binutils-gdb/gdb/arch/x86-linux-tdesc-features.c
Schimpe, Christina fc14343205 gdb, gdbserver, python, testsuite: Remove MPX.
GDB deprecated the commands "show/set mpx bound" in GDB 15.1, as Intel
listed Intel(R) Memory Protection Extensions (MPX) as removed in 2019.
MPX is also deprecated in gcc (since v9.1), the linux kernel (since v5.6)
and glibc (since v2.35).  Let's now remove MPX support in GDB completely.

This includes the removal of:
- MPX functionality including register support
- deprecated mpx commands
- i386 and amd64 implementation of the hooks report_signal_info and
  get_siginfo_type
- tests
- and pretty printer.

We keep MPX register numbers to not break compatibility with old gdbservers.

Approved-By: Felix Willgerodt <felix.willgerodt@intel.com>
2024-09-25 11:06:57 +00:00

267 lines
7.1 KiB
C

/* Target description related code for GNU/Linux x86 (i386 and x86-64).
Copyright (C) 2024 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "arch/x86-linux-tdesc-features.h"
/* A structure used to describe a single xstate feature bit that might, or
might not, be checked for when creating a target description for one of
i386, amd64, or x32.
The different CPU/ABI types check for different xstate features when
creating a target description.
We want to cache target descriptions, and this is currently done in
three separate caches, one each for i386, amd64, and x32. Additionally,
the caching we're discussing here is Linux only, and for Linux, the only
thing that has an impact on target description creation is the xcr0
value.
In order to ensure the cache functions correctly we need to filter out
only those xcr0 feature bits that are relevant, we can then cache target
descriptions based on the relevant feature bits. Two xcr0 values might
be different, but have the same relevant feature bits. In this case we
would expect the two xcr0 values to map to the same cache entry. */
struct x86_xstate_feature {
/* The xstate feature mask. This is a mask against an xcr0 value. */
uint64_t feature;
/* Is this feature checked when creating an i386 target description. */
bool is_i386;
/* Is this feature checked when creating an amd64 target description. */
bool is_amd64;
/* Is this feature checked when creating an x32 target description. */
bool is_x32;
};
/* A constant table that describes all of the xstate features that are
checked when building a target description for i386, amd64, or x32.
If in the future, due to simplifications or refactoring, this table ever
ends up with 'true' for every xcr0 feature on every target type, then this
is an indication that this table should probably be removed, and that the
rest of the code in this file can be simplified. */
static constexpr x86_xstate_feature x86_linux_all_xstate_features[] = {
/* Feature, i386, amd64, x32. */
{ X86_XSTATE_PKRU, true, true, true },
{ X86_XSTATE_AVX512, true, true, true },
{ X86_XSTATE_AVX, true, true, true },
{ X86_XSTATE_SSE, true, false, false },
{ X86_XSTATE_X87, true, false, false }
};
/* Return a compile time constant which is a mask of all the xstate features
that are checked for when building an i386 target description. */
static constexpr uint64_t
x86_linux_i386_xcr0_feature_mask_1 ()
{
uint64_t mask = 0;
for (const auto &entry : x86_linux_all_xstate_features)
if (entry.is_i386)
mask |= entry.feature;
return mask;
}
/* Return a compile time constant which is a mask of all the xstate features
that are checked for when building an amd64 target description. */
static constexpr uint64_t
x86_linux_amd64_xcr0_feature_mask_1 ()
{
uint64_t mask = 0;
for (const auto &entry : x86_linux_all_xstate_features)
if (entry.is_amd64)
mask |= entry.feature;
return mask;
}
/* Return a compile time constant which is a mask of all the xstate features
that are checked for when building an x32 target description. */
static constexpr uint64_t
x86_linux_x32_xcr0_feature_mask_1 ()
{
uint64_t mask = 0;
for (const auto &entry : x86_linux_all_xstate_features)
if (entry.is_x32)
mask |= entry.feature;
return mask;
}
/* See arch/x86-linux-tdesc-features.h. */
uint64_t
x86_linux_i386_xcr0_feature_mask ()
{
return x86_linux_i386_xcr0_feature_mask_1 ();
}
/* See arch/x86-linux-tdesc-features.h. */
uint64_t
x86_linux_amd64_xcr0_feature_mask ()
{
return x86_linux_amd64_xcr0_feature_mask_1 ();
}
/* See arch/x86-linux-tdesc-features.h. */
uint64_t
x86_linux_x32_xcr0_feature_mask ()
{
return x86_linux_x32_xcr0_feature_mask_1 ();
}
#ifdef GDBSERVER
/* See arch/x86-linux-tdesc-features.h. */
int
x86_linux_xcr0_to_tdesc_idx (uint64_t xcr0)
{
/* The following table shows which features are checked for when creating
the target descriptions (see nat/x86-linux-tdesc.c), the feature order
represents the bit order within the generated index number.
i386 | x87 sse avx avx512 pkru
amd64 | avx avx512 pkru
i32 | avx avx512 pkru
The features are ordered so that for each mode (i386, amd64, i32) the
generated index will form a continuous range. */
int idx = 0;
for (int i = 0; i < ARRAY_SIZE (x86_linux_all_xstate_features); ++i)
{
if ((xcr0 & x86_linux_all_xstate_features[i].feature)
== x86_linux_all_xstate_features[i].feature)
idx |= (1 << i);
}
return idx;
}
#endif /* GDBSERVER */
#ifdef IN_PROCESS_AGENT
/* Return a compile time constant which is a count of the number of xstate
features that are checked for when building an i386 target description. */
static constexpr int
x86_linux_i386_tdesc_count_1 ()
{
uint64_t count = 0;
for (const auto &entry : x86_linux_all_xstate_features)
if (entry.is_i386)
++count;
gdb_assert (count > 0);
return (1 << count);
}
/* Return a compile time constant which is a count of the number of xstate
features that are checked for when building an amd64 target description. */
static constexpr int
x86_linux_amd64_tdesc_count_1 ()
{
uint64_t count = 0;
for (const auto &entry : x86_linux_all_xstate_features)
if (entry.is_amd64)
++count;
gdb_assert (count > 0);
return (1 << count);
}
/* Return a compile time constant which is a count of the number of xstate
features that are checked for when building an x32 target description. */
static constexpr int
x86_linux_x32_tdesc_count_1 ()
{
uint64_t count = 0;
for (const auto &entry : x86_linux_all_xstate_features)
if (entry.is_x32)
++count;
gdb_assert (count > 0);
return (1 << count);
}
/* See arch/x86-linux-tdesc-features.h. */
int
x86_linux_amd64_tdesc_count ()
{
return x86_linux_amd64_tdesc_count_1 ();
}
/* See arch/x86-linux-tdesc-features.h. */
int
x86_linux_x32_tdesc_count ()
{
return x86_linux_x32_tdesc_count_1 ();
}
/* See arch/x86-linux-tdesc-features.h. */
int
x86_linux_i386_tdesc_count ()
{
return x86_linux_i386_tdesc_count_1 ();
}
/* See arch/x86-linux-tdesc-features.h. */
uint64_t
x86_linux_tdesc_idx_to_xcr0 (int idx)
{
uint64_t xcr0 = 0;
for (int i = 0; i < ARRAY_SIZE (x86_linux_all_xstate_features); ++i)
{
if ((idx & (1 << i)) != 0)
xcr0 |= x86_linux_all_xstate_features[i].feature;
}
return xcr0;
}
#endif /* IN_PROCESS_AGENT */