# Copyright 2003-2021 Free Software Foundation, Inc. # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see . # # Tests for Powerpc E500 register setting and fetching # # Test the use of registers, especially E500 registers, for Powerpc. # This file uses e500-regs.c for input. # if ![istarget "powerpc-*eabispe"] then { verbose "Skipping e500 register tests." return } set testfile "e500-regs" set binfile ${objdir}/${subdir}/${testfile} set src1 ${srcdir}/${subdir}/${testfile}.c if { [gdb_compile ${src1} ${binfile} executable {debug nowarnings}] != "" } { untested "failed to compile" return -1 } gdb_start gdb_reinitialize_dir $srcdir/$subdir gdb_load ${binfile} # # Run to `main' where we begin our tests. # if ![runto_main] then { fail "can't run to main" return 0 } # set all the registers integer portions to 1 for {set i 0} {$i < 32} {incr i 1} { for {set j 0} {$j < 2} {incr j 1} { gdb_test "set \$ev$i.v2_int32\[$j\] = 1" "" "set reg ev$i.v4si.f\[$j\]" } } # Now execute some target code, so that GDB's register cache is flushed. #gdb_test "next" "" "" set endianness [get_endianness] # And then read the E500 registers back, to see that # a) the register write above worked, and # b) the register read (below) also works. if {$endianness == "big"} { set vector_register ".uint64 = 0x100000001, v2_float = .0x0, 0x0., v2_int32 = .0x1, 0x1., v4_int16 = .0x0, 0x1, 0x0, 0x1., v8_int8 = .0x0, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0, 0x1.." } else { set vector_register ".uint64 = 0x100000001, v2_float = .0x0, 0x0., v2_int32 = .0x1, 0x1., v4_int16 = .0x1, 0x0, 0x1, 0x0., v8_int8 = .0x1, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0.." } for {set i 0} {$i < 32} {incr i 1} { gdb_test "info reg ev$i" "ev$i.*$vector_register" "info reg ev$i" } # Test wether the GPRs are updated accordingly. (GPRs are just the lower # 32 bits of the EV registers.) set general_register "0x1\[ \t\]+1" for {set i 0} {$i < 32} {incr i 1} { gdb_test "info reg r$i" "r$i.*$general_register" "info reg r$i" } # Now redo the same tests, but using the print command. if {$endianness == "big"} { set decimal_vector ".uint64 = 4294967297, v2_float = .1.*e-45, 1.*e-45., v2_int32 = .1, 1., v4_int16 = .0, 1, 0, 1., v8_int8 = .0, 0, 0, 1, 0, 0, 0, 1.." } else { set decimal_vector ".uint64 = 4294967297, v2_float = .1.*e-45, 1.*e-45., v2_int32 = .1, 1., v4_int16 = .1, 0, 1, 0., v8_int8 = .1, 0, 0, 0, 1, 0, 0, 0.." } for {set i 0} {$i < 32} {incr i 1} { gdb_test "print \$ev$i" ".* = $decimal_vector" "print ev$i" } for {set i 0} {$i < 32} {incr i 1} { set pattern$i ".*ev$i.*" append pattern$i $vector_register } send_gdb "info vector\n" gdb_expect_list "info vector" ".*$gdb_prompt $" { [$pattern0] [$pattern1] [$pattern2] [$pattern3] [$pattern4] [$pattern5] [$pattern6] [$pattern7] [$pattern8] [$pattern9] [$pattern10] [$pattern11] [$pattern12] [$pattern13] [$pattern14] [$pattern15] [$pattern16] [$pattern17] [$pattern18] [$pattern19] [$pattern20] [$pattern21] [$pattern22] [$pattern23] [$pattern24] [$pattern25] [$pattern26] [$pattern27] [$pattern28] [$pattern29] [$pattern30] [$pattern31] } # We must restart everything, because we have set important registers to # some unusual values. gdb_exit gdb_start gdb_reinitialize_dir $srcdir/$subdir gdb_load ${binfile} if ![runto_main] then { fail "can't run to main" return 0 } gdb_test "break vector_fun" \ "Breakpoint 2 at.*e500-regs.c, line \[0-9\]+\\." \ "set breakpoint at vector_fun" # Actually it is nuch easier to see these results printed in hex. # gdb_test "set output-radix 16" \ # "Output radix now set to decimal 16, hex 10, octal 20." \ # "set output radix to hex" gdb_test "continue" \ "Breakpoint 2, vector_fun .a=.-2, -2., b=.1, 1.*e500-regs.c.*ev_create_s32 .2, 2.;" \ "continue to vector_fun" # Do a next over the assignment to vector 'a'. gdb_test "next" ".*b = \\(vector int\\) __ev_create_s32 \\(3, 3\\);" \ "next (1)" # Do a next over the assignment to vector 'b'. gdb_test "next" "c = __ev_and \\(a, b\\);" \ "next (2)" # Now 'a' should be '0x02020202...' and 'b' should be '0x03030303...' gdb_test "print/x a" \ ".*= .0x2, 0x2." \ "print vector parameter a" gdb_test "print/x b" \ ".*= .0x3, 0x3." \ "print vector parameter b" # If we do an 'up' now, and print 'x' and 'y' we should see the values they # have in main, not the values they have in vector_fun. gdb_test "up" ".1.*main \\(\\) at.*e500-regs.c.*z = vector_fun \\(x, y\\);" \ "up to main" gdb_test "print x" \ ".*= .-2, -2." \ "print vector x" gdb_test "print y" \ ".*= .1, 1." \ "print vector y" # now go back to vector_func and do a finish, to see if we can print the return # value correctly. gdb_test "down" \ ".0 vector_fun \\(a=.2, 2., b=.3, 3.\\) at.*e500-regs.c.*c = __ev_and \\(a, b\\);" \ "down to vector_fun" gdb_test "finish" \ "Run till exit from .0 vector_fun \\(a=.2, 2., b=.3, 3.\\) at.*e500-regs.c.*main \\(\\) at.*e500-regs.c.*z = vector_fun \\(x, y\\);.*Value returned is.*= .2, 2." \ "finish returned correct value"