/* BFD back-end for MIPS Extended-Coff files. Copyright 1990, 1991, 1992, 1993, 1994 Free Software Foundation, Inc. Original version by Per Bothner. Full support added by Ian Lance Taylor, ian@cygnus.com. This file is part of BFD, the Binary File Descriptor library. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "bfd.h" #include "sysdep.h" #include "bfdlink.h" #include "libbfd.h" #include "coff/internal.h" #include "coff/sym.h" #include "coff/symconst.h" #include "coff/ecoff.h" #include "coff/mips.h" #include "libcoff.h" #include "libecoff.h" /* Prototypes for static functions. */ static boolean mips_ecoff_bad_format_hook PARAMS ((bfd *abfd, PTR filehdr)); static void mips_ecoff_swap_reloc_in PARAMS ((bfd *, PTR, struct internal_reloc *)); static void mips_ecoff_swap_reloc_out PARAMS ((bfd *, const struct internal_reloc *, PTR)); static void mips_adjust_reloc_in PARAMS ((bfd *, const struct internal_reloc *, arelent *)); static void mips_adjust_reloc_out PARAMS ((bfd *, const arelent *, struct internal_reloc *)); static bfd_reloc_status_type mips_generic_reloc PARAMS ((bfd *abfd, arelent *reloc, asymbol *symbol, PTR data, asection *section, bfd *output_bfd, char **error)); static bfd_reloc_status_type mips_refhi_reloc PARAMS ((bfd *abfd, arelent *reloc, asymbol *symbol, PTR data, asection *section, bfd *output_bfd, char **error)); static bfd_reloc_status_type mips_reflo_reloc PARAMS ((bfd *abfd, arelent *reloc, asymbol *symbol, PTR data, asection *section, bfd *output_bfd, char **error)); static bfd_reloc_status_type mips_gprel_reloc PARAMS ((bfd *abfd, arelent *reloc, asymbol *symbol, PTR data, asection *section, bfd *output_bfd, char **error)); static bfd_reloc_status_type mips_relhi_reloc PARAMS ((bfd *abfd, arelent *reloc, asymbol *symbol, PTR data, asection *section, bfd *output_bfd, char **error)); static bfd_reloc_status_type mips_rello_reloc PARAMS ((bfd *abfd, arelent *reloc, asymbol *symbol, PTR data, asection *section, bfd *output_bfd, char **error)); static bfd_reloc_status_type mips_switch_reloc PARAMS ((bfd *abfd, arelent *reloc, asymbol *symbol, PTR data, asection *section, bfd *output_bfd, char **error)); static void mips_relocate_hi PARAMS ((struct internal_reloc *refhi, struct internal_reloc *reflo, bfd *input_bfd, asection *input_section, bfd_byte *contents, size_t adjust, bfd_vma relocation, boolean pcrel)); static boolean mips_relocate_section PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *, PTR)); static boolean mips_read_relocs PARAMS ((bfd *, asection *)); static boolean mips_relax_section PARAMS ((bfd *, asection *, struct bfd_link_info *, boolean *)); static boolean mips_relax_pcrel16 PARAMS ((struct bfd_link_info *, bfd *, asection *, struct ecoff_link_hash_entry *, bfd_byte *, bfd_vma)); /* ECOFF has COFF sections, but the debugging information is stored in a completely different format. ECOFF targets use some of the swapping routines from coffswap.h, and some of the generic COFF routines in coffgen.c, but, unlike the real COFF targets, do not use coffcode.h itself. Get the generic COFF swapping routines, except for the reloc, symbol, and lineno ones. Give them ECOFF names. */ #define MIPSECOFF #define NO_COFF_RELOCS #define NO_COFF_SYMBOLS #define NO_COFF_LINENOS #define coff_swap_filehdr_in mips_ecoff_swap_filehdr_in #define coff_swap_filehdr_out mips_ecoff_swap_filehdr_out #define coff_swap_aouthdr_in mips_ecoff_swap_aouthdr_in #define coff_swap_aouthdr_out mips_ecoff_swap_aouthdr_out #define coff_swap_scnhdr_in mips_ecoff_swap_scnhdr_in #define coff_swap_scnhdr_out mips_ecoff_swap_scnhdr_out #include "coffswap.h" /* Get the ECOFF swapping routines. */ #define ECOFF_32 #include "ecoffswap.h" /* How to process the various relocs types. */ static reloc_howto_type mips_howto_table[] = { /* Reloc type 0 is ignored. The reloc reading code ensures that this is a reference to the .abs section, which will cause bfd_perform_relocation to do nothing. */ HOWTO (MIPS_R_IGNORE, /* type */ 0, /* rightshift */ 0, /* size (0 = byte, 1 = short, 2 = long) */ 8, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ 0, /* special_function */ "IGNORE", /* name */ false, /* partial_inplace */ 0, /* src_mask */ 0, /* dst_mask */ false), /* pcrel_offset */ /* A 16 bit reference to a symbol, normally from a data section. */ HOWTO (MIPS_R_REFHALF, /* type */ 0, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield, /* complain_on_overflow */ mips_generic_reloc, /* special_function */ "REFHALF", /* name */ true, /* partial_inplace */ 0xffff, /* src_mask */ 0xffff, /* dst_mask */ false), /* pcrel_offset */ /* A 32 bit reference to a symbol, normally from a data section. */ HOWTO (MIPS_R_REFWORD, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield, /* complain_on_overflow */ mips_generic_reloc, /* special_function */ "REFWORD", /* name */ true, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ false), /* pcrel_offset */ /* A 26 bit absolute jump address. */ HOWTO (MIPS_R_JMPADDR, /* type */ 2, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 26, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ /* This needs complex overflow detection, because the upper four bits must match the PC. */ mips_generic_reloc, /* special_function */ "JMPADDR", /* name */ true, /* partial_inplace */ 0x3ffffff, /* src_mask */ 0x3ffffff, /* dst_mask */ false), /* pcrel_offset */ /* The high 16 bits of a symbol value. Handled by the function mips_refhi_reloc. */ HOWTO (MIPS_R_REFHI, /* type */ 16, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield, /* complain_on_overflow */ mips_refhi_reloc, /* special_function */ "REFHI", /* name */ true, /* partial_inplace */ 0xffff, /* src_mask */ 0xffff, /* dst_mask */ false), /* pcrel_offset */ /* The low 16 bits of a symbol value. */ HOWTO (MIPS_R_REFLO, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ mips_reflo_reloc, /* special_function */ "REFLO", /* name */ true, /* partial_inplace */ 0xffff, /* src_mask */ 0xffff, /* dst_mask */ false), /* pcrel_offset */ /* A reference to an offset from the gp register. Handled by the function mips_gprel_reloc. */ HOWTO (MIPS_R_GPREL, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ mips_gprel_reloc, /* special_function */ "GPREL", /* name */ true, /* partial_inplace */ 0xffff, /* src_mask */ 0xffff, /* dst_mask */ false), /* pcrel_offset */ /* A reference to a literal using an offset from the gp register. Handled by the function mips_gprel_reloc. */ HOWTO (MIPS_R_LITERAL, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ mips_gprel_reloc, /* special_function */ "LITERAL", /* name */ true, /* partial_inplace */ 0xffff, /* src_mask */ 0xffff, /* dst_mask */ false), /* pcrel_offset */ { 8 }, { 9 }, { 10 }, { 11 }, /* This reloc is a Cygnus extension used when generating position independent code for embedded systems. It represents a 16 bit PC relative reloc rightshifted twice as used in the MIPS branch instructions. */ HOWTO (MIPS_R_PCREL16, /* type */ 2, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ true, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ mips_generic_reloc, /* special_function */ "PCREL16", /* name */ true, /* partial_inplace */ 0xffff, /* src_mask */ 0xffff, /* dst_mask */ true), /* pcrel_offset */ /* This reloc is a Cygnus extension used when generating position independent code for embedded systems. It represents the high 16 bits of a PC relative reloc. The next reloc must be MIPS_R_RELLO, and the addend is formed from the addends of the two instructions, just as in MIPS_R_REFHI and MIPS_R_REFLO. The final value is actually PC relative to the location of the MIPS_R_RELLO reloc, not the MIPS_R_RELHI reloc. */ HOWTO (MIPS_R_RELHI, /* type */ 16, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ true, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield, /* complain_on_overflow */ mips_relhi_reloc, /* special_function */ "RELHI", /* name */ true, /* partial_inplace */ 0xffff, /* src_mask */ 0xffff, /* dst_mask */ true), /* pcrel_offset */ /* This reloc is a Cygnus extension used when generating position independent code for embedded systems. It represents the low 16 bits of a PC relative reloc. */ HOWTO (MIPS_R_RELLO, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ true, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ mips_rello_reloc, /* special_function */ "RELLO", /* name */ true, /* partial_inplace */ 0xffff, /* src_mask */ 0xffff, /* dst_mask */ true), /* pcrel_offset */ { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, /* This reloc is a Cygnus extension used when generating position independent code for embedded systems. It represents an entry in a switch table, which is the difference between two symbols in the .text section. The symndx is actually the offset from the reloc address to the subtrahend. See include/coff/mips.h