/* Example synacor simulator.
Copyright (C) 2005-2024 Free Software Foundation, Inc.
Contributed by Mike Frysinger.
This file is part of simulators.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see . */
/* This file contains the main simulator decoding logic. i.e. everything that
is architecture specific. */
/* This must come before any other includes. */
#include "defs.h"
#include "sim-main.h"
#include "sim-signal.h"
#include "example-synacor-sim.h"
/* Get the register number from the number. */
static uint16_t
register_num (SIM_CPU *cpu, uint16_t num)
{
SIM_DESC sd = CPU_STATE (cpu);
if (num < 0x8000 || num >= 0x8008)
sim_engine_halt (sd, cpu, NULL, sim_pc_get (cpu), sim_signalled, SIM_SIGILL);
return num & 0xf;
}
/* Helper to process immediates according to the ISA. */
static uint16_t
interp_num (SIM_CPU *cpu, uint16_t num)
{
SIM_DESC sd = CPU_STATE (cpu);
struct example_sim_cpu *example_cpu = EXAMPLE_SIM_CPU (cpu);
if (num < 0x8000)
{
/* Numbers 0..32767 mean a literal value. */
TRACE_DECODE (cpu, "%#x is a literal", num);
return num;
}
else if (num < 0x8008)
{
/* Numbers 32768..32775 instead mean registers 0..7. */
TRACE_DECODE (cpu, "%#x is register R%i", num, num & 0xf);
return example_cpu->regs[num & 0xf];
}
else
{
/* Numbers 32776..65535 are invalid. */
TRACE_DECODE (cpu, "%#x is an invalid number", num);
sim_engine_halt (sd, cpu, NULL, example_cpu->pc, sim_signalled, SIM_SIGILL);
}
}
/* Decode & execute a single instruction. */
void step_once (SIM_CPU *cpu)
{
SIM_DESC sd = CPU_STATE (cpu);
struct example_sim_cpu *example_cpu = EXAMPLE_SIM_CPU (cpu);
uint16_t iw1, num1;
sim_cia pc = sim_pc_get (cpu);
iw1 = sim_core_read_aligned_2 (cpu, pc, exec_map, pc);
TRACE_EXTRACT (cpu, "%04x: iw1: %#x", pc, iw1);
/* This never happens, but technically is possible in the ISA. */
num1 = interp_num (cpu, iw1);
if (num1 == 0)
{
/* halt: 0: Stop execution and terminate the program. */
TRACE_INSN (cpu, "HALT");
sim_engine_halt (sd, cpu, NULL, pc, sim_exited, 0);
}
else if (num1 == 1)
{
/* set: 1 a b: Set register to the value of . */
uint16_t iw2, iw3, num2, num3;
iw2 = sim_core_read_aligned_2 (cpu, pc, exec_map, pc + 2);
num2 = register_num (cpu, iw2);
iw3 = sim_core_read_aligned_2 (cpu, pc, exec_map, pc + 4);
num3 = interp_num (cpu, iw3);
TRACE_EXTRACT (cpu, "SET %#x %#x", iw2, iw3);
TRACE_INSN (cpu, "SET R%i %#x", num2, num3);
TRACE_REGISTER (cpu, "R%i = %#x", num2, num3);
example_cpu->regs[num2] = num3;
pc += 6;
}
else if (num1 == 2)
{
/* push: 2 a: Push onto the stack. */
uint16_t iw2, num2;
iw2 = sim_core_read_aligned_2 (cpu, pc, exec_map, pc + 2);
num2 = interp_num (cpu, iw2);
TRACE_EXTRACT (cpu, "PUSH %#x", iw2);
TRACE_INSN (cpu, "PUSH %#x", num2);
sim_core_write_aligned_2 (cpu, pc, write_map, example_cpu->sp, num2);
example_cpu->sp -= 2;
TRACE_REGISTER (cpu, "SP = %#x", example_cpu->sp);
pc += 4;
}
else if (num1 == 3)
{
/* pop: 3 a: Remove the top element from the stack and write it into .
