/* Target dependent code for CRIS, for GDB, the GNU debugger. Copyright 2001 Free Software Foundation, Inc. Contributed by Axis Communications AB. Written by Hendrik Ruijter, Stefan Andersson, and Orjan Friberg. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "defs.h" #include "frame.h" #include "symtab.h" #include "inferior.h" #include "gdbtypes.h" #include "gdbcore.h" #include "gdbcmd.h" #include "target.h" #include "value.h" #include "opcode/cris.h" #include "arch-utils.h" #include "regcache.h" /* To get entry_point_address. */ #include "symfile.h" #include "solib.h" /* Support for shared libraries. */ #include "solib-svr4.h" /* For struct link_map_offsets. */ #include "gdb_string.h" enum cris_num_regs { /* There are no floating point registers. Used in gdbserver low-linux.c. */ NUM_FREGS = 0, /* There are 16 general registers. */ NUM_GENREGS = 16, /* There are 16 special registers. */ NUM_SPECREGS = 16 }; /* Register numbers of various important registers. FP_REGNUM Contains address of executing stack frame. STR_REGNUM Contains the address of structure return values. RET_REGNUM Contains the return value when shorter than or equal to 32 bits ARG1_REGNUM Contains the first parameter to a function. ARG2_REGNUM Contains the second parameter to a function. ARG3_REGNUM Contains the third parameter to a function. ARG4_REGNUM Contains the fourth parameter to a function. Rest on stack. SP_REGNUM Contains address of top of stack. PC_REGNUM Contains address of next instruction. SRP_REGNUM Subroutine return pointer register. BRP_REGNUM Breakpoint return pointer register. */ /* FP_REGNUM = 8, SP_REGNUM = 14, and PC_REGNUM = 15 have been incorporated into the multi-arch framework. */ enum cris_regnums { /* Enums with respect to the general registers, valid for all CRIS versions. */ STR_REGNUM = 9, RET_REGNUM = 10, ARG1_REGNUM = 10, ARG2_REGNUM = 11, ARG3_REGNUM = 12, ARG4_REGNUM = 13, /* Enums with respect to the special registers, some of which may not be applicable to all CRIS versions. */ P0_REGNUM = 16, VR_REGNUM = 17, P2_REGNUM = 18, P3_REGNUM = 19, P4_REGNUM = 20, CCR_REGNUM = 21, MOF_REGNUM = 23, P8_REGNUM = 24, IBR_REGNUM = 25, IRP_REGNUM = 26, SRP_REGNUM = 27, BAR_REGNUM = 28, DCCR_REGNUM = 29, BRP_REGNUM = 30, USP_REGNUM = 31 }; extern const struct cris_spec_reg cris_spec_regs[]; /* CRIS version, set via the user command 'set cris-version'. Affects register names and sizes.*/ static int usr_cmd_cris_version; /* Indicates whether to trust the above variable. */ static int usr_cmd_cris_version_valid = 0; /* CRIS mode, set via the user command 'set cris-mode'. Affects availability of some registers. */ static const char *usr_cmd_cris_mode; /* Indicates whether to trust the above variable. */ static int usr_cmd_cris_mode_valid = 0; static const char CRIS_MODE_USER[] = "CRIS_MODE_USER"; static const char CRIS_MODE_SUPERVISOR[] = "CRIS_MODE_SUPERVISOR"; static const char *cris_mode_enums[] = { CRIS_MODE_USER, CRIS_MODE_SUPERVISOR, 0 }; /* CRIS ABI, set via the user command 'set cris-abi'. There are two flavours: 1. Original ABI with 32-bit doubles, where arguments <= 4 bytes are passed by value. 2. New ABI with 64-bit doubles, where arguments <= 8 bytes are passed by value. */ static const char *usr_cmd_cris_abi; /* Indicates whether to trust the above variable. */ static int usr_cmd_cris_abi_valid = 0; /* These variables are strings instead of enums to make them usable as parameters to add_set_enum_cmd. */ static const char CRIS_ABI_ORIGINAL[] = "CRIS_ABI_ORIGINAL"; static const char CRIS_ABI_V2[] = "CRIS_ABI_V2"; static const char CRIS_ABI_SYMBOL[] = ".$CRIS_ABI_V2"; static const char *cris_abi_enums[] = { CRIS_ABI_ORIGINAL, CRIS_ABI_V2, 0 }; /* CRIS architecture specific information. */ struct gdbarch_tdep { int cris_version; const char *cris_mode; const char *cris_abi; }; /* Functions for accessing target dependent data. */ static int cris_version (void) { return (gdbarch_tdep (current_gdbarch)->cris_version); } static const char * cris_mode (void) { return (gdbarch_tdep (current_gdbarch)->cris_mode); } static const char * cris_abi (void) { return (gdbarch_tdep (current_gdbarch)->cris_abi); } /* For saving call-clobbered contents in R9 when returning structs. */ static CORE_ADDR struct_return_address; struct frame_extra_info { CORE_ADDR return_pc; int leaf_function; }; /* The instruction environment needed to find single-step breakpoints. */ typedef struct instruction_environment { unsigned long reg[NUM_GENREGS]; unsigned long preg[NUM_SPECREGS]; unsigned long branch_break_address; unsigned long delay_slot_pc; unsigned long prefix_value; int branch_found; int prefix_found; int invalid; int slot_needed; int delay_slot_pc_active; int xflag_found; int disable_interrupt; } inst_env_type; /* Save old breakpoints in order to restore the state before a single_step. At most, two breakpoints will have to be remembered. */ typedef char binsn_quantum[BREAKPOINT_MAX]; static binsn_quantum break_mem[2]; static CORE_ADDR next_pc = 0; static CORE_ADDR branch_target_address = 0; static unsigned char branch_break_inserted = 0; /* Machine-dependencies in CRIS for opcodes. */ /* Instruction sizes. */ enum cris_instruction_sizes { INST_BYTE_SIZE = 0, INST_WORD_SIZE = 1, INST_DWORD_SIZE = 2 }; /* Addressing modes. */ enum cris_addressing_modes { REGISTER_MODE = 1, INDIRECT_MODE = 2, AUTOINC_MODE = 3 }; /* Prefix addressing modes. */ enum cris_prefix_addressing_modes { PREFIX_INDEX_MODE = 2, PREFIX_ASSIGN_MODE = 3, /* Handle immediate byte offset addressing mode prefix format. */ PREFIX_OFFSET_MODE = 2 }; /* Masks for opcodes. */ enum cris_opcode_masks { BRANCH_SIGNED_SHORT_OFFSET_MASK = 0x1, SIGNED_EXTEND_BIT_MASK = 0x2, SIGNED_BYTE_MASK = 0x80, SIGNED_BYTE_EXTEND_MASK = 0xFFFFFF00, SIGNED_WORD_MASK = 0x8000, SIGNED_WORD_EXTEND_MASK = 0xFFFF0000, SIGNED_DWORD_MASK = 0x80000000, SIGNED_QUICK_VALUE_MASK = 0x20, SIGNED_QUICK_VALUE_EXTEND_MASK = 0xFFFFFFC0 }; /* Functions for opcodes. The general form of the ETRAX 16-bit instruction: Bit 15 - 12 Operand2 11 - 10 Mode 9 - 6 Opcode 5 - 4 Size 3 - 0 Operand1 */ static int cris_get_operand2 (unsigned short insn) { return ((insn & 0xF000) >> 12); } static int cris_get_mode (unsigned short insn) { return ((insn & 0x0C00) >> 10); } static int cris_get_opcode (unsigned short insn) { return ((insn & 0x03C0) >> 6); } static int cris_get_size (unsigned short insn) { return ((insn & 0x0030) >> 4); } static int cris_get_operand1 (unsigned short insn) { return (insn & 0x000F); } /* Additional functions in order to handle opcodes. */ static int cris_get_wide_opcode (unsigned short insn) { return ((insn & 0x03E0) >> 5); } static int cris_get_short_size (unsigned short insn) { return ((insn & 0x0010) >> 4); } static int cris_get_quick_value (unsigned short insn) { return (insn & 0x003F); } static int cris_get_bdap_quick_offset (unsigned short insn) { return (insn & 0x00FF); } static int cris_get_branch_short_offset (unsigned short insn) { return (insn & 0x00FF); } static int cris_get_asr_shift_steps (unsigned long value) { return (value & 0x3F); } static int cris_get_asr_quick_shift_steps (unsigned short insn) { return (insn & 0x1F); } static int cris_get_clear_size (unsigned short insn) { return ((insn) & 0xC000); } static int cris_is_signed_extend_bit_on (unsigned short insn) { return (((insn) & 0x20) == 0x20); } static int cris_is_xflag_bit_on (unsigned short insn) { return (((insn) & 0x1000) == 0x1000); } static void cris_set_size_to_dword (unsigned short *insn) { *insn &= 0xFFCF; *insn |= 0x20; } static signed char cris_get_signed_offset (unsigned short insn) { return ((signed char) (insn & 0x00FF)); } /* Calls an op function given the op-type, working on the insn and the inst_env. */ static void cris_gdb_func (enum cris_op_type, unsigned short, inst_env_type *); static CORE_ADDR cris_skip_prologue_main (CORE_ADDR pc, int frameless_p); static struct gdbarch *cris_gdbarch_init (struct gdbarch_info, struct gdbarch_list *); static int cris_delayed_get_disassembler (bfd_vma, disassemble_info *); static void cris_dump_tdep (struct gdbarch *, struct ui_file *); static void cris_version_update (char *ignore_args, int from_tty, struct cmd_list_element *c); static void cris_mode_update (char *ignore_args, int from_tty, struct cmd_list_element *c); static void cris_abi_update (char *ignore_args, int from_tty, struct cmd_list_element *c); static CORE_ADDR bfd_lookup_symbol (bfd *, const char *); /* Frames information. The definition of the struct frame_info is CORE_ADDR frame CORE_ADDR pc enum frame_type type; CORE_ADDR return_pc int leaf_function If the compilation option -fno-omit-frame-pointer is present the variable frame will be set to the content of R8 which is the frame pointer register. The variable pc contains the address where execution is performed in the present frame. The innermost frame contains the current content of the register PC. All other frames contain the content of the register PC in the next frame. The variable `type' indicates the frame's type: normal, SIGTRAMP (associated with a signal handler), dummy (associated with a dummy frame). The variable return_pc contains the address where execution should be resumed when the present frame has finished, the return address. The variable leaf_function is 1 if the return address is in the register SRP, and 0 if it is on the stack. Prologue instructions C-code. The prologue may consist of (-fno-omit-frame-pointer) 1) 2) push srp push r8 push r8 move.d sp,r8 move.d sp,r8 subq X,sp subq X,sp movem rY,[sp] movem rY,[sp] move.S rZ,[r8-U] move.S rZ,[r8-U] where 1 is a non-terminal function, and 2 is a leaf-function. Note that this assumption is extremely brittle, and will break at the slightest change in GCC's prologue. If local variables are declared or register contents are saved on stack the subq-instruction will be present with X as the number of bytes needed for storage. The reshuffle with respect to r8 may be performed with any size S (b, w, d) and any of the general registers Z={0..13}. The offset U should be representable by a signed 8-bit value in all cases. Thus, the prefix word is assumed to be immediate byte offset mode followed by another word containing the instruction. Degenerate cases: 3) push r8 move.d sp,r8 move.d r8,sp pop r8 Prologue instructions C++-code. Case 1) and 2) in the C-code may be followed by move.d r10,rS ; this move.d r11,rT ; P1 move.d r12,rU ; P2 move.d r13,rV ; P3 move.S [r8+U],rZ ; P4 if any of the call parameters are stored. The host expects these instructions to be executed in order to get the call parameters right. */ /* Examine the prologue of a function. The variable ip is the address of the first instruction of the prologue. The variable limit is the address of the first instruction after the prologue. The variable fi contains the information in struct frame_info. The variable frameless_p controls whether the entire prologue is examined (0) or just enough instructions to determine that it is a prologue (1). */ CORE_ADDR cris_examine (CORE_ADDR ip, CORE_ADDR limit, struct frame_info *fi, int frameless_p) { /* Present instruction. */ unsigned short insn; /* Next instruction, lookahead. */ unsigned short insn_next; int regno; /* Is there a push fp? */ int have_fp; /* Number of byte on stack used for local variables and movem. */ int val; /* Highest register number in a movem. */ int regsave; /* move.d r,rS */ short source_register; /* This frame is with respect to a leaf until a push srp is found. */ fi->extra_info->leaf_function = 1; /* This frame is without the FP until a push fp is found. */ have_fp = 0; /* Assume nothing on stack. */ val = 0; regsave = -1; /* No information about register contents so far. */ /* We only want to know the end of the prologue when fi->saved_regs == 0. When the saved registers are allocated full information is required. */ if (fi->saved_regs) { for (regno = 0; regno < NUM_REGS; regno++) fi->saved_regs[regno] = 0; } /* Find the prologue instructions. */ do { insn = read_memory_unsigned_integer (ip, sizeof (short)); ip += sizeof (short); if (insn == 0xE1FC) { /* push 32 bit instruction */ insn_next = read_memory_unsigned_integer (ip, sizeof (short)); ip += sizeof (short); regno = cris_get_operand2 (insn_next); /* This check, meant to recognize srp, used to be regno == (SRP_REGNUM - NUM_GENREGS), but that covers r11 also. */ if (insn_next == 0xBE7E) { if (frameless_p) { return ip; } fi->extra_info->leaf_function = 0; } else if (regno == FP_REGNUM) { have_fp = 1; } } else if (insn == 0x866E) { /* move.d sp,r8 */ if (frameless_p) { return ip; } continue; } else if (cris_get_operand2 (insn) == SP_REGNUM && cris_get_mode (insn) == 0x0000 && cris_get_opcode (insn) == 0x000A) { /* subq ,sp */ val = cris_get_quick_value (insn); } else if (cris_get_mode (insn) == 0x0002 && cris_get_opcode (insn) == 0x000F && cris_get_size (insn) == 0x0003 && cris_get_operand1 (insn) == SP_REGNUM) { /* movem r,[sp] */ if (frameless_p) { return ip; } regsave = cris_get_operand2 (insn); } else if (cris_get_operand2 (insn) == SP_REGNUM && ((insn & 0x0F00) >> 8) == 0x0001 && (cris_get_signed_offset (insn) < 0)) { /* Immediate byte offset addressing prefix word with sp as base register. Used for CRIS v8 i.e. ETRAX 100 and newer if is between 64 and 128. movem r,[sp=sp-] */ val = -cris_get_signed_offset (insn); insn_next = read_memory_unsigned_integer (ip, sizeof (short)); ip += sizeof (short); if (cris_get_mode (insn_next) == PREFIX_ASSIGN_MODE && cris_get_opcode (insn_next) == 0x000F && cris_get_size (insn_next) == 0x0003 && cris_get_operand1 (insn_next) == SP_REGNUM) { if (frameless_p) { return ip; } regsave = cris_get_operand2 (insn_next); } else { /* The prologue ended before the limit was reached. */ ip -= 2 * sizeof (short); break; } } else if (cris_get_mode (insn) == 0x0001 && cris_get_opcode (insn) == 0x0009 && cris_get_size (insn) == 0x0002) { /* move.d r<10..13>,r<0..15> */ if (frameless_p) { return ip; } source_register = cris_get_operand1 (insn); /* FIXME? In the glibc solibs, the prologue might contain something like (this example taken from relocate_doit): move.d $pc,$r0 sub.d 0xfffef426,$r0 which isn't covered by the source_register check below. Question is whether to add a check for this combo, or make better use of the limit variable instead. */ if (source_register < ARG1_REGNUM || source_register > ARG4_REGNUM) { /* The prologue ended before the limit was reached. */ ip -= sizeof (short); break; } } else if (cris_get_operand2 (insn) == FP_REGNUM /* The size is a fixed-size. */ && ((insn & 0x0F00) >> 8) == 0x0001 /* A negative offset. */ && (cris_get_signed_offset (insn) < 0)) { /* move.S rZ,[r8-U] (?) */ insn_next = read_memory_unsigned_integer (ip, sizeof (short)); ip += sizeof (short); regno = cris_get_operand2 (insn_next); if ((regno >= 0 && regno < SP_REGNUM) && cris_get_mode (insn_next) == PREFIX_OFFSET_MODE && cris_get_opcode (insn_next) == 0x000F) { /* move.S rZ,[r8-U] */ continue; } else { /* The prologue ended before the limit was reached. */ ip -= 2 * sizeof (short); break; } } else if (cris_get_operand2 (insn) == FP_REGNUM /* The size is a fixed-size. */ && ((insn & 0x0F00) >> 8) == 0x0001 /* A positive offset. */ && (cris_get_signed_offset (insn) > 0)) { /* move.S [r8+U],rZ (?) */ insn_next = read_memory_unsigned_integer (ip, sizeof (short)); ip += sizeof (short); regno = cris_get_operand2 (insn_next); if ((regno >= 0 && regno < SP_REGNUM) && cris_get_mode (insn_next) == PREFIX_OFFSET_MODE && cris_get_opcode (insn_next) == 0x0009 && cris_get_operand1 (insn_next) == regno) { /* move.S [r8+U],rZ */ continue; } else { /* The prologue ended before the limit was reached. */ ip -= 2 * sizeof (short); break; } } else { /* The prologue ended before the limit was reached. */ ip -= sizeof (short); break; } } while (ip < limit); /* We only want to know the end of the prologue when fi->saved_regs == 0. */ if (!fi->saved_regs) return ip; if (have_fp) { fi->saved_regs[FP_REGNUM] = get_frame_base (fi); /* Calculate the addresses. */ for (regno = regsave; regno >= 0; regno--) { fi->saved_regs[regno] = get_frame_base (fi) - val; val -= 4; } if (fi->extra_info->leaf_function) { /* Set the register SP to contain the stack pointer of the caller. */ fi->saved_regs[SP_REGNUM] = get_frame_base (fi) + 4; } else { /* Set the register SP to contain the stack pointer of the caller. */ fi->saved_regs[SP_REGNUM] = get_frame_base (fi) + 8; /* Set the register SRP to contain the return address of the caller. */ fi->saved_regs[SRP_REGNUM] = get_frame_base (fi) + 4; } } return ip; } /* Advance pc beyond any function entry prologue instructions at pc to reach some "real" code. */ CORE_ADDR cris_skip_prologue (CORE_ADDR pc) { return cris_skip_prologue_main (pc, 0); } /* As cris_skip_prologue, but stops as soon as it knows that the function has a frame. Its result is equal to its input pc if the function is frameless, unequal otherwise. */ CORE_ADDR cris_skip_prologue_frameless_p (CORE_ADDR pc) { return cris_skip_prologue_main (pc, 1); } /* Given a PC value corresponding to the start of a function, return the PC of the first instruction after the function prologue. */ CORE_ADDR cris_skip_prologue_main (CORE_ADDR pc, int frameless_p) { struct frame_info fi; static struct frame_extra_info fei; struct symtab_and_line sal = find_pc_line (pc, 0); int best_limit; CORE_ADDR pc_after_prologue; /* frame_info now contains dynamic memory. Since fi is a dummy here, I use static memory for extra_info, and don't bother allocating memory for saved_regs. */ fi.saved_regs = 0; fi.extra_info = &fei; /* If there is no symbol information then sal.end == 0, and we end up examining only the first instruction in the function prologue. Exaggerating the limit seems to be harmless. */ if (sal.end > 0) best_limit = sal.end; else best_limit = pc + 100; pc_after_prologue = cris_examine (pc, best_limit, &fi, frameless_p); return pc_after_prologue; } /* Use the program counter to determine the contents and size of a breakpoint instruction. It returns a pointer to a string of bytes that encode a breakpoint instruction, stores the length of the string to *lenptr, and adjusts pcptr (if necessary) to point to the actual memory location where the breakpoint should be inserted. */ const unsigned char * cris_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr) { static unsigned char break_insn[] = {0x38, 0xe9}; *lenptr = 2; return break_insn; } /* Returns the register SRP (subroutine return pointer) which must contain the content of the register PC after a function call. */ static CORE_ADDR cris_saved_pc_after_call (struct frame_info *frame) { return read_register (SRP_REGNUM); } /* Returns 1 if spec_reg is applicable to the current gdbarch's CRIS version, 0 otherwise. */ int cris_spec_reg_applicable (struct cris_spec_reg spec_reg) { int version = cris_version (); switch (spec_reg.applicable_version) { case cris_ver_version_all: return 1; case cris_ver_warning: /* Indeterminate/obsolete. */ return 0; case cris_ver_sim: /* Simulator only. */ return 0; case cris_ver_v0_3: return (version >= 0 && version <= 3); case cris_ver_v3p: return (version >= 3); case cris_ver_v8: return (version == 8 || version == 9); case cris_ver_v8p: return (version >= 8); case cris_ver_v10p: return (version >= 10); default: /* Invalid cris version. */ return 0; } } /* Returns the register size in unit byte. Returns 0 for an unimplemented register, -1 for an invalid register. */ int cris_register_size (int regno) { int i; int spec_regno; if (regno >= 0 && regno < NUM_GENREGS) { /* General registers (R0 - R15) are 32 bits. */ return 4; } else if (regno >= NUM_GENREGS && regno < NUM_REGS) { /* Special register (R16 - R31). cris_spec_regs is zero-based. Adjust regno accordingly. */ spec_regno = regno - NUM_GENREGS; /* The entries in cris_spec_regs are stored in register number order, which means we can shortcut into the array when searching it. */ for (i = spec_regno; cris_spec_regs[i].name != NULL; i++) { if (cris_spec_regs[i].number == spec_regno && cris_spec_reg_applicable (cris_spec_regs[i])) /* Go with the first applicable register. */ return cris_spec_regs[i].reg_size; } /* Special register not applicable to this CRIS version. */ return 0; } else { /* Invalid register. */ return -1; } } /* Nonzero if regno should not be fetched from the target. This is the case for unimplemented (size 0) and non-existant registers. */ int cris_cannot_fetch_register (int regno) { return ((regno < 0 || regno >= NUM_REGS) || (cris_register_size (regno) == 0)); } /* Nonzero if regno should not be written to the target, for various reasons. */ int cris_cannot_store_register (int regno) { /* There are three kinds of registers we refuse to write to. 1. Those that not implemented. 2. Those that are read-only (depends on the processor mode). 3. Those registers to which a write has no effect. */ if (regno < 0 || regno >= NUM_REGS || cris_register_size (regno) == 0) /* Not implemented. */ return 1; else if (regno == VR_REGNUM) /* Read-only. */ return 1; else if (regno == P0_REGNUM || regno == P4_REGNUM || regno == P8_REGNUM) /* Writing has no effect. */ return 1; else if (cris_mode () == CRIS_MODE_USER) { if (regno == IBR_REGNUM || regno == BAR_REGNUM || regno == BRP_REGNUM || regno == IRP_REGNUM) /* Read-only in user mode. */ return 1; } return 0; } /* Returns the register offset for the first byte of register regno's space in the saved register state. Returns -1 for an invalid or unimplemented register. */ int cris_register_offset (int regno) { int i; int reg_size; int offset = 0; if (regno >= 0 && regno < NUM_REGS) { /* FIXME: The offsets should be cached and calculated only once, when the architecture being debugged has changed. */ for (i = 0; i < regno; i++) offset += cris_register_size (i); return offset; } else { /* Invalid register. */ return -1; } } /* Return the GDB type (defined in gdbtypes.c) for the "standard" data type of data in register regno. */ struct type * cris_register_virtual_type (int regno) { if (regno == SP_REGNUM || regno == PC_REGNUM || (regno > P8_REGNUM && regno < USP_REGNUM)) { /* SP, PC, IBR, IRP, SRP, BAR, DCCR, BRP */ return lookup_pointer_type (builtin_type_void); } else if (regno == P8_REGNUM || regno == USP_REGNUM || (regno >= 0 && regno < SP_REGNUM)) { /* R0 - R13, P8, P15 */ return builtin_type_unsigned_long; } else if (regno > P3_REGNUM && regno < P8_REGNUM) { /* P4, CCR, DCR0, DCR1 */ return builtin_type_unsigned_short; } else if (regno > PC_REGNUM && regno < P4_REGNUM) { /* P0, P1, P2, P3 */ return builtin_type_unsigned_char; } else { /* Invalid register. */ return builtin_type_void; } } /* Stores a function return value of type type, where valbuf is the address of the value to be stored. */ /* In the original CRIS ABI, R10 is used to store return values. */ void cris_abi_original_store_return_value (struct type *type, char *valbuf) { int len = TYPE_LENGTH (type); if (len <= REGISTER_SIZE) deprecated_write_register_bytes (REGISTER_BYTE (RET_REGNUM), valbuf, len); else internal_error (__FILE__, __LINE__, "cris_abi_original_store_return_value: type length too large."); } /* In the CRIS ABI V2, R10 and R11 are used to store return values. */ void cris_abi_v2_store_return_value (struct type *type, char *valbuf) { int len = TYPE_LENGTH (type); if (len <= 2 * REGISTER_SIZE) { /* Note that this works since R10 and R11 are consecutive registers. */ deprecated_write_register_bytes (REGISTER_BYTE (RET_REGNUM), valbuf, len); } else internal_error (__FILE__, __LINE__, "cris_abi_v2_store_return_value: type length too large."); } /* Return the name of register regno as a string. Return NULL for an invalid or unimplemented register. */ const char * cris_register_name (int regno) { static char *cris_genreg_names[] = { "r0", "r1", "r2", "r3", \ "r4", "r5", "r6", "r7", \ "r8", "r9", "r10", "r11", \ "r12", "r13", "sp", "pc" }; int i; int spec_regno; if (regno >= 0 && regno < NUM_GENREGS) { /* General register. */ return cris_genreg_names[regno]; } else if (regno >= NUM_GENREGS && regno < NUM_REGS) { /* Special register (R16 - R31). cris_spec_regs is zero-based. Adjust regno accordingly. */ spec_regno = regno - NUM_GENREGS; /* The entries in cris_spec_regs are stored in register number order, which means we can shortcut into the array when searching it. */ for (i = spec_regno; cris_spec_regs[i].name != NULL; i++) { if (cris_spec_regs[i].number == spec_regno && cris_spec_reg_applicable (cris_spec_regs[i])) /* Go with the first applicable register. */ return cris_spec_regs[i].name; } /* Special register not applicable to this CRIS version. */ return NULL; } else { /* Invalid register. */ return NULL; } } int cris_register_bytes_ok (long bytes) { return (bytes == REGISTER_BYTES); } /* Extract from an array regbuf containing the raw register state a function return value of type type, and copy that, in virtual format, into valbuf. */ /* In the original CRIS ABI, R10 is used to return values. */ void cris_abi_original_extract_return_value (struct type *type, char *regbuf, char *valbuf) { int len = TYPE_LENGTH (type); if (len <= REGISTER_SIZE) memcpy (valbuf, regbuf + REGISTER_BYTE (RET_REGNUM), len); else internal_error (__FILE__, __LINE__, "cris_abi_original_extract_return_value: type length too large"); } /* In the CRIS ABI V2, R10 and R11 are used to store return values. */ void cris_abi_v2_extract_return_value (struct type *type, char *regbuf, char *valbuf) { int len = TYPE_LENGTH (type); if (len <= 2 * REGISTER_SIZE) memcpy (valbuf, regbuf + REGISTER_BYTE (RET_REGNUM), len); else internal_error (__FILE__, __LINE__, "cris_abi_v2_extract_return_value: type length too large"); } /* Store the address of the place in which to copy the structure the subroutine will return. In the CRIS ABI, R9 is used in order to pass the address of the allocated area where a structure return value must be stored. R9 is call-clobbered, which means we must save it here for later use. */ void cris_store_struct_return (CORE_ADDR addr, CORE_ADDR sp) { write_register (STR_REGNUM, addr); struct_return_address = addr; } /* Extract from regbuf the address where a function should return a structure value. It's not there in the CRIS ABI, so we must do it another way. */ CORE_ADDR cris_extract_struct_value_address (char *regbuf) { return struct_return_address; } /* Returns 1 if a value of the given type being returned from a function must have space allocated for it on the stack. gcc_p is true if the function being considered is known to have been compiled by GCC. In the CRIS ABI, structure return values are passed to the called function by reference in register R9 to a caller-allocated area, so this is always true. */ int cris_use_struct_convention (int gcc_p, struct type *type) { return 1; } /* Returns 