for more details. */ HOWTO (MIPS_R_SWITCH, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ true, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ mips_switch_reloc, /* special_function */ "SWITCH", /* name */ true, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ true) /* pcrel_offset */ }; #define MIPS_HOWTO_COUNT \ (sizeof mips_howto_table / sizeof mips_howto_table[0]) /* When the linker is doing relaxing, it may change a external PCREL16 reloc. This typically represents an instruction like bal foo We change it to .set noreorder bal $L1 lui $at,%hi(foo - $L1) $L1: addiu $at,%lo(foo - $L1) addu $at,$at,$31 jalr $at PCREL16_EXPANSION_ADJUSTMENT is the number of bytes this changes the instruction by. */ #define PCREL16_EXPANSION_ADJUSTMENT (4 * 4) /* See whether the magic number matches. */ static boolean mips_ecoff_bad_format_hook (abfd, filehdr) bfd *abfd; PTR filehdr; { struct internal_filehdr *internal_f = (struct internal_filehdr *) filehdr; switch (internal_f->f_magic) { case MIPS_MAGIC_1: /* I don't know what endianness this implies. */ return true; case MIPS_MAGIC_BIG: case MIPS_MAGIC_BIG2: case MIPS_MAGIC_BIG3: return abfd->xvec->byteorder_big_p; case MIPS_MAGIC_LITTLE: case MIPS_MAGIC_LITTLE2: case MIPS_MAGIC_LITTLE3: return abfd->xvec->byteorder_big_p == false; default: return false; } } /* Reloc handling. MIPS ECOFF relocs are packed into 8 bytes in external form. They use a bit which indicates whether the symbol is external. */ /* Swap a reloc in. */ static void mips_ecoff_swap_reloc_in (abfd, ext_ptr, intern) bfd *abfd; PTR ext_ptr; struct internal_reloc *intern; { const RELOC *ext = (RELOC *) ext_ptr; intern->r_vaddr = bfd_h_get_32 (abfd, (bfd_byte *) ext->r_vaddr); if (abfd->xvec->header_byteorder_big_p != false) { intern->r_symndx = (((int) ext->r_bits[0] << RELOC_BITS0_SYMNDX_SH_LEFT_BIG) | ((int) ext->r_bits[1] << RELOC_BITS1_SYMNDX_SH_LEFT_BIG) | ((int) ext->r_bits[2] << RELOC_BITS2_SYMNDX_SH_LEFT_BIG)); intern->r_type = ((ext->r_bits[3] & RELOC_BITS3_TYPE_BIG) >> RELOC_BITS3_TYPE_SH_BIG); intern->r_extern = (ext->r_bits[3] & RELOC_BITS3_EXTERN_BIG) != 0; } else { intern->r_symndx = (((int) ext->r_bits[0] << RELOC_BITS0_SYMNDX_SH_LEFT_LITTLE) | ((int) ext->r_bits[1] << RELOC_BITS1_SYMNDX_SH_LEFT_LITTLE) | ((int) ext->r_bits[2] << RELOC_BITS2_SYMNDX_SH_LEFT_LITTLE)); intern->r_type = (((ext->r_bits[3] & RELOC_BITS3_TYPE_LITTLE) >> RELOC_BITS3_TYPE_SH_LITTLE) | ((ext->r_bits[3] & RELOC_BITS3_TYPEHI_LITTLE) << RELOC_BITS3_TYPEHI_SH_LITTLE)); intern->r_extern = (ext->r_bits[3] & RELOC_BITS3_EXTERN_LITTLE) != 0; } /* If this is a MIPS_R_SWITCH reloc, or an internal MIPS_R_RELHI or MIPS_R_RELLO reloc, r_symndx is actually the offset from the reloc address to the base of the difference (see include/coff/mips.h for more details). We copy symndx into the r_offset field so as not to confuse ecoff_slurp_reloc_table in ecoff.c. In adjust_reloc_in we then copy r_offset into the reloc addend. */ if (intern->r_type == MIPS_R_SWITCH || (! intern->r_extern && (intern->r_type == MIPS_R_RELLO || intern->r_type == MIPS_R_RELHI))) { BFD_ASSERT (! intern->r_extern); intern->r_offset = intern->r_symndx; if (intern->r_offset & 0x800000) intern->r_offset -= 0x1000000; intern->r_symndx = RELOC_SECTION_TEXT; } } /* Swap a reloc out. */ static void mips_ecoff_swap_reloc_out (abfd, intern, dst) bfd *abfd; const struct internal_reloc *intern; PTR dst; { RELOC *ext = (RELOC *) dst; long r_symndx; BFD_ASSERT (intern->r_extern || (intern->r_symndx >= 0 && intern->r_symndx <= 12)); /* If this is a MIPS_R_SWITCH reloc, or an internal MIPS_R_RELLO or MIPS_R_RELHI reloc, we actually want to write the contents of r_offset out as the symbol index. This undoes the change made by mips_ecoff_swap_reloc_in. */ if (intern->r_type != MIPS_R_SWITCH && (intern->r_extern || (intern->r_type != MIPS_R_RELHI && intern->r_type != MIPS_R_RELLO))) r_symndx = intern->r_symndx; else { BFD_ASSERT (intern->r_symndx == RELOC_SECTION_TEXT); r_symndx = intern->r_offset & 0xffffff; } bfd_h_put_32 (abfd, intern->r_vaddr, (bfd_byte *) ext->r_vaddr); if (abfd->xvec->header_byteorder_big_p != false) { ext->r_bits[0] = r_symndx >> RELOC_BITS0_SYMNDX_SH_LEFT_BIG; ext->r_bits[1] = r_symndx >> RELOC_BITS1_SYMNDX_SH_LEFT_BIG; ext->r_bits[2] = r_symndx >> RELOC_BITS2_SYMNDX_SH_LEFT_BIG; ext->r_bits[3] = (((intern->r_type << RELOC_BITS3_TYPE_SH_BIG) & RELOC_BITS3_TYPE_BIG) | (intern->r_extern ? RELOC_BITS3_EXTERN_BIG : 0)); } else { ext->r_bits[0] = r_symndx >> RELOC_BITS0_SYMNDX_SH_LEFT_LITTLE; ext->r_bits[1] = r_symndx >> RELOC_BITS1_SYMNDX_SH_LEFT_LITTLE; ext->r_bits[2] = r_symndx >> RELOC_BITS2_SYMNDX_SH_LEFT_LITTLE; ext->r_bits[3] = (((intern->r_type << RELOC_BITS3_TYPE_SH_LITTLE) & RELOC_BITS3_TYPE_LITTLE) | ((intern->r_type >> RELOC_BITS3_TYPEHI_SH_LITTLE & RELOC_BITS3_TYPEHI_LITTLE)) | (intern->r_extern ? RELOC_BITS3_EXTERN_LITTLE : 0)); } } /* Finish canonicalizing a reloc. Part of this is generic to all ECOFF targets, and that part is in ecoff.c. The rest is done in this backend routine. It must fill in the howto field. */ static void mips_adjust_reloc_in (abfd, intern, rptr) bfd *abfd; const struct internal_reloc *intern; arelent *rptr; { if (intern->r_type > MIPS_R_SWITCH) abort (); if (! intern->r_extern && (intern->r_type == MIPS_R_GPREL || intern->r_type == MIPS_R_LITERAL)) rptr->addend += ecoff_data (abfd)->gp; /* If the type is MIPS_R_IGNORE, make sure this is a reference to the absolute section so that the reloc is ignored. */ if (intern->r_type == MIPS_R_IGNORE) rptr->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr; /* If this is a MIPS_R_SWITCH reloc, or an internal MIPS_R_RELHI or MIPS_R_RELLO reloc, we want the addend field of the BFD relocto hold the value which was originally in the symndx field of the internal MIPS ECOFF reloc. This value was copied into intern->r_offset by mips_swap_reloc_in, and here we copy it into the addend field. */ if (intern->r_type == MIPS_R_SWITCH || (! intern->r_extern && (intern->r_type == MIPS_R_RELHI || intern->r_type == MIPS_R_RELLO))) rptr->addend = intern->r_offset; rptr->howto = &mips_howto_table[intern->r_type]; } /* Make any adjustments needed to a reloc before writing it out. None are needed for MIPS. */ static void mips_adjust_reloc_out (abfd, rel, intern) bfd *abfd; const arelent *rel; struct internal_reloc *intern; { /* For a MIPS_R_SWITCH reloc, or an internal MIPS_R_RELHI or MIPS_R_RELLO reloc, we must copy rel->addend into intern->r_offset. This will then be written out as the symbol index by mips_ecoff_swap_reloc_out. This operation parallels the action of mips_adjust_reloc_in. */ if (intern->r_type == MIPS_R_SWITCH || (! intern->r_extern && (intern->r_type == MIPS_R_RELHI || intern->r_type == MIPS_R_RELLO))) intern->r_offset = rel->addend; } /* ECOFF relocs are either against external symbols, or against sections. If we are producing relocateable output, and the reloc is against an external symbol, and nothing has given us any additional addend, the resulting reloc will also be against the same symbol. In such a case, we don't want to change anything about the way the reloc is handled, since it will all be done at final link time. Rather than put special case code into bfd_perform_relocation, all the reloc types use this howto function. It just short circuits the reloc if producing relocateable output against an external symbol. */ static bfd_reloc_status_type mips_generic_reloc (abfd, reloc_entry, symbol, data, input_section, output_bfd, error_message) bfd *abfd; arelent *reloc_entry; asymbol *symbol; PTR data; asection *input_section; bfd *output_bfd; char **error_message; { if (output_bfd != (bfd *) NULL && (symbol->flags & BSF_SECTION_SYM) == 0 && reloc_entry->addend == 0) { reloc_entry->address += input_section->output_offset; return bfd_reloc_ok; } return bfd_reloc_continue; } /* Do a REFHI relocation. This has to be done in combination with a REFLO reloc, because there is a carry from the REFLO to the REFHI. Here we just save the information we need; we do the actual relocation when we see the REFLO. MIPS ECOFF requires that the REFLO immediately follow the REFHI, so this ought to work. */ static bfd_byte *mips_refhi_addr; static bfd_vma mips_refhi_addend; static bfd_reloc_status_type mips_refhi_reloc (abfd, reloc_entry, symbol, data, input_section, output_bfd, error_message) bfd *abfd; arelent *reloc_entry; asymbol *symbol; PTR data; asection *input_section; bfd *output_bfd; char **error_message; { bfd_reloc_status_type ret; bfd_vma relocation; /* If we're relocating, and this an external symbol, we don't want to change anything. */ if (output_bfd != (bfd *) NULL && (symbol->flags & BSF_SECTION_SYM) == 0 && reloc_entry->addend == 0) { reloc_entry->address += input_section->output_offset; return bfd_reloc_ok; } ret = bfd_reloc_ok; if (bfd_is_und_section (symbol->section) && output_bfd == (bfd *) NULL) ret = bfd_reloc_undefined; if (bfd_is_com_section (symbol->section)) relocation = 0; else relocation = symbol->value; relocation += symbol->section->output_section->vma; relocation += symbol->section->output_offset; relocation += reloc_entry->addend; if (reloc_entry->address > input_section->_cooked_size) return bfd_reloc_outofrange; /* Save the information, and let REFLO do the actual relocation. */ mips_refhi_addr = (bfd_byte *) data + reloc_entry->address; mips_refhi_addend = relocation; if (output_bfd != (bfd *) NULL) reloc_entry->address += input_section->output_offset; return ret; } /* Do a REFLO relocation. This is a straightforward 16 bit inplace relocation; this function exists in order to do the REFHI relocation described above. */ static bfd_reloc_status_type mips_reflo_reloc (abfd, reloc_entry, symbol, data, input_section, output_bfd, error_message) bfd *abfd; arelent *reloc_entry; asymbol *symbol; PTR data; asection *input_section; bfd *output_bfd; char **error_message; { if (mips_refhi_addr != (bfd_byte *) NULL) { unsigned long insn; unsigned long val; unsigned long vallo; /* Do the REFHI relocation. Note that we actually don't need to know anything about the REFLO itself, except where to find the low 16 bits of the addend needed by the REFHI. */ insn = bfd_get_32 (abfd, mips_refhi_addr); vallo = (bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address) & 0xffff); val = ((insn & 0xffff) << 16) + vallo; val += mips_refhi_addend; /* The low order 16 bits are always treated as a signed value. Therefore, a negative value in the low order bits requires an adjustment in the high order bits. We need to make this adjustment in two ways: once for the bits we took from the data, and once for the bits we are putting back in to the data. */ if ((vallo & 0x8000) != 0) val -= 0x10000; if ((val & 0x8000) != 0) val += 0x10000; insn = (insn &~ 0xffff) | ((val >> 16) & 0xffff); bfd_put_32 (abfd, insn, mips_refhi_addr); mips_refhi_addr = (bfd_byte *) NULL; } /* Now do the REFLO reloc in the usual way. */ return mips_generic_reloc (abfd, reloc_entry, symbol, data, input_section, output_bfd, error_message); } /* Do a GPREL relocation. This is a 16 bit value which must become the offset from the gp register. */ static bfd_reloc_status_type mips_gprel_reloc (abfd, reloc_entry, symbol, data, input_section, output_bfd, error_message) bfd *abfd; arelent *reloc_entry; asymbol *symbol; PTR data; asection *input_section; bfd *output_bfd; char **error_message; { boolean relocateable; bfd_vma relocation; unsigned long val; unsigned long insn; /* If we're relocating, and this is an external symbol with no addend, we don't want to change anything. We will only have an addend if this is a newly created reloc, not read from an ECOFF file. */ if (output_bfd != (bfd *) NULL && (symbol->flags & BSF_SECTION_SYM) == 0 && reloc_entry->addend == 0) { reloc_entry->address += input_section->output_offset; return bfd_reloc_ok; } if (output_bfd != (bfd *) NULL) relocateable = true; else { relocateable = false; output_bfd = symbol->section->output_section->owner; } if (bfd_is_und_section (symbol->section) && relocateable == false) return bfd_reloc_undefined; /* We have to figure out the gp value, so that we can adjust the symbol value correctly. We look up the symbol _gp in the output BFD. If we can't find it, we're stuck. We cache it in the ECOFF target data. We don't need to adjust the symbol value for an external symbol if we are producing relocateable output. */ if (ecoff_data (output_bfd)->gp == 0 && (relocateable == false || (symbol->flags & BSF_SECTION_SYM) != 0)) { if (relocateable != false) { /* Make up a value. */ ecoff_data (output_bfd)->gp = symbol->section->output_section->vma + 0x4000; } else { unsigned int count; asymbol **sym; unsigned int i; count = bfd_get_symcount (output_bfd); sym = bfd_get_outsymbols (output_bfd); if (sym == (asymbol **) NULL) i = count; else { for (i = 0; i < count; i++, sym++) { register CONST char *name; name = bfd_asymbol_name (*sym); if (*name == '_' && strcmp (name, "_gp") == 0) { ecoff_data (output_bfd)->gp = bfd_asymbol_value (*sym); break; } } } if (i >= count) { /* Only get the error once. */ ecoff_data (output_bfd)->gp = 4; *error_message = (char *) "GP relative relocation when _gp not defined"; return bfd_reloc_dangerous; } } } if (bfd_is_com_section (symbol->section)) relocation = 0; else relocation = symbol->value; relocation += symbol->section->output_section->vma; relocation += symbol->section->output_offset; if (reloc_entry->address > input_section->_cooked_size) return bfd_reloc_outofrange; insn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address); /* Set val to the offset into the section or symbol. */ val = ((insn & 0xffff) + reloc_entry->addend) & 0xffff; if (val & 0x8000) val -= 0x10000; /* Adjust val for the final section location and GP value. If we are producing relocateable output, we don't want to do this for an external symbol. */ if (relocateable == false || (symbol->flags & BSF_SECTION_SYM) != 0) val += relocation - ecoff_data (output_bfd)->gp; insn = (insn &~ 0xffff) | (val & 0xffff); bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address); if (relocateable != false) reloc_entry->address += input_section->output_offset; /* Make sure it fit in 16 bits. */ if (val >= 0x8000 && val < 0xffff8000) return bfd_reloc_overflow; return bfd_reloc_ok; } /* Do a RELHI relocation. We do this in conjunction with a RELLO reloc, just as REFHI and REFLO are done together. RELHI and RELLO are Cygnus extensions used when generating position independent code for embedded systems. */ static bfd_byte *mips_relhi_addr; static bfd_vma mips_relhi_addend; static bfd_reloc_status_type mips_relhi_reloc (abfd, reloc_entry, symbol, data, input_section, output_bfd, error_message) bfd *abfd; arelent *reloc_entry; asymbol *symbol; PTR data; asection *input_section; bfd *output_bfd; char **error_message; { bfd_reloc_status_type ret; bfd_vma relocation; /* If this is a reloc against a section symbol, then it is correct in the object file. The only time we want to change this case is when we are relaxing, and that is handled entirely by mips_relocate_section and never calls this function. */ if ((symbol->flags & BSF_SECTION_SYM) != 0) { if (output_bfd != (bfd *) NULL) reloc_entry->address += input_section->output_offset; return bfd_reloc_ok; } /* This is an external symbol. If we're relocating, we don't want to change anything. */ if (output_bfd != (bfd *) NULL) { reloc_entry->address += input_section->output_offset; return bfd_reloc_ok; } ret = bfd_reloc_ok; if (bfd_is_und_section (symbol->section) && output_bfd == (bfd *) NULL) ret = bfd_reloc_undefined; if (bfd_is_com_section (symbol->section)) relocation = 0; else relocation = symbol->value; relocation += symbol->section->output_section->vma; relocation += symbol->section->output_offset; relocation += reloc_entry->addend; if (reloc_entry->address > input_section->_cooked_size) return bfd_reloc_outofrange; /* Save the information, and let RELLO do the actual relocation. */ mips_relhi_addr = (bfd_byte *) data + reloc_entry->address; mips_relhi_addend = relocation; if (output_bfd != (bfd *) NULL) reloc_entry->address += input_section->output_offset; return ret; } /* Do a RELLO relocation. This is a straightforward 16 bit PC relative relocation; this function exists in order to do the RELHI relocation described above. */ static bfd_reloc_status_type mips_rello_reloc (abfd, reloc_entry, symbol, data, input_section, output_bfd, error_message) bfd *abfd; arelent *reloc_entry; asymbol *symbol; PTR data; asection *input_section; bfd *output_bfd; char **error_message; { if (mips_relhi_addr != (bfd_byte *) NULL) { unsigned long insn; unsigned long val; unsigned long vallo; /* Do the RELHI relocation. Note that we actually don't need to know anything about the RELLO itself, except where to find the low 16 bits of the addend needed by the RELHI. */ insn = bfd_get_32 (abfd, mips_relhi_addr); vallo = (bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address) & 0xffff); val = ((insn & 0xffff) << 16) + vallo; val += mips_relhi_addend; /* If the symbol is defined, make val PC relative. If the symbol is not defined we don't want to do this, because we don't want the value in the object file to incorporate the address of the reloc. */ if (! bfd_is_und_section (bfd_get_section (symbol)) && ! bfd_is_com_section (bfd_get_section (symbol))) val -= (input_section->output_section->vma + input_section->output_offset + reloc_entry->address); /* The low order 16 bits are always treated as a signed value. Therefore, a negative value in the low order bits requires an adjustment in the high order bits. We need to make this adjustment in two ways: once for the