binutils-gdb/binutils/od-elf32_avr.c
2024-05-20 13:33:55 +01:00

399 lines
11 KiB
C

/* od-avrelf.c -- dump information about an AVR elf object file.
Copyright (C) 2011-2024 Free Software Foundation, Inc.
Written by Senthil Kumar Selvaraj, Atmel.
This file is part of GNU Binutils.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, 51 Franklin Street - Fifth Floor, Boston,
MA 02110-1301, USA. */
#include "sysdep.h"
#include <stddef.h>
#include <time.h>
#include <stdint.h>
#include "safe-ctype.h"
#include "bfd.h"
#include "objdump.h"
#include "bucomm.h"
#include "bfdlink.h"
#include "bfd.h"
#include "elf/external.h"
#include "elf/internal.h"
#include "elf32-avr.h"
/* Index of the options in the options[] array. */
#define OPT_MEMUSAGE 0
#define OPT_AVRPROP 1
#define OPT_AVRDEVICEINFO 2
/* List of actions. */
static struct objdump_private_option options[] =
{
{ "mem-usage", 0 },
{ "avr-prop", 0},
{ "avr-deviceinfo", 0},
{ NULL, 0 }
};
/* Display help. */
static void
elf32_avr_help (FILE *stream)
{
fprintf (stream, _("\
For AVR ELF files:\n\
mem-usage Display memory usage\n\
avr-prop Display contents of .avr.prop section\n\
avr-deviceinfo Display contents of .note.gnu.avr.deviceinfo section\n\
"));
}
typedef struct tagDeviceInfo
{
uint32_t flash_start;
uint32_t flash_size;
uint32_t ram_start;
uint32_t ram_size;
uint32_t eeprom_start;
uint32_t eeprom_size;
char * name;
} deviceinfo;
/* Return TRUE if ABFD is handled. */
static int
elf32_avr_filter (bfd *abfd)
{
return bfd_get_flavour (abfd) == bfd_target_elf_flavour;
}
static char *
elf32_avr_get_note_section_contents (bfd *abfd, bfd_size_type *size)
{
asection *section;
bfd_byte *contents;
section = bfd_get_section_by_name (abfd, ".note.gnu.avr.deviceinfo");
if (section == NULL)
return NULL;
if (!bfd_malloc_and_get_section (abfd, section, &contents))
{
free (contents);
contents = NULL;
}
*size = bfd_section_size (section);
return (char *) contents;
}
static char *
elf32_avr_get_note_desc (bfd *abfd, char *contents, bfd_size_type size,
bfd_size_type *descsz)
{
Elf_External_Note *xnp = (Elf_External_Note *) contents;
Elf_Internal_Note in;
if (offsetof (Elf_External_Note, name) > size)
return NULL;
in.type = bfd_get_32 (abfd, xnp->type);
in.namesz = bfd_get_32 (abfd, xnp->namesz);
in.namedata = xnp->name;
if (in.namesz > contents - in.namedata + size)
return NULL;
if (in.namesz != 4 || strcmp (in.namedata, "AVR") != 0)
return NULL;
in.descsz = bfd_get_32 (abfd, xnp->descsz);
in.descdata = in.namedata + align_power (in.namesz, 2);
if (in.descsz < 6 * sizeof (uint32_t)
|| in.descdata >= contents + size
|| in.descsz > contents - in.descdata + size)
return NULL;
/* If the note has a string table, ensure it is 0 terminated. */
if (in.descsz > 8 * sizeof (uint32_t))
in.descdata[in.descsz - 1] = 0;
*descsz = in.descsz;
return in.descdata;
}
static void
elf32_avr_get_device_info (bfd *abfd, char *description,
bfd_size_type desc_size, deviceinfo *device)
{
if (description == NULL)
return;
const bfd_size_type memory_sizes = 6;
memcpy (device, description, memory_sizes * sizeof (uint32_t));
desc_size -= memory_sizes * sizeof (uint32_t);
if (desc_size < 8)
return;
uint32_t *stroffset_table = (uint32_t *) description + memory_sizes;
bfd_size_type stroffset_table_size = bfd_get_32 (abfd, stroffset_table);