1 if the given type will be passed by pointer rather than directly. */ /* In the original CRIS ABI, arguments shorter than or equal to 32 bits are passed by value. */ int cris_abi_original_reg_struct_has_addr (int gcc_p, struct type *type) { return (TYPE_LENGTH (type) > 4); } /* In the CRIS ABI V2, arguments shorter than or equal to 64 bits are passed by value. */ int cris_abi_v2_reg_struct_has_addr (int gcc_p, struct type *type) { return (TYPE_LENGTH (type) > 8); } /* Returns 1 if the function invocation represented by fi does not have a stack frame associated with it. Otherwise return 0. */ int cris_frameless_function_invocation (struct frame_info *fi) { if ((get_frame_type (fi) == SIGTRAMP_FRAME)) return 0; else return frameless_look_for_prologue (fi); } /* See frame.h. Determines the address of all registers in the current stack frame storing each in frame->saved_regs. Space for frame->saved_regs shall be allocated by FRAME_INIT_SAVED_REGS using either frame_saved_regs_zalloc or frame_obstack_alloc. */ void cris_frame_init_saved_regs (struct frame_info *fi) { CORE_ADDR ip; struct symtab_and_line sal; int best_limit; char *dummy_regs = deprecated_generic_find_dummy_frame (fi->pc, fi->frame); /* Examine the entire prologue. */ register int frameless_p = 0; /* Has this frame's registers already been initialized? */ if (fi->saved_regs) return; frame_saved_regs_zalloc (fi); if (dummy_regs) { /* I don't see this ever happening, considering the context in which cris_frame_init_saved_regs is called (always when we're not in a dummy frame). */ memcpy (&fi->saved_regs, dummy_regs, sizeof (fi->saved_regs)); } else { ip = get_pc_function_start (fi->pc); sal = find_pc_line (ip, 0); /* If there is no symbol information then sal.end == 0, and we end up examining only the first instruction in the function prologue. Exaggerating the limit seems to be harmless. */ if (sal.end > 0) best_limit = sal.end; else best_limit = ip + 100; cris_examine (ip, best_limit, fi, frameless_p); } } /* Initialises the extra frame information at the creation of a new frame. The inparameter fromleaf is 0 when the call is from create_new_frame. When the call is from get_prev_frame_info, fromleaf is determined by cris_frameless_function_invocation. */ void cris_init_extra_frame_info (int fromleaf, struct frame_info *fi) { if (fi->next) { /* Called from get_prev_frame. */ fi->pc = FRAME_SAVED_PC (fi->next); } fi->extra_info = (struct frame_extra_info *) frame_obstack_alloc (sizeof (struct frame_extra_info)); fi->extra_info->return_pc = 0; fi->extra_info->leaf_function = 0; if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame)) { /* We need to setup fi->frame here because run_stack_dummy gets it wrong by assuming it's always FP. */ fi->frame = deprecated_read_register_dummy (fi->pc, fi->frame, SP_REGNUM); fi->extra_info->return_pc = deprecated_read_register_dummy (fi->pc, fi->frame, PC_REGNUM); /* FIXME: Is this necessarily true? */ fi->extra_info->leaf_function = 0; } else { cris_frame_init_saved_regs (fi); /* Check fromleaf/frameless_function_invocation. (FIXME) */ if (fi->saved_regs[SRP_REGNUM] != 0) { /* SRP was saved on the stack; non-leaf function. */ fi->extra_info->return_pc = read_memory_integer (fi->saved_regs[SRP_REGNUM], REGISTER_RAW_SIZE (SRP_REGNUM)); } else { /* SRP is still in a register; leaf function. */ fi->extra_info->return_pc = read_register (SRP_REGNUM); /* FIXME: Should leaf_function be set to 1 here? */ fi->extra_info->leaf_function = 1; } } } /* Return the content of the frame pointer in the present frame. In other words, determine the address of the calling function's frame. */ CORE_ADDR cris_frame_chain (struct frame_info *fi) { if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame)) { return fi->frame; } else if (!inside_entry_file (fi->pc)) { return read_memory_unsigned_integer (get_frame_base (fi), 4); } else { return 0; } } /* Return the saved PC (which equals the return address) of this frame. */ CORE_ADDR cris_frame_saved_pc (struct frame_info *fi) { return fi->extra_info->return_pc; } /* Setup the function arguments for calling a function in the inferior. */ CORE_ADDR cris_abi_original_push_arguments (int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr) { int stack_alloc; int stack_offset; int argreg; int argnum; struct type *type; int len; CORE_ADDR regval; char *val; /* Data and parameters reside in different areas on the stack. Both frame pointers grow toward higher addresses. */ CORE_ADDR fp_params; CORE_ADDR fp_data; /* Are we returning a value using a structure return or a normal value return? struct_addr is the address of the reserved space for the return structure to be written on the stack. */ if (struct_return) { write_register (STR_REGNUM, struct_addr); } /* Make sure there's space on the stack. Allocate space for data and a parameter to refer to that data. */ for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++) stack_alloc += (TYPE_LENGTH (VALUE_TYPE (args[argnum])) + REGISTER_SIZE); sp -= stack_alloc; /* We may over-allocate a little here, but that won't hurt anything. */ /* Initialize stack frame pointers. */ fp_params = sp; fp_data = sp + (nargs * REGISTER_SIZE); /* Now load as many as possible of the first arguments into registers, and push the rest onto the stack. */ argreg = ARG1_REGNUM; stack_offset = 0; for (argnum = 0; argnum < nargs; argnum++) { type = VALUE_TYPE (args[argnum]); len = TYPE_LENGTH (type); val = (char *) VALUE_CONTENTS (args[argnum]); if (len <= REGISTER_SIZE && argreg <= ARG4_REGNUM) { /* Data fits in a register; put it in the first available register. */ write_register (argreg, *(unsigned long *) val); argreg++; } else if (len > REGISTER_SIZE && argreg <= ARG4_REGNUM) { /* Data does not fit in register; pass it on the stack and put its address in the first available register. */ write_memory (fp_data, val, len); write_register (argreg, fp_data); fp_data += len; argreg++; } else if (len > REGISTER_SIZE) { /* Data does not fit in register; put both data and parameter on the stack. */ write_memory (fp_data, val, len); write_memory (fp_params, (char *) (&fp_data), REGISTER_SIZE); fp_data += len; fp_params += REGISTER_SIZE; } else { /* Data fits in a register, but we are out of registers; put the parameter on the stack. */ write_memory (fp_params, val, REGISTER_SIZE); fp_params += REGISTER_SIZE; } } return sp; } CORE_ADDR cris_abi_v2_push_arguments (int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr) { int stack_alloc; int stack_offset; int argreg; int argnum; CORE_ADDR regval; /* The function's arguments and memory allocated by gdb for the arguments to point at reside in separate areas on the stack. Both frame pointers grow toward higher addresses. */ CORE_ADDR fp_arg; CORE_ADDR fp_mem; /* Are we returning a value using a structure return or a normal value return? struct_addr is the address of the reserved space for the return structure to be written on the stack. */ if (struct_return) { write_register (STR_REGNUM, struct_addr); } /* Allocate enough to keep things word-aligned on both parts of the stack. */ stack_alloc = 0; for (argnum = 0; argnum < nargs; argnum++) { int len; int reg_demand; len = TYPE_LENGTH (VALUE_TYPE (args[argnum])); reg_demand = (len / REGISTER_SIZE) + (len % REGISTER_SIZE != 0 ? 1 : 0); /* reg_demand * REGISTER_SIZE is the amount of memory we might need to allocate for this argument. 2 * REGISTER_SIZE is the amount of stack space we might need to pass the argument itself (either by value or by reference). */ stack_alloc += (reg_demand * REGISTER_SIZE + 2 * REGISTER_SIZE); } sp -= stack_alloc; /* We may over-allocate a little here, but that won't hurt anything. */ /* Initialize frame pointers. */ fp_arg = sp; fp_mem = sp + (nargs * (2 * REGISTER_SIZE)); /* Now load as many as possible of the first arguments into registers, and push the rest onto the stack. */ argreg = ARG1_REGNUM; stack_offset = 0; for (argnum = 0; argnum < nargs; argnum++) { int len; char *val; int reg_demand; int i; len = TYPE_LENGTH (VALUE_TYPE (args[argnum])); val = (char *) VALUE_CONTENTS (args[argnum]); /* How may registers worth of storage do we need for this argument? */ reg_demand = (len / REGISTER_SIZE) + (len % REGISTER_SIZE != 0 ? 1 : 0); if (len <= (2 * REGISTER_SIZE) && (argreg + reg_demand - 1 <= ARG4_REGNUM)) { /* Data passed by value. Fits in available register(s). */ for (i = 0; i < reg_demand; i++) { write_register (argreg, *(unsigned long *) val); argreg++; val += REGISTER_SIZE; } } else if (len <= (2 * REGISTER_SIZE) && argreg <= ARG4_REGNUM) { /* Data passed by value. Does not fit in available register(s). Use the register(s) first, then the stack. */ for (i = 0; i < reg_demand; i++) { if (argreg <= ARG4_REGNUM) { write_register (argreg, *(unsigned long *) val); argreg++; val += REGISTER_SIZE; } else { /* I guess this memory write could write the remaining data all at once instead of in REGISTER_SIZE chunks. */ write_memory (fp_arg, val, REGISTER_SIZE); fp_arg += REGISTER_SIZE; val += REGISTER_SIZE; } } } else if (len > (2 * REGISTER_SIZE)) { /* Data passed by reference. Put it on the stack. */ write_memory (fp_mem, val, len); write_memory (fp_arg, (char *) (&fp_mem), REGISTER_SIZE); /* fp_mem need not be word-aligned since it's just a chunk of memory being pointed at. That is, += len would do. */ fp_mem += reg_demand * REGISTER_SIZE; fp_arg += REGISTER_SIZE; } else { /* Data passed by value. No available registers. Put it on the stack. */ write_memory (fp_arg, val, len); /* fp_arg must be word-aligned (i.e., don't += len) to match the function prologue. */ fp_arg += reg_demand * REGISTER_SIZE; } } return sp; } /* Never put the return address on the stack. The register SRP is pushed by the called function unless it is a leaf-function. Due to the BRP register the PC will change when continue is sent. */ CORE_ADDR cris_push_return_address (CORE_ADDR pc, CORE_ADDR sp) { write_register (SRP_REGNUM, CALL_DUMMY_ADDRESS ()); return sp; } /* Restore the machine to the state it had before the current frame was created. Discard the innermost frame from the stack and restore all saved registers. */ void cris_pop_frame (void) { register struct frame_info *fi = get_current_frame (); register int regno; register int stack_offset = 0; if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame)) { /* This happens when we hit a breakpoint set at the entry point, when returning from a dummy frame. */ generic_pop_dummy_frame (); } else { cris_frame_init_saved_regs (fi); /* For each register, the address of where it was saved on entry to the frame now lies in fi->saved_regs[regno], or zero if it was not saved. This includes special registers such as PC and FP saved in special ways in the stack frame. The SP_REGNUM is even more special, the address here is the SP for the next frame, not the address where the SP was saved. */ /* Restore general registers R0 - R7. They were pushed on the stack after SP was saved. */ for (regno = 0; regno < FP_REGNUM; regno++) { if (fi->saved_regs[regno]) { write_register (regno, read_memory_integer (fi->saved_regs[regno], 4)); } } if (fi->saved_regs[FP_REGNUM]) { /* Pop the frame pointer (R8). It was pushed before SP was saved. */ write_register (FP_REGNUM, read_memory_integer (fi->saved_regs[FP_REGNUM], 4)); stack_offset += 4; /* Not a leaf function. */ if (fi->saved_regs[SRP_REGNUM]) { /* SRP was pushed before SP was saved. */ stack_offset += 4; } /* Restore the SP and adjust for R8 and (possibly) SRP. */ write_register (SP_REGNUM, fi->saved_regs[FP_REGNUM] + stack_offset); } else { /* Currently, we can't get the correct info into fi->saved_regs without a frame pointer. */ } /* Restore the PC. */ write_register (PC_REGNUM, fi->extra_info->return_pc); } flush_cached_frames (); } /* Calculates a value that measures how good inst_args constraints an instruction. It stems from cris_constraint, found in cris-dis.c. */ static int constraint (unsigned int insn, const signed char *inst_args, inst_env_type *inst_env) { int retval = 0; int tmp, i; const char *s = inst_args; for (; *s; s++) switch (*s) { case 'm': if ((insn & 0x30) == 0x30) return -1; break; case 'S': /* A prefix operand. */ if (inst_env->prefix_found) break; else return -1; case 'B': /* A "push" prefix. (This check was REMOVED by san 970921.) Check for valid "push" size. In case of special register, it may be != 4. */ if (inst_env->prefix_found) break; else return -1; case 'D': retval = (((insn >> 0xC) & 0xF) == (insn & 0xF)); if (!retval) return -1; else retval += 4; break; case 'P': tmp = (insn >> 0xC) & 0xF; for (i = 0; cris_spec_regs[i].name != NULL; i++) { /* Since we match four bits, we will give a value of 4 - 1 = 3 in a match. If there is a corresponding exact match of a special register in another pattern, it will get a value of 4, which will be higher. This should be correct in that an exact pattern would match better that a general pattern. Note that there is a reason for not returning zero; the pattern for "clear" is partly matched in the bit-pattern (the two lower bits must be zero), while the bit-pattern for a move from a special register is matched in the register constraint. This also means we will will have a race condition if there is a partly match in three bits in the bit pattern. */ if (tmp == cris_spec_regs[i].number) { retval += 3; break; } } if (cris_spec_regs[i].name == NULL) return -1; break; } return retval; } /* Returns the number of bits set in the variable value. */ static int number_of_bits (unsigned int value) { int number_of_bits = 0; while (value != 0) { number_of_bits += 1; value &= (value - 1); } return number_of_bits; } /* Finds the address that should contain the single step breakpoint(s). It stems from code in cris-dis.c. */ static int find_cris_op (unsigned short insn, inst_env_type *inst_env) { int i; int max_level_of_match = -1; int max_matched = -1; int level_of_match; for (i = 0; cris_opcodes[i].name != NULL; i++) { if (((cris_opcodes[i].match & insn) == cris_opcodes[i].match) && ((cris_opcodes[i].lose & insn) == 0)) { level_of_match = constraint (insn, cris_opcodes[i].args, inst_env); if (level_of_match >= 0) { level_of_match += number_of_bits (cris_opcodes[i].match | cris_opcodes[i].lose); if (level_of_match > max_level_of_match) { max_matched = i; max_level_of_match = level_of_match; if (level_of_match == 16) { /* All bits matched, cannot find better. */ break; } } } } } return max_matched; } /* Attempts to find single-step breakpoints. Returns -1 on failure which is actually an internal error. */ static int find_step_target (inst_env_type *inst_env) { int i; int offset; unsigned short insn; /* Create a local register image and set the initial state. */ for (i = 0; i < NUM_GENREGS; i++) { inst_env->reg[i] = (unsigned long) read_register (i); } offset = NUM_GENREGS; for (i = 0; i < NUM_SPECREGS; i++) { inst_env->preg[i] = (unsigned long) read_register (offset + i); } inst_env->branch_found = 0; inst_env->slot_needed = 0; inst_env->delay_slot_pc_active = 0; inst_env->prefix_found = 0; inst_env->invalid = 0; inst_env->xflag_found = 0; inst_env->disable_interrupt = 0; /* Look for a step target. */ do { /* Read an instruction from the client. */ insn = read_memory_unsigned_integer (inst_env->reg[PC_REGNUM], 2); /* If the instruction is not in a delay slot the new content of the PC is [PC] + 2. If the instruction is in a delay slot it is not that simple. Since a instruction in a delay slot cannot change the content of the PC, it does not matter what value PC will have. Just make sure it is a valid instruction. */ if (!inst_env->delay_slot_pc_active) { inst_env->reg[PC_REGNUM] += 2; } else { inst_env->delay_slot_pc_active = 0; inst_env->reg[PC_REGNUM] = inst_env->delay_slot_pc; } /* Analyse the present instruction. */ i = find_cris_op (insn, inst_env); if (i == -1) { inst_env->invalid = 1; } else { cris_gdb_func (cris_opcodes[i].op, insn, inst_env); } } while (!inst_env->invalid && (inst_env->prefix_found || inst_env->xflag_found || inst_env->slot_needed)); return i; } /* There is no hardware single-step support. The function find_step_target digs through the opcodes in order to find all possible targets. Either one ordinary target or two targets for branches may be found. */ void cris_software_single_step (enum target_signal ignore, int insert_breakpoints) { inst_env_type inst_env; if (insert_breakpoints) { /* Analyse the present instruction environment and insert breakpoints. */ int status = find_step_target (&inst_env); if (status == -1) { /* Could not find a target. FIXME: Should do something. */ } else { /* Insert at most two breakpoints. One for the next PC content and possibly another one for a branch, jump, etc. */ next_pc = (CORE_ADDR) inst_env.reg[PC_REGNUM]; target_insert_breakpoint (next_pc, break_mem[0]); if (inst_env.branch_found && (CORE_ADDR) inst_env.branch_break_address != next_pc) { branch_target_address = (CORE_ADDR) inst_env.branch_break_address; target_insert_breakpoint (branch_target_address, break_mem[1]); branch_break_inserted = 1; } } } else { /* Remove breakpoints. */ target_remove_breakpoint (next_pc, break_mem[0]); if (branch_break_inserted) { target_remove_breakpoint (branch_target_address, break_mem[1]); branch_break_inserted = 0; } } } /* Calculates the prefix value for quick offset addressing mode. */ void quick_mode_bdap_prefix (unsigned short inst, inst_env_type *inst_env) { /* It's invalid to be in a delay slot. You can't have a prefix to this instruction (not 100% sure). */ if (inst_env->slot_needed || inst_env->prefix_found) { inst_env->invalid = 1; return; } inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)]; inst_env->prefix_value += cris_get_bdap_quick_offset (inst); /* A prefix doesn't change the xflag_found. But the rest of the flags need updating. */ inst_env->slot_needed = 0; inst_env->prefix_found = 1; } /* Updates the autoincrement register. The size of the increment is derived from the size of the operation. The PC is always kept aligned on even word addresses. */ void process_autoincrement (int size, unsigned short inst, inst_env_type *inst_env) { if (size == INST_BYTE_SIZE) { inst_env->reg[cris_get_operand1 (inst)] += 1; /* The PC must be word aligned, so increase the PC with one word even if the size is byte. */ if (cris_get_operand1 (inst) == REG_PC) { inst_env->reg[REG_PC] += 1; } } else if (size == INST_WORD_SIZE) { inst_env->reg[cris_get_operand1 (inst)] += 2; } else if (size == INST_DWORD_SIZE) { inst_env->reg[cris_get_operand1 (inst)] += 4; } else { /* Invalid size. */ inst_env->invalid = 1; } } /* Just a forward declaration. */ unsigned long get_data_from_address (unsigned short *inst, CORE_ADDR address); /* Calculates the prefix value for the general case of offset addressing mode. */ void bdap_prefix (unsigned short inst, inst_env_type *inst_env) { long offset; /* It's invalid to be in a delay slot. */ if (inst_env->slot_needed || inst_env->prefix_found) { inst_env->invalid = 1; return; } /* The calculation of prefix_value used to be after process_autoincrement, but that fails for an instruction such as jsr [$r0+12] which is encoded as 5f0d 0c00 30b9 when compiled with -fpic. Since PC is operand1 it mustn't be incremented until we have read it and what it points at. */ inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)]; /* The offset is an indirection of the contents of the operand1 register. */ inst_env->prefix_value += get_data_from_address (&inst, inst_env->reg[cris_get_operand1 (inst)]); if (cris_get_mode (inst) == AUTOINC_MODE) { process_autoincrement (cris_get_size (inst), inst, inst_env); } /* A prefix doesn't change the xflag_found. But the rest of the flags need updating. */ inst_env->slot_needed = 0; inst_env->prefix_found = 1; } /* Calculates the prefix value for the index addressing mode. */ void biap_prefix (unsigned short inst, inst_env_type *inst_env) { /* It's invalid to be in a delay slot. I can't see that it's possible to have a prefix to this instruction. So I will treat this as invalid. */ if (inst_env->slot_needed || inst_env->prefix_found) { inst_env->invalid = 1; return; } inst_env->prefix_value = inst_env->reg[cris_get_operand1 (inst)]; /* The offset is the operand2 value shifted the size of the instruction to the left. */ inst_env->prefix_value += inst_env->reg[cris_get_operand2 (inst)] << cris_get_size (inst); /* If the PC is operand1 (base) the address used is the address after the main instruction, i.e. address + 2 (the PC is already compensated for the prefix operation). */ if (cris_get_operand1 (inst) == REG_PC) { inst_env->prefix_value += 2; } /* A prefix doesn't change the xflag_found. But the rest of the flags need updating. */ inst_env->slot_needed = 0; inst_env->xflag_found = 0; inst_env->prefix_found = 1; } /* Calculates the prefix value for the double indirect addressing mode. */ void dip_prefix (unsigned short inst, inst_env_type *inst_env) { CORE_ADDR address; /* It's invalid to be in a delay slot. */ if (inst_env->slot_needed || inst_env->prefix_found) { inst_env->invalid = 1; return; } /* The prefix value is one dereference of the contents of the operand1 register. */ address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)]; inst_env->prefix_value = read_memory_unsigned_integer (address, 4); /* Check if the mode is autoincrement. */ if (cris_get_mode (inst) == AUTOINC_MODE) { inst_env->reg[cris_get_operand1 (inst)] += 4; } /* A prefix doesn't change the xflag_found. But the rest of the flags need updating. */ inst_env->slot_needed = 0; inst_env->xflag_found = 0; inst_env->prefix_found = 1; } /* Finds the destination for a branch with 8-bits offset. */ void eight_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env) { short offset; /* If we have a prefix or are in a delay slot it's bad. */ if (inst_env->slot_needed || inst_env->prefix_found) { inst_env->invalid = 1; return; } /* We have a branch, find out where the branch will land. */ offset = cris_get_branch_short_offset (inst); /* Check if the offset is signed. */ if (offset & BRANCH_SIGNED_SHORT_OFFSET_MASK) { offset |= 0xFF00; } /* The offset ends with the sign bit, set it to zero. The address should always be word aligned. */ offset &= ~BRANCH_SIGNED_SHORT_OFFSET_MASK; inst_env->branch_found = 1; inst_env->branch_break_address = inst_env->reg[REG_PC] + offset; inst_env->slot_needed = 1; inst_env->prefix_found = 0; inst_env->xflag_found = 0; inst_env->disable_interrupt = 1; } /* Finds the destination for a branch with 16-bits offset. */ void sixteen_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env) { short offset; /* If we have a prefix or is in a delay slot it's bad. */ if (inst_env->slot_needed || inst_env->prefix_found) { inst_env->invalid = 1; return; } /* We have a branch, find out the offset for the branch. */ offset = read_memory_integer (inst_env->reg[REG_PC], 2); /* The instruction is one word longer than normal, so add one word to the PC. */ inst_env->reg[REG_PC] += 2; inst_env->branch_found = 1; inst_env->branch_break_address = inst_env->reg[REG_PC] + offset; inst_env->slot_needed = 1; inst_env->prefix_found = 0; inst_env->xflag_found = 0; inst_env->disable_interrupt = 1; } /* Handles the ABS instruction. */ void abs_op (unsigned short inst, inst_env_type *inst_env) { long value; /* ABS can't have a prefix, so it's bad if it does. */ if (inst_env->prefix_found) { inst_env->invalid = 1; return; } /* Check if the operation affects the PC. */ if (cris_get_operand2 (inst) == REG_PC) { /* It's invalid to change to the PC if we are in a delay slot. */ if (inst_env->slot_needed) { inst_env->invalid = 1; return; } value = (long) inst_env->reg[REG_PC]; /* The value of abs (SIGNED_DWORD_MASK) is SIGNED_DWORD_MASK. */ if (value != SIGNED_DWORD_MASK) { value = -value; inst_env->reg[REG_PC] = (long) value; } } inst_env->slot_needed = 0; inst_env->prefix_found = 0; inst_env->xflag_found = 0; inst_env->disable_interrupt = 0; } /* Handles the ADDI instruction. */ void addi_op (unsigned short inst, inst_env_type *inst_env) { /* It's invalid to have the PC as base register. And ADDI can't have a prefix. */ if (inst_env->prefix_found || (cris_get_operand1 (inst) == REG_PC)) { inst_env->invalid = 1; return; } inst_env->slot_needed = 0; inst_env->prefix_found = 0; inst_env->xflag_found = 0; inst_env->disable_interrupt = 0; } /* Handles the ASR instruction. */ void asr_op (unsigned short inst, inst_env_type *inst_env) { int shift_steps; unsigned long value; unsigned long signed_extend_mask = 0; /* ASR can't have a prefix, so check that it doesn't. */ if (inst_env->prefix_found) { inst_env->invalid = 1; return; } /* Check if the PC is the target register. */ if (cris_get_operand2 (inst) == REG_PC) { /* It's invalid to change the PC in a delay slot. */ if (inst_env->slot_needed) { inst_env->invalid = 1; return; } /* Get the number of bits to shift. */ shift_steps = cris_get_asr_shift_steps (inst_env->reg[cris_get_operand1 (inst)]); value = inst_env->reg[REG_PC]; /* Find out how many bits the operation should apply to. */ if (cris_get_size (inst) == INST_BYTE_SIZE) { if (value & SIGNED_BYTE_MASK) { signed_extend_mask = 0xFF; signed_extend_mask = signed_extend_mask >> shift_steps; signed_extend_mask = ~signed_extend_mask; } value = value >> shift_steps; value |= signed_extend_mask; value &= 0xFF; inst_env->reg[REG_PC] &= 0xFFFFFF00; inst_env->reg[REG_PC] |= value; } else if (cris_get_size (inst) == INST_WORD_SIZE) { if (value & SIGNED_WORD_MASK) { signed_extend_mask = 0xFFFF; signed_extend_mask = signed_extend_mask >> shift_steps; signed_extend_mask = ~signed_extend_mask; } value = value >> shift_steps; value |= signed_extend_mask; value &= 0xFFFF; inst_env->reg[REG_PC] &= 0xFFFF0000; inst_env->reg[REG_PC] |= value; } else if (cris_get_size (inst) == INST_DWORD_SIZE) { if (value & SIGNED_DWORD_MASK) { signed_extend_mask = 0xFFFFFFFF; signed_extend_mask = signed_extend_mask >> shift_steps; signed_extend_mask = ~signed_extend_mask; } value = value >> shift_steps; value |= signed_extend_mask; inst_env->reg[REG_PC] = value; } } inst_env->slot_needed = 0; inst_env->prefix_found = 0; inst_env->xflag_found = 0; inst_env->disable_interrupt = 0; } /* Handles the ASRQ instruction. */ void asrq_op (unsigned short inst, inst_env_type *inst_env) { int shift_steps; unsigned long value; unsigned long signed_extend_mask = 0; /* ASRQ can't have a prefix, so check that it doesn't. */ if (inst_env->prefix_found) { inst_env->invalid = 1; return; } /* Check if the PC is the target register. */ if (cris_get_operand2 (inst) == REG_PC) { /* It's invalid to change the PC in a delay slot. */ if (inst_env->slot_needed) { inst_env->invalid = 1; return; } /* The shift size is given as a 5 bit quick value, i.e. we don't want the the sign bit of the quick value. */ shift_steps = cris_get_asr_shift_steps (inst); value = inst_env->reg[REG_PC]; if (value & SIGNED_DWORD_MASK) { signed_extend_mask = 0xFFFFFFFF; signed_extend_mask = signed_extend_mask >> shift_steps; signed_extend_mask = ~signed_extend_mask; } value = value >> shift_steps; value |= signed_extend_mask; inst_env->reg[REG_PC] = value; } inst_env->slot_needed = 0; inst_env->prefix_found = 0; inst_env->xflag_found = 0; inst_env->disable_interrupt = 0; } /* Handles the AX, EI and SETF instruction. */ void ax_ei_setf_op (unsigned short inst, inst_env_type *inst_env) { if (inst_env->prefix_found) { inst_env->invalid = 1; return; } /* Check if the instruction is setting the X flag. */ if (cris_is_xflag_bit_on (inst)) { inst_env->xflag_found = 1; } else { inst_env->xflag_found = 0; } inst_env->slot_needed = 0; inst_env->prefix_found = 0; inst_env->disable_interrupt = 1; } /* Checks if the instruction is in assign mode. If so, it updates the assign register. Note that check_assign assumes that the caller has checked that there is a prefix to this instruction. The mode check depends on this. */ void check_assign (unsigned short inst, inst_env_type *inst_env) { /* Check if it's an assign addressing mode. */ if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE) { /* Assign the prefix value to operand 1. */ inst_env->reg[cris_get_operand1 (inst)] = inst_env->prefix_value; } } /* Handles the 2-operand BOUND instruction. */ void two_operand_bound_op (unsigned short inst, inst_env_type *inst_env) { /* It's invalid to have the PC as the index operand. */ if (cris_get_operand2 (inst) == REG_PC) { inst_env->invalid = 1; return; } /* Check if we have a prefix. */ if (inst_env->prefix_found) { check_assign (inst, inst_env); } /* Check if this is an autoincrement mode. */ else if (cris_get_mode (inst) == AUTOINC_MODE) { /* It's invalid to change the PC in a delay slot. */ if (inst_env->slot_needed) { inst_env->invalid = 1; return; } process_autoincrement (cris_get_size (inst), inst, inst_env); } inst_env->slot_needed = 0; inst_env->prefix_found = 0; inst_env->xflag_found = 0; inst_env->disable_interrupt = 0; } /* Handles the 3-operand BOUND instruction. */ void three_operand_bound_op (unsigned short inst, inst_env_type *inst_env) { /* It's an error if we haven't got a prefix. And it's also an error if the PC is the destination register. */ if ((!inst_env->prefix_found) || (cris_get_operand1 (inst) == REG_PC)) { inst_env->invalid = 1; return; } inst_env->slot_needed = 0; inst_env->prefix_found = 0; inst_env->xflag_found = 0; inst_env->disable_interrupt = 0; } /* Clears the status flags in inst_env. */ void btst_nop_op (unsigned short inst, inst_env_type *inst_env) { /* It's an error if we have got a prefix. */ if (inst_env->prefix_found) { inst_env->invalid = 1; return; } inst_env->slot_needed = 0; inst_env->prefix_found = 0; inst_env->xflag_found = 0; inst_env->disable_interrupt = 0; } /* Clears the status flags in inst_env. */ void clearf_di_op (unsigned short inst, inst_env_type *inst_env) { /* It's an error if we have got a prefix. */ if (inst_env->prefix_found) { inst_env->invalid = 1; return; } inst_env->slot_needed = 0; inst_env->prefix_found = 0; inst_env->xflag_found = 0; inst_env->disable_interrupt = 1; } /* Handles the CLEAR instruction if it's in register mode. */ void reg_mode_clear_op (unsigned short inst, inst_env_type *inst_env) { /* Check if the target is the PC. */ if (cris_get_operand2 (inst) == REG_PC) { /* The instruction will clear the instruction's size bits. */ int clear_size = cris_get_clear_size (inst); if (clear_size == INST_BYTE_SIZE) { inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFFFF00; } if (clear_size == INST_WORD_SIZE) { inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFF0000; } if (clear_size == INST_DWORD_SIZE) { inst_env->delay_slot_pc = 0x0; } /* The jump will be delayed with one delay slot. So we need a delay slot. */ inst_env->slot_needed = 1; inst_env->delay_slot_pc_active = 1; } else { /* The PC will not change => no delay slot. */ inst_env->slot_needed = 0; } inst_env->prefix_found = 0; inst_env->xflag_found = 0; inst_env->disable_interrupt = 0; } /* Handles the TEST instruction if it's in register mode. */ void reg_mode_test_op (unsigned short inst, inst_env_type *inst_env) { /* It's an error if we have got a prefix. */ if (inst_env->prefix_found) { inst_env->invalid = 1; return; } inst_env->slot_needed = 0; inst_env->prefix_found = 0; inst_env->xflag_found = 0; inst_env->disable_interrupt = 0; } /* Handles the CLEAR and TEST instruction if the instruction isn't in register mode. */ void none_reg_mode_clear_test_op (unsigned short inst, inst_env_type *inst_env) { /* Check if we are in a prefix mode. */ if (inst_env->prefix_found) { /* The only way the PC can change is if this instruction is in assign addressing mode. */ check_assign (inst, inst_env); } /* Indirect mode can't change the PC so just check if the mode is autoincrement. */ else if (cris_get_mode (inst) == AUTOINC_MODE) { process_autoincrement (cris_get_size (inst), inst, inst_env); } inst_env->slot_needed = 0; inst_env->prefix_found = 0; inst_env->xflag_found = 0; inst_env->disable_interrupt = 0; } /* Checks that the PC isn't the destination register or the instructions has a prefix. */ void dstep_logshift_mstep_neg_not_op (unsigned short inst, inst_env_type *inst_env) { /* It's invalid to have the PC as the destination. The instruction can't have a prefix. */ if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found) { inst_env->invalid = 1; return; } inst_env->slot_needed = 0; inst_env->prefix_found = 0; inst_env->xflag_found = 0; inst_env->disable_interrupt = 0; } /* Checks that the instruction doesn't have a prefix. */ void break_op (unsigned short inst, inst_env_type *inst_env) { /* The instruction can't have a prefix. */ if (inst_env->prefix_found) { inst_env->invalid = 1; return; } inst_env->slot_needed = 0; inst_env->prefix_found = 0; inst_env->xflag_found = 0; inst_env->disable_interrupt = 1; } /* Checks that the PC isn't the destination register and that the instruction doesn't have a prefix. */ void scc_op (unsigned short inst, inst_env_type *inst_env) { /* It's invalid to have the PC as the destination. The instruction can't have a prefix. */ if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found) { inst_env->invalid = 1; return; } inst_env->slot_needed = 0; inst_env->prefix_found = 0; inst_env->xflag_found = 0; inst_env->disable_interrupt = 1; } /* Handles the register mode JUMP instruction. */ void reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env) { /* It's invalid to do a JUMP in a delay slot. The mode is register, so you can't have a prefix. */ if ((inst_env->slot_needed) || (inst_env->prefix_found)) { inst_env->invalid = 1; return; } /* Just change the PC. */ inst_env->reg[REG_PC] = inst_env->reg[cris_get_operand1 (inst)]; inst_env->slot_needed = 0; inst_env->prefix_found = 0; inst_env->xflag_found = 0; inst_env->disable_interrupt = 1; } /* Handles the JUMP instruction for all modes except register. */ void none_reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env) { unsigned long newpc; CORE_ADDR address; /* It's invalid to do a JUMP in a delay slot. */ if (inst_env->slot_needed) { inst_env->invalid = 1; } else { /* Check if we have a prefix. */ if (inst_env->prefix_found) { check_assign (inst, inst_env); /* Get the new value for the the PC. */ newpc = read_memory_unsigned_integer ((CORE_ADDR) inst_env->prefix_value, 4); } else { /* Get the new value for the PC. */ address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)]; newpc = read_memory_unsigned_integer (address, 4); /* Check if we should increment a register. */ if (cris_get_mode (inst) == AUTOINC_MODE) { inst_env->reg[cris_get_operand1 (inst)] += 4; } } inst_env->reg[REG_PC] = newpc; } inst_env->slot_needed = 0; inst_env->prefix_found = 0; inst_env->xflag_found = 0; inst_env->disable_interrupt = 1; } /* Handles moves to special registers (aka P-register) for all modes. */ void move_to_preg_op (unsigned short inst, inst_env_type *inst_env) { if (inst_env->prefix_found) { /* The instruction has a prefix that means we are only interested if the instruction is in assign mode. */ if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE) { /* The prefix handles the problem if we are in a delay slot. */ if (cris_get_operand1 (inst) == REG_PC) { /* Just take care of the assign. */ check_assign (inst, inst_env); } } } else if (cris_get_mode (inst) == AUTOINC_MODE) { /* The instruction doesn't have a prefix, the only case left that we are interested in is the autoincrement mode. */ if (cris_get_operand1 (inst) == REG_PC) { /* If the PC is to be incremented it's invalid to be in a delay slot. */ if (inst_env->slot_needed) { inst_env->invalid = 1; return; } /* The increment depends on the size of the special register. */ if (cris_register_size (cris_get_operand2 (inst)) == 1) { process_autoincrement (INST_BYTE_SIZE, inst, inst_env); } else if (cris_register_size (cris_get_operand2 (inst)) == 2) { process_autoincrement (INST_WORD_SIZE, inst, inst_env); } else { process_autoincrement (INST_DWORD_SIZE, inst, inst_env); } } } inst_env->slot_needed = 0; inst_env->prefix_found = 0; inst_env->xflag_found = 0; inst_env->disable_interrupt = 1; } /* Handles moves from special registers (aka P-register) for all modes except register. */ void none_reg_mode_move_from_preg_op (unsigned short inst, inst_env_type *inst_env) { if (inst_env->prefix_found) { /* The instruction has a prefix that means we are only interested if the instruction is in assign mode. */ if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE) { /* The prefix handles the problem if we are in a delay slot. */ if (cris_get_operand1 (inst) == REG_PC) { /* Just take care of the assign. */ check_assign (inst, inst_env); } } } /* The instruction doesn't have a prefix, the only case left that we are interested in is the autoincrement mode. */ else if (cris_get_mode (inst) == AUTOINC_MODE) { if (cris_get_operand1 (inst) == REG_PC) { /* If the PC is to be incremented it's invalid to be in a delay slot. */ if (inst_env->slot_needed) { inst_env->invalid = 1; return; } /* The increment depends on the size of the special register. */ if (cris_register_size (cris_get_operand2 (inst)) == 1) { process_autoincrement (INST_BYTE_SIZE, inst, inst_env); } else if (cris_register_size (cris_get_operand2 (inst)) == 2) { process_autoincrement (INST_WORD_SIZE, inst, inst_env); } else { process_autoincrement (INST_DWORD_SIZE, inst, inst_env); } } } inst_env->slot_needed = 0; inst_env->prefix_found = 0; inst_env->xflag_found = 0; inst_env->disable_interrupt = 1; } /* Handles moves from special registers (aka P-register) when the mode is register. */ void reg_mode_move_from_preg_op (unsigned short inst, inst_env_type *inst_env) { /* Register mode move from special register can't have a prefix. */ if (inst_env->prefix_found) { inst_env->invalid = 1; return; } if (cris_get_operand1 (inst) == REG_PC) { /* It's invalid to change the PC in a delay slot. */ if (inst_env->slot_needed) { inst_env->invalid = 1; return; } /* The destination is the PC, the jump will have a delay slot. */ inst_env->delay_slot_pc = inst_env->preg[cris_get_operand2 (inst)]; inst_env->slot_needed = 1; inst_env->delay_slot_pc_active = 1; } else { /* If the destination isn't PC, there will be no jump. */ inst_env->slot_needed = 0; } inst_env->prefix_found = 0; inst_env->xflag_found = 0; inst_env->disable_interrupt = 1; } /* Handles the MOVEM from memory to general register instruction. */ void move_mem_to_reg_movem_op (unsigned short inst, inst_env_type *inst_env) { if (inst_env->prefix_found) { /* The prefix handles the problem if we are in a delay slot. Is the MOVEM instruction going to change the PC? */ if (cris_get_operand2 (inst) >= REG_PC) { inst_env->reg[REG_PC] = read_memory_unsigned_integer (inst_env->prefix_value, 4); } /* The assign value is the value after the increment. Normally, the assign value is the value before the increment. */ if ((cris_get_operand1 (inst) == REG_PC) && (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)) { inst_env->reg[REG_PC] = inst_env->prefix_value; inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1); } } else { /* Is the MOVEM instruction going to change the PC? */ if (cris_get_operand2 (inst) == REG_PC) { /* It's invalid to change the PC in a delay slot. */ if (inst_env->slot_needed) { inst_env->invalid = 1; return; } inst_env->reg[REG_PC] = read_memory_unsigned_integer (inst_env->reg[cris_get_operand1 (inst)], 4); } /* The increment is not depending on the size, instead it's depending on the number of registers loaded from memory. */ if ((cris_get_operand1 (inst) == REG_PC) && (cris_get_mode (inst) == AUTOINC_MODE)) { /* It's invalid to change the PC in a delay slot. */ if (inst_env->slot_needed) { inst_env->invalid = 1; return; } inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1); } } inst_env->slot_needed = 0; inst_env->prefix_found = 0; inst_env->xflag_found = 0; inst_env->disable_interrupt = 0; } /* Handles the MOVEM to memory from general register instruction. */ void move_reg_to_mem_movem_op (unsigned short inst, inst_env_type *inst_env) { if (inst_env->prefix_found) { /* The assign value is the value after the increment. Normally, the assign value is the value before the increment. */ if ((cris_get_operand1 (inst) == REG_PC) && (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)) { /* The prefix handles the problem if we are in a delay slot. */ inst_env->reg[REG_PC] = inst_env->prefix_value; inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1); } } else { /* The increment is not depending on the size, instead it's depending on the number of registers loaded to memory. */ if ((cris_get_operand1 (inst) == REG_PC) && (cris_get_mode (inst) == AUTOINC_MODE)) { /* It's invalid to change the PC in a delay slot. */ if (inst_env->slot_needed) { inst_env->invalid = 1; return; } inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1); } } inst_env->slot_needed = 0; inst_env->prefix_found = 0; inst_env->xflag_found = 0; inst_env->disable_interrupt = 0; } /* Handles the pop instruction to a general register. POP is a assembler macro for MOVE.D [SP+], Rd. */ void reg_pop_op (unsigned short inst, inst_env_type *inst_env) { /* POP can't have a prefix. */ if (inst_env->prefix_found) { inst_env->invalid = 1; return; } if (cris_get_operand2 (inst) == REG_PC) { /* It's invalid to change the PC in a delay slot. */ if (inst_env->slot_needed) { inst_env->invalid = 1; return; } inst_env->reg[REG_PC] = read_memory_unsigned_integer (inst_env->reg[REG_SP], 4); } inst_env->slot_needed = 0; inst_env->prefix_found = 0; inst_env->xflag_found = 0; inst_env->disable_interrupt = 0; } /* Handles moves from register to memory. */ void move_reg_to_mem_index_inc_op (unsigned short inst, inst_env_type *inst_env) { /* Check if we have a prefix. */ if (inst_env->prefix_found) { /* The only thing that can change the PC is an assign. */ check_assign (inst, inst_env); } else if ((cris_get_operand1 (inst) == REG_PC) && (cris_get_mode (inst) == AUTOINC_MODE)) { /* It's invalid to change the PC in a delay slot. */ if (inst_env->slot_needed) { inst_env->invalid = 1; return; } process_autoincrement (cris_get_size (inst), inst, inst_env); } inst_env->slot_needed = 0; inst_env->prefix_found = 0; inst_env->xflag_found = 0; inst_env->disable_interrupt = 0; } /* Handles the intructions that's not yet implemented, by setting inst_env->invalid to true. */ void not_implemented_op (unsigned short inst, inst_env_type *inst_env) { inst_env->invalid = 1; } /* Handles the XOR instruction. */ void xor_op (unsigned short inst, inst_env_type *inst_env) { /* XOR can't have a prefix. */ if (inst_env->prefix_found) { inst_env->invalid = 1; return; } /* Check if the PC is the target. */ if (cris_get_operand2 (inst) == REG_PC) { /* It's invalid to change the PC in a delay slot. */ if (inst_env->slot_needed) { inst_env->invalid = 1; return; } inst_env->reg[REG_PC] ^= inst_env->reg[cris_get_operand1 (inst)]; } inst_env->slot_needed = 0; inst_env->prefix_found = 0; inst_env->xflag_found = 0; inst_env->disable_interrupt = 0; } /* Handles the MULS instruction. */ void muls_op (unsigned short inst, inst_env_type *inst_env) { /* MULS/U can't have a prefix. */ if (inst_env->prefix_found) { inst_env->invalid = 1; return; } /* Consider it invalid if the PC is the target. */ if (cris_get_operand2 (inst) == REG_PC) { inst_env->invalid = 1; return; } inst_env->slot_needed = 0; inst_env->prefix_found = 0; inst_env->xflag_found = 0; inst_env->disable_interrupt = 0; } /* Handles the MULU instruction. */ void mulu_op (unsigned short inst, inst_env_type *inst_env) { /* MULS/U can't have a prefix. */ if (inst_env->prefix_found) { inst_env->invalid = 1; return; } /* Consider it invalid if the PC is the target. */ if (cris_get_operand2 (inst) == REG_PC) { inst_env->invalid = 1; return; } inst_env->slot_needed = 0; inst_env->prefix_found = 0; inst_env->xflag_found = 0; inst_env->disable_interrupt = 0; } /* Calculate the result of the instruction for ADD, SUB, CMP AND, OR and MOVE. The MOVE instruction is the move from source to register. */ void add_sub_cmp_and_or_move_action (unsigned short inst, inst_env_type *inst_env, unsigned long source1, unsigned long source2) { unsigned long pc_mask; unsigned long operation_mask; /* Find out how many bits the operation should apply to. */ if (cris_get_size (inst) == INST_BYTE_SIZE) { pc_mask = 0xFFFFFF00; operation_mask = 0xFF; } else if (cris_get_size (inst) == INST_WORD_SIZE) { pc_mask = 0xFFFF0000; operation_mask = 0xFFFF; } else if (cris_get_size (inst) == INST_DWORD_SIZE) { pc_mask = 0x0; operation_mask = 0xFFFFFFFF; } else { /* The size is out of range. */ inst_env->invalid = 1; return; } /* The instruction just works on uw_operation_mask bits. */ source2 &= operation_mask; source1 &= operation_mask; /* Now calculate the result. The opcode's 3 first bits separates the different actions. */ switch (cris_get_opcode (inst) & 7) { case 0: /* add */ source1 += source2; break; case 1: /* move */ source1 = source2; break; case 2: /* subtract */ source1 -= source2; break; case 3: /* compare */ break; case 4: /* and */ source1 &= source2; break; case 5: /* or */ source1 |= source2; break; default: inst_env->invalid = 1; return; break; } /* Make sure that the result doesn't contain more than the instruction size bits. */ source2 &= operation_mask; /* Calculate the new breakpoint address. */ inst_env->reg[REG_PC] &= pc_mask; inst_env->reg[REG_PC] |= source1; } /* Extends the value from either byte or word size to a dword. If the mode is zero extend then the value is extended with zero. If instead the mode is signed extend the sign bit of the value is taken into consideration. */ unsigned long do_sign_or_zero_extend (unsigned long value, unsigned short *inst) { /* The size can be either byte or word, check which one it is. Don't check the highest bit, it's indicating if it's a zero or sign extend. */ if (cris_get_size (*inst) & INST_WORD_SIZE) { /* Word size. */ value &= 0xFFFF; /* Check if the instruction is signed extend. If so, check if value has the sign bit on. */ if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_WORD_MASK)) { value |= SIGNED_WORD_EXTEND_MASK; } } else { /* Byte size. */ value &= 0xFF; /* Check if the instruction is signed extend. If so, check if value has the sign bit on. */ if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_BYTE_MASK)) { value |= SIGNED_BYTE_EXTEND_MASK; } } /* The size should now be dword. */ cris_set_size_to_dword (inst); return value; } /* Handles the register mode for the ADD, SUB, CMP, AND, OR and MOVE instruction. The MOVE instruction is the move from source to register. */ void reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst, inst_env_type *inst_env) { unsigned long operand1; unsigned long operand2; /* It's invalid to have a prefix to the instruction. This is a register mode instruction and can't have a prefix. */ if (inst_env->prefix_found) { inst_env->invalid = 1; return; } /* Check if the instruction has PC as its target. */ if (cris_get_operand2 (inst) == REG_PC) { if (inst_env->slot_needed) { inst_env->invalid = 1; return; } /* The instruction has the PC as its target register. */ operand1 = inst_env->reg[cris_get_operand1 (inst)]; operand2 = inst_env->reg[REG_PC]; /* Check if it's a extend, signed or zero instruction. */ if (cris_get_opcode (inst) < 4) { operand1 = do_sign_or_zero_extend (operand1, &inst); } /* Calculate the PC value after the instruction, i.e. where the breakpoint should be. The order of the udw_operands is vital. */ add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1); } inst_env->slot_needed = 0; inst_env->prefix_found = 0; inst_env->xflag_found = 0; inst_env->disable_interrupt = 0; } /* Returns the data contained at address. The size of the data is derived from the size of the operation. If the instruction is a zero or signed extend instruction, the size field is changed in instruction. */ unsigned long get_data_from_address (unsigned short *inst, CORE_ADDR address) { int size = cris_get_size (*inst); unsigned long value; /* If it's an extend instruction we don't want the signed extend bit, because it influences the size. */ if (cris_get_opcode (*inst) < 4) { size &= ~SIGNED_EXTEND_BIT_MASK; } /* Is there a need for checking the size? Size should contain the number of bytes to read. */ size = 1 << size; value = read_memory_unsigned_integer (address, size); /* Check if it's an extend, signed or zero instruction. */ if (cris_get_opcode (*inst) < 4) { value = do_sign_or_zero_extend (value, inst); } return value; } /* Handles the assign addresing mode for the ADD, SUB, CMP, AND, OR and MOVE instructions. The MOVE instruction is the move from source to register. */ void handle_prefix_assign_mode_for_aritm_op (unsigned short inst, inst_env_type *inst_env) { unsigned long operand2; unsigned long operand3; check_assign (inst, inst_env); if (cris_get_operand2 (inst) == REG_PC) { operand2 = inst_env->reg[REG_PC]; /* Get the value of the third operand. */ operand3 = get_data_from_address (&inst, inst_env->prefix_value); /* Calculate the PC value after the instruction, i.e. where the breakpoint should be. The order of the udw_operands is vital. */ add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3); } inst_env->slot_needed = 0; inst_env->prefix_found = 0; inst_env->xflag_found = 0; inst_env->disable_interrupt = 0; } /* Handles the three-operand addressing mode for the ADD, SUB, CMP, AND and OR instructions. Note that for this to work as expected, the calling function must have made sure that there is a prefix to this instruction. */ void three_operand_add_sub_cmp_and_or_op (unsigned short inst, inst_env_type *inst_env) { unsigned long operand2; unsigned long operand3; if (cris_get_operand1 (inst) == REG_PC) { /* The PC will be changed by the instruction. */ operand2 = inst_env->reg[cris_get_operand2 (inst)]; /* Get the value of the third operand. */ operand3 = get_data_from_address (&inst, inst_env->prefix_value); /* Calculate the PC value after the instruction, i.e. where the breakpoint should be. */ add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3); } inst_env->slot_needed = 0; inst_env->prefix_found = 0; inst_env->xflag_found = 0; inst_env->disable_interrupt = 0; } /* Handles the index addresing mode for the ADD, SUB, CMP, AND, OR and MOVE instructions. The MOVE instruction is the move from source to register. */ void handle_prefix_index_mode_for_aritm_op (unsigned short inst, inst_env_type *inst_env) { if (cris_get_operand1 (inst) != cris_get_operand2 (inst)) { /* If the instruction is MOVE it's invalid. If the instruction is ADD, SUB, AND or OR something weird is going on (if everything works these instructions should end up in the three operand version). */ inst_env->invalid = 1; return; } else { /* three_operand_add_sub_cmp_and_or does the same as we should do here so use it. */ three_operand_add_sub_cmp_and_or_op (inst, inst_env); } inst_env->slot_needed = 0; inst_env->prefix_found = 0; inst_env->xflag_found = 0; inst_env->disable_interrupt = 0; } /* Handles the autoincrement and indirect addresing mode for the ADD, SUB, CMP, AND OR and MOVE instruction. The MOVE instruction is the move from source to register. */ void handle_inc_and_index_mode_for_aritm_op (unsigned short inst, inst_env_type *inst_env) { unsigned long operand1; unsigned long operand2; unsigned long operand3; int size; /* The instruction is either an indirect or autoincrement addressing mode. Check if the destination register is the PC. */ if (cris_get_operand2 (inst) == REG_PC) { /* Must be done here, get_data_from_address may change the size field. */ size = cris_get_size (inst); operand2 = inst_env->reg[REG_PC]; /* Get the value of the third operand, i.e. the indirect operand. */ operand1 = inst_env->reg[cris_get_operand1 (inst)]; operand3 = get_data_from_address (&inst, operand1); /* Calculate the PC value after the instruction, i.e. where the breakpoint should be. The order of the udw_operands is vital. */ add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3); } /* If this is an autoincrement addressing mode, check if the increment changes the PC. */ if ((cris_get_operand1 (inst) == REG_PC) && (cris_get_mode (inst) == AUTOINC_MODE)) { /* Get the size field. */ size = cris_get_size (inst); /* If it's an extend instruction we don't want the signed extend bit, because it influences the size. */ if (cris_get_opcode (inst) < 4) { size &= ~SIGNED_EXTEND_BIT_MASK; } process_autoincrement (size, inst, inst_env); } inst_env->slot_needed = 0; inst_env->prefix_found = 0; inst_env->xflag_found = 0; inst_env->disable_interrupt = 0; } /* Handles the two-operand addressing mode, all modes except register, for the ADD, SUB CMP, AND and OR instruction. */ void none_reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst, inst_env_type *inst_env) { if (inst_env->prefix_found) { if (cris_get_mode (inst) == PREFIX_INDEX_MODE) { handle_prefix_index_mode_for_aritm_op (inst, inst_env); } else if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE) { handle_prefix_assign_mode_for_aritm_op (inst, inst_env); } else { /* The mode is invalid for a prefixed base instruction. */ inst_env->invalid = 1; return; } } else { handle_inc_and_index_mode_for_aritm_op (inst, inst_env); } } /* Handles the quick addressing mode for the ADD and SUB instruction. */ void quick_mode_add_sub_op (unsigned short inst, inst_env_type *inst_env) { unsigned long operand1; unsigned long operand2; /* It's a bad idea to be in a prefix instruction now. This is a quick mode instruction and can't have a prefix. */ if (inst_env->prefix_found) { inst_env->invalid = 