bits we took from the data, and once for the bits we are putting back in to the data. */ if ((vallo & 0x8000) != 0) val -= 0x10000; if ((val & 0x8000) != 0) val += 0x10000; insn = (insn &~ 0xffff) | ((val >> 16) & 0xffff); bfd_put_32 (abfd, insn, mips_relhi_addr); mips_relhi_addr = (bfd_byte *) NULL; } /* If this is a reloc against a section symbol, then it is correct in the object file. The only time we want to change this case is when we are relaxing, and that is handled entirely by mips_relocate_section and never calls this function. */ if ((symbol->flags & BSF_SECTION_SYM) != 0) { if (output_bfd != (bfd *) NULL) reloc_entry->address += input_section->output_offset; return bfd_reloc_ok; } /* bfd_perform_relocation does not handle pcrel_offset relocations correctly when generating a relocateable file, so handle them directly here. */ if (output_bfd != (bfd *) NULL) { reloc_entry->address += input_section->output_offset; return bfd_reloc_ok; } /* Now do the RELLO reloc in the usual way. */ return mips_generic_reloc (abfd, reloc_entry, symbol, data, input_section, output_bfd, error_message); } /* This is the special function for the MIPS_R_SWITCH reloc. This special reloc is normally correct in the object file, and only requires special handling when relaxing. We don't want bfd_perform_relocation to tamper with it at all. */ /*ARGSUSED*/ static bfd_reloc_status_type mips_switch_reloc (abfd, reloc_entry, symbol, data, input_section, output_bfd, error_message) bfd *abfd; arelent *reloc_entry; asymbol *symbol; PTR data; asection *input_section; bfd *output_bfd; char **error_message; { return bfd_reloc_ok; } /* Get the howto structure for a generic reloc type. */ static reloc_howto_type * mips_bfd_reloc_type_lookup (abfd, code) bfd *abfd; bfd_reloc_code_real_type code; { int mips_type; switch (code) { case BFD_RELOC_16: mips_type = MIPS_R_REFHALF; break; case BFD_RELOC_32: case BFD_RELOC_CTOR: mips_type = MIPS_R_REFWORD; break; case BFD_RELOC_MIPS_JMP: mips_type = MIPS_R_JMPADDR; break; case BFD_RELOC_HI16_S: mips_type = MIPS_R_REFHI; break; case BFD_RELOC_LO16: mips_type = MIPS_R_REFLO; break; case BFD_RELOC_MIPS_GPREL: mips_type = MIPS_R_GPREL; break; case BFD_RELOC_MIPS_LITERAL: mips_type = MIPS_R_LITERAL; break; case BFD_RELOC_16_PCREL_S2: mips_type = MIPS_R_PCREL16; break; case BFD_RELOC_PCREL_HI16_S: mips_type = MIPS_R_RELHI; break; case BFD_RELOC_PCREL_LO16: mips_type = MIPS_R_RELLO; break; case BFD_RELOC_GPREL32: mips_type = MIPS_R_SWITCH; break; default: return (reloc_howto_type *) NULL; } return &mips_howto_table[mips_type]; } /* A helper routine for mips_relocate_section which handles the REFHI and RELHI relocations. The REFHI relocation must be followed by a REFLO relocation (and RELHI by a RELLO), and the addend used is formed from the addends of both instructions. */ static void mips_relocate_hi (refhi, reflo, input_bfd, input_section, contents, adjust, relocation, pcrel) struct internal_reloc *refhi; struct internal_reloc *reflo; bfd *input_bfd; asection *input_section; bfd_byte *contents; size_t adjust; bfd_vma relocation; boolean pcrel; { unsigned long insn; unsigned long val; unsigned long vallo; insn = bfd_get_32 (input_bfd, contents + adjust + refhi->r_vaddr - input_section->vma); vallo = (bfd_get_32 (input_bfd, contents + adjust + reflo->r_vaddr - input_section->vma) & 0xffff); val = ((insn & 0xffff) << 16) + vallo; val += relocation; /* The low order 16 bits are always treated as a signed value. Therefore, a negative value in the low order bits requires an adjustment in the high order bits. We need to make this adjustment in two ways: once for the bits we took from the data, and once for the bits we are putting back in to the data. */ if ((vallo & 0x8000) != 0) val -= 0x10000; if (pcrel) val -= (input_section->output_section->vma + input_section->output_offset + (reflo->r_vaddr - input_section->vma + adjust)); if ((val & 0x8000) != 0) val += 0x10000; insn = (insn &~ 0xffff) | ((val >> 16) & 0xffff); bfd_put_32 (input_bfd, (bfd_vma) insn, contents + adjust + refhi->r_vaddr - input_section->vma); } /* Relocate a section while linking a MIPS ECOFF file. */ static boolean mips_relocate_section (output_bfd, info, input_bfd, input_section, contents, external_relocs) bfd *output_bfd; struct bfd_link_info *info; bfd *input_bfd; asection *input_section; bfd_byte *contents; PTR external_relocs; { asection **symndx_to_section; struct ecoff_link_hash_entry **sym_hashes; bfd_vma gp; boolean gp_undefined; size_t adjust; long *offsets; struct external_reloc *ext_rel; struct external_reloc *ext_rel_end; unsigned int i; boolean got_lo; struct internal_reloc lo_int_rel; BFD_ASSERT (input_bfd->xvec->header_byteorder_big_p == output_bfd->xvec->header_byteorder_big_p); /* We keep a table mapping the symndx found in an internal reloc to the appropriate section. This is faster than looking up the section by name each time. */ symndx_to_section = ecoff_data (input_bfd)->symndx_to_section; if (symndx_to_section == (asection **) NULL) { symndx_to_section = ((asection **) bfd_alloc (input_bfd, (NUM_RELOC_SECTIONS * sizeof (asection *)))); if (!symndx_to_section) { bfd_set_error (bfd_error_no_memory); return false; } symndx_to_section[RELOC_SECTION_NONE] = NULL; symndx_to_section[RELOC_SECTION_TEXT] = bfd_get_section_by_name (input_bfd, ".text"); symndx_to_section[RELOC_SECTION_RDATA] = bfd_get_section_by_name (input_bfd, ".rdata"); symndx_to_section[RELOC_SECTION_DATA] = bfd_get_section_by_name (input_bfd, ".data"); symndx_to_section[RELOC_SECTION_SDATA] = bfd_get_section_by_name (input_bfd, ".sdata"); symndx_to_section[RELOC_SECTION_SBSS] = bfd_get_section_by_name (input_bfd, ".sbss"); symndx_to_section[RELOC_SECTION_BSS] = bfd_get_section_by_name (input_bfd, ".bss"); symndx_to_section[RELOC_SECTION_INIT] = bfd_get_section_by_name (input_bfd, ".init"); symndx_to_section[RELOC_SECTION_LIT8] = bfd_get_section_by_name (input_bfd, ".lit8"); symndx_to_section[RELOC_SECTION_LIT4] = bfd_get_section_by_name (input_bfd, ".lit4"); symndx_to_section[RELOC_SECTION_XDATA] = NULL; symndx_to_section[RELOC_SECTION_PDATA] = NULL; symndx_to_section[RELOC_SECTION_FINI] = bfd_get_section_by_name (input_bfd, ".fini"); symndx_to_section[RELOC_SECTION_LITA] = NULL; symndx_to_section[RELOC_SECTION_ABS] = NULL; ecoff_data (input_bfd)->symndx_to_section = symndx_to_section; } sym_hashes = ecoff_data (input_bfd)->sym_hashes; gp = ecoff_data (output_bfd)->gp; if (gp == 0) gp_undefined = true; else gp_undefined = false; got_lo = false; adjust = 0; if (ecoff_section_data (input_bfd, input_section) == NULL) offsets = NULL; else offsets = ecoff_section_data (input_bfd, input_section)->offsets; ext_rel = (struct external_reloc *) external_relocs; ext_rel_end = ext_rel + input_section->reloc_count; for (i = 0; ext_rel < ext_rel_end; ext_rel++, i++) { struct internal_reloc int_rel; bfd_vma addend; reloc_howto_type *howto; struct ecoff_link_hash_entry *h = NULL; asection *s = NULL; bfd_vma relocation; bfd_reloc_status_type r; if (! got_lo) mips_ecoff_swap_reloc_in (input_bfd, (PTR) ext_rel, &int_rel); else { int_rel = lo_int_rel; got_lo = false; } BFD_ASSERT (int_rel.r_type < sizeof mips_howto_table / sizeof mips_howto_table[0]); /* The REFHI and RELHI relocs requires special handling. they must be followed by a REFLO or RELLO reloc, respectively, and the addend is formed from both relocs. */ if (int_rel.r_type == MIPS_R_REFHI || int_rel.r_type == MIPS_R_RELHI) { BFD_ASSERT ((ext_rel + 1) < ext_rel_end); mips_ecoff_swap_reloc_in (input_bfd, (PTR) (ext_rel + 1), &lo_int_rel); BFD_ASSERT ((lo_int_rel.r_type == (int_rel.r_type == MIPS_R_REFHI ? MIPS_R_REFLO : MIPS_R_RELLO)) && int_rel.r_extern == lo_int_rel.r_extern && int_rel.r_symndx == lo_int_rel.r_symndx); got_lo = true; } howto = &mips_howto_table[int_rel.r_type]; /* The SWITCH reloc must be handled specially. This reloc is marks the location of a difference between two portions of an object file. The symbol index does not reference a symbol, but is actually the offset from the reloc to the subtrahend of the difference. This reloc is correct in the object file, and needs no further adjustment, unless we are relaxing. If we are relaxing, we may have to add in an offset. Since no symbols are involved in this reloc, we handle it completely here. */ if (int_rel.r_type == MIPS_R_SWITCH) { if (offsets != NULL && offsets[i] != 0) { r = _bfd_relocate_contents (howto, input_bfd, (bfd_vma) offsets[i], (contents + adjust + int_rel.r_vaddr - input_section->vma)); BFD_ASSERT (r == bfd_reloc_ok); } continue; } if (int_rel.r_extern) { h = sym_hashes[int_rel.r_symndx]; /* If h is NULL, that means that there is a reloc against an external symbol which we thought was just a debugging symbol. This should not happen. */ if (h == (struct ecoff_link_hash_entry *) NULL) abort (); } else { if (int_rel.r_symndx < 0 || int_rel.r_symndx >= NUM_RELOC_SECTIONS) s = NULL; else s = symndx_to_section[int_rel.r_symndx]; if (s == (asection *) NULL) abort (); } /* The GPREL reloc uses an addend: the difference in the GP values. */ if (int_rel.r_type != MIPS_R_GPREL && int_rel.r_type != MIPS_R_LITERAL) addend = 0; else { if (gp_undefined) { if (! ((*info->callbacks->reloc_dangerous) (info, "GP relative relocation when GP not defined", input_bfd, input_section, int_rel.r_vaddr - input_section->vma))) return false; /* Only give the error once per link. */ ecoff_data (output_bfd)->gp = gp = 4; gp_undefined = false; } if (! int_rel.r_extern) { /* This is a relocation against a section. The current addend in the instruction is the difference between INPUT_SECTION->vma and the GP value of INPUT_BFD. We must change this to be the difference between the final definition (which will end up in RELOCATION) and the GP value of OUTPUT_BFD (which is in GP). */ addend = ecoff_data (input_bfd)->gp - gp; } else if (! info->relocateable || h->root.type == bfd_link_hash_defined || h->root.type == bfd_link_hash_defweak) { /* This is a relocation against a defined symbol. The current addend in the instruction is simply the desired offset into the symbol (normally zero). We are going to change this into a relocation against a defined symbol, so we want the instruction to hold the difference between the final definition of the symbol (which will end up in RELOCATION) and the GP value of OUTPUT_BFD (which is in GP). */ addend = - gp; } else { /* This is a relocation against an undefined or common symbol. The current addend in the instruction is simply the desired offset into the symbol (normally zero). We are generating relocateable output, and we aren't going to define this symbol, so we just leave the instruction alone. */ addend = 0; } } /* If we are relaxing, mips_relax_section may have set offsets[i] to some value. A value of 1 means we must expand a PC relative branch into a multi-instruction of sequence, and any other value is an addend. */ if (offsets != NULL && offsets[i] != 0) { BFD_ASSERT (! info->relocateable); BFD_ASSERT (int_rel.r_type == MIPS_R_PCREL16 || int_rel.r_type == MIPS_R_RELHI || int_rel.r_type == MIPS_R_RELLO); if (offsets[i] != 1) addend += offsets[i]; else { bfd_byte *here; BFD_ASSERT (int_rel.r_extern && int_rel.r_type == MIPS_R_PCREL16); /* Move the rest of the instructions up. */ here = (contents + adjust + int_rel.r_vaddr - input_section->vma); memmove (here + PCREL16_EXPANSION_ADJUSTMENT, here, (size_t) (input_section->_raw_size - (int_rel.r_vaddr - input_section->vma))); /* Generate the new instructions. */ if (! mips_relax_pcrel16 (info, input_bfd, input_section, h, here, (input_section->output_section->vma + input_section->output_offset + (int_rel.r_vaddr - input_section->vma) + adjust))) return false; /* We must adjust everything else up a notch. */ adjust += PCREL16_EXPANSION_ADJUSTMENT; /* mips_relax_pcrel16 handles all the details of this relocation. */ continue; } } /* If we are relaxing, and this is a reloc against the .text segment, we may need to adjust it if some branches have been expanded. The reloc types which are likely to occur in the .text section are handled efficiently by mips_relax_section, and thus do not need to be handled here. */ if (ecoff_data (input_bfd)->debug_info.adjust != NULL && ! int_rel.r_extern && int_rel.r_symndx == RELOC_SECTION_TEXT && (strcmp (bfd_get_section_name (input_bfd, input_section), ".text") != 0 || (int_rel.r_type != MIPS_R_PCREL16 && int_rel.r_type != MIPS_R_SWITCH && int_rel.r_type != MIPS_R_RELHI && int_rel.r_type != MIPS_R_RELLO))) { bfd_vma adr; struct ecoff_value_adjust *a; /* We need to get the addend so that we know whether we need to adjust the address. */ BFD_ASSERT (int_rel.r_type == MIPS_R_REFWORD); adr = bfd_get_32 (input_bfd, (contents + adjust + int_rel.r_vaddr - input_section->vma)); for (a = ecoff_data (input_bfd)->debug_info.adjust; a != (struct ecoff_value_adjust *) NULL; a = a->next) { if (adr >= a->start && adr < a->end) addend += a->adjust; } } if (info->relocateable) { /* We are generating relocateable output, and must convert the existing reloc. */ if (int_rel.r_extern) { if ((h->root.type == bfd_link_hash_defined || h->root.type == bfd_link_hash_defweak) && ! bfd_is_abs_section (h->root.u.def.section)) { const char *name; /* This symbol is defined in the output. Convert the reloc from being against the symbol to being against the section. */ /* Clear the r_extern bit. */ int_rel.r_extern = 0; /* Compute a new r_symndx value. */ s = h->root.u.def.section; name = bfd_get_section_name (output_bfd, s->output_section); int_rel.r_symndx = -1; switch (name[1]) { case 'b': if (strcmp (name, ".bss") == 0) int_rel.r_symndx = RELOC_SECTION_BSS; break; case 'd': if (strcmp (name, ".data") == 0) int_rel.r_symndx = RELOC_SECTION_DATA; break; case 'f': if (strcmp (name, ".fini") == 0) int_rel.r_symndx = RELOC_SECTION_FINI; break; case 'i': if (strcmp (name, ".init") == 0) int_rel.r_symndx = RELOC_SECTION_INIT; break; case 'l': if (strcmp (name, ".lit8") == 0) int_rel.r_symndx = RELOC_SECTION_LIT8; else if (strcmp (name, ".lit4") == 0) int_rel.r_symndx = RELOC_SECTION_LIT4; break; case 'r': if (strcmp (name, ".rdata") == 0) int_rel.r_symndx = RELOC_SECTION_RDATA; break; case 's': if (strcmp (name, ".sdata") == 0) int_rel.r_symndx = RELOC_SECTION_SDATA; else if (strcmp (name, ".sbss") == 0) int_rel.r_symndx = RELOC_SECTION_SBSS; break; case 't': if (strcmp (name, ".text") == 0) int_rel.r_symndx = RELOC_SECTION_TEXT; break; } if (int_rel.r_symndx == -1) abort (); /* Add the section VMA and the symbol value. */ relocation = (h->root.u.def.value + s->output_section->vma + s->output_offset); /* For a PC relative relocation, the object file currently holds just the addend. We must adjust by the address to get the right value. */ if (howto->pc_relative) { relocation -= int_rel.r_vaddr - input_section->vma; /* If we are converting a RELHI or RELLO reloc from being against an external symbol to being against a section, we must put a special value into the r_offset field. This value is the old addend. The r_offset for both the RELOHI and RELLO relocs are the same, and we set both when we see RELHI. */ if (int_rel.r_type == MIPS_R_RELHI) { long addhi, addlo; addhi = bfd_get_32 (input_bfd, (contents + adjust + int_rel.r_vaddr - input_section->vma)); addhi &= 0xffff; if (addhi & 0x8000) addhi -= 0x10000; addhi <<= 16; addlo = bfd_get_32 (input_bfd, (contents + adjust + lo_int_rel.r_vaddr - input_section->vma)); addlo &= 0xffff; if (addlo & 0x8000) addlo -= 0x10000; int_rel.r_offset = addhi + addlo; lo_int_rel.r_offset = int_rel.r_offset; } } h = NULL; } else { /* Change the symndx value to the right one for the output BFD. */ int_rel.r_symndx = h->indx; if (int_rel.r_symndx == -1) { /* This symbol is not being written out. */ if (! ((*info->callbacks->unattached_reloc) (info, h->root.root.string, input_bfd, input_section, int_rel.r_vaddr - input_section->vma))) return false; int_rel.r_symndx = 0; } relocation = 0; } } else { /* This is a relocation against a section. Adjust the value by the amount the section moved. */ relocation = (s->output_section->vma + s->output_offset - s->vma); } relocation += addend; addend = 0; /* Adjust a PC relative relocation by removing the reference to the original address in the section and including the reference to the new address. However, external RELHI and RELLO relocs are PC relative, but don't include any reference to the address. The addend is merely an addend. */ if (howto->pc_relative && (! int_rel.r_extern || (int_rel.r_type != MIPS_R_RELHI && int_rel.r_type != MIPS_R_RELLO))) relocation -= (input_section->output_section->vma + input_section->output_offset - input_section->vma); /* Adjust the contents. */ if (relocation == 0) r = bfd_reloc_ok; else { if (int_rel.r_type != MIPS_R_REFHI && int_rel.r_type != MIPS_R_RELHI) r = _bfd_relocate_contents (howto, input_bfd, relocation, (contents + adjust + int_rel.r_vaddr - input_section->vma)); else { mips_relocate_hi (&int_rel, &lo_int_rel, input_bfd, input_section, contents, adjust, relocation, int_rel.r_type == MIPS_R_RELHI); r = bfd_reloc_ok; } } /* Adjust the reloc address. */ int_rel.r_vaddr += (input_section->output_section->vma + input_section->output_offset - input_section->vma); /* Save the changed reloc information. */ mips_ecoff_swap_reloc_out (input_bfd, &int_rel, (PTR) ext_rel); } else { /* We are producing a final executable. */ if (int_rel.r_extern) { /* This is a reloc against a symbol. */ if (h->root.type == bfd_link_hash_defined || h->root.type == bfd_link_hash_defweak) { asection *hsec; hsec = h->root.u.def.section; relocation = (h->root.u.def.value + hsec->output_section->vma + hsec->output_offset); } else { if (! ((*info->callbacks->undefined_symbol) (info, h->root.root.string, input_bfd, input_section, int_rel.r_vaddr - input_section->vma))) return false; relocation = 0; } } else { /* This is a reloc against a section. */ relocation = (s->output_section->vma + s->output_offset - s->vma); /* A PC relative reloc is already correct in the object file. Make it look like a pcrel_offset relocation by adding in the start address. */ if (howto->pc_relative) { if (int_rel.r_type != MIPS_R_RELHI) relocation += int_rel.r_vaddr + adjust; else relocation += lo_int_rel.r_vaddr + adjust; } } if (int_rel.r_type != MIPS_R_REFHI && int_rel.r_type != MIPS_R_RELHI) r = _bfd_final_link_relocate (howto, input_bfd, input_section, contents, (int_rel.r_vaddr - input_section->vma + adjust), relocation, addend); else { mips_relocate_hi (&int_rel, &lo_int_rel, input_bfd, input_section, contents, adjust, relocation, int_rel.r_type == MIPS_R_RELHI); r = bfd_reloc_ok; } } /* MIPS_R_JMPADDR requires peculiar overflow detection. The instruction provides a 28 bit address (the two lower bits are implicit zeroes) which is combined with the upper four bits of the instruction address. */ if (r == bfd_reloc_ok && int_rel.r_type == MIPS_R_JMPADDR && (((relocation + addend + (int_rel.r_extern ? 