/*> cp1.c <*/ /* Floating Point Support for gdb MIPS simulators This file is part of the MIPS sim THIS SOFTWARE IS NOT COPYRIGHTED Cygnus offers the following for use in the public domain. Cygnus makes no warranty with regard to the software or it's performance and the user accepts the software "AS IS" with all faults. CYGNUS DISCLAIMS ANY WARRANTIES, EXPRESS OR IMPLIED, WITH REGARD TO THIS SOFTWARE INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. (Originally, this code was in interp.c) */ #include "sim-main.h" #include "sim-fpu.h" /* Within cp1.c we refer to sim_cpu directly. */ #define CPU cpu #define SD sd /*-- FPU support routines ---------------------------------------------------*/ /* Numbers are held in normalized form. The SINGLE and DOUBLE binary formats conform to ANSI/IEEE Std 754-1985. SINGLE precision floating: seeeeeeeefffffffffffffffffffffff s = 1bit = sign e = 8bits = exponent f = 23bits = fraction SINGLE precision fixed: siiiiiiiiiiiiiiiiiiiiiiiiiiiiiii s = 1bit = sign i = 31bits = integer DOUBLE precision floating: seeeeeeeeeeeffffffffffffffffffffffffffffffffffffffffffffffffffff s = 1bit = sign e = 11bits = exponent f = 52bits = fraction DOUBLE precision fixed: siiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii s = 1bit = sign i = 63bits = integer */ /* Explicit QNaN values used when value required: */ #define FPQNaN_SINGLE (0x7FBFFFFF) #define FPQNaN_WORD (0x7FFFFFFF) #define FPQNaN_DOUBLE (UNSIGNED64 (0x7FF7FFFFFFFFFFFF)) #define FPQNaN_LONG (UNSIGNED64 (0x7FFFFFFFFFFFFFFF)) static const char *fpu_format_name (FP_formats fmt); #ifdef DEBUG static const char *fpu_rounding_mode_name (int rm); #endif uword64 value_fpr (SIM_DESC sd, sim_cpu *cpu, address_word cia, int fpr, FP_formats fmt) { uword64 value = 0; int err = 0; /* Treat unused register values, as fixed-point 64bit values: */ if ((fmt == fmt_uninterpreted) || (fmt == fmt_unknown)) { #if 1 /* If request to read data as "uninterpreted", then use the current encoding: */ fmt = FPR_STATE[fpr]; #else fmt = fmt_long; #endif } /* For values not yet accessed, set to the desired format: */ if (FPR_STATE[fpr] == fmt_uninterpreted) { FPR_STATE[fpr] = fmt; #ifdef DEBUG printf ("DBG: Register %d was fmt_uninterpreted. Now %s\n", fpr, fpu_format_name (fmt)); #endif /* DEBUG */ } if (fmt != FPR_STATE[fpr]) { sim_io_eprintf (sd, "FPR %d (format %s) being accessed with format %s - setting to unknown (PC = 0x%s)\n", fpr, fpu_format_name (FPR_STATE[fpr]), fpu_format_name (fmt), pr_addr (cia)); FPR_STATE[fpr] = fmt_unknown; } if (FPR_STATE[fpr] == fmt_unknown) { /* Set QNaN value: */ switch (fmt) { case fmt_single: value = FPQNaN_SINGLE; break; case fmt_double: value = FPQNaN_DOUBLE; break; case fmt_word: value = FPQNaN_WORD; break; case fmt_long: value = FPQNaN_LONG; break; default: err = -1; break; } } else if (SizeFGR () == 64) { switch (fmt) { case fmt_single: case fmt_word: value = (FGR[fpr] & 0xFFFFFFFF); break; case fmt_uninterpreted: case fmt_double: case fmt_long: value = FGR[fpr]; break; default: err = -1; break; } } else { switch (fmt) { case fmt_single: case fmt_word: value = (FGR[fpr] & 0xFFFFFFFF); break; case fmt_uninterpreted: case fmt_double: case fmt_long: if ((fpr & 1) == 0) { /* even registers only */ #ifdef DEBUG printf ("DBG: ValueFPR: FGR[%d] = %s, FGR[%d] = %s\n", fpr + 1, pr_uword64 ((uword64) FGR[fpr+1]), fpr, pr_uword64 ((uword64) FGR[fpr])); #endif value = ((((uword64) FGR[fpr+1]) << 32) | (FGR[fpr] & 0xFFFFFFFF)); } else { SignalException (ReservedInstruction, 0); } break; default: err = -1; break; } } if (err) SignalExceptionSimulatorFault ("Unrecognised FP format in ValueFPR ()"); #ifdef DEBUG printf ("DBG: ValueFPR: fpr = %d, fmt = %s, value = 0x%s : PC = 0x%s : SizeFGR () = %d\n", fpr, fpu_format_name (fmt), pr_uword64 (value), pr_addr (cia), SizeFGR ()); #endif /* DEBUG */ return (value); } void store_fpr (SIM_DESC sd, sim_cpu *cpu, address_word cia, int fpr, FP_formats fmt, uword64 value) { int err = 0; #ifdef DEBUG printf ("DBG: StoreFPR: fpr = %d, fmt = %s, value = 0x%s : PC = 0x%s : SizeFGR () = %d, \n", fpr, fpu_format_name (fmt), pr_uword64 (value), pr_addr (cia), SizeFGR ()); #endif /* DEBUG */ if (SizeFGR () == 64) { switch (fmt) { case fmt_uninterpreted_32: fmt = fmt_uninterpreted; case fmt_single: case fmt_word: if (STATE_VERBOSE_P (SD)) sim_io_eprintf (SD, "Warning: PC 0x%s: interp.c store_fpr DEADCODE\n", pr_addr (cia)); FGR[fpr] = (((uword64) 0xDEADC0DE << 32) | (value & 0xFFFFFFFF)); FPR_STATE[fpr] = fmt; break; case fmt_uninterpreted_64: fmt = fmt_uninterpreted; case fmt_uninterpreted: case fmt_double: case fmt_long: FGR[fpr] = value; FPR_STATE[fpr] = fmt; break; default: FPR_STATE[fpr] = fmt_unknown; err = -1; break; } } else { switch (fmt) { case fmt_uninterpreted_32: fmt = fmt_uninterpreted; case fmt_single: case fmt_word: FGR[fpr] = (value & 0xFFFFFFFF); FPR_STATE[fpr] = fmt; break; case fmt_uninterpreted_64: fmt = fmt_uninterpreted; case fmt_uninterpreted: case fmt_double: case fmt_long: if ((fpr & 1) == 0) { /* even register number only */ FGR[fpr+1] = (value >> 32); FGR[fpr] = (value & 0xFFFFFFFF); FPR_STATE[fpr + 1] = fmt; FPR_STATE[fpr] = fmt; } else { FPR_STATE[fpr] = fmt_unknown; FPR_STATE[fpr + 1] = fmt_unknown; SignalException (ReservedInstruction, 0); } break; default: FPR_STATE[fpr] = fmt_unknown; err = -1; break; } } if (err) SignalExceptionSimulatorFault ("Unrecognised FP format in StoreFPR ()"); #ifdef DEBUG printf ("DBG: StoreFPR: fpr[%d] = 0x%s (format %s)\n", fpr, pr_uword64 (FGR[fpr]), fpu_format_name (fmt)); #endif /* DEBUG */ return; } int NaN (op, fmt) uword64 op; FP_formats fmt; { int boolean = 0; switch (fmt) { case fmt_single: case fmt_word: { sim_fpu wop; sim_fpu_32to (&wop, op); boolean = sim_fpu_is_nan (&wop); break; } case fmt_double: case fmt_long: { sim_fpu wop; sim_fpu_64to (&wop, op); boolean = sim_fpu_is_nan (&wop); break; } default: fprintf (stderr, "Bad switch\n"); abort (); } #ifdef DEBUG printf ("DBG: NaN: returning %d for 0x%s (format = %s)\n", boolean, pr_addr (op), fpu_format_name (fmt)); #endif /* DEBUG */ return (boolean); } int Infinity (op, fmt) uword64 op; FP_formats fmt; { int boolean = 0; #ifdef DEBUG printf ("DBG: Infinity: format %s 0x%s\n", fpu_format_name (fmt), pr_addr (op)); #endif /* DEBUG */ switch (fmt) { case fmt_single: { sim_fpu wop; sim_fpu_32to (&wop, op); boolean = sim_fpu_is_infinity (&wop); break; } case fmt_double: { sim_fpu wop; sim_fpu_64to (&wop, op); boolean = sim_fpu_is_infinity (&wop); break; } default: printf ("DBG: TODO: unrecognised format (%s) for Infinity check\n", fpu_format_name (fmt)); break; } #ifdef DEBUG printf ("DBG: Infinity: returning %d for 0x%s (format = %s)\n", boolean, pr_addr (op), fpu_format_name (fmt)); #endif /* DEBUG */ return (boolean); } int Less (op1, op2, fmt) uword64 op1; uword64 op2; FP_formats fmt; { int boolean = 0; /* Argument checking already performed by the FPCOMPARE code */ #ifdef DEBUG printf ("DBG: Less: %s: op1 = 0x%s : op2 = 0x%s\n", fpu_format_name (fmt), pr_addr (op1), pr_addr (op2)); #endif /* DEBUG */ /* The format type should already have been checked: */ switch (fmt) { case fmt_single: { sim_fpu wop1; sim_fpu wop2; sim_fpu_32to (&wop1, op1); sim_fpu_32to (&wop2, op2); boolean = sim_fpu_is_lt (&wop1, &wop2); break; } case fmt_double: { sim_fpu wop1; sim_fpu wop2; sim_fpu_64to (&wop1, op1); sim_fpu_64to (&wop2, op2); boolean = sim_fpu_is_lt (&wop1, &wop2); break; } default: fprintf (stderr, "Bad switch\n"); abort (); } #ifdef DEBUG printf ("DBG: Less: returning %d (format = %s)\n", boolean, fpu_format_name (fmt)); #endif /* DEBUG */ return (boolean); } int Equal (op1, op2, fmt) uword64 op1; uword64 op2; FP_formats fmt; { int boolean = 0; /* Argument checking already performed by the FPCOMPARE code */ #ifdef DEBUG printf ("DBG: Equal: %s: op1 = 0x%s : op2 = 0x%s\n", fpu_format_name (fmt), pr_addr (op1), pr_addr (op2)); #endif /* DEBUG */ /* The format type should already have been checked: */ switch (fmt) { case fmt_single: { sim_fpu wop1; sim_fpu wop2; sim_fpu_32to (&wop1, op1); sim_fpu_32to (&wop2, op2); boolean = sim_fpu_is_eq (&wop1, &wop2); break; } case fmt_double: { sim_fpu wop1; sim_fpu wop2; sim_fpu_64to (&wop1, op1); sim_fpu_64to (&wop2, op2); boolean = sim_fpu_is_eq (&wop1, &wop2); break; } default: fprintf (stderr, "Bad switch\n"); abort (); } #ifdef DEBUG printf ("DBG: Equal: returning %d (format = %s)\n", boolean, fpu_format_name (fmt)); #endif /* DEBUG */ return (boolean); } uword64 AbsoluteValue (op, fmt) uword64 op; FP_formats fmt; { uword64 result = 0; #ifdef DEBUG printf ("DBG: AbsoluteValue: %s: op = 0x%s\n", fpu_format_name (fmt), pr_addr (op)); #endif /* DEBUG */ /* The format type should already have been checked: */ switch (fmt) { case fmt_single: { sim_fpu wop; unsigned32 ans; sim_fpu_32to (&wop, op); sim_fpu_abs (&wop, &wop); sim_fpu_to32 (&ans, &wop); result = ans; break; } case fmt_double: { sim_fpu wop; unsigned64 ans; sim_fpu_64to (&wop, op); sim_fpu_abs (&wop, &wop); sim_fpu_to64 (&ans, &wop); result = ans; break; } default: fprintf (stderr, "Bad switch\n"); abort (); } return (result); } uword64 Negate (op, fmt) uword64 op; FP_formats fmt; { uword64 