// dwp.cc -- DWARF packaging utility // Copyright 2012 Free Software Foundation, Inc. // Written by Cary Coutant <ccoutant@google.com>. // This file is part of dwp, the DWARF packaging utility. // This program is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, // MA 02110-1301, USA. #include "dwp.h" #include <cstdarg> #include <cstddef> #include <cstdio> #include <cstdlib> #include <cstring> #include <cerrno> #include <vector> #include <algorithm> #include "getopt.h" #include "libiberty.h" #include "../bfd/bfdver.h" #include "elfcpp.h" #include "elfcpp_file.h" #include "dwarf.h" #include "dirsearch.h" #include "fileread.h" #include "object.h" #include "compressed_output.h" #include "stringpool.h" #include "dwarf_reader.h" static void usage(FILE* fd, int) ATTRIBUTE_NORETURN; static void print_version() ATTRIBUTE_NORETURN; namespace gold { class Dwp_output_file; template <int size, bool big_endian> class Sized_relobj_dwo; // List of .dwo files to process. typedef std::vector<std::string> File_list; // Type to hold the offset and length of an input section // within an output section. struct Section_bounds { section_offset_type offset; section_size_type size; Section_bounds() : offset(0), size(0) { } Section_bounds(section_offset_type o, section_size_type s) : offset(o), size(s) { } }; // A set of sections for a compilation unit or type unit. struct Unit_set { uint64_t signature; Section_bounds sections[elfcpp::DW_SECT_MAX + 1]; Unit_set() : signature(0), sections() { } }; // An input file. // This class may represent a .dwo file, a .dwp file // produced by an earlier run, or an executable file whose // debug section identifies a set of .dwo files to read. class Dwo_file { public: Dwo_file(const char* name) : name_(name), obj_(NULL), input_file_(NULL), is_compressed_(), sect_offsets_(), str_offset_map_() { } ~Dwo_file(); // Read the input executable file and extract the list of .dwo files // that it references. void read_executable(File_list* files); // Read the input file and send its contents to OUTPUT_FILE. void read(Dwp_output_file* output_file); private: // Types for mapping input string offsets to output string offsets. typedef std::pair<section_offset_type, section_offset_type> Str_offset_map_entry; typedef std::vector<Str_offset_map_entry> Str_offset_map; // A less-than comparison routine for Str_offset_map. struct Offset_compare { bool operator()(const Str_offset_map_entry& i1, const Str_offset_map_entry& i2) const { return i1.first < i2.first; } }; // Create a Sized_relobj_dwo of the given size and endianness, // and record the target info. P is a pointer to the ELF header // in memory. Relobj* make_object(Dwp_output_file* output_file); template <int size, bool big_endian> Relobj* sized_make_object(const unsigned char* p, Input_file* input_file, Dwp_output_file* output_file); // Return the number of sections in the input object file. unsigned int shnum() const { return this->obj_->shnum(); } // Return section type. unsigned int section_type(unsigned int shndx) { return this->obj_->section_type(shndx); } // Get the name of a section. std::string section_name(unsigned int shndx) { return this->obj_->section_name(shndx); } // Return a view of the contents of a section, decompressed if necessary. // Set *PLEN to the size. Set *IS_NEW to true if the contents need to be // deleted by the caller. const unsigned char* section_contents(unsigned int shndx, section_size_type* plen, bool* is_new) { return this->obj_->decompressed_section_contents(shndx, plen, is_new); } // Read the .debug_cu_index or .debug_tu_index section of a .dwp file, // and process the CU or TU sets. void read_unit_index(unsigned int, unsigned int *, Dwp_output_file*, bool is_tu_index); template <bool big_endian> void sized_read_unit_index(unsigned int, unsigned int *, Dwp_output_file*, bool is_tu_index); // Merge the input string table section into the output file. void add_strings(Dwp_output_file*, unsigned int); // Copy a section from the input file to the output file. Section_bounds copy_section(Dwp_output_file* output_file, unsigned int shndx, elfcpp::DW_SECT section_id); // Remap the string offsets in the .debug_str_offsets.dwo section. const unsigned char* remap_str_offsets(const unsigned char* contents, section_size_type len); template <bool big_endian> const unsigned char* sized_remap_str_offsets(const unsigned char* contents, section_size_type len); // Remap a single string offsets from an offset in the input string table // to an offset in the output string table. unsigned int remap_str_offset(section_offset_type val); // Add a set of .debug_info.dwo or .debug_types.dwo and related sections // to OUTPUT_FILE. void add_unit_set(Dwp_output_file* output_file, unsigned int *debug_shndx, bool is_debug_types); // The filename. const char* name_; // The ELF file, represented as a gold Relobj instance. Relobj* obj_; // The Input_file object. Input_file* input_file_; // Flags indicating which sections are compressed. std::vector<bool> is_compressed_; // Map input section index onto output section offset and size. std::vector<Section_bounds> sect_offsets_; // Map input string offsets to output string offsets. Str_offset_map str_offset_map_; }; // An ELF input file. // We derive from Sized_relobj so that we can use interfaces // in libgold to access the file. template <int size, bool big_endian> class Sized_relobj_dwo : public Sized_relobj<size, big_endian> { public: typedef typename elfcpp::Elf_types<size>::Elf_Addr Address; typedef typename Sized_relobj<size, big_endian>::Symbols Symbols; Sized_relobj_dwo(const char* name, Input_file* input_file, const elfcpp::Ehdr<size, big_endian>& ehdr) : Sized_relobj<size, big_endian>(name, input_file), elf_file_(this, ehdr) { } ~Sized_relobj_dwo() { } // Setup the section information. void setup(); protected: // Return section type. unsigned int do_section_type(unsigned int shndx) { return this->elf_file_.section_type(shndx); } // Get the name of a section. std::string do_section_name(unsigned int shndx) { return this->elf_file_.section_name(shndx); } // Get the size of a section. uint64_t do_section_size(unsigned int shndx) { return this->elf_file_.section_size(shndx); } // Return a view of the contents of a section. const unsigned char* do_section_contents(unsigned int, section_size_type*, bool); // Return a view of the uncompressed contents of a section. Set *PLEN // to the size. Set *IS_NEW to true if the contents need to be deleted // by the caller. const unsigned char* do_decompressed_section_contents(unsigned int shndx, section_size_type* plen, bool* is_new); // The following virtual functions are abstract in the base classes, // but are not used here. // Read the symbols. void do_read_symbols(Read_symbols_data*) { gold_unreachable(); } // Lay out the input sections. void do_layout(Symbol_table*, Layout*, Read_symbols_data*) { gold_unreachable(); } // Layout sections whose layout was deferred while waiting for // input files from a plugin. void do_layout_deferred_sections(Layout*) { gold_unreachable(); } // Add the symbols to the symbol table. void do_add_symbols(Symbol_table*, Read_symbols_data*, Layout*) { gold_unreachable(); } Archive::Should_include do_should_include_member(Symbol_table*, Layout*, Read_symbols_data*, std::string*) { gold_unreachable(); } // Iterate over global symbols, calling a visitor class V for each. void do_for_all_global_symbols(Read_symbols_data*, Library_base::Symbol_visitor_base*) { gold_unreachable(); } // Return section flags. uint64_t do_section_flags(unsigned int) { gold_unreachable(); } // Return section entsize. uint64_t do_section_entsize(unsigned int) { gold_unreachable(); } // Return section address. uint64_t