0 : s->vma)) & 0xf0000000) != ((input_section->output_section->vma + input_section->output_offset + (int_rel.r_vaddr - input_section->vma) + adjust) & 0xf0000000))) r = bfd_reloc_overflow; if (r != bfd_reloc_ok) { switch (r) { default: case bfd_reloc_outofrange: abort (); case bfd_reloc_overflow: { const char *name; if (int_rel.r_extern) name = h->root.root.string; else name = bfd_section_name (input_bfd, s); if (! ((*info->callbacks->reloc_overflow) (info, name, howto->name, (bfd_vma) 0, input_bfd, input_section, int_rel.r_vaddr - input_section->vma))) return false; } break; } } } return true; } /* Read in the relocs for a section. */ static boolean mips_read_relocs (abfd, sec) bfd *abfd; asection *sec; { struct ecoff_section_tdata *section_tdata; section_tdata = ecoff_section_data (abfd, sec); if (section_tdata == (struct ecoff_section_tdata *) NULL) { sec->used_by_bfd = (PTR) bfd_alloc_by_size_t (abfd, sizeof (struct ecoff_section_tdata)); if (sec->used_by_bfd == NULL) { bfd_set_error (bfd_error_no_memory); return false; } section_tdata = ecoff_section_data (abfd, sec); section_tdata->external_relocs = NULL; section_tdata->contents = NULL; section_tdata->offsets = NULL; } if (section_tdata->external_relocs == NULL) { bfd_size_type external_relocs_size; external_relocs_size = (ecoff_backend (abfd)->external_reloc_size * sec->reloc_count); section_tdata->external_relocs = (PTR) bfd_alloc (abfd, external_relocs_size); if (section_tdata->external_relocs == NULL && external_relocs_size != 0) { bfd_set_error (bfd_error_no_memory); return false; } if (bfd_seek (abfd, sec->rel_filepos, SEEK_SET) != 0 || (bfd_read (section_tdata->external_relocs, 1, external_relocs_size, abfd) != external_relocs_size)) return false; } return true; } /* Relax a section when linking a MIPS ECOFF file. This is used for embedded PIC code, which always uses PC relative branches which only have an 18 bit range on MIPS. If a branch is not in range, we generate a long instruction sequence to compensate. Each time we find a branch to expand, we have to check all the others again to make sure they are still in range. This is slow, but it only has to be done when -relax is passed to the linker. This routine figures out which branches need to expand; the actual expansion is done in mips_relocate_section when the section contents are relocated. The information is stored in the offsets field of the ecoff_section_tdata structure. An offset of 1 means that the branch must be expanded into a multi-instruction PC relative branch (such an offset will only occur for a PC relative branch to an external symbol). Any other offset must be a multiple of four, and is the amount to change the branch by (such an offset will only occur for a PC relative branch within the same section). We do not modify the section relocs or contents themselves so that if memory usage becomes an issue we can discard them and read them again. The only information we must save in memory between this routine and the mips_relocate_section routine is the table of offsets. */ static boolean mips_relax_section (abfd, sec, info, again) bfd *abfd; asection *sec; struct bfd_link_info *info; boolean *again; { struct ecoff_section_tdata *section_tdata; bfd_byte *contents = NULL; long *offsets; struct external_reloc *ext_rel; struct external_reloc *ext_rel_end; unsigned int i; /* Assume we are not going to need another pass. */ *again = false; /* If we are not generating an ECOFF file, this is much too confusing to deal with. */ if (info->hash->creator->flavour != bfd_get_flavour (abfd)) return true; /* If there are no relocs, there is nothing to do. */ if (sec->reloc_count == 0) return true; /* We are only interested in PC relative relocs, and why would there ever be one from anything but the .text section? */ if (strcmp (bfd_get_section_name (abfd, sec), ".text") != 0) return true; /* Read in the relocs, if we haven't already got them. */ section_tdata = ecoff_section_data (abfd, sec); if (section_tdata == (struct ecoff_section_tdata *) NULL || section_tdata->external_relocs == NULL) { if (! mips_read_relocs (abfd, sec)) goto error_return; section_tdata = ecoff_section_data (abfd, sec); } if (sec->_cooked_size == 0) { /* We must initialize _cooked_size only the first time we are called. */ sec->_cooked_size = sec->_raw_size; } contents = section_tdata->contents; offsets = section_tdata->offsets; /* Look for any external PC relative relocs. Internal PC relative relocs are already correct in the object file, so they certainly can not overflow. */ ext_rel = (struct external_reloc *) section_tdata->external_relocs; ext_rel_end = ext_rel + sec->reloc_count; for (i = 0; ext_rel < ext_rel_end; ext_rel++, i++) { struct internal_reloc int_rel; struct ecoff_link_hash_entry *h; asection *hsec; bfd_signed_vma relocation; struct external_reloc *adj_ext_rel; unsigned int adj_i; unsigned long ext_count; struct ecoff_link_hash_entry **adj_h_ptr; struct ecoff_link_hash_entry **adj_h_ptr_end; struct ecoff_value_adjust *adjust; /* If we have already expanded this reloc, we certainly don't need to do it again. */ if (offsets != (long *) NULL && offsets[i] == 1) continue; /* Quickly check that this reloc is external PCREL16. */ if (abfd->xvec->header_byteorder_big_p) { if ((ext_rel->r_bits[3] & RELOC_BITS3_EXTERN_BIG) == 0 || (((ext_rel->r_bits[3] & RELOC_BITS3_TYPE_BIG) >> RELOC_BITS3_TYPE_SH_BIG) != MIPS_R_PCREL16)) continue; } else { if ((ext_rel->r_bits[3] & RELOC_BITS3_EXTERN_LITTLE) == 0 || (((ext_rel->r_bits[3] & RELOC_BITS3_TYPE_LITTLE) >> RELOC_BITS3_TYPE_SH_LITTLE) != MIPS_R_PCREL16)) continue; } mips_ecoff_swap_reloc_in (abfd, (PTR) ext_rel, &int_rel); h = ecoff_data (abfd)->sym_hashes[int_rel.r_symndx]; if (h == (struct ecoff_link_hash_entry *) NULL) abort (); if (h->root.type != bfd_link_hash_defined && h->root.type != bfd_link_hash_defweak) { /* Just ignore undefined symbols. These will presumably generate an error later in the link. */ continue; } /* Get the value of the symbol. */ hsec = h->root.u.def.section; relocation = (h->root.u.def.value + hsec->output_section->vma + hsec->output_offset); /* Subtract out the current address. */ relocation -= (sec->output_section->vma + sec->output_offset + (int_rel.r_vaddr - sec->vma)); /* The addend is stored in the object file. In the normal case of ``bal symbol'', the addend will be -4. It will only be different in the case of ``bal symbol+constant''. To avoid always reading in the section contents, we don't check the addend in the object file (we could easily check the contents if we happen to have already read them in, but I fear that this could be confusing). This means we will screw up if there is a branch to a symbol that is in range, but added to a constant which puts it out of range; in such a case the link will fail with a reloc overflow error. Since the compiler will never generate such code, it should be easy enough to work around it by changing the assembly code in the source file. */ relocation -= 4; /* Now RELOCATION is the number we want to put in the object file. See whether it fits. */ if (relocation >= -0x20000 && relocation < 0x20000) continue; /* Now that we know this reloc needs work, which will rarely happen, go ahead and grab the section contents. */ if (contents == (bfd_byte *) NULL) { if (info->keep_memory) contents = (bfd_byte *) bfd_alloc (abfd, sec->_raw_size); else contents = (bfd_byte *) malloc ((size_t) sec->_raw_size); if (contents == (bfd_byte *) NULL) { bfd_set_error (bfd_error_no_memory); goto error_return; } if (! bfd_get_section_contents (abfd, sec, (PTR) contents, (file_ptr) 0, sec->_raw_size)) goto error_return; if (info->keep_memory) section_tdata->contents = contents; } /* We only support changing the bal instruction. It would be possible to handle other PC relative branches, but some of them (the conditional branches) would require a different length instruction sequence which would complicate both this routine and mips_relax_pcrel16. It could be written if somebody felt it were important. Ignoring this reloc will presumably cause a reloc overflow error later on. */ if (bfd_get_32 (abfd, contents + int_rel.r_vaddr - sec->vma) != 0x0411ffff) /* bgezal $0,. == bal . */ continue; /* Bother. We need to expand this reloc, and we will need to make another relaxation pass since this change may put other relocs out of range. We need to examine the local branches and we need to allocate memory to hold the offsets we must add to them. We also need to adjust the values of all symbols in the object file following this location. */ sec->_cooked_size += PCREL16_EXPANSION_ADJUSTMENT; *again = true; if (offsets == (long *) NULL) { size_t size; size = sec->reloc_count * sizeof (long); offsets = (long *) bfd_alloc_by_size_t (abfd, size); if (offsets == (long *) NULL) { bfd_set_error (bfd_error_no_memory); goto error_return; } memset (offsets, 0, size); section_tdata->offsets = offsets; } offsets[i] = 1; /* Now look for all PC relative references that cross this reloc and adjust their offsets. */ adj_ext_rel = (struct external_reloc *) section_tdata->external_relocs; for (adj_i = 0; adj_ext_rel < ext_rel_end; adj_ext_rel++, adj_i++) { struct internal_reloc adj_int_rel; bfd_vma start, stop; int change; mips_ecoff_swap_reloc_in (abfd, (PTR) adj_ext_rel, &adj_int_rel); if (adj_int_rel.r_type == MIPS_R_PCREL16) { unsigned long insn; /* We only care about local references. External ones will be relocated correctly anyhow. */ if (adj_int_rel.r_extern) continue; /* We are only interested in a PC relative reloc within this section. FIXME: Cross section PC relative relocs may not be handled correctly; does anybody care? */ if (adj_int_rel.r_symndx != RELOC_SECTION_TEXT) continue; start = adj_int_rel.r_vaddr; insn = bfd_get_32 (abfd, contents + adj_int_rel.r_vaddr - sec->vma); stop = (insn & 0xffff) << 2; if ((stop & 0x20000) != 0) stop -= 0x40000; stop += adj_int_rel.r_vaddr + 4; } else if (adj_int_rel.r_type == MIPS_R_RELHI) { struct internal_reloc rello; long addhi, addlo; /* The next reloc must be MIPS_R_RELLO, and we handle them together. */ BFD_ASSERT (adj_ext_rel + 1 < ext_rel_end); mips_ecoff_swap_reloc_in (abfd, (PTR) (adj_ext_rel + 1), &rello); BFD_ASSERT (rello.r_type == MIPS_R_RELLO); addhi = bfd_get_32 (abfd, contents + adj_int_rel.r_vaddr - sec->vma); addhi &= 0xffff; if (addhi & 0x8000) addhi -= 0x10000; addhi <<= 16; addlo = bfd_get_32 (abfd, contents + rello.r_vaddr - sec->vma); addlo &= 0xffff; if (addlo & 0x8000) addlo -= 0x10000; if (adj_int_rel.r_extern) { /* The value we want here is sym - RELLOaddr + addend which we can express as sym - (RELLOaddr - addend) Therefore if we are expanding the area between RELLOaddr and RELLOaddr - addend we must adjust the addend. This is admittedly ambiguous, since we might mean (sym + addend) - RELLOaddr, but in practice we don't, and there is no way to handle that case correctly since at this point we have no idea whether any reloc is being expanded between sym and sym + addend. */ start = rello.r_vaddr - (addhi + addlo); stop = rello.r_vaddr; } else { /* An internal RELHI/RELLO pair represents the difference between two addresses, $LC0 - foo. The symndx value is actually the difference between the reloc address and $LC0. This lets us compute $LC0, and, by considering the addend, foo. If the reloc we are expanding falls between those two relocs, we must adjust the addend. At this point, the symndx value is actually in the r_offset field, where it was put by mips_ecoff_swap_reloc_in. */ start = rello.r_vaddr - adj_int_rel.r_offset; stop = start + addhi + addlo; } } else if (adj_int_rel.r_type == MIPS_R_SWITCH) { /* A MIPS_R_SWITCH reloc represents a word of the form .word $L3-$LS12 The value in the object file is correct, assuming the original value of $L3. The symndx value is actually the difference between the reloc address and $LS12. This lets us compute the original value of $LS12 as vaddr - symndx and the original value of $L3 as vaddr - symndx + addend where addend is the value from the object file. At this point, the symndx value is actually found in the r_offset field, since it was moved by mips_ecoff_swap_reloc_in. */ start = adj_int_rel.r_vaddr - adj_int_rel.r_offset; stop = start + bfd_get_32 (abfd, (contents + adj_int_rel.r_vaddr - sec->vma)); } else continue; /* If the range expressed by this reloc, which is the distance between START and STOP crosses the reloc we are expanding, we must adjust the offset. The sign of the adjustment depends upon the direction in which the range crosses the reloc being expanded. */ if (start <= int_rel.r_vaddr && stop > int_rel.r_vaddr) change = PCREL16_EXPANSION_ADJUSTMENT; else if (start > int_rel.r_vaddr && stop <= int_rel.r_vaddr) change = - PCREL16_EXPANSION_ADJUSTMENT; else change = 0; offsets[adj_i] += change; if (adj_int_rel.r_type == MIPS_R_RELHI) { adj_ext_rel++; adj_i++; offsets[adj_i] += change; } } /* Find all symbols in this section defined by this object file and adjust their values. Note that we decide whether to adjust the value based on the value stored in the ECOFF EXTR structure, because the value stored in the hash table may have been changed by an earlier expanded reloc and thus may no longer correctly indicate whether the symbol is before or after the expanded reloc. */ ext_count = ecoff_data (abfd)->debug_info.symbolic_header.iextMax; adj_h_ptr = ecoff_data (abfd)->sym_hashes; adj_h_ptr_end = adj_h_ptr + ext_count; for (; adj_h_ptr < adj_h_ptr_end; adj_h_ptr++) { struct ecoff_link_hash_entry *adj_h; adj_h = *adj_h_ptr; if (adj_h != (struct ecoff_link_hash_entry *) NULL && (adj_h->root.type == bfd_link_hash_defined || adj_h->root.type == bfd_link_hash_defweak) && adj_h->root.u.def.section == sec && adj_h->esym.asym.value > int_rel.r_vaddr) adj_h->root.u.def.value += PCREL16_EXPANSION_ADJUSTMENT; } /* Add an entry to the symbol value adjust list. This is used by bfd_ecoff_debug_accumulate to adjust the values of internal symbols and FDR's. */ adjust = ((struct ecoff_value_adjust *) bfd_alloc (abfd, sizeof (struct ecoff_value_adjust))); if (adjust == (struct ecoff_value_adjust *) NULL) { bfd_set_error (bfd_error_no_memory); goto error_return; } adjust->start = int_rel.r_vaddr; adjust->end = sec->vma + sec->_raw_size; adjust->adjust = PCREL16_EXPANSION_ADJUSTMENT; adjust->next = ecoff_data (abfd)->debug_info.adjust; ecoff_data (abfd)->debug_info.adjust = adjust; } if (contents != (bfd_byte *) NULL && ! info->keep_memory) free (contents); return true; error_return: if (contents != (bfd_byte *) NULL && ! info->keep_memory) free (contents); return false; } /* This routine is called from mips_relocate_section when a PC relative reloc must be expanded into the five instruction sequence. It handles all the details of the expansion, including resolving the reloc. */ static boolean mips_relax_pcrel16 (info, input_bfd, input_section, h, location, address) struct bfd_link_info *info; bfd *input_bfd; asection *input_section; struct ecoff_link_hash_entry *h; bfd_byte *location; bfd_vma address; { bfd_vma relocation; /* 0x0411ffff is bgezal $0,. == bal . */ BFD_ASSERT (bfd_get_32 (input_bfd, location) == 0x0411ffff); /* We need to compute the distance between the symbol and the current address plus eight. */ relocation = (h->root.u.def.value + h->root.u.def.section->output_section->vma + h->root.u.def.section->output_offset); relocation -= address + 8; /* If the lower half is negative, increment the upper 16 half. */ if ((relocation & 0x8000) != 0) relocation += 0x10000; bfd_put_32 (input_bfd, 0x04110001, location); /* bal .