/* Simulator Floating-point support. Copyright 1997-2022 Free Software Foundation, Inc. Contributed by Cygnus Support. This file is part of GDB, the GNU debugger. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ #ifndef SIM_FPU_H #define SIM_FPU_H #include <stdbool.h> /* The FPU intermediate type - this object, passed by reference, should be treated as opaque. Pragmatics - pass struct by ref: The alternatives for this object/interface that were considered were: a packed 64 bit value; an unpacked structure passed by value; and an unpacked structure passed by reference. The packed 64 bit value was rejected because: it limited the precision of intermediate values; reasonable performance would only be achieved when the sim_fpu package was in-lined allowing repeated unpacking operations to be eliminated. For unpacked structures (passed by value and reference), the code quality of GCC-2.7 (on x86) for each alternative was compared. Needless to say the results, while better than for a packed 64 bit object, were still poor (GCC had only limited support for the optimization of references to structure members). Regardless, the struct-by-ref alternative achieved better results when compiled with (better speed) and without (better code density) in-lining. Here's looking forward to an improved GCC optimizer. Pragmatics - avoid host FP hardware: FP operations can be implemented by either: the host's floating point hardware; or by emulating the FP operations using integer only routines. This is direct tradeoff between speed, portability and correctness. The two principal reasons for selecting portability and correctness over speed are: 1 - Correctness. The assumption that FP correctness wasn't an issue for code being run on simulators was wrong. Instead of running FP tolerant (?) code, simulator users instead typically run very aggressive FP code sequences. The sole purpose of those sequences being to test the target ISA's FP implementation. 2 - Portability. The host FP implementation is not predictable. A simulator modeling aggressive FP code sequences using the hosts FPU relies heavily on the correctness of the hosts FP implementation. It turns out that such trust can be misplaced. The behavior of host FP implementations when handling edge conditions such as SNaNs and exceptions varied widely. */ typedef enum { sim_fpu_class_zero, sim_fpu_class_snan, sim_fpu_class_qnan, sim_fpu_class_number, sim_fpu_class_denorm, sim_fpu_class_infinity, } sim_fpu_class; typedef struct _sim_fpu { sim_fpu_class class; int sign; uint64_t fraction; int normal_exp; } sim_fpu; /* Rounding options. The value zero (sim_fpu_round_default) for ALU operations indicates that, when possible, rounding should be avoided. */ typedef enum { sim_fpu_round_default = 0, sim_fpu_round_near = 1, sim_fpu_round_zero = 2, sim_fpu_round_up = 3, sim_fpu_round_down = 4, } sim_fpu_round; /* Options when handling denormalized numbers. */ typedef enum { sim_fpu_denorm_default = 0, sim_fpu_denorm_underflow_inexact = 1, sim_fpu_denorm_zero = 2, } sim_fpu_denorm; /* Status values returned by FPU operators. When checking the result of an FP sequence (ex 32to, add, single, to32) the caller may either: check the return value of each FP operator; or form the union (OR) of the returned values and examine them once at the end. FIXME: This facility is still being developed. The choice of status values returned and their exact meaning may changed in the future. */ typedef enum { sim_fpu_status_invalid_snan = 1, sim_fpu_status_invalid_qnan = 2, sim_fpu_status_invalid_isi = 4, /* (inf - inf) */ sim_fpu_status_invalid_idi = 8, /* (inf / inf) */ sim_fpu_status_invalid_zdz = 16, /* (0 / 0) */ sim_fpu_status_invalid_imz = 32, /* (inf * 0) */ sim_fpu_status_invalid_cvi = 