Empty stack = error. */
uint16_t iw2, num2, result;
iw2 = sim_core_read_aligned_2 (cpu, pc, exec_map, pc + 2);
num2 = register_num (cpu, iw2);
TRACE_EXTRACT (cpu, "POP %#x", iw2);
TRACE_INSN (cpu, "POP R%i", num2);
example_cpu->sp += 2;
TRACE_REGISTER (cpu, "SP = %#x", example_cpu->sp);
result = sim_core_read_aligned_2 (cpu, pc, read_map, example_cpu->sp);
TRACE_REGISTER (cpu, "R%i = %#x", num2, result);
example_cpu->regs[num2] = result;
pc += 4;
}
else if (num1 == 4)
{
/* eq: 4 a b c: Set to 1 if is equal to ; set it to 0
otherwise. */
uint16_t iw2, iw3, iw4, num2, num3, num4, result;
iw2 = sim_core_read_aligned_2 (cpu, pc, exec_map, pc + 2);
num2 = register_num (cpu, iw2);
iw3 = sim_core_read_aligned_2 (cpu, pc, exec_map, pc + 4);
num3 = interp_num (cpu, iw3);
iw4 = sim_core_read_aligned_2 (cpu, pc, exec_map, pc + 6);
num4 = interp_num (cpu, iw4);
result = (num3 == num4);
TRACE_EXTRACT (cpu, "EQ %#x %#x %#x", iw2, iw3, iw4);
TRACE_INSN (cpu, "EQ R%i %#x %#x", num2, num3, num4);
TRACE_DECODE (cpu, "R%i = (%#x == %#x) = %i", num2, num3, num4, result);
TRACE_REGISTER (cpu, "R%i = %#x", num2, result);
example_cpu->regs[num2] = result;
pc += 8;
}
else if (num1 == 5)
{
/* gt: 5 a b c: Set to 1 if is greater than ; set it to 0
otherwise. */
uint16_t iw2, iw3, iw4, num2, num3, num4, result;
iw2 = sim_core_read_aligned_2 (cpu, pc, exec_map, pc + 2);
num2 = register_num (cpu, iw2);
iw3 = sim_core_read_aligned_2 (cpu, pc, exec_map, pc + 4);
num3 = interp_num (cpu, iw3);
iw4 = sim_core_read_aligned_2 (cpu, pc, exec_map, pc + 6);
num4 = interp_num (cpu, iw4);
result = (num3 > num4);
TRACE_EXTRACT (cpu, "GT %#x %#x %#x", iw2, iw3, iw4);
TRACE_INSN (cpu, "GT R%i %#x %#x", num2, num3, num4);
TRACE_DECODE (cpu, "R%i = (%#x > %#x) = %i", num2, num3, num4, result);
TRACE_REGISTER (cpu, "R%i = %#x", num2, result);
example_cpu->regs[num2] = result;
pc += 8;
}
else if (num1 == 6)
{
/* jmp: 6 a: Jump to . */
uint16_t iw2, num2;
iw2 = sim_core_read_aligned_2 (cpu, pc, exec_map, pc + 2);
num2 = interp_num (cpu, iw2);
/* Addresses are 16-bit aligned. */
num2 <<= 1;
TRACE_EXTRACT (cpu, "JMP %#x", iw2);
TRACE_INSN (cpu, "JMP %#x", num2);
pc = num2;
TRACE_BRANCH (cpu, "JMP %#x", pc);
}
else if (num1 == 7)
{
/* jt: 7 a b: If is nonzero, jump to . */
uint16_t iw2, iw3, num2, num3;
iw2 = sim_core_read_aligned_2 (cpu, pc, exec_map, pc + 2);
num2 = interp_num (cpu, iw2);
iw3 = sim_core_read_aligned_2 (cpu, pc, exec_map, pc + 4);
num3 = interp_num (cpu, iw3);
/* Addresses are 16-bit aligned. */
num3 <<= 1;
TRACE_EXTRACT (cpu, "JT %#x %#x", iw2, iw3);
TRACE_INSN (cpu, "JT %#x %#x", num2, num3);
TRACE_DECODE (cpu, "JT %#x != 0 -> %s", num2, num2 ? "taken" : "nop");
if (num2)
{
pc = num3;
TRACE_BRANCH (cpu, "JT %#x", pc);
}
else
pc += 6;
}
else if (num1 == 8)
{
/* jf: 8 a b: If is zero, jump to . */
uint16_t iw2, iw3, num2, num3;
iw2 = sim_core_read_aligned_2 (cpu, pc, exec_map, pc + 2);
num2 = interp_num (cpu, iw2);
iw3 = sim_core_read_aligned_2 (cpu, pc, exec_map, pc + 4);