do_section_address(unsigned int) { gold_unreachable(); } // Return the section link field. unsigned int do_section_link(unsigned int) { gold_unreachable(); } // Return the section link field. unsigned int do_section_info(unsigned int) { gold_unreachable(); } // Return the section alignment. uint64_t do_section_addralign(unsigned int) { gold_unreachable(); } // Return the Xindex structure to use. Xindex* do_initialize_xindex() { gold_unreachable(); } // Get symbol counts. void do_get_global_symbol_counts(const Symbol_table*, size_t*, size_t*) const { gold_unreachable(); } // Get global symbols. const Symbols* do_get_global_symbols() const { return NULL; } // Return the value of a local symbol. uint64_t do_local_symbol_value(unsigned int, uint64_t) const { gold_unreachable(); } unsigned int do_local_plt_offset(unsigned int) const { gold_unreachable(); } // Return whether local symbol SYMNDX is a TLS symbol. bool do_local_is_tls(unsigned int) const { gold_unreachable(); } // Return the number of local symbols. unsigned int do_local_symbol_count() const { gold_unreachable(); } // Return the number of local symbols in the output symbol table. unsigned int do_output_local_symbol_count() const { gold_unreachable(); } // Return the file offset for local symbols in the output symbol table. off_t do_local_symbol_offset() const { gold_unreachable(); } // Read the relocs. void do_read_relocs(Read_relocs_data*) { gold_unreachable(); } // Process the relocs to find list of referenced sections. Used only // during garbage collection. void do_gc_process_relocs(Symbol_table*, Layout*, Read_relocs_data*) { gold_unreachable(); } // Scan the relocs and adjust the symbol table. void do_scan_relocs(Symbol_table*, Layout*, Read_relocs_data*) { gold_unreachable(); } // Count the local symbols. void do_count_local_symbols(Stringpool_template<char>*, Stringpool_template<char>*) { gold_unreachable(); } // Finalize the local symbols. unsigned int do_finalize_local_symbols(unsigned int, off_t, Symbol_table*) { gold_unreachable(); } // Set the offset where local dynamic symbol information will be stored. unsigned int do_set_local_dynsym_indexes(unsigned int) { gold_unreachable(); } // Set the offset where local dynamic symbol information will be stored. unsigned int do_set_local_dynsym_offset(off_t) { gold_unreachable(); } // Relocate the input sections and write out the local symbols. void do_relocate(const Symbol_table*, const Layout*, Output_file*) { gold_unreachable(); } private: // General access to the ELF file. elfcpp::Elf_file<size, big_endian, Object> elf_file_; }; // The output file. // This class is responsible for collecting the debug index information // and writing the .dwp file in ELF format. class Dwp_output_file { public: Dwp_output_file(const char* name) : name_(name), machine_(0), size_(0), big_endian_(false), osabi_(0), abiversion_(0), fd_(NULL), next_file_offset_(0), shnum_(1), sections_(), section_id_map_(), shoff_(0), shstrndx_(0), have_strings_(false), stringpool_(), shstrtab_(), cu_index_(), tu_index_(), last_type_sig_(0), last_tu_slot_(0) { this->section_id_map_.resize(elfcpp::DW_SECT_MAX + 1); this->stringpool_.set_no_zero_null(); } // Record the target info from an input file. void record_target_info(const char* name, int machine, int size, bool big_endian, int osabi, int abiversion); // Add a string to the debug strings section. section_offset_type add_string(const char* str, size_t len); // Add a section to the output file, and return the new section offset. section_offset_type add_contribution(elfcpp::DW_SECT section_id, const unsigned char* contents, section_size_type len, int align); // Add a set of .debug_info and related sections to the output file. void add_cu_set(Unit_set* cu_set); // Lookup a type signature and return TRUE if we have already seen it. bool lookup_tu(uint64_t type_sig); // Add a set of .debug_types and related sections to the output file. void add_tu_set(Unit_set* tu_set); // Finalize the file, write the string tables and index sections, // and close the file. void finalize(); private: // Contributions to output sections. struct Contribution { section_offset_type output_offset; section_size_type size; const unsigned char* contents; }; // Sections in the output file. struct Section { const char* name; off_t offset; section_size_type size; int align; std::vector<Contribution> contributions; Section(const char* n, int a) : name(n), offset(0), size(0), align(a), contributions() { } }; // The index sections defined by the DWARF Package File Format spec. class Dwp_index { public: // Vector for the section table. typedef std::vector<const Unit_set*> Section_table; Dwp_index() : capacity_(0), used_(0), hash_table_(NULL), section_table_(), section_mask_(0) { } ~Dwp_index() { } // Find a slot in the hash table for SIGNATURE. Return TRUE // if the entry already exists. bool find_or_add(uint64_t signature, unsigned int* slotp); // Enter a CU or TU set at the given SLOT in the hash table. void enter_set(unsigned int slot, const Unit_set* set); // Return the contents of the given SLOT in the hash table of signatures. uint64_t hash_table(unsigned int slot) const { return this->hash_table_[slot]; } // Return the contents of the given SLOT in the parallel table of // shndx pool indexes. uint32_t index_table(unsigned int slot) const { return this->index_table_[slot]; } // Return the total number of slots in the hash table. unsigned int hash_table_total_slots() const { return this->capacity_; } // Return the number of used slots in the hash table. unsigned int hash_table_used_slots() const { return this->used_; } // Return an iterator into the shndx pool. Section_table::const_iterator section_table() const { return this->section_table_.begin(); } Section_table::const_iterator section_table_end() const { return this->section_table_.end(); } // Return the number of rows in the section table. unsigned int section_table_rows() const { return this->section_table_.size(); } // Return the mask indicating which columns will be used // in the section table. int section_table_cols() const { return this->section_mask_; } private: // Initialize the hash table. void initialize(); // Grow the hash table when we reach 2/3 capacity. void grow(); // The number of slots in the table, a power of 2 such that // capacity > 3 * size / 2. unsigned int capacity_; // The current number of used slots in the hash table. unsigned int used_; // The storage for the hash table of signatures. uint64_t* hash_table_; // The storage for the parallel table of shndx pool indexes. uint32_t* index_table_; // The table of section offsets and sizes. Section_table section_table_; // Bit mask to indicate which debug sections are present in the file. int section_mask_; }; // End class Dwp_output_file::Dwp_index. // Add a new output section and return the section index. unsigned int add_output_section(const char* section_name, int align); // Write a new section to the output file. void write_new_section(const char* section_name, const unsigned char* contents, section_size_type len, int align); // Write the ELF header. void write_ehdr(); template<unsigned int size, bool big_endian> void sized_write_ehdr(); // Write a section header. void write_shdr(const char* name, unsigned int type, unsigned int flags, uint64_t addr, off_t offset, section_size_type sect_size, unsigned int link, unsigned int info, unsigned int align, unsigned int ent_size); template<unsigned int size, bool big_endian> void sized_write_shdr(const char* name, unsigned int type, unsigned int flags, uint64_t addr, off_t offset, section_size_type sect_size, unsigned int link, unsigned int info, unsigned int align, unsigned int ent_size); // Write the