1; return; } /* Check if the instruction has PC as its target. */ if (cris_get_operand2 (inst) == REG_PC) { if (inst_env->slot_needed) { inst_env->invalid = 1; return; } operand1 = cris_get_quick_value (inst); operand2 = inst_env->reg[REG_PC]; /* The size should now be dword. */ cris_set_size_to_dword (&inst); /* Calculate the PC value after the instruction, i.e. where the breakpoint should be. */ add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1); } inst_env->slot_needed = 0; inst_env->prefix_found = 0; inst_env->xflag_found = 0; inst_env->disable_interrupt = 0; } /* Handles the quick addressing mode for the CMP, AND and OR instruction. */ void quick_mode_and_cmp_move_or_op (unsigned short inst, inst_env_type *inst_env) { unsigned long operand1; unsigned long operand2; /* It's a bad idea to be in a prefix instruction now. This is a quick mode instruction and can't have a prefix. */ if (inst_env->prefix_found) { inst_env->invalid = 1; return; } /* Check if the instruction has PC as its target. */ if (cris_get_operand2 (inst) == REG_PC) { if (inst_env->slot_needed) { inst_env->invalid = 1; return; } /* The instruction has the PC as its target register. */ operand1 = cris_get_quick_value (inst); operand2 = inst_env->reg[REG_PC]; /* The quick value is signed, so check if we must do a signed extend. */ if (operand1 & SIGNED_QUICK_VALUE_MASK) { /* sign extend */ operand1 |= SIGNED_QUICK_VALUE_EXTEND_MASK; } /* The size should now be dword. */ cris_set_size_to_dword (&inst); /* Calculate the PC value after the instruction, i.e. where the breakpoint should be. */ add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1); } inst_env->slot_needed = 0; inst_env->prefix_found = 0; inst_env->xflag_found = 0; inst_env->disable_interrupt = 0; } /* Translate op_type to a function and call it. */ static void cris_gdb_func (enum cris_op_type op_type, unsigned short inst, inst_env_type *inst_env) { switch (op_type) { case cris_not_implemented_op: not_implemented_op (inst, inst_env); break; case cris_abs_op: abs_op (inst, inst_env); break; case cris_addi_op: addi_op (inst, inst_env); break; case cris_asr_op: asr_op (inst, inst_env); break; case cris_asrq_op: asrq_op (inst, inst_env); break; case cris_ax_ei_setf_op: ax_ei_setf_op (inst, inst_env); break; case cris_bdap_prefix: bdap_prefix (inst, inst_env); break; case cris_biap_prefix: biap_prefix (inst, inst_env); break; case cris_break_op: break_op (inst, inst_env); break; case cris_btst_nop_op: btst_nop_op (inst, inst_env); break; case cris_clearf_di_op: clearf_di_op (inst, inst_env); break; case cris_dip_prefix: dip_prefix (inst, inst_env); break; case cris_dstep_logshift_mstep_neg_not_op: dstep_logshift_mstep_neg_not_op (inst, inst_env); break; case cris_eight_bit_offset_branch_op: eight_bit_offset_branch_op (inst, inst_env); break; case cris_move_mem_to_reg_movem_op: move_mem_to_reg_movem_op (inst, inst_env); break; case cris_move_reg_to_mem_movem_op: move_reg_to_mem_movem_op (inst, inst_env); break; case cris_move_to_preg_op: move_to_preg_op (inst, inst_env); break; case cris_muls_op: muls_op (inst, inst_env); break; case cris_mulu_op: mulu_op (inst, inst_env); break; case cris_none_reg_mode_add_sub_cmp_and_or_move_op: none_reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env); break; case cris_none_reg_mode_clear_test_op: none_reg_mode_clear_test_op (inst, inst_env); break; case cris_none_reg_mode_jump_op: none_reg_mode_jump_op (inst, inst_env); break; case cris_none_reg_mode_move_from_preg_op: none_reg_mode_move_from_preg_op (inst, inst_env); break; case cris_quick_mode_add_sub_op: quick_mode_add_sub_op (inst, inst_env); break; case cris_quick_mode_and_cmp_move_or_op: quick_mode_and_cmp_move_or_op (inst, inst_env); break; case cris_quick_mode_bdap_prefix: quick_mode_bdap_prefix (inst, inst_env); break; case cris_reg_mode_add_sub_cmp_and_or_move_op: reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env); break; case cris_reg_mode_clear_op: reg_mode_clear_op (inst, inst_env); break; case cris_reg_mode_jump_op: reg_mode_jump_op (inst, inst_env); break; case cris_reg_mode_move_from_preg_op: reg_mode_move_from_preg_op (inst, inst_env); break; case cris_reg_mode_test_op: reg_mode_test_op (inst, inst_env); break; case cris_scc_op: scc_op (inst, inst_env); break; case cris_sixteen_bit_offset_branch_op: sixteen_bit_offset_branch_op (inst, inst_env); break; case cris_three_operand_add_sub_cmp_and_or_op: three_operand_add_sub_cmp_and_or_op (inst, inst_env); break; case cris_three_operand_bound_op: three_operand_bound_op (inst, inst_env); break; case cris_two_operand_bound_op: two_operand_bound_op (inst, inst_env); break; case cris_xor_op: xor_op (inst, inst_env); break; } } /* This wrapper is to avoid cris_get_assembler being called before exec_bfd has been set. */ static int cris_delayed_get_disassembler (bfd_vma addr, disassemble_info *info) { tm_print_insn = cris_get_disassembler (exec_bfd); return TARGET_PRINT_INSN (addr, info); } /* Copied from . */ typedef unsigned long elf_greg_t; /* Same as user_regs_struct struct in . */ typedef elf_greg_t elf_gregset_t[35]; /* Unpack an elf_gregset_t into GDB's register cache. */ void supply_gregset (elf_gregset_t *gregsetp) { int i; elf_greg_t *regp = *gregsetp; static char zerobuf[4] = {0}; /* The kernel dumps all 32 registers as unsigned longs, but supply_register knows about the actual size of each register so that's no problem. */ for (i = 0; i < NUM_GENREGS + NUM_SPECREGS; i++) { supply_register (i, (char *)®p[i]); } } /* Use a local version of this function to get the correct types for regsets, until multi-arch core support is ready. */ static void fetch_core_registers (char *core_reg_sect, unsigned core_reg_size, int which, CORE_ADDR reg_addr) { elf_gregset_t gregset; switch (which) { case 0: if (core_reg_size != sizeof (gregset)) { warning ("wrong size gregset struct in core file"); } else { memcpy (&gregset, core_reg_sect, sizeof (gregset)); supply_gregset (&gregset); } default: /* We've covered all the kinds of registers we know about here, so this must be something we wouldn't know what to do with anyway. Just ignore it. */ break; } } static struct core_fns cris_elf_core_fns = { bfd_target_elf_flavour, /* core_flavour */ default_check_format, /* check_format */ default_core_sniffer, /* core_sniffer */ fetch_core_registers, /* core_read_registers */ NULL /* next */ }; /* Fetch (and possibly build) an appropriate link_map_offsets structure for native GNU/Linux CRIS targets using the struct offsets defined in link.h (but without actual reference to that file). This makes it possible to access GNU/Linux CRIS shared libraries from a GDB that was not built on an GNU/Linux CRIS host (for cross debugging). See gdb/solib-svr4.h for an explanation of these fields. */ struct link_map_offsets * cris_linux_svr4_fetch_link_map_offsets (void) { static struct link_map_offsets lmo; static struct link_map_offsets *lmp = NULL; if (lmp == NULL) { lmp = &lmo; lmo.r_debug_size = 8; /* The actual size is 20 bytes, but this is all we need. */ lmo.r_map_offset = 4; lmo.r_map_size = 4; lmo.link_map_size = 20; lmo.l_addr_offset = 0; lmo.l_addr_size = 4; lmo.l_name_offset = 4; lmo.l_name_size = 4; lmo.l_next_offset = 12; lmo.l_next_size = 4; lmo.l_prev_offset = 16; lmo.l_prev_size = 4; } return lmp; } static void cris_fpless_backtrace (char *noargs, int from_tty) { /* Points at the instruction after the jsr (except when in innermost frame where it points at the original pc). */ CORE_ADDR pc = 0; /* Temporary variable, used for parsing from the start of the function that the pc is in, up to the pc. */ CORE_ADDR tmp_pc = 0; CORE_ADDR sp = 0; /* Information about current frame. */ struct symtab_and_line sal; char* func_name; /* Present instruction. */ unsigned short insn; /* Next instruction, lookahead. */ unsigned short insn_next; /* This is to store the offset between sp at start of function and until we reach push srp (if any). */ int sp_add_later = 0; int push_srp_found = 0; int val = 0; /* Frame counter. */ int frame = 0; /* For the innermost frame, we want to look at srp in case it's a leaf function (since there's no push srp in that case). */ int innermost_frame = 1; deprecated_read_register_gen (PC_REGNUM, (char *) &pc); deprecated_read_register_gen (SP_REGNUM, (char *) &sp); /* We make an explicit return when we can't find an outer frame. */ while (1) { /* Get file name and line number. */ sal = find_pc_line (pc, 0); /* Get function name. */ find_pc_partial_function (pc, &func_name, (CORE_ADDR *) NULL, (CORE_ADDR *) NULL); /* Print information about current frame. */ printf_unfiltered ("#%i 0x%08lx in %s", frame++, pc, func_name); if (sal.symtab) { printf_unfiltered (" at %s:%i", sal.symtab->filename, sal.line); } printf_unfiltered ("\n"); /* Get the start address of this function. */ tmp_pc = get_pc_function_start (pc); /* Mini parser, only meant to find push sp and sub ...,sp from the start of the function, up to the pc. */ while (tmp_pc < pc) { insn = read_memory_unsigned_integer (tmp_pc, sizeof (short)); tmp_pc += sizeof (short); if (insn == 0xE1FC) { /* push 32 bit instruction */ insn_next = read_memory_unsigned_integer (tmp_pc, sizeof (short)); tmp_pc += sizeof (short); /* Recognize srp. */ if (insn_next == 0xBE7E) { /* For subsequent (not this one though) push or sub which affects sp, adjust sp immediately. */ push_srp_found = 1; /* Note: this will break if we ever encounter a push vr (1 byte) or push ccr (2 bytes). */ sp_add_later += 4; } else { /* Some other register was pushed. */ if (push_srp_found) { sp += 4; } else { sp_add_later += 4; } } } else if (cris_get_operand2 (insn) == SP_REGNUM && cris_get_mode (insn) == 0x0000 && cris_get_opcode (insn) == 0x000A) { /* subq ,sp */ val = cris_get_quick_value (insn); if (push_srp_found) { sp += val; } else { sp_add_later += val; } } else if (cris_get_operand2 (insn) == SP_REGNUM /* Autoincrement addressing mode. */ && cris_get_mode (insn) == 0x0003 /* Opcode. */ && ((insn) & 0x03E0) >> 5 == 0x0004) { /* subu ,sp */ val = get_data_from_address (&insn, tmp_pc); if (push_srp_found) { sp += val; } else { sp_add_later += val; } } else if (cris_get_operand2 (insn) == SP_REGNUM && ((insn & 0x0F00) >> 8) == 0x0001 && (cris_get_signed_offset (insn) < 0)) { /* Immediate byte offset addressing prefix word with sp as base register. Used for CRIS v8 i.e. ETRAX 100 and newer if is between 64 and 128. movem r,[sp=sp-] */ val = -cris_get_signed_offset (insn); insn_next = read_memory_unsigned_integer (tmp_pc, sizeof (short)); tmp_pc += sizeof (short); if (cris_get_mode (insn_next) == PREFIX_ASSIGN_MODE && cris_get_opcode (insn_next) == 0x000F && cris_get_size (insn_next) == 0x0003 && cris_get_operand1 (insn_next) == SP_REGNUM) { if (push_srp_found) { sp += val; } else { sp_add_later += val; } } } } if (push_srp_found) { /* Reset flag. */ push_srp_found = 0; /* sp should now point at where srp is stored on the stack. Update the pc to the srp. */ pc = read_memory_unsigned_integer (sp, 4); } else if (innermost_frame) { /* We couldn't find a push srp in the prologue, so this must be a leaf function, and thus we use the srp register directly. This should happen at most once, for the innermost function. */ deprecated_read_register_gen (SRP_REGNUM, (char *) &pc); } else { /* Couldn't find an outer frame. */ return; } /* Reset flag. (In case the innermost frame wasn't a leaf, we don't want to look at the srp register later either). */ innermost_frame = 0; /* Now, add the offset for everything up to, and including push srp, that was held back during the prologue parsing. */ sp += sp_add_later; sp_add_later = 0; } } void _initialize_cris_tdep (void) { struct cmd_list_element *c; gdbarch_register (bfd_arch_cris, cris_gdbarch_init, cris_dump_tdep); /* Used in disassembly. */ tm_print_insn = cris_delayed_get_disassembler; /* CRIS-specific user-commands. */ c = add_set_cmd ("cris-version", class_support, var_integer, (char *) &usr_cmd_cris_version, "Set the current CRIS version.", &setlist); set_cmd_sfunc (c, cris_version_update); add_show_from_set (c, &showlist); c = add_set_enum_cmd ("cris-mode", class_support, cris_mode_enums, &usr_cmd_cris_mode, "Set the current CRIS mode.", &setlist); set_cmd_sfunc (c, cris_mode_update); add_show_from_set (c, &showlist); c = add_set_enum_cmd ("cris-abi", class_support, cris_abi_enums, &usr_cmd_cris_abi, "Set the current CRIS ABI version.", &setlist); set_cmd_sfunc (c, cris_abi_update); add_show_from_set (c, &showlist); c = add_cmd ("cris-fpless-backtrace", class_support, cris_fpless_backtrace, "Display call chain using the subroutine return pointer.