/* ELF executable support for BFD. Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc. This file is part of BFD, the Binary File Descriptor library. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */ /* SECTION ELF backends BFD support for ELF formats is being worked on. Currently, the best supported back ends are for sparc and i386 (running svr4 or Solaris 2). Documentation of the internals of the support code still needs to be written. The code is changing quickly enough that we haven't bothered yet. */ /* For sparc64-cross-sparc32. */ #define _SYSCALL32 #include "bfd.h" #include "sysdep.h" #include "bfdlink.h" #include "libbfd.h" #define ARCH_SIZE 0 #include "elf-bfd.h" #include "libiberty.h" static int elf_sort_sections (const void *, const void *); static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *); static bfd_boolean prep_headers (bfd *); static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ; static bfd_boolean elfcore_read_notes (bfd *, file_ptr, bfd_size_type) ; /* Swap version information in and out. The version information is currently size independent. If that ever changes, this code will need to move into elfcode.h. */ /* Swap in a Verdef structure. */ void _bfd_elf_swap_verdef_in (bfd *abfd, const Elf_External_Verdef *src, Elf_Internal_Verdef *dst) { dst->vd_version = H_GET_16 (abfd, src->vd_version); dst->vd_flags = H_GET_16 (abfd, src->vd_flags); dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx); dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt); dst->vd_hash = H_GET_32 (abfd, src->vd_hash); dst->vd_aux = H_GET_32 (abfd, src->vd_aux); dst->vd_next = H_GET_32 (abfd, src->vd_next); } /* Swap out a Verdef structure. */ void _bfd_elf_swap_verdef_out (bfd *abfd, const Elf_Internal_Verdef *src, Elf_External_Verdef *dst) { H_PUT_16 (abfd, src->vd_version, dst->vd_version); H_PUT_16 (abfd, src->vd_flags, dst->vd_flags); H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx); H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt); H_PUT_32 (abfd, src->vd_hash, dst->vd_hash); H_PUT_32 (abfd, src->vd_aux, dst->vd_aux); H_PUT_32 (abfd, src->vd_next, dst->vd_next); } /* Swap in a Verdaux structure. */ void _bfd_elf_swap_verdaux_in (bfd *abfd, const Elf_External_Verdaux *src, Elf_Internal_Verdaux *dst) { dst->vda_name = H_GET_32 (abfd, src->vda_name); dst->vda_next = H_GET_32 (abfd, src->vda_next); } /* Swap out a Verdaux structure. */ void _bfd_elf_swap_verdaux_out (bfd *abfd, const Elf_Internal_Verdaux *src, Elf_External_Verdaux *dst) { H_PUT_32 (abfd, src->vda_name, dst->vda_name); H_PUT_32 (abfd, src->vda_next, dst->vda_next); } /* Swap in a Verneed structure. */ void _bfd_elf_swap_verneed_in (bfd *abfd, const Elf_External_Verneed *src, Elf_Internal_Verneed *dst) { dst->vn_version = H_GET_16 (abfd, src->vn_version); dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt); dst->vn_file = H_GET_32 (abfd, src->vn_file); dst->vn_aux = H_GET_32 (abfd, src->vn_aux); dst->vn_next = H_GET_32 (abfd, src->vn_next); } /* Swap out a Verneed structure. */ void _bfd_elf_swap_verneed_out (bfd *abfd, const Elf_Internal_Verneed *src, Elf_External_Verneed *dst) { H_PUT_16 (abfd, src->vn_version, dst->vn_version); H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt); H_PUT_32 (abfd, src->vn_file, dst->vn_file); H_PUT_32 (abfd, src->vn_aux, dst->vn_aux); H_PUT_32 (abfd, src->vn_next, dst->vn_next); } /* Swap in a Vernaux structure. */ void _bfd_elf_swap_vernaux_in (bfd *abfd, const Elf_External_Vernaux *src, Elf_Internal_Vernaux *dst) { dst->vna_hash = H_GET_32 (abfd, src->vna_hash); dst->vna_flags = H_GET_16 (abfd, src->vna_flags); dst->vna_other = H_GET_16 (abfd, src->vna_other); dst->vna_name = H_GET_32 (abfd, src->vna_name); dst->vna_next = H_GET_32 (abfd, src->vna_next); } /* Swap out a Vernaux structure. */ void _bfd_elf_swap_vernaux_out (bfd *abfd, const Elf_Internal_Vernaux *src, Elf_External_Vernaux *dst) { H_PUT_32 (abfd, src->vna_hash, dst->vna_hash); H_PUT_16 (abfd, src->vna_flags, dst->vna_flags); H_PUT_16 (abfd, src->vna_other, dst->vna_other); H_PUT_32 (abfd, src->vna_name, dst->vna_name); H_PUT_32 (abfd, src->vna_next, dst->vna_next); } /* Swap in a Versym structure. */ void _bfd_elf_swap_versym_in (bfd *abfd, const Elf_External_Versym *src, Elf_Internal_Versym *dst) { dst->vs_vers = H_GET_16 (abfd, src->vs_vers); } /* Swap out a Versym structure. */ void _bfd_elf_swap_versym_out (bfd *abfd, const Elf_Internal_Versym *src, Elf_External_Versym *dst) { H_PUT_16 (abfd, src->vs_vers, dst->vs_vers); } /* Standard ELF hash function. Do not change this function; you will cause invalid hash tables to be generated. */ unsigned long bfd_elf_hash (const char *namearg) { const unsigned char *name = (const unsigned char *) namearg; unsigned long h = 0; unsigned long g; int ch; while ((ch = *name++) != '\0') { h = (h << 4) + ch; if ((g = (h & 0xf0000000)) != 0) { h ^= g >> 24; /* The ELF ABI says `h &= ~g', but this is equivalent in this case and on some machines one insn instead of two. */ h ^= g; } } return h & 0xffffffff; } bfd_boolean bfd_elf_mkobject (bfd *abfd) { /* This just does initialization. */ /* coff_mkobject zalloc's space for tdata.coff_obj_data ... */ elf_tdata (abfd) = bfd_zalloc (abfd, sizeof (struct elf_obj_tdata)); if (elf_tdata (abfd) == 0) return FALSE; /* Since everything is done at close time, do we need any initialization? */ return TRUE; } bfd_boolean bfd_elf_mkcorefile (bfd *abfd) { /* I think this can be done just like an object file. */ return bfd_elf_mkobject (abfd); } char * bfd_elf_get_str_section (bfd *abfd, unsigned int shindex) { Elf_Internal_Shdr **i_shdrp; bfd_byte *shstrtab = NULL; file_ptr offset; bfd_size_type shstrtabsize; i_shdrp = elf_elfsections (abfd); if (i_shdrp == 0 || i_shdrp[shindex] == 0) return NULL; shstrtab = i_shdrp[shindex]->contents; if (shstrtab == NULL) { /* No cached one, attempt to read, and cache what we read. */ offset = i_shdrp[shindex]->sh_offset; shstrtabsize = i_shdrp[shindex]->sh_size; /* Allocate and clear an extra byte at the end, to prevent crashes in case the string table is not terminated. */ if (shstrtabsize + 1 == 0 || (shstrtab = bfd_alloc (abfd, shstrtabsize + 1)) == NULL || bfd_seek (abfd, offset, SEEK_SET) != 0) shstrtab = NULL; else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize) { if (bfd_get_error () != bfd_error_system_call) bfd_set_error (bfd_error_file_truncated); shstrtab = NULL; } else shstrtab[shstrtabsize] = '\0'; i_shdrp[shindex]->contents = shstrtab; } return (char *) shstrtab; } char * bfd_elf_string_from_elf_section (bfd *abfd, unsigned int shindex, unsigned int strindex) { Elf_Internal_Shdr *hdr; if (strindex == 0) return ""; hdr = elf_elfsections (abfd)[shindex]; if (hdr->contents == NULL && bfd_elf_get_str_section (abfd, shindex) == NULL) return NULL; if (strindex >= hdr->sh_size) { unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx; (*_bfd_error_handler) (_("%B: invalid string offset %u >= %lu for section `%s'"), abfd, strindex, (unsigned long) hdr->sh_size, (shindex == shstrndx && strindex == hdr->sh_name ? ".shstrtab" : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name))); return ""; } return ((char *) hdr->contents) + strindex; } /* Read and convert symbols to internal format. SYMCOUNT specifies the number of symbols to read, starting from symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF are non-NULL, they are used to store the internal symbols, external symbols, and symbol section index extensions, respectively. */ Elf_Internal_Sym * bfd_elf_get_elf_syms (bfd *ibfd, Elf_Internal_Shdr *symtab_hdr, size_t symcount, size_t