contributions to an output section. void write_contributions(const Section& sect); // Write a CU or TU index section. template<bool big_endian> void write_index(const char* sect_name, const Dwp_index& index); // The output filename. const char* name_; // ELF header parameters. int machine_; int size_; int big_endian_; int osabi_; int abiversion_; // The output file descriptor. FILE* fd_; // Next available file offset. off_t next_file_offset_; // The number of sections. unsigned int shnum_; // Section table. The first entry is shndx 1. std::vector<Section> sections_; // Section id map. This maps a DW_SECT enum to an shndx. std::vector<unsigned int> section_id_map_; // File offset of the section header table. off_t shoff_; // Section index of the section string table. unsigned int shstrndx_; // TRUE if we have added any strings to the string pool. bool have_strings_; // String pool for the output .debug_str.dwo section. Stringpool stringpool_; // String pool for the .shstrtab section. Stringpool shstrtab_; // The compilation unit index. Dwp_index cu_index_; // The type unit index. Dwp_index tu_index_; // Cache of the last type signature looked up. uint64_t last_type_sig_; // Cache of the slot index for the last type signature. unsigned int last_tu_slot_; }; // A specialization of Dwarf_info_reader, for reading dwo_names from // DWARF CUs. class Dwo_name_info_reader : public Dwarf_info_reader { public: Dwo_name_info_reader(Relobj* object, unsigned int shndx) : Dwarf_info_reader(false, object, NULL, 0, shndx, 0, 0), files_(NULL) { } ~Dwo_name_info_reader() { } // Get the dwo_names from the DWARF compilation unit DIEs. void get_dwo_names(File_list* files) { this->files_ = files; this->parse(); } protected: // Visit a compilation unit. virtual void visit_compilation_unit(off_t cu_offset, off_t cu_length, Dwarf_die*); private: // The list of files to populate. File_list* files_; }; // A specialization of Dwarf_info_reader, for reading DWARF CUs and TUs // and adding them to the output file. class Unit_reader : public Dwarf_info_reader { public: Unit_reader(bool is_type_unit, Relobj* object, unsigned int shndx) : Dwarf_info_reader(is_type_unit, object, NULL, 0, shndx, 0, 0), output_file_(NULL), sections_(NULL) { } ~Unit_reader() { } // Read the CUs or TUs and add them to the output file. void add_units(Dwp_output_file*, unsigned int debug_abbrev, Section_bounds*); protected: // Visit a compilation unit. virtual void visit_compilation_unit(off_t cu_offset, off_t cu_length, Dwarf_die*); // Visit a type unit. virtual void visit_type_unit(off_t tu_offset, off_t tu_length, off_t type_offset, uint64_t signature, Dwarf_die*); private: Dwp_output_file* output_file_; Section_bounds* sections_; }; // Return the name of a DWARF .dwo section. static const char* get_dwarf_section_name(elfcpp::DW_SECT section_id) { static const char* dwarf_section_names[] = { NULL, // unused ".debug_info.dwo", // DW_SECT_INFO = 1 ".debug_types.dwo", // DW_SECT_TYPES = 2 ".debug_abbrev.dwo", // DW_SECT_ABBREV = 3 ".debug_line.dwo", // DW_SECT_LINE = 4 ".debug_loc.dwo", // DW_SECT_LOC = 5 ".debug_str_offsets.dwo", // DW_SECT_STR_OFFSETS = 6 ".debug_macinfo.dwo", // DW_SECT_MACINFO = 7 ".debug_macro.dwo", // DW_SECT_MACRO = 8 }; gold_assert(section_id > 0 && section_id <= elfcpp::DW_SECT_MAX); return dwarf_section_names[section_id]; } // Class Sized_relobj_dwo. // Setup the section information. template <int size, bool big_endian> void Sized_relobj_dwo<size, big_endian>::setup() { const unsigned int shnum = this->elf_file_.shnum(); this->set_shnum(shnum); this->section_offsets().resize(shnum); } // Return a view of the contents of a section. template <int size, bool big_endian> const unsigned char* Sized_relobj_dwo<size, big_endian>::do_section_contents( unsigned int shndx, section_size_type* plen, bool cache) { Object::Location loc(this->elf_file_.section_contents(shndx)); *plen = convert_to_section_size_type(loc.data_size); if (*plen == 0) { static const unsigned char empty[1] = { '\0' }; return empty; } return this->get_view(loc.file_offset, *plen, true, cache); } // Return a view of the uncompressed contents of a section. Set *PLEN // to the size. Set *IS_NEW to true if the contents need to be deleted // by the caller. template <int size, bool big_endian> const unsigned char* Sized_relobj_dwo<size, big_endian>::do_decompressed_section_contents( unsigned int shndx, section_size_type* plen, bool* is_new) { section_size_type buffer_size; const unsigned char* buffer = this->do_section_contents(shndx, &buffer_size, false); std::string sect_name = this->do_section_name(shndx); if (!is_prefix_of(".zdebug_", sect_name.c_str())) { *plen = buffer_size; *is_new = false; return buffer; } section_size_type uncompressed_size = get_uncompressed_size(buffer, buffer_size); unsigned char* uncompressed_data = new unsigned char[uncompressed_size]; if (!decompress_input_section(buffer, buffer_size, uncompressed_data, uncompressed_size)) this->error(_("could not decompress section %s"), this->section_name(shndx).c_str()); *plen = uncompressed_size; *is_new = true; return uncompressed_data; } // Class Dwo_file. Dwo_file::~Dwo_file() { if (this->obj_ != NULL) delete this->obj_; if (this->input_file_ != NULL) delete this->input_file_; } // Read the input executable file and extract the list of .dwo files // that it references. void Dwo_file::read_executable(File_list* files) { this->obj_ = this->make_object(NULL); unsigned int shnum = this->shnum(); this->is_compressed_.resize(shnum); this->sect_offsets_.resize(shnum); unsigned int debug_info = 0; unsigned int debug_abbrev = 0; // Scan the section table and collect the debug sections we need. // (Section index 0 is a dummy section; skip it.) for (unsigned int i = 1; i < shnum; i++) { if (this->section_type(i) != elfcpp::SHT_PROGBITS) continue; std::string sect_name = this->section_name(i); const char* suffix = sect_name.c_str(); if (is_prefix_of(".debug_", suffix)) suffix += 7; else if (is_prefix_of(".zdebug_", suffix)) { this->is_compressed_[i] = true; suffix += 8; } else continue; if (strcmp(suffix, "info") == 0) debug_info = i; else if (strcmp(suffix, "abbrev") == 0) debug_abbrev = i; } if (debug_info > 0) { Dwo_name_info_reader dwarf_reader(this->obj_, debug_info); dwarf_reader.set_abbrev_shndx(debug_abbrev); dwarf_reader.get_dwo_names(files); } } // Read the input file and send its contents to OUTPUT_FILE. void Dwo_file::read(Dwp_output_file* output_file) { this->obj_ = this->make_object(output_file); unsigned int shnum = this->shnum(); this->is_compressed_.resize(shnum); this->sect_offsets_.resize(shnum); typedef std::vector<unsigned int> Types_list; Types_list debug_types; unsigned int debug_shndx[elfcpp::DW_SECT_MAX + 1]; for (unsigned int i = 0; i <= elfcpp::DW_SECT_MAX; i++) debug_shndx[i] = 0; unsigned int debug_str = 0; unsigned int debug_cu_index = 0; unsigned int debug_tu_index = 0; // Scan the section table and collect debug sections. // (Section index 0 is a dummy section; skip it.) for (unsigned int i = 1; i < shnum; i++) { if (this->section_type(i) != elfcpp::SHT_PROGBITS) continue; std::string sect_name = this->section_name(i); const char* suffix = sect_name.c_str(); if (is_prefix_of(".debug_", suffix)) suffix += 7; else if (is_prefix_of(".zdebug_", suffix)) { this->is_compressed_[i] = true; suffix += 8; } else continue; if (strcmp(suffix, "info.dwo") == 0) debug_shndx[elfcpp::DW_SECT_INFO] = i; else if (strcmp(suffix, "types.dwo") == 0) debug_types.push_back(i); else if (strcmp(suffix, "abbrev.dwo") == 0) debug_shndx[elfcpp::DW_SECT_ABBREV] = i; else if (strcmp(suffix, "line.dwo") == 0) debug_shndx[elfcpp::DW_SECT_LINE] = i; else if (strcmp(suffix, "loc.dwo") == 