\n" "Note that this displays the address after the jump to the " "subroutine.", &cmdlist); add_core_fns (&cris_elf_core_fns); } /* Prints out all target specific values. */ static void cris_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file) { struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); if (tdep != NULL) { fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_version = %i\n", tdep->cris_version); fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_mode = %s\n", tdep->cris_mode); fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_abi = %s\n", tdep->cris_abi); } } static void cris_version_update (char *ignore_args, int from_tty, struct cmd_list_element *c) { struct gdbarch_info info; /* NOTE: cagney/2002-03-17: The add_show_from_set() function clones the set command passed as a parameter. The clone operation will include (BUG?) any ``set'' command callback, if present. Commands like ``info set'' call all the ``show'' command callbacks. Unfortunatly, for ``show'' commands cloned from ``set'', this includes callbacks belonging to ``set'' commands. Making this worse, this only occures if add_show_from_set() is called after add_cmd_sfunc() (BUG?). */ /* From here on, trust the user's CRIS version setting. */ if (cmd_type (c) == set_cmd) { usr_cmd_cris_version_valid = 1; /* Update the current architecture, if needed. */ gdbarch_info_init (&info); if (!gdbarch_update_p (info)) internal_error (__FILE__, __LINE__, "cris_gdbarch_update: failed to update architecture."); } } static void cris_mode_update (char *ignore_args, int from_tty, struct cmd_list_element *c) { struct gdbarch_info info; /* NOTE: cagney/2002-03-17: The add_show_from_set() function clones the set command passed as a parameter. The clone operation will include (BUG?) any ``set'' command callback, if present. Commands like ``info set'' call all the ``show'' command callbacks. Unfortunatly, for ``show'' commands cloned from ``set'', this includes callbacks belonging to ``set'' commands. Making this worse, this only occures if add_show_from_set() is called after add_cmd_sfunc() (BUG?). */ /* From here on, trust the user's CRIS mode setting. */ if (cmd_type (c) == set_cmd) { usr_cmd_cris_mode_valid = 1; /* Update the current architecture, if needed. */ gdbarch_info_init (&info); if (!gdbarch_update_p (info)) internal_error (__FILE__, __LINE__, "cris_gdbarch_update: failed to update architecture."); } } static void cris_abi_update (char *ignore_args, int from_tty, struct cmd_list_element *c) { struct gdbarch_info info; /* NOTE: cagney/2002-03-17: The add_show_from_set() function clones the set command passed as a parameter. The clone operation will include (BUG?) any ``set'' command callback, if present. Commands like ``info set'' call all the ``show'' command callbacks. Unfortunatly, for ``show'' commands cloned from ``set'', this includes callbacks belonging to ``set'' commands. Making this worse, this only occures if add_show_from_set() is called after add_cmd_sfunc() (BUG?). */ /* From here on, trust the user's CRIS ABI setting. */ if (cmd_type (c) == set_cmd) { usr_cmd_cris_abi_valid = 1; /* Update the current architecture, if needed. */ gdbarch_info_init (&info); if (!gdbarch_update_p (info)) internal_error (__FILE__, __LINE__, "cris_gdbarch_update: failed to update architecture."); } } /* Copied from pa64solib.c, with a couple of minor changes. */ static CORE_ADDR bfd_lookup_symbol (bfd *abfd, const char *symname) { unsigned int storage_needed; asymbol *sym; asymbol **symbol_table; unsigned int number_of_symbols; unsigned int i; struct cleanup *back_to; CORE_ADDR symaddr = 0; storage_needed = bfd_get_symtab_upper_bound (abfd); if (storage_needed > 0) { symbol_table = (asymbol **) xmalloc (storage_needed); back_to = make_cleanup (free, (PTR) symbol_table); number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table); for (i = 0; i < number_of_symbols; i++) { sym = *symbol_table++; if (!strcmp (sym->name, symname)) { /* Bfd symbols are section relative. */ symaddr = sym->value + sym->section->vma; break; } } do_cleanups (back_to); } return (symaddr); } static struct gdbarch * cris_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) { struct gdbarch *gdbarch; struct gdbarch_tdep *tdep; int cris_version; const char *cris_mode; const char *cris_abi; CORE_ADDR cris_abi_sym = 0; int register_bytes; if (usr_cmd_cris_version_valid) { /* Trust the user's CRIS version setting. */ cris_version = usr_cmd_cris_version; } else { /* Assume it's CRIS version 10. */ cris_version = 10; } if (usr_cmd_cris_mode_valid) { /* Trust the user's CRIS mode setting. */ cris_mode = usr_cmd_cris_mode; } else if (cris_version == 10) { /* Assume CRIS version 10 is in user mode. */ cris_mode = CRIS_MODE_USER; } else { /* Strictly speaking, older CRIS version don't have a supervisor mode, but we regard its only mode as supervisor mode. */ cris_mode = CRIS_MODE_SUPERVISOR; } if (usr_cmd_cris_abi_valid) { /* Trust the user's ABI setting. */ cris_abi = usr_cmd_cris_abi; } else if (info.abfd) { if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour) { /* An elf target uses the new ABI. */ cris_abi = CRIS_ABI_V2; } else if (bfd_get_flavour (info.abfd) == bfd_target_aout_flavour) { /* An a.out target may use either ABI. Look for hints in the symbol table. */ cris_abi_sym = bfd_lookup_symbol (info.abfd, CRIS_ABI_SYMBOL); cris_abi = cris_abi_sym ? CRIS_ABI_V2 : CRIS_ABI_ORIGINAL; } else { /* Unknown bfd flavour. Assume it's the new ABI. */ cris_abi = CRIS_ABI_V2; } } else if (arches != NULL) { /* No bfd available. Stick with the ABI from the most recently selected architecture of this same family (the head of arches always points to this). (This is to avoid changing the ABI when the user updates the architecture with the 'set cris-version' command.) */ cris_abi = gdbarch_tdep (arches->gdbarch)->cris_abi; } else { /* No bfd, and no previously selected architecture available. Assume it's the new ABI. */ cris_abi = CRIS_ABI_V2; } /* Make the current settings visible to the user. */ usr_cmd_cris_version = cris_version; usr_cmd_cris_mode = cris_mode; usr_cmd_cris_abi = cris_abi; /* Find a candidate among the list of pre-declared architectures. Both CRIS version and ABI must match. */ for (arches = gdbarch_list_lookup_by_info (arches, &info); arches != NULL; arches = gdbarch_list_lookup_by_info (arches->next, &info)) { if ((gdbarch_tdep (arches->gdbarch)->cris_version == cris_version) && (gdbarch_tdep (arches->gdbarch)->cris_mode == cris_mode) && (gdbarch_tdep (arches->gdbarch)->cris_abi == cris_abi)) return arches->gdbarch; } /* No matching architecture was found. Create a new one. */ tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep)); gdbarch = gdbarch_alloc (&info, tdep); tdep->cris_version = cris_version; tdep->cris_mode = cris_mode; tdep->cris_abi = cris_abi; /* INIT shall ensure that the INFO.BYTE_ORDER is non-zero. */ switch (info.byte_order) { case BFD_ENDIAN_LITTLE: /* Ok. */ break; case BFD_ENDIAN_BIG: internal_error (__FILE__, __LINE__, "cris_gdbarch_init: big endian byte order in info"); break; default: internal_error (__FILE__, __LINE__, "cris_gdbarch_init: unknown byte order in info"); } /* Initialize the ABI dependent things. */ if (tdep->cris_abi == CRIS_ABI_ORIGINAL) { set_gdbarch_double_bit (gdbarch, 32); set_gdbarch_push_arguments (gdbarch, cris_abi_original_push_arguments); set_gdbarch_deprecated_store_return_value (gdbarch, cris_abi_original_store_return_value); set_gdbarch_deprecated_extract_return_value (gdbarch, cris_abi_original_extract_return_value); set_gdbarch_reg_struct_has_addr (gdbarch, cris_abi_original_reg_struct_has_addr); } else if (tdep->cris_abi == CRIS_ABI_V2) { set_gdbarch_double_bit (gdbarch, 64); set_gdbarch_push_arguments (gdbarch, cris_abi_v2_push_arguments); set_gdbarch_deprecated_store_return_value (gdbarch, cris_abi_v2_store_return_value); set_gdbarch_deprecated_extract_return_value (gdbarch, cris_abi_v2_extract_return_value); set_gdbarch_reg_struct_has_addr (gdbarch, cris_abi_v2_reg_struct_has_addr); } else internal_error (__FILE__, __LINE__, "cris_gdbarch_init: unknown CRIS ABI"); /* The default definition of a long double is 2 * TARGET_DOUBLE_BIT, which means we have to set this explicitly. */ set_gdbarch_long_double_bit (gdbarch, 64); /* There are 32 registers (some of which may not be implemented). */ set_gdbarch_num_regs (gdbarch, 32); set_gdbarch_sp_regnum (gdbarch, 14); set_gdbarch_fp_regnum (gdbarch, 8); set_gdbarch_pc_regnum (gdbarch, 15); set_gdbarch_register_name (gdbarch, cris_register_name); /* Length of ordinary registers used in push_word and a few other places. REGISTER_RAW_SIZE is the real way to know how big a register is. */ set_gdbarch_register_size (gdbarch, 4); /* NEW */ set_gdbarch_register_bytes_ok (gdbarch, cris_register_bytes_ok); set_gdbarch_software_single_step (gdbarch, cris_software_single_step); set_gdbarch_cannot_store_register (gdbarch, cris_cannot_store_register); set_gdbarch_cannot_fetch_register (gdbarch, cris_cannot_fetch_register); /* The total amount of space needed to store (in an array called registers) GDB's copy of the machine's register state. Note: We can not use cris_register_size at this point, since it relies on current_gdbarch being set. */ switch (tdep->cris_version) { case 0: case 1: case 2: case 3: /* Support for these may be added later. */ internal_error (__FILE__, __LINE__, "cris_gdbarch_init: unsupported CRIS version"); break; case 8: case 9: /* CRIS v8 and v9, a.k.a. ETRAX 100. General registers R0 - R15 (32 bits), special registers P0 - P1 (8 bits), P4 - P5 (16 bits), and P8 - P14 (32 bits). */ register_bytes = (16 * 4) + (2 * 1) + (2 * 2) + (7 * 4); break; case 10: case 11: /* CRIS v10 and v11, a.k.a. ETRAX 100LX. In addition to ETRAX 100, P7 (32 bits), and P15 (32 bits) have been implemented. */ register_bytes = (16 * 4) + (2 * 1) + (2 * 2) + (9 * 4); break; default: internal_error (__FILE__, __LINE__, "cris_gdbarch_init: unknown CRIS version"); } set_gdbarch_register_bytes (gdbarch, register_bytes); /* Returns the register offset for the first byte of register regno's space in the saved register state. */ set_gdbarch_register_byte (gdbarch, cris_register_offset); /* The length of the registers in the actual machine representation. */ set_gdbarch_register_raw_size (gdbarch, cris_register_size); /* The largest value REGISTER_RAW_SIZE can have. */ set_gdbarch_max_register_raw_size (gdbarch, 32); /* The length of the registers in the program's representation. */ set_gdbarch_register_virtual_size (gdbarch, cris_register_size); /* The largest value REGISTER_VIRTUAL_SIZE can have. */ set_gdbarch_max_register_virtual_size (gdbarch, 32); set_gdbarch_register_virtual_type (gdbarch, cris_register_virtual_type); /* Use generic dummy frames. */ set_gdbarch_use_generic_dummy_frames (gdbarch, 1); /* Where to execute the call in the memory segments. */ set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT); set_gdbarch_call_dummy_address (gdbarch, entry_point_address); /* Start execution at the beginning of dummy. */ set_gdbarch_call_dummy_start_offset (gdbarch, 0); set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0); /* Set to 1 since call_dummy_breakpoint_offset was defined. */ set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1); /* Read all about dummy frames in blockframe.c. */ set_gdbarch_call_dummy_length (gdbarch, 0); set_gdbarch_pc_in_call_dummy (gdbarch, deprecated_pc_in_call_dummy_at_entry_point); /* Defined to 1 to indicate that the target supports inferior function calls. */ set_gdbarch_call_dummy_p (gdbarch, 1); set_gdbarch_call_dummy_words (gdbarch, 0); set_gdbarch_sizeof_call_dummy_words (gdbarch, 0); /* No stack adjustment needed when peforming an inferior function call. */ set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0); set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy); set_gdbarch_get_saved_register (gdbarch, deprecated_generic_get_saved_register); /* No register requires conversion from raw format to virtual format. */ set_gdbarch_register_convertible (gdbarch, generic_register_convertible_not); set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame); set_gdbarch_push_return_address (gdbarch, cris_push_return_address); set_gdbarch_pop_frame (gdbarch, cris_pop_frame); set_gdbarch_store_struct_return (gdbarch, cris_store_struct_return); set_gdbarch_deprecated_extract_struct_value_address (gdbarch, cris_extract_struct_value_address); set_gdbarch_use_struct_convention (gdbarch, cris_use_struct_convention); set_gdbarch_frame_init_saved_regs (gdbarch, cris_frame_init_saved_regs); set_gdbarch_init_extra_frame_info (gdbarch, cris_init_extra_frame_info); set_gdbarch_skip_prologue (gdbarch, cris_skip_prologue); set_gdbarch_prologue_frameless_p (gdbarch, generic_prologue_frameless_p); /* The stack grows downward. */ set_gdbarch_inner_than (gdbarch, core_addr_lessthan); set_gdbarch_breakpoint_from_pc (gdbarch, cris_breakpoint_from_pc); /* The PC must not be decremented after a breakpoint. (The breakpoint handler takes care of that.) */ set_gdbarch_decr_pc_after_break (gdbarch, 0); /* Offset from address of function to start of its code. */ set_gdbarch_function_start_offset (gdbarch, 0); /* The number of bytes at the start of arglist that are not really args, 0 in the CRIS ABI. */ set_gdbarch_frame_args_skip (gdbarch, 0); set_gdbarch_frameless_function_invocation (gdbarch, cris_frameless_function_invocation); set_gdbarch_frame_chain (gdbarch, cris_frame_chain); set_gdbarch_frame_chain_valid (gdbarch, generic_file_frame_chain_valid); set_gdbarch_frame_saved_pc (gdbarch, cris_frame_saved_pc); set_gdbarch_saved_pc_after_call (gdbarch, cris_saved_pc_after_call); set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown); /* No extra stack alignment needed. Set to 1 by default. */ set_gdbarch_extra_stack_alignment_needed (gdbarch, 0); /* Helpful for backtracing and returning in a call dummy. */ set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos); /* Use target_specific function to define link map offsets. */ set_solib_svr4_fetch_link_map_offsets (gdbarch, cris_linux_svr4_fetch_link_map_offsets); return gdbarch; }