/* If the only content is the size itself, there's nothing in the table */
if (stroffset_table_size < 8)
return;
if (desc_size <= stroffset_table_size)
return;
desc_size -= stroffset_table_size;
/* First entry is the device name index. */
uint32_t device_name_index = bfd_get_32 (abfd, stroffset_table + 1);
if (device_name_index >= desc_size)
return;
char *str_table = (char *) stroffset_table + stroffset_table_size;
device->name = str_table + device_name_index;
}
/* Get the size of section *SECNAME, truncated to a reasonable value in
order to catch PR 27285 and dysfunctional binaries. */
static bfd_size_type
elf32_avr_get_truncated_size (bfd *abfd, const char *secname)
{
/* Max size of around 1 MiB is more than any reasonable AVR will
ever be able to swallow. And it's small enough so that we won't
get overflows / UB as demonstrated in PR 27285. */
const bfd_size_type max_size = 1000000;
bfd_size_type size = 0;
asection *section;
section = bfd_get_section_by_name (abfd, secname);
if (section != NULL)
{
size = bfd_section_size (section);
if (size > INT32_MAX)
{
fprintf (stderr, _("Warning: section %s has a negative size of"
" %ld bytes, saturating to 0 bytes\n"),
secname, (long) (int32_t) size);
size = 0;
}
else if (size > max_size)
{
fprintf (stderr, _("Warning: section %s has an impossible size of"
" %lu bytes, truncating to %lu bytes\n"),
secname, (unsigned long) size, (unsigned long) max_size);
size = max_size;
}
}
return size;
}
static void
elf32_avr_get_memory_usage (bfd *abfd,
bfd_size_type *text_usage,
bfd_size_type *data_usage,
bfd_size_type *eeprom_usage)
{
bfd_size_type avr_textsize = elf32_avr_get_truncated_size (abfd, ".text");
bfd_size_type avr_datasize = elf32_avr_get_truncated_size (abfd, ".data");;
bfd_size_type avr_bsssize = elf32_avr_get_truncated_size (abfd, ".bss");
bfd_size_type noinitsize = elf32_avr_get_truncated_size (abfd, ".noinit");
bfd_size_type rodatasize = elf32_avr_get_truncated_size (abfd, ".rodata");
bfd_size_type eepromsize = elf32_avr_get_truncated_size (abfd, ".eeprom");
bfd_size_type bootloadersize = elf32_avr_get_truncated_size (abfd,
".bootloader");
*text_usage = avr_textsize + avr_datasize + rodatasize + bootloadersize;
*data_usage = avr_datasize + avr_bsssize + noinitsize;
*eeprom_usage = eepromsize;
}
static void
elf32_avr_dump_mem_usage (bfd *abfd)
{
char *description = NULL;
bfd_size_type sec_size, desc_size;
deviceinfo device = { 0, 0, 0, 0, 0, 0, NULL };
device.name = "Unknown";
bfd_size_type data_usage = 0;
bfd_size_type text_usage = 0;
bfd_size_type eeprom_usage = 0;
char *contents = elf32_avr_get_note_section_contents (abfd, &sec_size);
if (contents != NULL)
{
description = elf32_avr_get_note_desc (abfd, contents, sec_size,
&desc_size);
elf32_avr_get_device_info (abfd, description, desc_size, &device);
}
elf32_avr_get_memory_usage (abfd, &text_usage, &data_usage,
&eeprom_usage);
printf ("AVR Memory Usage\n"
"----------------\n"
"Device: %s\n\n", device.name);
/* Text size */
printf ("Program:%8" PRIu64 " bytes", (uint64_t) text_usage);
if (device.flash_size > 0)
printf (" (%2.1f%% Full)", (double) text_usage / device.flash_size * 100);
printf ("\n(.text + .data + .rodata + .bootloader)\n\n");
/* Data size */
printf ("Data: %8" PRIu64 " bytes", (uint64_t) data_usage);
if (device.ram_size > 0)