0) debug_shndx[elfcpp::DW_SECT_LOC] = i; else if (strcmp(suffix, "str.dwo") == 0) debug_str = i; else if (strcmp(suffix, "str_offsets.dwo") == 0) debug_shndx[elfcpp::DW_SECT_STR_OFFSETS] = i; else if (strcmp(suffix, "macinfo.dwo") == 0) debug_shndx[elfcpp::DW_SECT_MACINFO] = i; else if (strcmp(suffix, "macro.dwo") == 0) debug_shndx[elfcpp::DW_SECT_MACRO] = i; else if (strcmp(suffix, "cu_index") == 0) debug_cu_index = i; else if (strcmp(suffix, "tu_index") == 0) debug_tu_index = i; } // Merge the input string table into the output string table. this->add_strings(output_file, debug_str); // If we found any .dwp index sections, read those and add the section // sets to the output file. if (debug_cu_index > 0 || debug_tu_index > 0) { if (debug_cu_index > 0) this->read_unit_index(debug_cu_index, debug_shndx, output_file, false); if (debug_tu_index > 0) { if (debug_types.size() != 1) gold_fatal(_("%s: .dwp file must have exactly one " ".debug_types.dwo section"), this->name_); debug_shndx[elfcpp::DW_SECT_TYPES] = debug_types[0]; this->read_unit_index(debug_tu_index, debug_shndx, output_file, true); } return; } // If we found no index sections, this is a .dwo file. if (debug_shndx[elfcpp::DW_SECT_INFO] > 0) this->add_unit_set(output_file, debug_shndx, false); debug_shndx[elfcpp::DW_SECT_INFO] = 0; for (Types_list::const_iterator tp = debug_types.begin(); tp != debug_types.end(); ++tp) { debug_shndx[elfcpp::DW_SECT_TYPES] = *tp; this->add_unit_set(output_file, debug_shndx, true); } } // Create a Sized_relobj_dwo of the given size and endianness, // and record the target info. Relobj* Dwo_file::make_object(Dwp_output_file* output_file) { // Open the input file. Input_file* input_file = new Input_file(this->name_); this->input_file_ = input_file; Dirsearch dirpath; int index; if (!input_file->open(dirpath, NULL, &index)) gold_fatal(_("%s: can't open"), this->name_); // Check that it's an ELF file. off_t filesize = input_file->file().filesize(); int hdrsize = elfcpp::Elf_recognizer::max_header_size; if (filesize < hdrsize) hdrsize = filesize; const unsigned char* elf_header = input_file->file().get_view(0, 0, hdrsize, true, false); if (!elfcpp::Elf_recognizer::is_elf_file(elf_header, hdrsize)) gold_fatal(_("%s: not an ELF object file"), this->name_); // Get the size, endianness, machine, etc. info from the header, // make an appropriately-sized Relobj, and pass the target info // to the output object. int size; bool big_endian; std::string error; if (!elfcpp::Elf_recognizer::is_valid_header(elf_header, hdrsize, &size, &big_endian, &error)) gold_fatal(_("%s: %s"), this->name_, error.c_str()); if (size == 32) { if (big_endian) #ifdef HAVE_TARGET_32_BIG return this->sized_make_object<32, true>(elf_header, input_file, output_file); #else gold_unreachable(); #endif else #ifdef HAVE_TARGET_32_LITTLE return this->sized_make_object<32, false>(elf_header, input_file, output_file); #else gold_unreachable(); #endif } else if (size == 64) { if (big_endian) #ifdef HAVE_TARGET_64_BIG return this->sized_make_object<64, true>(elf_header, input_file, output_file); #else gold_unreachable(); #endif else #ifdef HAVE_TARGET_64_LITTLE return this->sized_make_object<64, false>(elf_header, input_file, output_file); #else gold_unreachable(); #endif } else gold_unreachable(); } // Function template to create a Sized_relobj_dwo and record the target info. // P is a pointer to the ELF header in memory. template <int size, bool big_endian> Relobj* Dwo_file::sized_make_object(const unsigned char* p, Input_file* input_file, Dwp_output_file* output_file) { elfcpp::Ehdr<size, big_endian> ehdr(p); Sized_relobj_dwo<size, big_endian>* obj = new Sized_relobj_dwo<size, big_endian>(this->name_, input_file, ehdr); obj->setup(); if (output_file != NULL) output_file->record_target_info( this->name_, ehdr.get_e_machine(), size, big_endian, ehdr.get_e_ident()[elfcpp::EI_OSABI], ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]); return obj; } // Read the .debug_cu_index or .debug_tu_index section of a .dwp file, // and process the CU or TU sets. void Dwo_file::read_unit_index(unsigned int shndx, unsigned int *debug_shndx, Dwp_output_file* output_file, bool is_tu_index) { if (this->obj_->is_big_endian()) this->sized_read_unit_index<true>(shndx, debug_shndx, output_file, is_tu_index); else this->sized_read_unit_index<false>(shndx, debug_shndx, output_file, is_tu_index); } template <bool big_endian> void Dwo_file::sized_read_unit_index(unsigned int shndx, unsigned int *debug_shndx, Dwp_output_file* output_file, bool is_tu_index) { elfcpp::DW_SECT info_sect = (is_tu_index ? elfcpp::DW_SECT_TYPES : elfcpp::DW_SECT_INFO); unsigned int info_shndx = debug_shndx[info_sect]; gold_assert(shndx > 0 && info_shndx > 0); section_size_type index_len; bool index_is_new; const unsigned char* contents = this->section_contents(shndx, &index_len, &index_is_new); unsigned int version = elfcpp::Swap_unaligned<32, big_endian>::readval(contents); // We don't support version 1 anymore because it was experimental // and because in normal use, dwp is not expected to read .dwp files // produced by an earlier version of the tool. if (version != 2) gold_fatal(_("%s: section %s has unsupported version number %d"), this->name_, this->section_name(shndx).c_str(), version); unsigned int ncols = elfcpp::Swap_unaligned<32, big_endian>::readval(contents + sizeof(uint32_t)); unsigned int nused = elfcpp::Swap_unaligned<32, big_endian>::readval(contents + 2 * sizeof(uint32_t)); if (ncols == 0 || nused == 0) return; unsigned int nslots = elfcpp::Swap_unaligned<32, big_endian>::readval(contents + 3 * sizeof(uint32_t)); const unsigned char* phash = contents + 4 * sizeof(uint32_t); const unsigned char* pindex = phash + nslots * sizeof(uint64_t); const unsigned char* pcolhdrs = pindex + nslots * sizeof(uint32_t); const unsigned char* poffsets = pcolhdrs + ncols * sizeof(uint32_t); const unsigned char* psizes = poffsets + nused * ncols * sizeof(uint32_t); const unsigned char* pend = psizes + nused * ncols * sizeof(uint32_t); if (pend > contents + index_len) gold_fatal(_("%s: section %s is corrupt"), this->name_, this->section_name(shndx).c_str()); // Copy the related sections and track the section offsets and sizes. Section_bounds sections[elfcpp::DW_SECT_MAX + 1]; for (int i = elfcpp::DW_SECT_ABBREV; i <= elfcpp::DW_SECT_MAX; ++i) { if (debug_shndx[i] > 0) sections[i] = this->copy_section(output_file, debug_shndx[i], static_cast<elfcpp::DW_SECT>(i)); } // Get the contents of the .debug_info.dwo or .debug_types.dwo section. section_size_type info_len; bool info_is_new; const unsigned char* info_contents = this->section_contents(info_shndx, &info_len, &info_is_new); // Loop over the slots of the hash table. for (unsigned int i = 0; i < nslots; ++i) { uint64_t signature = elfcpp::Swap_unaligned<64, big_endian>::readval(phash); unsigned int index = elfcpp::Swap_unaligned<32, big_endian>::readval(pindex); if (index != 0 && (!is_tu_index || !output_file->lookup_tu(signature))) { Unit_set* unit_set = new Unit_set(); unit_set->signature = signature; const unsigned char* pch = pcolhdrs; const unsigned char* porow = poffsets + (index - 1) * ncols * sizeof(uint32_t); const unsigned char* psrow = psizes + (index - 1) * ncols * sizeof(uint32_t); // Adjust the offset of each contribution within the input section // by the offset of the input section within the output section. for (unsigned int j = 0; j <= ncols; j++) { unsigned int dw_sect = elfcpp::Swap_unaligned<64, big_endian>::readval(pch); unsigned int offset = elfcpp::Swap_unaligned<64, big_endian>::readval(porow); unsigned int size = elfcpp::Swap_unaligned<64, big_endian>::readval(psrow); unit_set->sections[dw_sect].offset = (sections[dw_sect].offset + offset); unit_set->sections[dw_sect].size = size; pch += sizeof(uint32_t); porow += sizeof(uint32_t); psrow += sizeof(uint32_t); } const unsigned char* unit_start = info_contents + unit_set->sections[info_sect].offset; section_size_type unit_length = unit_set->sections[info_sect].size; // Dwp_output_file::add_contribution writes the .debug_info.dwo // section directly to the output file, so we only need to // duplicate contributions for .debug_types.dwo section. if (is_tu_index) { unsigned char *copy = new unsigned char[unit_length]; memcpy(copy, unit_start, unit_length); unit_start = copy; } section_offset_type off = output_file->add_contribution(info_sect, unit_start, unit_length, 1); unit_set->sections[info_sect].offset = off; if (is_tu_index) output_file->add_tu_set(unit_set); else output_file->add_cu_set(unit_set); } phash += sizeof(uint64_t); pindex += sizeof(uint32_t); } if (index_is_new) delete[] contents; if (info_is_new) delete[] info_contents; } // Merge the input string table section into the output file. void Dwo_file::add_strings(Dwp_output_file* output_file, unsigned int debug_str) { section_size_type len; bool is_new; const unsigned char* pdata = this->section_contents(debug_str, &len, &is_new); const char* p = reinterpret_cast<const char*>(pdata); const char* pend = p + len; // Check that the last string is null terminated. if (pend[-1] != '\0') gold_fatal(_("%s: last entry in string section '%s' " "is not null terminated"), this->name_, this->section_name(debug_str).c_str()); // Count the number of strings in the section, and size the map. size_t count = 0; for (const char* pt = p; pt < pend; pt += strlen(pt) + 1) ++count; this->str_offset_map_.reserve(count + 1); // Add the strings to the output string table, and record the new offsets // in the map. section_offset_type i = 0; section_offset_type new_offset; while (p < pend) { size_t len = strlen(p); new_offset = output_file->add_string(p, len); this->str_offset_map_.push_back(std::make_pair(i, new_offset)); p += len + 1; i += len + 1; } new_offset = 0; this->str_offset_map_.push_back(std::make_pair(i, new_offset)); if (is_new) delete[] pdata; } // Copy a section from the input file to the output file. // Return the offset and length of this input section's contribution // in the output section. If copying .debug_str_offsets.dwo, remap // the string offsets for the output string table. Section_bounds Dwo_file::copy_section(Dwp_output_file* output_file, unsigned int shndx, elfcpp::DW_SECT section_id) { // Some sections may be referenced from more than one set. // Don't copy a section more than once. if (this->sect_offsets_[shndx].size > 0) return this->sect_offsets_[shndx]; // Get the section contents. Upon return, if IS_NEW is true, the memory // has been allocated via new; if false, the memory is part of the mapped // input file, and we will need to duplicate it so that it will persist // after we close the input file. section_size_type len; bool is_new; const unsigned char* contents = this->section_contents(shndx, &len, &is_new); if (section_id == elfcpp::DW_SECT_STR_OFFSETS) { const unsigned char* remapped = this->remap_str_offsets(contents, len); if (is_new) delete[] contents; contents = remapped; } else if (!is_new) { unsigned char* copy = new unsigned char[len]; memcpy(copy, contents, len); contents = copy; } // Add the contents of the input section to the output section. // The output file takes ownership of the memory pointed to by CONTENTS. section_offset_type off = output_file->add_contribution(section_id, contents, len, 1); // Store the output section bounds. Section_bounds bounds(off, len); this->sect_offsets_[shndx] = bounds; return bounds; } // Remap the const unsigned char* Dwo_file::remap_str_offsets(const unsigned char* contents, section_size_type len) { if ((len & 3) != 0) gold_fatal(_("%s: .debug_str_offsets.dwo section size not a multiple of 4"), this->name_); if (this->obj_->is_big_endian()) return this->sized_remap_str_offsets<true>(contents, len); else return this->sized_remap_str_offsets<false>(contents, len); } template <bool big_endian> const unsigned char* Dwo_file::sized_remap_str_offsets(const unsigned char* contents, section_size_type len) { unsigned char* remapped = new unsigned char[len]; const unsigned char* p = contents; unsigned char* q = remapped; while (len > 0) { unsigned int val = elfcpp::Swap_unaligned<32, big_endian>::readval(p); val = this->remap_str_offset(val); elfcpp::Swap_unaligned<32, big_endian>::writeval(q, val); len -= 4; p += 4; q += 4; } return remapped; } unsigned int Dwo_file::remap_str_offset(section_offset_type val) { Str_offset_map_entry entry; entry.first = val; Str_offset_map::const_iterator p = std::lower_bound(this->str_offset_map_.begin(), this->str_offset_map_.end(), entry, Offset_compare()); if (p == this->str_offset_map_.end() || p->first > val) { if (p == this->str_offset_map_.begin()) return 0; --p; gold_assert(p->first <= val); } return p->second + (val - p->first); } // Add a set of .debug_info.dwo or .debug_types.dwo and related sections // to OUTPUT_FILE. void Dwo_file::add_unit_set(Dwp_output_file* output_file, unsigned int *debug_shndx, bool is_debug_types) { unsigned int shndx = (is_debug_types ? debug_shndx[elfcpp::DW_SECT_TYPES] : debug_shndx[elfcpp::DW_SECT_INFO]); gold_assert(shndx != 0); if (debug_shndx[elfcpp::DW_SECT_ABBREV] == 0) gold_fatal(_("%s: no .debug_abbrev.dwo section found"), this->name_); // Copy the related sections and track the section offsets and sizes. Section_bounds sections[elfcpp::DW_SECT_MAX + 1]; for (int i = elfcpp::DW_SECT_ABBREV; i <= elfcpp::DW_SECT_MAX; ++i) { if (debug_shndx[i] > 0) sections[i] = this->copy_section(output_file, debug_shndx[i], static_cast<elfcpp::DW_SECT>(i)); } // Parse the .debug_info or .debug_types section and add each compilation // or type unit to the output file, along with the contributions to the // related sections. Unit_reader reader(is_debug_types, this->obj_, shndx); reader.add_units(output_file, debug_shndx[elfcpp::DW_SECT_ABBREV], sections); } // Class Dwp_output_file. // Record the target info from an input file. On first call, we // set the ELF header values for the output file. On subsequent // calls, we just verify that the values match. void Dwp_output_file::record_target_info(const char*, int machine, int size, bool big_endian, int osabi, int abiversion) { // TODO: Check the values on subsequent calls. if (this->size_ > 0) return; this->machine_ = machine; this->size_ = size; this->big_endian_ = big_endian; this->osabi_ = osabi; this->abiversion_ = abiversion; if (size == 32) this->next_file_offset_ = elfcpp::Elf_sizes<32>::ehdr_size; else if (size == 64) this->next_file_offset_ = elfcpp::Elf_sizes<64>::ehdr_size; else gold_unreachable(); this->fd_ = ::fopen(this->name_, "wb"); if (this->fd_ == NULL) gold_fatal(_("%s: %s"), this->name_, strerror(errno)); // Write zeroes for the ELF header initially. We'll write // the actual header during finalize(). static const char buf[elfcpp::Elf_sizes<64>::ehdr_size] = { 0 }; if (::fwrite(buf, 1, this->next_file_offset_, this->fd_) < (size_t) this->next_file_offset_) gold_fatal(_("%s: %s"), this->name_, strerror(errno)); } // Add a string to the debug strings section. section_offset_type Dwp_output_file::add_string(const char* str, size_t len) { Stringpool::Key key; this->stringpool_.add_with_length(str, len, true, &key); this->have_strings_ = true; // We aren't supposed to call get_offset() until after // calling set_string_offsets(), but the offsets will // not change unless optimizing the string pool. return this->stringpool_.get_offset_from_key(key); } // Align the file offset to the given