64, /* convert to integer */ sim_fpu_status_invalid_div0 = 128, /* (X / 0) */ sim_fpu_status_invalid_cmp = 256, /* compare */ sim_fpu_status_invalid_sqrt = 512, sim_fpu_status_invalid_irx = 1024, /* (inf % X) */ sim_fpu_status_rounded = 2048, sim_fpu_status_inexact = 4096, sim_fpu_status_overflow = 8192, sim_fpu_status_underflow = 16384, sim_fpu_status_denorm = 32768, } sim_fpu_status; /* State used by the FPU. FIXME: This state is global, but should be moved to SIM_CPU. */ typedef enum { sim_fpu_ieee754_1985, sim_fpu_ieee754_2008, } sim_fpu_mode; typedef struct _sim_fpu_state { bool quiet_nan_inverted; /* Toggle quiet NaN semantics. */ sim_fpu_mode current_mode; } sim_fpu_state; /* Directly map between a 32/64 bit register and the sim_fpu internal type. When converting from the 32/64 bit packed format to the sim_fpu internal type, the operation is exact. When converting from the sim_fpu internal type to 32/64 bit packed format, the operation may result in a loss of precision. The configuration macro WITH_FPU_CONVERSION controls this. By default, silent round to nearest is performed. Alternatively, round up, round down and round to zero can be performed. In a simulator emulating exact FPU behavior, sim_fpu_round_{32,64} should be called before packing the sim_fpu value. */ INLINE_SIM_FPU (void) sim_fpu_32to (sim_fpu *f, uint32_t s); INLINE_SIM_FPU (void) sim_fpu_232to (sim_fpu *f, uint32_t h, uint32_t l); INLINE_SIM_FPU (void) sim_fpu_64to (sim_fpu *f, uint64_t d); INLINE_SIM_FPU (void) sim_fpu_to32 (uint32_t *s, const sim_fpu *f); INLINE_SIM_FPU (void) sim_fpu_to232 (uint32_t *h, uint32_t *l, const sim_fpu *f); INLINE_SIM_FPU (void) sim_fpu_to64 (uint64_t *d, const sim_fpu *f); /* Create a sim_fpu struct using raw information. (FRACTION & LSMASK (PRECISION-1, 0)) is assumed to contain the fraction part of the floating-point number. The leading bit LSBIT (PRECISION) is always implied. The number created can be represented by: (SIGN ? "-" : "+") "1." FRACTION{PRECISION-1,0} X 2 ^ NORMAL_EXP> You can not specify zero using this function. */ INLINE_SIM_FPU (void) sim_fpu_fractionto (sim_fpu *f, int sign, int normal_exp, uint64_t fraction, int precision); /* Reverse operation. If S is a non-zero number, discards the implied leading one and returns PRECISION fraction bits. No rounding is performed. */ INLINE_SIM_FPU (uint64_t) sim_fpu_tofraction (const sim_fpu *s, int precision); /* Rounding operators. Force an intermediate result to an exact 32/64 bit representation. */ INLINE_SIM_FPU (int) sim_fpu_round_32 (sim_fpu *f, sim_fpu_round round, sim_fpu_denorm denorm); INLINE_SIM_FPU (int) sim_fpu_round_64 (sim_fpu *f, sim_fpu_round round, sim_fpu_denorm denorm); /* Arithmetic operators. FIXME: In the future, additional arguments ROUNDING and BITSIZE may be added. */ typedef int (sim_fpu_op1) (sim_fpu *f, const sim_fpu *l); typedef int (sim_fpu_op2) (sim_fpu *f, const sim_fpu *l, const sim_fpu *r); INLINE_SIM_FPU (int) sim_fpu_add (sim_fpu *f, const sim_fpu *l, const sim_fpu *r); INLINE_SIM_FPU (int) sim_fpu_sub (sim_fpu *f, const sim_fpu *l, const sim_fpu *r); INLINE_SIM_FPU (int) sim_fpu_mul (sim_fpu *f, const sim_fpu *l, const sim_fpu *r); INLINE_SIM_FPU (int) sim_fpu_div (sim_fpu *f, const sim_fpu *l, const sim_fpu *r); INLINE_SIM_FPU (int) sim_fpu_rem (sim_fpu *f, const sim_fpu *l, const sim_fpu *r); INLINE_SIM_FPU (int) sim_fpu_max (sim_fpu *f, const sim_fpu *l, const sim_fpu *r); INLINE_SIM_FPU (int) sim_fpu_min (sim_fpu *f, const sim_fpu *l, const sim_fpu *r); INLINE_SIM_FPU (int) sim_fpu_neg (sim_fpu *f, const sim_fpu *a); INLINE_SIM_FPU (int) sim_fpu_abs (sim_fpu *f, const sim_fpu *a); INLINE_SIM_FPU (int) sim_fpu_inv (sim_fpu *f, const sim_fpu *a); INLINE_SIM_FPU (int) sim_fpu_sqrt (sim_fpu *f, const