num3 = interp_num (cpu, iw3);
/* Addresses are 16-bit aligned. */
num3 <<= 1;
TRACE_EXTRACT (cpu, "JF %#x %#x", iw2, iw3);
TRACE_INSN (cpu, "JF %#x %#x", num2, num3);
TRACE_DECODE (cpu, "JF %#x == 0 -> %s", num2, num2 ? "nop" : "taken");
if (!num2)
{
pc = num3;
TRACE_BRANCH (cpu, "JF %#x", pc);
}
else
pc += 6;
}
else if (num1 == 9)
{
/* add: 9 a b c: Assign the sum of and (modulo 32768). */
uint16_t iw2, iw3, iw4, num2, num3, num4, result;
iw2 = sim_core_read_aligned_2 (cpu, pc, exec_map, pc + 2);
num2 = register_num (cpu, iw2);
iw3 = sim_core_read_aligned_2 (cpu, pc, exec_map, pc + 4);
num3 = interp_num (cpu, iw3);
iw4 = sim_core_read_aligned_2 (cpu, pc, exec_map, pc + 6);
num4 = interp_num (cpu, iw4);
result = (num3 + num4) % 32768;
TRACE_EXTRACT (cpu, "ADD %#x %#x %#x", iw2, iw3, iw4);
TRACE_INSN (cpu, "ADD R%i %#x %#x", num2, num3, num4);
TRACE_DECODE (cpu, "R%i = (%#x + %#x) %% %i = %#x", num2, num3, num4,
32768, result);
TRACE_REGISTER (cpu, "R%i = %#x", num2, result);
example_cpu->regs[num2] = result;
pc += 8;
}
else if (num1 == 10)
{
/* mult: 10 a b c: Store into the product of and (modulo
32768). */
uint16_t iw2, iw3, iw4, num2, num3, num4, result;
iw2 = sim_core_read_aligned_2 (cpu, pc, exec_map, pc + 2);
num2 = register_num (cpu, iw2);
iw3 = sim_core_read_aligned_2 (cpu, pc, exec_map, pc + 4);
num3 = interp_num (cpu, iw3);
iw4 = sim_core_read_aligned_2 (cpu, pc, exec_map, pc + 6);
num4 = interp_num (cpu, iw4);
result = (num3 * num4) % 32768;
TRACE_EXTRACT (cpu, "MULT %#x %#x %#x", iw2, iw3, iw4);
TRACE_INSN (cpu, "MULT R%i %#x %#x", num2, num3, num4);
TRACE_DECODE (cpu, "R%i = (%#x * %#x) %% %i = %#x", num2, num3, num4,
32768, result);
TRACE_REGISTER (cpu, "R%i = %#x", num2, result);
example_cpu->regs[num2] = result;
pc += 8;
}
else if (num1 == 11)
{
/* mod: 11 a b c: Store into the remainder of divided by . */
uint16_t iw2, iw3, iw4, num2, num3, num4, result;
iw2 = sim_core_read_aligned_2 (cpu, pc, exec_map, pc + 2);
num2 = register_num (cpu, iw2);
iw3 = sim_core_read_aligned_2 (cpu, pc, exec_map, pc + 4);
num3 = interp_num (cpu, iw3);
iw4 = sim_core_read_aligned_2 (cpu, pc, exec_map, pc + 6);
num4 = interp_num (cpu, iw4);
result = num3 % num4;
TRACE_EXTRACT (cpu, "MOD %#x %#x %#x", iw2, iw3, iw4);
TRACE_INSN (cpu, "MOD R%i %#x %#x", num2, num3, num4);
TRACE_DECODE (cpu, "R%i = %#x %% %#x = %#x", num2, num3, num4, result);
TRACE_REGISTER (cpu, "R%i = %#x", num2, result);
example_cpu->regs[num2] = result;
pc += 8;
}
else if (num1 == 12)
{
/* and: 12 a b c: Stores into the bitwise and of and . */
uint16_t iw2, iw3, iw4, num2, num3, num4, result;
iw2 = sim_core_read_aligned_2 (cpu, pc, exec_map, pc + 2);
num2 = register_num (cpu, iw2);
iw3 = sim_core_read_aligned_2 (cpu, pc, exec_map, pc + 4);
num3 = interp_num (cpu, iw3);
iw4 = sim_core_read_aligned_2 (cpu, pc, exec_map, pc + 6);
num4 = interp_num (cpu, iw4);
result = (num3 & num4);
TRACE_EXTRACT (cpu, "AND %#x %#x %#x", iw2, iw3, iw4);
TRACE_INSN (cpu, "AND R%i %#x %#x", num2, num3, num4);