boundary. static inline off_t align_offset(off_t off, int align) { return (off + align - 1) & ~(align - 1); } // Add a new output section and return the section index. unsigned int Dwp_output_file::add_output_section(const char* section_name, int align) { Section sect(section_name, align); this->sections_.push_back(sect); return this->shnum_++; } // Add a contribution to a section in the output file, and return the offset // of the contribution within the output section. The .debug_info.dwo section // is expected to be the largest one, so we will write the contents of this // section directly to the output file as we receive contributions, allowing // us to free that memory as soon as possible. We will save the remaining // contributions until we finalize the layout of the output file. section_offset_type Dwp_output_file::add_contribution(elfcpp::DW_SECT section_id, const unsigned char* contents, section_size_type len, int align) { const char* section_name = get_dwarf_section_name(section_id); gold_assert(static_cast<size_t>(section_id) < this->section_id_map_.size()); unsigned int shndx = this->section_id_map_[section_id]; // Create the section if necessary. if (shndx == 0) { section_name = this->shstrtab_.add_with_length(section_name, strlen(section_name), false, NULL); shndx = this->add_output_section(section_name, align); this->section_id_map_[section_id] = shndx; } Section& section = this->sections_[shndx - 1]; section_offset_type section_offset; if (section_id == elfcpp::DW_SECT_INFO) { // Write the .debug_info.dwo section directly. // We do not need to free the memory in this case. off_t file_offset = this->next_file_offset_; gold_assert(this->size_ > 0 && file_offset > 0); file_offset = align_offset(file_offset, align); if (section.offset == 0) section.offset = file_offset; if (align > section.align) { // Since we've already committed to the layout for this // section, an unexpected large alignment boundary may // be impossible to honor. if (align_offset(section.offset, align) != section.offset) gold_fatal(_("%s: alignment (%d) for section '%s' " "cannot be honored"), this->name_, align, section_name); section.align = align; } section_offset = file_offset - section.offset; section.size = file_offset + len - section.offset; ::fseek(this->fd_, file_offset, SEEK_SET); if (::fwrite(contents, 1, len, this->fd_) < len) gold_fatal(_("%s: error writing section '%s'"), this->name_, section_name); this->next_file_offset_ = file_offset + len; } else { // Collect the contributions and keep track of the total size. if (align > section.align) section.align = align; section_offset = align_offset(section.size, align); section.size = section_offset + len; Contribution contrib = { section_offset, len, contents }; section.contributions.push_back(contrib); } return section_offset; } // Add a set of .debug_info and related sections to the output file. void Dwp_output_file::add_cu_set(Unit_set* cu_set) { uint64_t dwo_id = cu_set->signature; unsigned int slot; if (!this->cu_index_.find_or_add(dwo_id, &slot)) this->cu_index_.enter_set(slot, cu_set); else gold_warning(_("%s: duplicate entry for CU (dwo_id 0x%llx)"), this->name_, (unsigned long long)dwo_id); } // Lookup a type signature and return TRUE if we have already seen it. bool Dwp_output_file::lookup_tu(uint64_t type_sig) { this->last_type_sig_ = type_sig; return this->tu_index_.find_or_add(type_sig, &this->last_tu_slot_); } // Add a set of .debug_types and related sections to the output file. void Dwp_output_file::add_tu_set(Unit_set* tu_set) { uint64_t type_sig = tu_set->signature; unsigned int slot; if (type_sig == this->last_type_sig_) slot = this->last_tu_slot_; else this->tu_index_.find_or_add(type_sig, &slot); this->tu_index_.enter_set(slot, tu_set); } // Find a slot in the hash table for SIGNATURE. Return TRUE // if the entry already exists. bool Dwp_output_file::Dwp_index::find_or_add(uint64_t signature, unsigned int* slotp) { if (this->capacity_ == 0) this->initialize(); unsigned int slot = static_cast<unsigned int>(signature) & (this->capacity_ - 1); unsigned int secondary_hash; uint64_t probe = this->hash_table_[slot]; uint32_t row_index = this->index_table_[slot]; if (row_index != 0 && probe != signature) { secondary_hash = (static_cast<unsigned int>(signature >> 32) & (this->capacity_ - 1)) | 1; do { slot = (slot + secondary_hash) & (this->capacity_ - 1); probe = this->hash_table_[slot]; row_index = this->index_table_[slot]; } while (row_index != 0 && probe != signature); } *slotp = slot; return (row_index != 0); } // Enter a CU or TU set at the given SLOT in the hash table. void Dwp_output_file::Dwp_index::enter_set(unsigned int slot, const Unit_set* set) { gold_assert(slot < this->capacity_); // Add a row to the offsets and sizes tables. this->section_table_.push_back(set); uint32_t row_index = this->section_table_rows(); // Mark the sections used in this set. for (unsigned int i = 1; i <= elfcpp::DW_SECT_MAX; i++) if (set->sections[i].size > 0) this->section_mask_ |= 1 << i; // Enter the signature and pool index into the hash table. gold_assert(this->hash_table_[slot] == 0); this->hash_table_[slot] = set->signature; this->index_table_[slot] = row_index; ++this->used_; // Grow the hash table when we exceed 2/3 capacity. if (this->used_ * 3 > this->capacity_ * 2) this->grow(); } // Initialize the hash table. void Dwp_output_file::Dwp_index::initialize() { this->capacity_ = 16; this->hash_table_ = new uint64_t[this->capacity_]; memset(this->hash_table_, 0, this->capacity_ * sizeof(uint64_t)); this->index_table_ = new uint32_t[this->capacity_]; memset(this->index_table_, 0, this->capacity_ * sizeof(uint32_t)); } // Grow the hash table when we reach 2/3 capacity. void Dwp_output_file::Dwp_index::grow() { unsigned int old_capacity = this->capacity_; uint64_t* old_hash_table = this->hash_table_; uint32_t* old_index_table = this->index_table_; unsigned int old_used = this->used_; this->capacity_ = old_capacity * 2; this->hash_table_ = new uint64_t[this->capacity_]; memset(this->hash_table_, 0, this->capacity_ * sizeof(uint64_t)); this->index_table_ = new uint32_t[this->capacity_]; memset(this->index_table_, 0, this->capacity_ * sizeof(uint32_t)); this->used_ = 0; for (unsigned int i = 0; i < old_capacity; ++i) { uint64_t signature = old_hash_table[i]; uint32_t row_index = old_index_table[i]; if (row_index != 0) { unsigned int slot; bool found = this->find_or_add(signature, &slot); gold_assert(!found); this->hash_table_[slot] = signature; this->index_table_[slot] = row_index; ++this->used_; } } gold_assert(this->used_ == old_used); delete[] old_hash_table; delete[] old_index_table; } // Finalize the file, write the string tables and index sections, // and close the file. void Dwp_output_file::finalize() { unsigned char* buf; // Write the accumulated output sections. for (unsigned int i = 0; i < this->sections_.size(); i++) { Section& sect = this->sections_[i]; // If the offset has already been assigned, the section has been written. if (sect.offset > 0 || sect.size == 0) continue; off_t file_offset = this->next_file_offset_; file_offset = align_offset(file_offset, sect.align); sect.offset = file_offset; this->write_contributions(sect); this->next_file_offset_ = file_offset + sect.size; } // Write the debug string table. if (this->have_strings_) { this->stringpool_.set_string_offsets(); section_size_type len = this->stringpool_.get_strtab_size(); buf = new unsigned char[len]; this->stringpool_.write_to_buffer(buf, len); this->write_new_section(".debug_str.dwo", buf, len, 1); delete[] buf; } // Write the CU and TU indexes. if (this->big_endian_) { this->write_index<true>(".debug_cu_index", this->cu_index_); this->write_index<true>(".debug_tu_index", this->tu_index_); } else { this->write_index<false>(".debug_cu_index", this->cu_index_); this->write_index<false>(".debug_tu_index", this->tu_index_); } off_t file_offset = this->next_file_offset_; // Write the section string table. this->shstrndx_ = this->shnum_++; const char* shstrtab_name = this->shstrtab_.add_with_length(".shstrtab", sizeof(".shstrtab") - 1, false, NULL); this->shstrtab_.set_string_offsets(); section_size_type shstrtab_len = this->shstrtab_.get_strtab_size(); buf = new unsigned char[shstrtab_len]; this->shstrtab_.write_to_buffer(buf, shstrtab_len); off_t shstrtab_off = file_offset; ::fseek(this->fd_, file_offset, 0); if (::fwrite(buf, 1, shstrtab_len, this->fd_) < shstrtab_len) gold_fatal(_("%s: error writing section '.shstrtab'"), this->name_); delete[] buf; file_offset += shstrtab_len; // Write the section header table. The first entry is a NULL entry. // This is followed by the debug sections, and finally we write the // .shstrtab section header. file_offset = align_offset(file_offset, this->size_ == 32 ? 