result = 0; #ifdef DEBUG printf ("DBG: Negate: %s: op = 0x%s\n", fpu_format_name (fmt), pr_addr (op)); #endif /* DEBUG */ /* The format type should already have been checked: */ switch (fmt) { case fmt_single: { sim_fpu wop; unsigned32 ans; sim_fpu_32to (&wop, op); sim_fpu_neg (&wop, &wop); sim_fpu_to32 (&ans, &wop); result = ans; break; } case fmt_double: { sim_fpu wop; unsigned64 ans; sim_fpu_64to (&wop, op); sim_fpu_neg (&wop, &wop); sim_fpu_to64 (&ans, &wop); result = ans; break; } default: fprintf (stderr, "Bad switch\n"); abort (); } return (result); } uword64 Add (op1, op2, fmt) uword64 op1; uword64 op2; FP_formats fmt; { uword64 result = 0; #ifdef DEBUG printf ("DBG: Add: %s: op1 = 0x%s : op2 = 0x%s\n", fpu_format_name (fmt), pr_addr (op1), pr_addr (op2)); #endif /* DEBUG */ /* The registers must specify FPRs valid for operands of type "fmt". If they are not valid, the result is undefined. */ /* The format type should already have been checked: */ switch (fmt) { case fmt_single: { sim_fpu wop1; sim_fpu wop2; sim_fpu ans; unsigned32 res; sim_fpu_32to (&wop1, op1); sim_fpu_32to (&wop2, op2); sim_fpu_add (&ans, &wop1, &wop2); sim_fpu_to32 (&res, &ans); result = res; break; } case fmt_double: { sim_fpu wop1; sim_fpu wop2; sim_fpu ans; unsigned64 res; sim_fpu_64to (&wop1, op1); sim_fpu_64to (&wop2, op2); sim_fpu_add (&ans, &wop1, &wop2); sim_fpu_to64 (&res, &ans); result = res; break; } default: fprintf (stderr, "Bad switch\n"); abort (); } #ifdef DEBUG printf ("DBG: Add: returning 0x%s (format = %s)\n", pr_addr (result), fpu_format_name (fmt)); #endif /* DEBUG */ return (result); } uword64 Sub (op1, op2, fmt) uword64 op1; uword64 op2; FP_formats fmt; { uword64 result = 0; #ifdef DEBUG printf ("DBG: Sub: %s: op1 = 0x%s : op2 = 0x%s\n", fpu_format_name (fmt), pr_addr (op1), pr_addr (op2)); #endif /* DEBUG */ /* The registers must specify FPRs valid for operands of type "fmt". If they are not valid, the result is undefined. */ /* The format type should already have been checked: */ switch (fmt) { case fmt_single: { sim_fpu wop1; sim_fpu wop2; sim_fpu ans; unsigned32 res; sim_fpu_32to (&wop1, op1); sim_fpu_32to (&wop2, op2); sim_fpu_sub (&ans, &wop1, &wop2); sim_fpu_to32 (&res, &ans); result = res; } break; case fmt_double: { sim_fpu wop1; sim_fpu wop2; sim_fpu ans; unsigned64 res; sim_fpu_64to (&wop1, op1); sim_fpu_64to (&wop2, op2); sim_fpu_sub (&ans, &wop1, &wop2); sim_fpu_to64 (&res, &ans); result = res; } break; default: fprintf (stderr, "Bad switch\n"); abort (); } #ifdef DEBUG printf ("DBG: Sub: returning 0x%s (format = %s)\n", pr_addr (result), fpu_format_name (fmt)); #endif /* DEBUG */ return (result); } uword64 Multiply (op1, op2, fmt) uword64 op1; uword64 op2; FP_formats fmt; { uword64 result = 0; #ifdef DEBUG printf ("DBG: Multiply: %s: op1 = 0x%s : op2 = 0x%s\n", fpu_format_name (fmt), pr_addr (op1), pr_addr (op2)); #endif /* DEBUG */ /* The registers must specify FPRs valid for operands of type "fmt". If they are not valid, the result is undefined. */ /* The format type should already