+8 */ bfd_put_32 (input_bfd, 0x3c010000 | ((relocation >> 16) & 0xffff), /* lui $at,XX */ location + 4); bfd_put_32 (input_bfd, 0x24210000 | (relocation & 0xffff), /* addiu $at,$at,XX */ location + 8); bfd_put_32 (input_bfd, 0x003f0821, location + 12); /* addu $at,$at,$ra */ bfd_put_32 (input_bfd, 0x0020f809, location + 16); /* jalr $at */ return true; } /* Given a .sdata section and a .rel.sdata in-memory section, store relocation information into the .rel.sdata section which can be used at runtime to relocate the section. This is called by the linker when the --embedded-relocs switch is used. This is called after the add_symbols entry point has been called for all the objects, and before the final_link entry point is called. This function presumes that the object was compiled using -membedded-pic. */ boolean bfd_mips_ecoff_create_embedded_relocs (abfd, info, datasec, relsec, errmsg) bfd *abfd; struct bfd_link_info *info; asection *datasec; asection *relsec; char **errmsg; { struct ecoff_link_hash_entry **sym_hashes; struct ecoff_section_tdata *section_tdata; struct external_reloc *ext_rel; struct external_reloc *ext_rel_end; bfd_byte *p; BFD_ASSERT (! info->relocateable); *errmsg = NULL; if (datasec->reloc_count == 0) return true; sym_hashes = ecoff_data (abfd)->sym_hashes; if (! mips_read_relocs (abfd, datasec)) return false; relsec->contents = (bfd_byte *) bfd_alloc (abfd, datasec->reloc_count * 4); if (relsec->contents == NULL) { bfd_set_error (bfd_error_no_memory); return false; } p = relsec->contents; section_tdata = ecoff_section_data (abfd, datasec); ext_rel = (struct external_reloc *) section_tdata->external_relocs; ext_rel_end = ext_rel + datasec->reloc_count; for (; ext_rel < ext_rel_end; ext_rel++, p += 4) { struct internal_reloc int_rel; boolean text_relative; mips_ecoff_swap_reloc_in (abfd, (PTR) ext_rel, &int_rel); /* We are going to write a four byte word into the runtime reloc section. The word will be the address in the data section which must be relocated. This must be on a word boundary, which means the lower two bits must be zero. We use the least significant bit to indicate how the value in the data section must be relocated. A 0 means that the value is relative to the text section, while a 1 indicates that the value is relative to the data section. Given that we are assuming the code was compiled using -membedded-pic, there should not be any other possibilities. */ /* We can only relocate REFWORD relocs at run time. */ if (int_rel.r_type != MIPS_R_REFWORD) { *errmsg = "unsupported reloc type"; bfd_set_error (bfd_error_bad_value); return false; } if (int_rel.r_extern) { struct ecoff_link_hash_entry *h; h = sym_hashes[int_rel.r_symndx]; /* If h is NULL, that means that there is a reloc against an external symbol which we thought was just a debugging symbol. This should not happen. */ if (h == (struct ecoff_link_hash_entry *) NULL) abort (); if ((h->root.type == bfd_link_hash_defined || h->root.type == bfd_link_hash_defweak) && (h->root.u.def.section->flags & SEC_CODE) != 0) text_relative = true; else text_relative = false; } else { switch (int_rel.r_symndx) { case RELOC_SECTION_TEXT: text_relative = true; break; case RELOC_SECTION_SDATA: case RELOC_SECTION_SBSS: case RELOC_SECTION_LIT8: text_relative = false; break; default: /* No other sections should appear in -membedded-pic code. */ *errmsg = "reloc against unsupported section"; bfd_set_error (bfd_error_bad_value); return false; } } if ((int_rel.r_offset & 3) != 0) { *errmsg = "reloc not properly aligned"; bfd_set_error (bfd_error_bad_value); return false; } bfd_put_32 (abfd, (int_rel.r_vaddr - datasec->vma + datasec->output_offset + (text_relative ? 0 : 1)), p); } return true; } /* This is the ECOFF backend structure. The backend field of the target vector points to this. */ static const struct ecoff_backend_data mips_ecoff_backend_data = { /* COFF backend structure. */ { (void (*) PARAMS ((bfd *,PTR,int,int,int,int,PTR))) bfd_void, /* aux_in */ (void (*) PARAMS ((bfd *,PTR,PTR))) bfd_void, /* sym_in */ (void (*) PARAMS ((bfd *,PTR,PTR))) bfd_void, /* lineno_in */ (unsigned (*) PARAMS ((bfd *,PTR,int,int,int,int,PTR)))bfd_void,/*aux_out*/ (unsigned (*) PARAMS ((bfd *,PTR,PTR))) bfd_void, /* sym_out */ (unsigned (*) PARAMS ((bfd *,PTR,PTR))) bfd_void, /* lineno_out */ (unsigned (*) PARAMS ((bfd *,PTR,PTR))) bfd_void, /* reloc_out */ mips_ecoff_swap_filehdr_out, mips_ecoff_swap_aouthdr_out, mips_ecoff_swap_scnhdr_out, FILHSZ, AOUTSZ, SCNHSZ, 0, 0, 0, 0, true, mips_ecoff_swap_filehdr_in, mips_ecoff_swap_aouthdr_in, mips_ecoff_swap_scnhdr_in, NULL, mips_ecoff_bad_format_hook, _bfd_ecoff_set_arch_mach_hook, _bfd_ecoff_mkobject_hook, _bfd_ecoff_styp_to_sec_flags, _bfd_ecoff_make_section_hook, _bfd_ecoff_set_alignment_hook, _bfd_ecoff_slurp_symbol_table, NULL, NULL, NULL, NULL, NULL, NULL, NULL }, /* Supported architecture. */ bfd_arch_mips, /* Initial portion of armap string. */ "__________", /* The page boundary used to align sections in a demand-paged executable file. E.g., 0x1000. */ 0x1000, /* True if the .rdata section is part of the text segment, as on the Alpha. False if .rdata is part of the data segment, as on the MIPS. */ false, /* Bitsize of constructor entries. */ 32, /* Reloc to use for constructor entries. */ &mips_howto_table[MIPS_R_REFWORD], { /* Symbol table magic number. */ magicSym, /* Alignment of debugging information. E.g., 4. */ 4, /* Sizes of external symbolic information. */ sizeof (struct hdr_ext), sizeof (struct dnr_ext), sizeof (struct pdr_ext), sizeof (struct sym_ext), sizeof (struct opt_ext), sizeof (struct fdr_ext), sizeof (struct rfd_ext), sizeof (struct ext_ext), /* Functions to swap in external symbolic data. */ ecoff_swap_hdr_in, ecoff_swap_dnr_in, ecoff_swap_pdr_in, ecoff_swap_sym_in, ecoff_swap_opt_in, ecoff_swap_fdr_in, ecoff_swap_rfd_in, ecoff_swap_ext_in, _bfd_ecoff_swap_tir_in, _bfd_ecoff_swap_rndx_in, /* Functions to swap out external symbolic data. */ ecoff_swap_hdr_out, ecoff_swap_dnr_out, ecoff_swap_pdr_out, ecoff_swap_sym_out, ecoff_swap_opt_out, ecoff_swap_fdr_out, ecoff_swap_rfd_out, ecoff_swap_ext_out, _bfd_ecoff_swap_tir_out, _bfd_ecoff_swap_rndx_out, /* Function to read in symbolic data. */ _bfd_ecoff_slurp_symbolic_info }, /* External reloc size. */ RELSZ, /* Reloc swapping functions. */ mips_ecoff_swap_reloc_in, mips_ecoff_swap_reloc_out, /* Backend reloc tweaking. */ mips_adjust_reloc_in, mips_adjust_reloc_out, /* Relocate section contents while linking. */ mips_relocate_section }; /* Looking up a reloc type is MIPS specific. */ #define _bfd_ecoff_bfd_reloc_type_lookup mips_bfd_reloc_type_lookup /* Getting relocated section contents is generic. */ #define _bfd_ecoff_bfd_get_relocated_section_contents \ bfd_generic_get_relocated_section_contents /* Relaxing sections is MIPS specific. */ #define _bfd_ecoff_bfd_relax_section mips_relax_section const bfd_target ecoff_little_vec = { "ecoff-littlemips", /* name */ bfd_target_ecoff_flavour, false, /* data byte order is little */ false, /* header byte order is little */ (HAS_RELOC | EXEC_P | /* object flags */ HAS_LINENO | HAS_DEBUG | HAS_SYMS | HAS_LOCALS | WP_TEXT | D_PAGED), (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_CODE | SEC_DATA), 0, /* leading underscore */ ' ', /* ar_pad_char */ 15, /* ar_max_namelen */ bfd_getl64, bfd_getl_signed_64, bfd_putl64, bfd_getl32, bfd_getl_signed_32, bfd_putl32, bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* data */ bfd_getl64, bfd_getl_signed_64, bfd_putl64, bfd_getl32, bfd_getl_signed_32, bfd_putl32, bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* hdrs */ {_bfd_dummy_target, coff_object_p, /* bfd_check_format */ _bfd_ecoff_archive_p, _bfd_dummy_target}, {bfd_false, _bfd_ecoff_mkobject, /* bfd_set_format */ _bfd_generic_mkarchive, bfd_false}, {bfd_false, _bfd_ecoff_write_object_contents, /* bfd_write_contents */ _bfd_write_archive_contents, bfd_false}, BFD_JUMP_TABLE_GENERIC (_bfd_ecoff), BFD_JUMP_TABLE_COPY (_bfd_ecoff), BFD_JUMP_TABLE_CORE (_bfd_nocore), BFD_JUMP_TABLE_ARCHIVE (_bfd_ecoff), BFD_JUMP_TABLE_SYMBOLS (_bfd_ecoff), BFD_JUMP_TABLE_RELOCS (_bfd_ecoff), BFD_JUMP_TABLE_WRITE (_bfd_ecoff), BFD_JUMP_TABLE_LINK (_bfd_ecoff), BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic), (PTR) &mips_ecoff_backend_data }; const bfd_target ecoff_big_vec = { "ecoff-bigmips", /* name */ bfd_target_ecoff_flavour, true, /* data byte order is big */ true, /* header byte order is big */ (HAS_RELOC | EXEC_P | /* object flags */ HAS_LINENO | HAS_DEBUG | HAS_SYMS | HAS_LOCALS | WP_TEXT | D_PAGED), (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_CODE | SEC_DATA), 0, /* leading underscore */ ' ', /* ar_pad_char */ 15, /* ar_max_namelen */ bfd_getb64, bfd_getb_signed_64, bfd_putb64, bfd_getb32, bfd_getb_signed_32, bfd_putb32, bfd_getb16, bfd_getb_signed_16, bfd_putb16, bfd_getb64, bfd_getb_signed_64, bfd_putb64, bfd_getb32, bfd_getb_signed_32, bfd_putb32, bfd_getb16, bfd_getb_signed_16, bfd_putb16, {_bfd_dummy_target, coff_object_p, /* bfd_check_format */ _bfd_ecoff_archive_p, _bfd_dummy_target}, {bfd_false, _bfd_ecoff_mkobject, /* bfd_set_format */ _bfd_generic_mkarchive, bfd_false}, {bfd_false, _bfd_ecoff_write_object_contents, /* bfd_write_contents */ _bfd_write_archive_contents, bfd_false}, BFD_JUMP_TABLE_GENERIC (_bfd_ecoff), BFD_JUMP_TABLE_COPY (_bfd_ecoff), BFD_JUMP_TABLE_CORE (_bfd_nocore), BFD_JUMP_TABLE_ARCHIVE (_bfd_ecoff), BFD_JUMP_TABLE_SYMBOLS (_bfd_ecoff), BFD_JUMP_TABLE_RELOCS (_bfd_ecoff), BFD_JUMP_TABLE_WRITE (_bfd_ecoff), BFD_JUMP_TABLE_LINK (_bfd_ecoff), BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic), (PTR) &mips_ecoff_backend_data };