4 : 8); this->shoff_ = file_offset; ::fseek(this->fd_, file_offset, 0); section_size_type sh0_size = 0; unsigned int sh0_link = 0; if (this->shnum_ >= elfcpp::SHN_LORESERVE) sh0_size = this->shnum_; if (this->shstrndx_ >= elfcpp::SHN_LORESERVE) sh0_link = this->shstrndx_; this->write_shdr(NULL, 0, 0, 0, 0, sh0_size, sh0_link, 0, 0, 0); for (unsigned int i = 0; i < this->sections_.size(); ++i) { Section& sect = this->sections_[i]; this->write_shdr(sect.name, elfcpp::SHT_PROGBITS, 0, 0, sect.offset, sect.size, 0, 0, sect.align, 0); } this->write_shdr(shstrtab_name, elfcpp::SHT_STRTAB, 0, 0, shstrtab_off, shstrtab_len, 0, 0, 1, 0); // Write the ELF header. this->write_ehdr(); // Close the file. if (this->fd_ != NULL) { if (::fclose(this->fd_) != 0) gold_fatal(_("%s: %s"), this->name_, strerror(errno)); } this->fd_ = NULL; } // Write the contributions to an output section. void Dwp_output_file::write_contributions(const Section& sect) { for (unsigned int i = 0; i < sect.contributions.size(); ++i) { const Contribution& c = sect.contributions[i]; ::fseek(this->fd_, sect.offset + c.output_offset, SEEK_SET); if (::fwrite(c.contents, 1, c.size, this->fd_) < c.size) gold_fatal(_("%s: error writing section '%s'"), this->name_, sect.name); delete[] c.contents; } } // Write a new section to the output file. void Dwp_output_file::write_new_section(const char* section_name, const unsigned char* contents, section_size_type len, int align) { section_name = this->shstrtab_.add_with_length(section_name, strlen(section_name), false, NULL); unsigned int shndx = this->add_output_section(section_name, align); Section& section = this->sections_[shndx - 1]; off_t file_offset = this->next_file_offset_; file_offset = align_offset(file_offset, align); section.offset = file_offset; section.size = len; ::fseek(this->fd_, file_offset, SEEK_SET); if (::fwrite(contents, 1, len, this->fd_) < len) gold_fatal(_("%s: error writing section '%s'"), this->name_, section_name); this->next_file_offset_ = file_offset + len; } // Write a CU or TU index section. template<bool big_endian> void Dwp_output_file::write_index(const char* sect_name, const Dwp_index& index) { const unsigned int nslots = index.hash_table_total_slots(); const unsigned int nused = index.hash_table_used_slots(); const unsigned int nrows = index.section_table_rows(); int column_mask = index.section_table_cols(); unsigned int ncols = 0; for (unsigned int c = 1; c <= elfcpp::DW_SECT_MAX; ++c) if (column_mask & (1 << c)) ncols++; const unsigned int ntable = (nrows * 2 + 1) * ncols; const section_size_type index_size = (4 * sizeof(uint32_t) + nslots * sizeof(uint64_t) + nslots * sizeof(uint32_t) + ntable * sizeof(uint32_t)); // Allocate a buffer for the section contents. unsigned char* buf = new unsigned char[index_size]; unsigned char* p = buf; // Write the section header: version number, padding, // number of used slots and total number of slots. elfcpp::Swap_unaligned<32, big_endian>::writeval(p, 2); p += sizeof(uint32_t); elfcpp::Swap_unaligned<32, big_endian>::writeval(p, ncols); p += sizeof(uint32_t); elfcpp::Swap_unaligned<32, big_endian>::writeval(p, nused); p += sizeof(uint32_t); elfcpp::Swap_unaligned<32, big_endian>::writeval(p, nslots); p += sizeof(uint32_t); // Write the hash table. for (unsigned int i = 0; i < nslots; ++i) { elfcpp::Swap_unaligned<64, big_endian>::writeval(p, index.hash_table(i)); p += sizeof(uint64_t); } // Write the parallel index table. for (unsigned int i = 0; i < nslots; ++i) { elfcpp::Swap_unaligned<32, big_endian>::writeval(p, index.index_table(i)); p += sizeof(uint32_t); } // Write the first row of the table of section offsets. for (unsigned int c = 1; c <= elfcpp::DW_SECT_MAX; ++c) { if (column_mask & (1 << c)) { elfcpp::Swap_unaligned<32, big_endian>::writeval(p, c); p += sizeof(uint32_t); } } // Write the table of section offsets. Dwp_index::Section_table::const_iterator tbl = index.section_table(); for (unsigned int r = 0; r < nrows; ++r) { gold_assert(tbl != index.section_table_end()); const Section_bounds* sects = (*tbl)->sections; for (unsigned int c = 1; c <= elfcpp::DW_SECT_MAX; ++c) { if (column_mask & (1 << c)) { section_offset_type offset = sects[c].offset; elfcpp::Swap_unaligned<32, big_endian>::writeval(p, offset); p += sizeof(uint32_t); } else gold_assert(sects[c].size == 0); } ++tbl; } // Write the table of section sizes. tbl = index.section_table(); for (unsigned int r = 0; r < nrows; ++r) { gold_assert(tbl != index.section_table_end()); const Section_bounds* sects = (*tbl)->sections; for (unsigned int c = 1; c <= elfcpp::DW_SECT_MAX; ++c) { if (column_mask & (1 << c)) { section_size_type size = sects[c].size; elfcpp::Swap_unaligned<32, big_endian>::writeval(p, size); p += sizeof(uint32_t); } else gold_assert(sects[c].size == 0); } ++tbl; } gold_assert(p == buf + index_size); this->write_new_section(sect_name, buf, index_size, sizeof(uint64_t)); delete[] buf; } // Write the ELF header. void Dwp_output_file::write_ehdr() { if (this->size_ == 32) { if (this->big_endian_) return this->sized_write_ehdr<32, true>(); else return this->sized_write_ehdr<32, false>(); } else if (this->size_ == 64) { if (this->big_endian_) return this->sized_write_ehdr<64, true>(); else return this->sized_write_ehdr<64, false>(); } else gold_unreachable(); } template<unsigned int size, bool big_endian> void Dwp_output_file::sized_write_ehdr() { const unsigned int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size; unsigned char buf[ehdr_size]; elfcpp::Ehdr_write<size, big_endian> ehdr(buf); unsigned char e_ident[elfcpp::EI_NIDENT]; memset(e_ident, 0, elfcpp::EI_NIDENT); e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0; e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1; e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2; e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3; if (size == 32) e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32; else if (size == 64) e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64; else gold_unreachable(); e_ident[elfcpp::EI_DATA] = (big_endian ? elfcpp::ELFDATA2MSB : elfcpp::ELFDATA2LSB); e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT; ehdr.put_e_ident(e_ident); ehdr.put_e_type(elfcpp::ET_REL); ehdr.put_e_machine(this->machine_); ehdr.put_e_version(elfcpp::EV_CURRENT); ehdr.put_e_entry(0); ehdr.put_e_phoff(0); ehdr.put_e_shoff(this->shoff_); ehdr.put_e_flags(0); ehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size); ehdr.put_e_phentsize(0); ehdr.put_e_phnum(0); ehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size); ehdr.put_e_shnum(this->shnum_ < elfcpp::SHN_LORESERVE ? this->shnum_ : 0); ehdr.put_e_shstrndx(this->shstrndx_ < elfcpp::SHN_LORESERVE ? this->shstrndx_ : static_cast<unsigned int>(elfcpp::SHN_XINDEX)); ::fseek(this->fd_, 0, 0); if (::fwrite(buf, 1, ehdr_size, this->fd_) < ehdr_size) gold_fatal(_("%s: error writing ELF header"), this->name_); } // Write a section header. void Dwp_output_file::write_shdr(const char* name, unsigned int type, unsigned int flags, uint64_t addr, off_t offset, section_size_type sect_size, unsigned int link, unsigned int info, unsigned int align, unsigned int ent_size) { if (this->size_ == 32) { if (this->big_endian_) return this->sized_write_shdr<32, true>(name, type, flags, addr, offset, sect_size, link, info, align, ent_size); else return this->sized_write_shdr<32, false>(name, type, flags, addr, offset, sect_size, link, info, align, ent_size); } else if (this->size_ == 64) { if (this->big_endian_) return this->sized_write_shdr<64, true>(name, type, flags, addr, offset, sect_size, link, info, align, ent_size); else return this->sized_write_shdr<64, false>(name, type, flags, addr, offset, sect_size, link, info, align, ent_size); } else gold_unreachable(); } template<unsigned int size, bool big_endian> void Dwp_output_file::sized_write_shdr(const char* name, unsigned int type, unsigned int flags, uint64_t addr, off_t offset, section_size_type sect_size, unsigned int link, unsigned int info, unsigned int align, unsigned int ent_size) { const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size; unsigned char buf[shdr_size]; elfcpp::Shdr_write<size, big_endian> shdr(buf); shdr.put_sh_name(name == NULL ? 0 : this->shstrtab_.get_offset(name)); shdr.put_sh_type(type); shdr.put_sh_flags(flags); shdr.put_sh_addr(addr); shdr.put_sh_offset(offset); shdr.put_sh_size(sect_size); shdr.put_sh_link(link); shdr.put_sh_info(info); shdr.put_sh_addralign(align); shdr.put_sh_entsize(ent_size); if (::fwrite(buf, 1, shdr_size, this->fd_) < shdr_size) gold_fatal(_("%s: error writing section header table"), this->name_); } // Class Dwo_name_info_reader. // Visit a compilation unit. void Dwo_name_info_reader::visit_compilation_unit(off_t, off_t, Dwarf_die* die) { const char* dwo_name = die->string_attribute(elfcpp::DW_AT_GNU_dwo_name); if (dwo_name != NULL) this->files_->push_back(dwo_name); } // Class Unit_reader. // Read the CUs or TUs and add them to the output file. void Unit_reader::add_units(Dwp_output_file* output_file, unsigned int debug_abbrev, Section_bounds* sections) { this->output_file_ = output_file; this->sections_ = sections; this->set_abbrev_shndx(debug_abbrev); this->parse(); } // Visit a compilation unit. void Unit_reader::visit_compilation_unit(off_t, off_t cu_length, Dwarf_die* die) { if (cu_length == 0) return; Unit_set* unit_set = new Unit_set(); unit_set->signature = die->uint_attribute(elfcpp::DW_AT_GNU_dwo_id); for (unsigned int i = elfcpp::DW_SECT_ABBREV; i <= elfcpp::DW_SECT_MAX; ++i) unit_set->sections[i] = this->sections_[i]; // Dwp_output_file::add_contribution writes the .debug_info.dwo section // directly to the output file, so we do not need to duplicate the // section contents, and add_contribution does not need to free the memory. section_offset_type off = this->output_file_->add_contribution(elfcpp::DW_SECT_INFO, this->buffer_at_offset(0), cu_length, 1); Section_bounds bounds(off, cu_length); unit_set->sections[elfcpp::DW_SECT_INFO] = bounds; this->output_file_->add_cu_set(unit_set); } // Visit a type unit. void Unit_reader::visit_type_unit(off_t, off_t tu_length, off_t, uint64_t signature, Dwarf_die*) { if (tu_length == 0) return; if (this->output_file_->lookup_tu(signature)) return; Unit_set* unit_set = new Unit_set(); unit_set->signature = signature; for (unsigned int i = elfcpp::DW_SECT_ABBREV; i <= elfcpp::DW_SECT_MAX; ++i) unit_set->sections[i] = this->sections_[i]; unsigned char* contents = new unsigned char[tu_length]; memcpy(contents, this->buffer_at_offset(0), tu_length); section_offset_type off = this->output_file_->add_contribution(elfcpp::DW_SECT_TYPES, contents, tu_length, 1); Section_bounds bounds(off, tu_length); unit_set->sections[elfcpp::DW_SECT_TYPES] = bounds; this->output_file_->add_tu_set(unit_set); } }; // End namespace gold using namespace gold; // Options. struct option dwp_options[] = { { "exec", required_argument, NULL, 'e' }, { "help", no_argument, NULL, 'h' }, { "output", required_argument, NULL, 'o' }, { "verbose", no_argument, NULL, 'v' }, { "version", no_argument, NULL, 'V' }, { NULL, 0, NULL, 0 } }; // Print usage message and exit. static void usage(FILE* fd, int exit_status) { fprintf(fd, _("Usage: %s [options] [file...]\n"), program_name); fprintf(fd, _(" -h, --help Print this help message\n")); fprintf(fd, _(" -e EXE, --exec EXE Get list of dwo files from EXE" " (defaults output to EXE.dwp)\n")); fprintf(fd, _(" -o FILE, --output FILE Set output dwp file name\n")); fprintf(fd, _(" -v, --verbose Verbose output\n")); fprintf(fd, _(" -V, --version Print version number\n")); // REPORT_BUGS_TO is defined in bfd/bfdver.h. const char* report = REPORT_BUGS_TO; if (*report != '\0') fprintf(fd, _("\nReport bugs to %s\n"), report); exit(exit_status); } // Report version information. static void print_version() { // This output is intended to follow the GNU standards. printf("GNU dwp %s\n", BFD_VERSION_STRING); printf(_("Copyright 2012 Free Software Foundation, Inc.\n")); printf(_("\ This program is free software; you may redistribute it under the terms of\n\ the GNU General Public License version 3 or (at your option) any later version.\n\ This program has absolutely no warranty.\n")); exit(EXIT_SUCCESS); } // Main program. int main(int argc, char** argv) { #if defined (HAVE_SETLOCALE) && defined (HAVE_LC_MESSAGES) setlocale(LC_MESSAGES, ""); #endif #if defined (HAVE_SETLOCALE) setlocale(LC_CTYPE, ""); #endif bindtextdomain(PACKAGE, LOCALEDIR); textdomain(PACKAGE); program_name = argv[0]; // Initialize the global parameters, to let random code get to the // errors object. Errors errors(program_name); set_parameters_errors(&errors); // Initialize gold's global options. We don't use these in // this program, but they need to be initialized so that // functions we call from libgold work properly. General_options options; set_parameters_options(&options); // In libiberty; expands @filename to the args in "filename". expandargv(&argc, &argv); // Collect file names and options. File_list files; std::string output_filename; const char* exe_filename = NULL; bool verbose = false; int c; while ((c = getopt_long(argc, argv, "e:ho:vV", dwp_options, NULL)) != -1) { switch (c) { case 'h': usage(stdout, EXIT_SUCCESS); case 'e': exe_filename = optarg; break; case 'o': output_filename.assign(optarg); break; case 'v': verbose = true; break; case 'V': print_version(); case '?': default: usage(stderr, EXIT_FAILURE); } } if (output_filename.empty()) { if (exe_filename == NULL) gold_fatal(_("no output file specified")); output_filename.assign(exe_filename); output_filename.append(".dwp"); } Dwp_output_file output_file(output_filename.c_str()); // Get list of .dwo files from the executable. if (exe_filename != NULL) { Dwo_file exe_file(exe_filename); exe_file.read_executable(&files); } // Add any additional files listed on command line. for (int i = optind; i < argc; ++i) files.push_back(argv[i]); if (exe_filename == NULL && files.empty()) gold_fatal(_("no input files and no executable specified")); // Process each file, adding its contents to the output file. for (File_list::const_iterator f = files.begin(); f != files.end(); ++f) { if (verbose) fprintf(stderr, "%s\n", f->c_str()); Dwo_file dwo_file(f->c_str()); dwo_file.read(&output_file); } output_file.finalize(); return EXIT_SUCCESS; }