have been checked: */ switch (fmt) { case fmt_single: { sim_fpu wop1; sim_fpu wop2; sim_fpu ans; unsigned32 res; sim_fpu_32to (&wop1, op1); sim_fpu_32to (&wop2, op2); sim_fpu_mul (&ans, &wop1, &wop2); sim_fpu_to32 (&res, &ans); result = res; break; } case fmt_double: { sim_fpu wop1; sim_fpu wop2; sim_fpu ans; unsigned64 res; sim_fpu_64to (&wop1, op1); sim_fpu_64to (&wop2, op2); sim_fpu_mul (&ans, &wop1, &wop2); sim_fpu_to64 (&res, &ans); result = res; break; } default: fprintf (stderr, "Bad switch\n"); abort (); } #ifdef DEBUG printf ("DBG: Multiply: returning 0x%s (format = %s)\n", pr_addr (result), fpu_format_name (fmt)); #endif /* DEBUG */ return (result); } uword64 Divide (op1, op2, fmt) uword64 op1; uword64 op2; FP_formats fmt; { uword64 result = 0; #ifdef DEBUG printf ("DBG: Divide: %s: op1 = 0x%s : op2 = 0x%s\n", fpu_format_name (fmt), pr_addr (op1), pr_addr (op2)); #endif /* DEBUG */ /* The registers must specify FPRs valid for operands of type "fmt". If they are not valid, the result is undefined. */ /* The format type should already have been checked: */ switch (fmt) { case fmt_single: { sim_fpu wop1; sim_fpu wop2; sim_fpu ans; unsigned32 res; sim_fpu_32to (&wop1, op1); sim_fpu_32to (&wop2, op2); sim_fpu_div (&ans, &wop1, &wop2); sim_fpu_to32 (&res, &ans); result = res; break; } case fmt_double: { sim_fpu wop1; sim_fpu wop2; sim_fpu ans; unsigned64 res; sim_fpu_64to (&wop1, op1); sim_fpu_64to (&wop2, op2); sim_fpu_div (&ans, &wop1, &wop2); sim_fpu_to64 (&res, &ans); result = res; break; } default: fprintf (stderr, "Bad switch\n"); abort (); } #ifdef DEBUG printf ("DBG: Divide: returning 0x%s (format = %s)\n", pr_addr (result), fpu_format_name (fmt)); #endif /* DEBUG */ return (result); } uword64 UNUSED Recip (op, fmt) uword64 op; FP_formats fmt; { uword64 result = 0; #ifdef DEBUG printf ("DBG: Recip: %s: op = 0x%s\n", fpu_format_name (fmt), pr_addr (op)); #endif /* DEBUG */ /* The registers must specify FPRs valid for operands of type "fmt". If they are not valid, the result is undefined. */ /* The format type should already have been checked: */ switch (fmt) { case fmt_single: { sim_fpu wop; sim_fpu ans; unsigned32 res; sim_fpu_32to (&wop, op); sim_fpu_inv (&ans, &wop); sim_fpu_to32 (&res, &ans); result = res; break; } case fmt_double: { sim_fpu wop; sim_fpu ans; unsigned64 res; sim_fpu_64to (&wop, op); sim_fpu_inv (&ans, &wop); sim_fpu_to64 (&res, &ans); result = res; break; } default: fprintf (stderr, "Bad switch\n"); abort (); } #ifdef DEBUG printf ("DBG: Recip: returning 0x%s (format = %s)\n", pr_addr (result), fpu_format_name (fmt)); #endif /* DEBUG */ return (result); } uword64 SquareRoot (op, fmt) uword64 op; FP_formats fmt; { uword64 result = 0; #ifdef DEBUG printf ("DBG: SquareRoot: %s: op = 0x%s\n", fpu_format_name (fmt), pr_addr (op)); #endif /* DEBUG */ /* The registers must specify FPRs valid for operands of type "fmt". If they are not valid, the result is undefined. */ /* The format type should already have been checked: */ switch (fmt) { case fmt_single: { sim_fpu wop; sim_fpu