TRACE_DECODE (cpu, "R%i = %#x & %#x = %#x", num2, num3, num4, result);
TRACE_REGISTER (cpu, "R%i = %#x", num2, result);
example_cpu->regs[num2] = result;
pc += 8;
}
else if (num1 == 13)
{
/* or: 13 a b c: Stores into the bitwise or of and . */
uint16_t iw2, iw3, iw4, num2, num3, num4, result;
iw2 = sim_core_read_aligned_2 (cpu, pc, exec_map, pc + 2);
num2 = register_num (cpu, iw2);
iw3 = sim_core_read_aligned_2 (cpu, pc, exec_map, pc + 4);
num3 = interp_num (cpu, iw3);
iw4 = sim_core_read_aligned_2 (cpu, pc, exec_map, pc + 6);
num4 = interp_num (cpu, iw4);
result = (num3 | num4);
TRACE_EXTRACT (cpu, "OR %#x %#x %#x", iw2, iw3, iw4);
TRACE_INSN (cpu, "OR R%i %#x %#x", num2, num3, num4);
TRACE_DECODE (cpu, "R%i = %#x | %#x = %#x", num2, num3, num4, result);
TRACE_REGISTER (cpu, "R%i = %#x", num2, result);
example_cpu->regs[num2] = result;
pc += 8;
}
else if (num1 == 14)
{
/* not: 14 a b: Stores 15-bit bitwise inverse of in . */
uint16_t iw2, iw3, num2, num3, result;
iw2 = sim_core_read_aligned_2 (cpu, pc, exec_map, pc + 2);
num2 = register_num (cpu, iw2);
iw3 = sim_core_read_aligned_2 (cpu, pc, exec_map, pc + 4);
num3 = interp_num (cpu, iw3);
result = (~num3) & 0x7fff;
TRACE_EXTRACT (cpu, "NOT %#x %#x", iw2, iw3);
TRACE_INSN (cpu, "NOT R%i %#x", num2, num3);
TRACE_DECODE (cpu, "R%i = (~%#x) & 0x7fff = %#x", num2, num3, result);
TRACE_REGISTER (cpu, "R%i = %#x", num2, result);
example_cpu->regs[num2] = result;
pc += 6;
}
else if (num1 == 15)
{
/* rmem: 15 a b: Read memory at address and write it to . */
uint16_t iw2, iw3, num2, num3, result;
iw2 = sim_core_read_aligned_2 (cpu, pc, exec_map, pc + 2);
num2 = register_num (cpu, iw2);
iw3 = sim_core_read_aligned_2 (cpu, pc, exec_map, pc + 4);
num3 = interp_num (cpu, iw3);
/* Addresses are 16-bit aligned. */
num3 <<= 1;
TRACE_EXTRACT (cpu, "RMEM %#x %#x", iw2, iw3);
TRACE_INSN (cpu, "RMEM R%i %#x", num2, num3);
TRACE_MEMORY (cpu, "reading %#x", num3);
result = sim_core_read_aligned_2 (cpu, pc, read_map, num3);
TRACE_REGISTER (cpu, "R%i = %#x", num2, result);
example_cpu->regs[num2] = result;
pc += 6;
}
else if (num1 == 16)
{
/* wmem: 16 a b: Write the value from into memory at address . */
uint16_t iw2, iw3, num2, num3;
iw2 = sim_core_read_aligned_2 (cpu, pc, exec_map, pc + 2);
num2 = interp_num (cpu, iw2);
iw3 = sim_core_read_aligned_2 (cpu, pc, exec_map, pc + 4);
num3 = interp_num (cpu, iw3);
/* Addresses are 16-bit aligned. */
num2 <<= 1;
TRACE_EXTRACT (cpu, "WMEM %#x %#x", iw2, iw3);
TRACE_INSN (cpu, "WMEM %#x %#x", num2, num3);
TRACE_MEMORY (cpu, "writing %#x to %#x", num3, num2);
sim_core_write_aligned_2 (cpu, pc, write_map, num2, num3);
pc += 6;
}
else if (num1 == 17)
{
/* call: 17 a: Write the address of the next instruction to the stack and
jump to . */
uint16_t iw2, num2;
iw2 = sim_core_read_aligned_2 (cpu, pc, exec_map, pc + 2);
num2 = interp_num (cpu, iw2);
/* Addresses are 16-bit aligned. */
num2 <<= 1;
TRACE_EXTRACT (cpu, "CALL %#x", iw2);
TRACE_INSN (cpu, "CALL %#x", num2);
