,
|
||
&stack);
|
||
|
||
int result = yyparse ();
|
||
if (!result)
|
||
pstate->set_operation (pstate->pop ());
|
||
return result;
|
||
}
|
||
|
||
static void
|
||
yyerror (const char *msg)
|
||
{
|
||
pstate->parse_error (msg);
|
||
}
|