ans; unsigned32 res; sim_fpu_32to (&wop, op); sim_fpu_sqrt (&ans, &wop); sim_fpu_to32 (&res, &ans); result = res; break; } case fmt_double: { sim_fpu wop; sim_fpu ans; unsigned64 res; sim_fpu_64to (&wop, op); sim_fpu_sqrt (&ans, &wop); sim_fpu_to64 (&res, &ans); result = res; break; } default: fprintf (stderr, "Bad switch\n"); abort (); } #ifdef DEBUG printf ("DBG: SquareRoot: returning 0x%s (format = %s)\n", pr_addr (result), fpu_format_name (fmt)); #endif /* DEBUG */ return (result); } #if 0 uword64 Max (uword64 op1, uword64 op2, FP_formats fmt) { int cmp; unsigned64 result; #ifdef DEBUG printf ("DBG: Max: %s: op1 = 0x%s : op2 = 0x%s\n", fpu_format_name (fmt), pr_addr (op1), pr_addr (op2)); #endif /* DEBUG */ /* The registers must specify FPRs valid for operands of type "fmt". If they are not valid, the result is undefined. */ /* The format type should already have been checked: */ switch (fmt) { case fmt_single: { sim_fpu wop1; sim_fpu wop2; sim_fpu_32to (&wop1, op1); sim_fpu_32to (&wop2, op2); cmp = sim_fpu_cmp (&wop1, &wop2); break; } case fmt_double: { sim_fpu wop1; sim_fpu wop2; sim_fpu_64to (&wop1, op1); sim_fpu_64to (&wop2, op2); cmp = sim_fpu_cmp (&wop1, &wop2); break; } default: fprintf (stderr, "Bad switch\n"); abort (); } switch (cmp) { case SIM_FPU_IS_SNAN: case SIM_FPU_IS_QNAN: result = op1; case SIM_FPU_IS_NINF: case SIM_FPU_IS_NNUMBER: case SIM_FPU_IS_NDENORM: case SIM_FPU_IS_NZERO: result = op2; /* op1 - op2 < 0 */ case SIM_FPU_IS_PINF: case SIM_FPU_IS_PNUMBER: case SIM_FPU_IS_PDENORM: case SIM_FPU_IS_PZERO: result = op1; /* op1 - op2 > 0 */ default: fprintf (stderr, "Bad switch\n"); abort (); } #ifdef DEBUG printf ("DBG: Max: returning 0x%s (format = %s)\n", pr_addr (result), fpu_format_name (fmt)); #endif /* DEBUG */ return (result); } #endif #if 0 uword64 Min (uword64 op1, uword64 op2, FP_formats fmt) { int cmp; unsigned64 result; #ifdef DEBUG printf ("DBG: Min: %s: op1 = 0x%s : op2 = 0x%s\n", fpu_format_name (fmt), pr_addr (op1), pr_addr (op2)); #endif /* DEBUG */ /* The registers must specify FPRs valid for operands of type "fmt". If they are not valid, the result is undefined. */ /* The format type should already have been checked: */ switch (fmt) { case fmt_single: { sim_fpu wop1; sim_fpu wop2; sim_fpu_32to (&wop1, op1); sim_fpu_32to (&wop2, op2); cmp = sim_fpu_cmp (&wop1, &wop2); break; } case fmt_double: { sim_fpu wop1; sim_fpu wop2; sim_fpu_64to (&wop1, op1); sim_fpu_64to (&wop2, op2); cmp = sim_fpu_cmp (&wop1, &wop2); break; } default: fprintf (stderr, "Bad switch\n"); abort (); } switch (cmp) { case SIM_FPU_IS_SNAN: case SIM_FPU_IS_QNAN: result = op1; case SIM_FPU_IS_NINF: case SIM_FPU_IS_NNUMBER: case SIM_FPU_IS_NDENORM: case SIM_FPU_IS_NZERO: result = op1; /* op1 - op2 < 0 */ case SIM_FPU_IS_PINF: case SIM_FPU_IS_PNUMBER: case SIM_FPU_IS_PDENORM: case SIM_FPU_IS_PZERO: result = op2; /* op1 - op2 > 0 */ default: fprintf (stderr, "Bad switch\n"); abort (); } #ifdef DEBUG printf ("DBG: Min: returning 0x%s (format = %s)\n", pr_addr (result), fpu_format_name (fmt)); #endif /* DEBUG */ return (result); } #endif uword64 convert (SIM_DESC sd, sim_cpu *cpu, address_word cia, int rm, uword64 op, FP_formats from, FP_formats to) { sim_fpu wop; sim_fpu_round round; unsigned32 result32; unsigned64 result64; #ifdef DEBUG #if 0 /* FIXME: doesn't compile */ printf ("DBG: Convert: mode %s : op 0x%s : from %s : to %s : (PC = 0x%s)\n", fpu_rounding_mode_name (rm), pr_addr (op), fpu_format_name (from), fpu_format_name (to), pr_addr (IPC)); #endif #endif /* DEBUG */ switch (rm) { case FP_RM_NEAREST: /* Round result to nearest representable value. When two representable values are equally near, round to the value that has a least significant bit of zero (i.e. is even). */ round = sim_fpu_round_near; break; case FP_RM_TOZERO: /* Round result to the value closest to, and not greater in magnitude than, the result. */ round = sim_fpu_round_zero; break; case FP_RM_TOPINF: /* Round result to the value closest to, and not less than, the result. */ round = sim_fpu_round_up; break; case FP_RM_TOMINF: /* Round result to the value closest to, and not greater than, the result. */ round = sim_fpu_round_down; break; default: round = 0; fprintf (stderr, "Bad switch\n"); abort (); } /* Convert the input to sim_fpu internal format */ switch (from) { case fmt_double: sim_fpu_64to (&wop, op); break; case fmt_single: sim_fpu_32to (&wop, op); break; case fmt_word: sim_fpu_i32to (&wop, op, round); break; case fmt_long: sim_fpu_i64to (&wop, op, round); break; default: fprintf (stderr, "Bad switch\n"); abort (); } /* Convert sim_fpu format into the output */ /* The value WOP is converted to the destination format, rounding using mode RM. When the destination is a fixed-point format, then a source value of Infinity, NaN or one which would round to an integer outside the fixed point range then an IEEE Invalid Operation condition is raised. */ switch (to) { case fmt_single: sim_fpu_round_32 (&wop, round, 0); sim_fpu_to32 (&result32, &wop); result64 = result32; break; case fmt_double: sim_fpu_round_64 (&wop, round, 0); sim_fpu_to64 (&result64, &wop); break; case fmt_word: sim_fpu_to32i (&result32, &wop, round); result64 = result32; break; case fmt_long: sim_fpu_to64i (&result64, &wop, round); break; default: result64 = 0; fprintf (stderr, "Bad switch\n"); abort (); } #ifdef DEBUG printf ("DBG: Convert: returning 0x%s (to format = %s)\n", pr_addr (result64), fpu_format_name (to)); #endif /* DEBUG */ return (result64); } static const char * fpu_format_name (FP_formats fmt) { switch (fmt) { case fmt_single: return "single"; case fmt_double: return "double"; case fmt_word: return "word"; case fmt_long: return "long"; case fmt_unknown: return ""; case fmt_uninterpreted: return ""; case fmt_uninterpreted_32: return ""; case fmt_uninterpreted_64: return ""; default: return ""; } } #ifdef DEBUG static const char * fpu_rounding_mode_name (int rm) { switch (rm) { case FP_RM_NEAREST: return "Round"; case FP_RM_TOZERO: return "Trunc"; case FP_RM_TOPINF: return "Ceil"; case FP_RM_TOMINF: return "Floor"; default: return ""; } } #endif /* DEBUG */