TRACE_MEMORY (cpu, "pushing %#x onto stack", (pc + 4) >> 1);
sim_core_write_aligned_2 (cpu, pc, write_map, example_cpu->sp, (pc + 4) >> 1);
example_cpu->sp -= 2;
TRACE_REGISTER (cpu, "SP = %#x", example_cpu->sp);
pc = num2;
TRACE_BRANCH (cpu, "CALL %#x", pc);
}
else if (num1 == 18)
{
/* ret: 18: Remove the top element from the stack and jump to it; empty
stack = halt. */
uint16_t result;
TRACE_INSN (cpu, "RET");
example_cpu->sp += 2;
TRACE_REGISTER (cpu, "SP = %#x", example_cpu->sp);
result = sim_core_read_aligned_2 (cpu, pc, read_map, example_cpu->sp);
TRACE_MEMORY (cpu, "popping %#x off of stack", result << 1);
pc = result << 1;
TRACE_BRANCH (cpu, "RET -> %#x", pc);
}
else if (num1 == 19)
{
/* out: 19 a: Write the character to the terminal. */
uint16_t iw2, num2;
iw2 = sim_core_read_aligned_2 (cpu, pc, exec_map, pc + 2);
num2 = interp_num (cpu, iw2);
TRACE_EXTRACT (cpu, "OUT %#x", iw2);
TRACE_INSN (cpu, "OUT %#x", num2);
TRACE_EVENTS (cpu, "write to stdout: %#x (%c)", num2, num2);
sim_io_printf (sd, "%c", num2);
pc += 4;
}
else if (num1 == 20)
{
/* in: 20 a: read a character from the terminal and write its ascii code
to . It can be assumed that once input starts, it will continue
until a newline is encountered. This means that you can safely read
lines from the keyboard and trust that they will be fully read. */
uint16_t iw2, num2;
char c;
iw2 = sim_core_read_aligned_2 (cpu, pc, exec_map, pc + 2);
num2 = register_num (cpu, iw2);
TRACE_EXTRACT (cpu, "IN %#x", iw2);
TRACE_INSN (cpu, "IN %#x", num2);
sim_io_read_stdin (sd, &c, 1);
TRACE_EVENTS (cpu, "read from stdin: %#x (%c)", c, c);
/* The challenge uses lowercase for all inputs, so insert some low level
helpers of our own to make it a bit nicer. */
switch (c)
{
case 'Q':
sim_engine_halt (sd, cpu, NULL, pc, sim_exited, 0);
break;
}
TRACE_REGISTER (cpu, "R%i = %#x", iw2 & 0xf, c);
example_cpu->regs[iw2 & 0xf] = c;
pc += 4;
}
else if (num1 == 21)
{
/* noop: 21: no operation */
TRACE_INSN (cpu, "NOOP");
pc += 2;
}
else
sim_engine_halt (sd, cpu, NULL, pc, sim_signalled, SIM_SIGILL);
TRACE_REGISTER (cpu, "PC = %#x", pc);
sim_pc_set (cpu, pc);
}
/* Return the program counter for this cpu. */
static sim_cia
pc_get (sim_cpu *cpu)
{
struct example_sim_cpu *example_cpu = EXAMPLE_SIM_CPU (cpu);
return example_cpu->pc;
}
/* Set the program counter for this cpu to the new pc value. */
static void
pc_set (sim_cpu *cpu, sim_cia pc)
{
struct example_sim_cpu *example_cpu = EXAMPLE_SIM_CPU (cpu);
example_cpu->pc = pc;
}
/* Initialize the state for a single cpu. Usuaully this involves clearing all
registers back to their reset state. Should also hook up the fetch/store
helper functions too. */
void initialize_cpu (SIM_DESC sd, SIM_CPU *cpu)
{
struct example_sim_cpu *example_cpu = EXAMPLE_SIM_CPU (cpu);
memset (example_cpu->regs, 0, sizeof (example_cpu->regs));
example_cpu->pc = 0;
/* Make sure it's initialized outside of the 16-bit address space. */
example_cpu->sp = 0x80000;
CPU_PC_FETCH (cpu) = pc_get;
CPU_PC_STORE (cpu) = pc_set;
}