sim_fpu *sqr); /* NaN handling. Assuming that at least one of the inputs is NAN choose the correct NAN result for the binary operation. */ INLINE_SIM_FPU (int) sim_fpu_op_nan (sim_fpu *f, const sim_fpu *l, const sim_fpu *r); INLINE_SIM_FPU (int) sim_fpu_minmax_nan (sim_fpu *f, const sim_fpu *l, const sim_fpu *r); /* Conversion of integer <-> floating point. */ INLINE_SIM_FPU (int) sim_fpu_i32to (sim_fpu *f, int32_t i, sim_fpu_round round); INLINE_SIM_FPU (int) sim_fpu_u32to (sim_fpu *f, uint32_t u, sim_fpu_round round); INLINE_SIM_FPU (int) sim_fpu_i64to (sim_fpu *f, int64_t i, sim_fpu_round round); INLINE_SIM_FPU (int) sim_fpu_u64to (sim_fpu *f, uint64_t u, sim_fpu_round round); #if 0 INLINE_SIM_FPU (int) sim_fpu_i232to (sim_fpu *f, int32_t h, int32_t l, sim_fpu_round round); #endif #if 0 INLINE_SIM_FPU (int) sim_fpu_u232to (sim_fpu *f, uint32_t h, uint32_t l, sim_fpu_round round); #endif INLINE_SIM_FPU (int) sim_fpu_to32i (int32_t *i, const sim_fpu *f, sim_fpu_round round); INLINE_SIM_FPU (int) sim_fpu_to32u (uint32_t *u, const sim_fpu *f, sim_fpu_round round); INLINE_SIM_FPU (int) sim_fpu_to64i (int64_t *i, const sim_fpu *f, sim_fpu_round round); INLINE_SIM_FPU (int) sim_fpu_to64u (uint64_t *u, const sim_fpu *f, sim_fpu_round round); #if 0 INLINE_SIM_FPU (int) sim_fpu_to232i (int64_t *h, int64_t *l, const sim_fpu *f, sim_fpu_round round); #endif #if 0 INLINE_SIM_FPU (int) sim_fpu_to232u (uint64_t *h, uint64_t *l, const sim_fpu *f, sim_fpu_round round); #endif /* Conversion of internal sim_fpu type to host double format. For debugging/tracing only. A SNaN is never returned. */ /* INLINE_SIM_FPU (float) sim_fpu_2f (const sim_fpu *f); */ INLINE_SIM_FPU (double) sim_fpu_2d (const sim_fpu *d); /* INLINE_SIM_FPU (void) sim_fpu_f2 (sim_fpu *f, float s); */ INLINE_SIM_FPU (void) sim_fpu_d2 (sim_fpu *f, double d); /* IEEE754-2008 classifiction function. */ INLINE_SIM_FPU (int) sim_fpu_classify (const sim_fpu *f); /* Specific number classes. NB: When either, a 32/64 bit floating points is converted to internal format, or an internal format number is rounded to 32/64 bit precision, a special marker is retained that indicates that the value was normalized. For such numbers both is_number and is_denorm return true. */ INLINE_SIM_FPU (int) sim_fpu_is_nan (const sim_fpu *s); /* 1 => SNaN or QNaN */ INLINE_SIM_FPU (int) sim_fpu_is_snan (const sim_fpu *s); /* 1 => SNaN */ INLINE_SIM_FPU (int) sim_fpu_is_qnan (const sim_fpu *s); /* 1 => QNaN */ INLINE_SIM_FPU (int) sim_fpu_is_zero (const sim_fpu *s); INLINE_SIM_FPU (int) sim_fpu_is_infinity (const sim_fpu *s); INLINE_SIM_FPU (int) sim_fpu_is_number (const sim_fpu *s); /* !zero */ INLINE_SIM_FPU (int) sim_fpu_is_denorm (const sim_fpu *s); /* !zero */ /* Floating point fields */ INLINE_SIM_FPU (int) sim_fpu_sign (const sim_fpu *s); INLINE_SIM_FPU (int) sim_fpu_exp (const sim_fpu *s); INLINE_SIM_FPU (uint64_t) sim_fpu_fraction (const sim_fpu *s); INLINE_SIM_FPU (uint64_t) sim_fpu_guard (const sim_fpu *s, int is_double); /* Specific comparison operators For NaNs et al., the comparison operators will set IS to zero and return a nonzero result. */ INLINE_SIM_FPU (int) sim_fpu_lt (int *is, const sim_fpu *l, const sim_fpu *r); INLINE_SIM_FPU (int) sim_fpu_le (int *is, const sim_fpu *l, const sim_fpu *r); INLINE_SIM_FPU (int) sim_fpu_eq (int *is, const sim_fpu *l, const sim_fpu *r); INLINE_SIM_FPU (int) sim_fpu_ne (int *is, const sim_fpu *l, const sim_fpu *r); INLINE_SIM_FPU (int) sim_fpu_ge (int *is, const sim_fpu *l, const sim_fpu *r); INLINE_SIM_FPU (int) sim_fpu_gt (int *is, const sim_fpu *l, const sim_fpu *r); INLINE_SIM_FPU (int) sim_fpu_is_lt (const sim_fpu *l, const sim_fpu *r); INLINE_SIM_FPU (int) sim_fpu_is_le (const sim_fpu *l, const sim_fpu *r); INLINE_SIM_FPU (int) sim_fpu_is_eq (const sim_fpu *l, const sim_fpu *r); INLINE_SIM_FPU (int) sim_fpu_is_ne (const sim_fpu *l, const sim_fpu *r); INLINE_SIM_FPU (int) sim_fpu_is_ge (const sim_fpu *l, const sim_fpu *r); INLINE_SIM_FPU (int) sim_fpu_is_gt (const sim_fpu *l, const sim_fpu *r); /* Unordered/ordered comparison operators. */ INLINE_SIM_FPU (int) sim_fpu_un (int *is, const sim_fpu *l, const sim_fpu *r); INLINE_SIM_FPU (int) sim_fpu_or (int *is, const sim_fpu *l, const sim_fpu *r); INLINE_SIM_FPU (int) sim_fpu_is_un (const sim_fpu *l, const sim_fpu *r); INLINE_SIM_FPU (int) sim_fpu_is_or (const sim_fpu *l, const sim_fpu *r); /* Changes the behaviour of the library to IEEE754-2008 or IEEE754-1985. The default for the library is IEEE754-1985. */ INLINE_SIM_FPU (bool) sim_fpu_is_ieee754_1985 (void); INLINE_SIM_FPU (bool) sim_fpu_is_ieee754_2008 (void); INLINE_SIM_FPU (void) sim_fpu_set_mode (const sim_fpu_mode m); /* General number class and comparison operators. The result of the comparison is indicated by returning one of the values below. Efficient emulation of a target FP compare instruction can be achieved by redefining the values below to match corresponding target FP status bits. For instance. SIM_FPU_QNAN may be redefined to be the bit `INVALID' while SIM_FPU_NINF might be redefined as the bits `NEGATIVE | INFINITY | VALID'. */ #ifndef SIM_FPU_IS_SNAN enum { SIM_FPU_IS_SNAN = 1, /* Noisy not-a-number */ SIM_FPU_IS_QNAN = 2, /* Quiet not-a-number */ SIM_FPU_IS_NINF = 3, /* -infinity */ SIM_FPU_IS_PINF = 4, /* +infinity */ SIM_FPU_IS_NNUMBER = 5, /* -number - [ -MAX .. -MIN ] */ SIM_FPU_IS_PNUMBER = 6, /* +number - [ +MIN .. +MAX ] */ SIM_FPU_IS_NDENORM = 7, /* -denorm - ( MIN .. 0 ) */ SIM_FPU_IS_PDENORM = 8, /* +denorm - ( 0 .. MIN ) */ SIM_FPU_IS_NZERO = 9, /* -0 */ SIM_FPU_IS_PZERO = 10, /* +0 */ }; #endif INLINE_SIM_FPU (int) sim_fpu_is (const sim_fpu *l); INLINE_SIM_FPU (int) sim_fpu_cmp (const sim_fpu *l, const sim_fpu *r); /* Global FPU state. */ extern sim_fpu_state _sim_fpu; /* IEEE 754-1985 specifies the top bit of the mantissa as an indicator of signalling vs. quiet NaN, but does not specify the semantics. Most architectures treat this bit as quiet NaN, but legacy (pre-R6) MIPS goes the other way and treats it as signalling. This variable tracks the current semantics of the NaN bit and allows differentiation between pre-R6 and R6 MIPS cores. */ #define sim_fpu_quiet_nan_inverted _sim_fpu.quiet_nan_inverted #define sim_fpu_current_mode _sim_fpu.current_mode /* A number of useful constants. */ extern const sim_fpu sim_fpu_zero; extern const sim_fpu sim_fpu_one; extern const sim_fpu sim_fpu_two; extern const sim_fpu sim_fpu_qnan; extern const sim_fpu sim_fpu_max32; extern const sim_fpu sim_fpu_max64; /* Select the applicable functions for the fp_word type */ #if WITH_TARGET_FLOATING_POINT_BITSIZE == 32 #define sim_fpu_tofp sim_fpu_to32 #define sim_fpu_fpto sim_fpu_32to #define sim_fpu_round_fp sim_fpu_round_32 #define sim_fpu_maxfp sim_fpu_max32 #endif #if WITH_TARGET_FLOATING_POINT_BITSIZE == 64 #define sim_fpu_tofp sim_fpu_to64 #define sim_fpu_fpto sim_fpu_64to #define sim_fpu_round_fp sim_fpu_round_64 #define sim_fpu_maxfp sim_fpu_max64 #endif /* For debugging */ typedef void sim_fpu_print_func (void *, const char *, ...); /* Print a sim_fpu with full precision. */ INLINE_SIM_FPU (void) sim_fpu_print_fpu (const sim_fpu *f, sim_fpu_print_func *print, void *arg); /* Print a sim_fpu with `n' trailing digits. */ INLINE_SIM_FPU (void) sim_fpu_printn_fpu (const sim_fpu *f, sim_fpu_print_func *print, int digits, void *arg); INLINE_SIM_FPU (void) sim_fpu_print_status (int status, sim_fpu_print_func *print, void *arg); #if H_REVEALS_MODULE_P (SIM_FPU_INLINE) #include "sim-fpu.c" #endif #endif