printf (" (%2.1f%% Full)", (double) data_usage / device.ram_size * 100);
printf ("\n(.data + .bss + .noinit)\n\n");
/* EEPROM size */
if (eeprom_usage > 0)
{
printf ("EEPROM: %8" PRIu64 " bytes", (uint64_t) eeprom_usage);
if (device.eeprom_size > 0)
printf (" (%2.1f%% Full)",
(double) eeprom_usage / device.eeprom_size * 100);
printf ("\n(.eeprom)\n\n");
}
if (contents != NULL)
free (contents);
}
static void
elf32_avr_dump_avr_prop (bfd *abfd)
{
struct avr_property_record_list *r_list;
unsigned int i;
r_list = avr_elf32_load_property_records (abfd);
if (r_list == NULL)
return;
printf ("\nContents of `%s' section:\n\n", r_list->section->name);
printf (" Version: %d\n", r_list->version);
printf (" Flags: %#x\n\n", r_list->flags);
for (i = 0; i < r_list->record_count; ++i)
{
printf (" %d %s @ %s + %#08" PRIx64" (%#08" PRIx64 ")\n",
i,
avr_elf32_property_record_name (&r_list->records [i]),
r_list->records [i].section->name,
(uint64_t) r_list->records [i].offset,
((uint64_t) bfd_section_vma (r_list->records [i].section)
+ r_list->records [i].offset));
switch (r_list->records [i].type)
{
case RECORD_ORG:
/* Nothing else to print. */
break;
case RECORD_ORG_AND_FILL:
printf (" Fill: %#08lx\n",
r_list->records [i].data.org.fill);
break;
case RECORD_ALIGN:
printf (" Align: %#08lx\n",
r_list->records [i].data.align.bytes);
break;
case RECORD_ALIGN_AND_FILL:
printf (" Align: %#08lx, Fill: %#08lx\n",
r_list->records [i].data.align.bytes,
r_list->records [i].data.align.fill);
break;
}
}
free (r_list);
}
static void
elf32_avr_dump_avr_deviceinfo (bfd *abfd)
{
char *description = NULL;
bfd_size_type sec_size, desc_size;
deviceinfo dinfo = { 0, 0, 0, 0, 0, 0, NULL };
dinfo.name = "Unknown";
char *contents = elf32_avr_get_note_section_contents (abfd, &sec_size);
if (contents == NULL)
return;
description = elf32_avr_get_note_desc (abfd, contents, sec_size, &desc_size);
elf32_avr_get_device_info (abfd, description, desc_size, &dinfo);
printf ("AVR Device Info\n"
"----------------\n"
"Device: %s\n\n", dinfo.name);
printf ("Memory Start Size Start Size\n");
printf ("Flash %9" PRIu32 " %9" PRIu32 " %#9" PRIx32 " %#9" PRIx32 "\n",
dinfo.flash_start, dinfo.flash_size,
dinfo.flash_start, dinfo.flash_size);
/* FIXME: There are devices like ATtiny11 without RAM, and where the
avr/io*.h header has defines like
#define RAMSTART 0x60
// Last memory addresses
#define RAMEND 0x1F
which results in a negative RAM size. The correct display would be to
show a size of 0, however we also want to show what's actually in the
note section as precise as possible. Hence, display the decimal size
as %d, not as %u. */
printf ("RAM %9" PRIu32 " %9" PRId32 " %#9" PRIx32 " %#9" PRIx32 "\n",
dinfo.ram_start, dinfo.ram_size,
dinfo.ram_start, dinfo.ram_size);
printf ("EEPROM %9" PRIu32 " %9" PRIu32 " %#9" PRIx32 " %#9" PRIx32 "\n",
dinfo.eeprom_start, dinfo.eeprom_size,
dinfo.eeprom_start, dinfo.eeprom_size);
free (contents);
}
static void
elf32_avr_dump (bfd *abfd)
{
if (options[OPT_MEMUSAGE].selected)
elf32_avr_dump_mem_usage (abfd);
if (options[OPT_AVRPROP].selected)
elf32_avr_dump_avr_prop (abfd);
if (options[OPT_AVRDEVICEINFO].selected)
elf32_avr_dump_avr_deviceinfo (abfd);
}
const struct objdump_private_desc objdump_private_desc_elf32_avr =
{
elf32_avr_help,
elf32_avr_filter,
elf32_avr_dump,
options
};