symoffset, Elf_Internal_Sym *intsym_buf, void *extsym_buf, Elf_External_Sym_Shndx *extshndx_buf) { Elf_Internal_Shdr *shndx_hdr; void *alloc_ext; const bfd_byte *esym; Elf_External_Sym_Shndx *alloc_extshndx; Elf_External_Sym_Shndx *shndx; Elf_Internal_Sym *isym; Elf_Internal_Sym *isymend; const struct elf_backend_data *bed; size_t extsym_size; bfd_size_type amt; file_ptr pos; if (symcount == 0) return intsym_buf; /* Normal syms might have section extension entries. */ shndx_hdr = NULL; if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr) shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr; /* Read the symbols. */ alloc_ext = NULL; alloc_extshndx = NULL; bed = get_elf_backend_data (ibfd); extsym_size = bed->s->sizeof_sym; amt = symcount * extsym_size; pos = symtab_hdr->sh_offset + symoffset * extsym_size; if (extsym_buf == NULL) { alloc_ext = bfd_malloc2 (symcount, extsym_size); extsym_buf = alloc_ext; } if (extsym_buf == NULL || bfd_seek (ibfd, pos, SEEK_SET) != 0 || bfd_bread (extsym_buf, amt, ibfd) != amt) { intsym_buf = NULL; goto out; } if (shndx_hdr == NULL || shndx_hdr->sh_size == 0) extshndx_buf = NULL; else { amt = symcount * sizeof (Elf_External_Sym_Shndx); pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx); if (extshndx_buf == NULL) { alloc_extshndx = bfd_malloc2 (symcount, sizeof (Elf_External_Sym_Shndx)); extshndx_buf = alloc_extshndx; } if (extshndx_buf == NULL || bfd_seek (ibfd, pos, SEEK_SET) != 0 || bfd_bread (extshndx_buf, amt, ibfd) != amt) { intsym_buf = NULL; goto out; } } if (intsym_buf == NULL) { intsym_buf = bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym)); if (intsym_buf == NULL) goto out; } /* Convert the symbols to internal form. */ isymend = intsym_buf + symcount; for (esym = extsym_buf, isym = intsym_buf, shndx = extshndx_buf; isym < isymend; esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL) (*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym); out: if (alloc_ext != NULL) free (alloc_ext); if (alloc_extshndx != NULL) free (alloc_extshndx); return intsym_buf; } /* Look up a symbol name. */ const char * bfd_elf_sym_name (bfd *abfd, Elf_Internal_Shdr *symtab_hdr, Elf_Internal_Sym *isym, asection *sym_sec) { const char *name; unsigned int iname = isym->st_name; unsigned int shindex = symtab_hdr->sh_link; if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION /* Check for a bogus st_shndx to avoid crashing. */ && isym->st_shndx < elf_numsections (abfd) && !(isym->st_shndx >= SHN_LORESERVE && isym->st_shndx <= SHN_HIRESERVE)) { iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name; shindex = elf_elfheader (abfd)->e_shstrndx; } name = bfd_elf_string_from_elf_section (abfd, shindex, iname); if (name == NULL) name = "(null)"; else if (sym_sec && *name == '\0') name = bfd_section_name (abfd, sym_sec); return name; } /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP sections. The first element is the flags, the rest are section pointers. */ typedef union elf_internal_group { Elf_Internal_Shdr *shdr; unsigned int flags; } Elf_Internal_Group; /* Return the name of the group signature symbol. Why isn't the signature just a string? */ static const char * group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr) { Elf_Internal_Shdr *hdr; unsigned char esym[sizeof (Elf64_External_Sym)]; Elf_External_Sym_Shndx eshndx; Elf_Internal_Sym isym; /* First we need to ensure the symbol table is available. Make sure that it is a symbol table section. */ hdr = elf_elfsections (abfd) [ghdr->sh_link]; if (hdr->sh_type != SHT_SYMTAB || ! bfd_section_from_shdr (abfd, ghdr->sh_link)) return NULL; /* Go read the symbol. */ hdr = &elf_tdata (abfd)->symtab_hdr; if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info, &isym, esym, &eshndx) == NULL) return NULL; return bfd_elf_sym_name (abfd, hdr, &isym, NULL); } /* Set next_in_group list pointer, and group name for NEWSECT. */ static bfd_boolean setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect) { unsigned int num_group = elf_tdata (abfd)->num_group; /* If num_group is zero, read in all SHT_GROUP sections. The count is set to -1 if there are no SHT_GROUP sections. */ if (num_group == 0) { unsigned int i, shnum; /* First count the number of groups. If we have a SHT_GROUP section with just a flag word (ie. sh_size is 4), ignore it. */ shnum = elf_numsections (abfd); num_group = 0; for (i = 0; i < shnum; i++) { Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i]; if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8) num_group += 1; } if (num_group == 0) { num_group = (unsigned) -1; elf_tdata (abfd)->num_group = num_group; } else { /* We keep a list of elf section headers for group sections, so we can find them quickly. */ bfd_size_type amt; elf_tdata (abfd)->num_group = num_group; elf_tdata (abfd)->group_sect_ptr = bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *)); if (elf_tdata (abfd)->group_sect_ptr == NULL) return FALSE; num_group = 0; for (i = 0; i < shnum; i++) { Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i]; if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8) { unsigned char *src; Elf_Internal_Group *dest; /* Add to list of sections. */ elf_tdata (abfd)->group_sect_ptr[num_group] = shdr; num_group += 1; /* Read the raw contents. */ BFD_ASSERT (sizeof (*dest) >= 4); amt = shdr->sh_size * sizeof (*dest) / 4; shdr->contents = bfd_alloc2 (abfd, shdr->sh_size, sizeof (*dest) / 4); if (shdr->contents == NULL || bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0 || (bfd_bread (shdr->contents, shdr->sh_size, abfd) != shdr->sh_size)) return FALSE; /* Translate raw contents, a flag word followed by an array of elf section indices all in target byte order, to the flag word followed by an array of elf section pointers. */ src = shdr->contents + shdr->sh_size; dest = (Elf_Internal_Group *) (shdr->contents + amt); while (1) { unsigned int idx; src -= 4; --dest; idx = H_GET_32 (abfd, src); if (src == shdr->contents) { dest->flags = idx; if (shdr->bfd_section != NULL && (idx & GRP_COMDAT)) shdr->bfd_section->flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD; break; } if (idx >= shnum) { ((*_bfd_error_handler) (_("%B: invalid SHT_GROUP entry"), abfd)); idx = 0; } dest->shdr = elf_elfsections (abfd)[idx]; } } } } } if (num_group != (unsigned) -1) { unsigned int i; for (i = 0; i < num_group; i++) { Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i]; Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents; unsigned int n_elt = shdr->sh_size / 4; /* Look through this group's sections to see if current section is a member. */ while (--n_elt != 0) if ((++idx)->shdr == hdr) { asection *s = NULL; /* We are a member of this group. Go looking through other members to see if any others are linked via next_in_group. */ idx = (Elf_Internal_Group *) shdr->contents; n_elt = shdr->sh_size / 4; while (--n_elt != 0) if ((s = (++idx)->shdr->bfd_section) != NULL && elf_next_in_group (s) != NULL) break; if (n_elt != 0) { /* Snarf the group name from other member, and insert current section in circular list. */ elf_group_name (newsect) = elf_group_name (s); elf_next_in_group (newsect) = elf_next_in_group (s); elf_next_in_group (s) = newsect; } else { const char *gname; gname = group_signature (abfd, shdr); if (gname == NULL) return FALSE; elf_group_name (newsect) = gname; /* Start a circular list with one element. */ elf_next_in_group (newsect) = newsect; } /* If the group section has been created, point to the new member. */ if (shdr->bfd_section != NULL) elf_next_in_group (shdr->bfd_section) = newsect; i = num_group - 1; break; } } } if (elf_group_name (newsect) == NULL) { (*_bfd_error_handler) (_("%B: no group info for section %A"), abfd, newsect); } return TRUE; } bfd_boolean _bfd_elf_setup_group_pointers (bfd *abfd) { unsigned int i; unsigned int num_group = elf_tdata (abfd)->num_group; bfd_boolean result = TRUE; if (num_group == (unsigned) -1) return result; for (i = 0; i < num_group; i++) { Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i]; Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents; unsigned int n_elt = shdr->sh_size / 4; while (--n_elt != 0) if ((++idx)->shdr->bfd_section) elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section; else if (idx->shdr->sh_type == SHT_RELA || idx->shdr->sh_type == SHT_REL) /* We won't include relocation sections in section groups in output object files. We adjust the group section size here so that relocatable link will work correctly when relocation sections are in section group in input object files. */ shdr->bfd_section->size -= 4; else { /* There are some unknown sections in the group. */ (*_bfd_error_handler) (_("%B: unknown [%d] section `%s' in group [%s]"), abfd, (unsigned int) idx->shdr->sh_type, bfd_elf_string_from_elf_section (abfd, (elf_elfheader (abfd) ->e_shstrndx), idx->shdr->sh_name), shdr->bfd_section->name); result = FALSE; } } return result; } bfd_boolean bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec) { return elf_next_in_group (sec) != NULL; } /* Make a BFD section from an ELF section. We store a pointer to the BFD section in the bfd_section field of the header. */ bfd_boolean _bfd_elf_make_section_from_shdr (bfd *abfd, Elf_Internal_Shdr *hdr, const char *name, int shindex) { asection *newsect; flagword flags; const struct elf_backend_data *bed; if (hdr->bfd_section != NULL) { BFD_ASSERT (strcmp (name, bfd_get_section_name (abfd, hdr->bfd_section)) == 0); return TRUE; } newsect = bfd_make_section_anyway (abfd, name); if (newsect == NULL) return FALSE; hdr->bfd_section = newsect; elf_section_data (newsect)->this_hdr = *hdr; elf_section_data (newsect)->this_idx = shindex; /* Always use the real type/flags. */ elf_section_type (newsect) = hdr->sh_type; elf_section_flags (newsect) = hdr->sh_flags; newsect->filepos = hdr->sh_offset; if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr) || ! bfd_set_section_size (abfd, newsect, hdr->sh_size) || ! bfd_set_section_alignment (abfd, newsect, bfd_log2 ((bfd_vma) hdr->sh_addralign))) return FALSE; flags = SEC_NO_FLAGS; if (hdr->sh_type != SHT_NOBITS) flags |= SEC_HAS_CONTENTS; if (hdr->sh_type == SHT_GROUP) flags |= SEC_GROUP | SEC_EXCLUDE; if ((hdr->sh_flags & SHF_ALLOC) != 0) { flags |= SEC_ALLOC; if (hdr->sh_type != SHT_NOBITS) flags |= SEC_LOAD; } if ((hdr->sh_flags & SHF_WRITE) == 0) flags |= SEC_READONLY; if ((hdr->sh_flags & SHF_EXECINSTR) != 0) flags |= SEC_CODE; else if ((flags & SEC_LOAD) != 0) flags |= SEC_DATA; if ((hdr->sh_flags & SHF_MERGE) != 0) { flags |= SEC_MERGE; newsect->entsize = hdr->sh_entsize; if ((hdr->sh_flags & SHF_STRINGS) != 0) flags |= SEC_STRINGS; } if (hdr->sh_flags & SHF_GROUP) if (!setup_group (abfd, hdr, newsect)) return FALSE; if ((hdr->sh_flags & SHF_TLS) != 0) flags |= SEC_THREAD_LOCAL; if ((flags & SEC_ALLOC) == 0) { /* The debugging sections appear to be recognized only by name, not any sort of flag. Their SEC_ALLOC bits are cleared. */ static const struct { const char *name; int len; } debug_sections [] = { { "debug", 5 }, /* 'd' */ { NULL, 0 }, /* 'e' */ { NULL, 0 }, /* 'f' */ { "gnu.linkonce.wi.", 17 }, /* 'g' */ { NULL, 0 }, /* 'h' */ { NULL, 0 }, /* 'i' */ { NULL, 0 }, /* 'j' */ { NULL, 0 }, /* 'k' */ { "line", 4 }, /* 'l' */ { NULL, 0 }, /* 'm' */ { NULL, 0 }, /* 'n' */ { NULL, 0 }, /* 'o' */ { NULL, 0 }, /* 'p' */ { NULL, 0 }, /* 'q' */ { NULL, 0 }, /* 'r' */ { "stab", 4 } /* 's' */ }; if (name [0] == '.') { int i = name [1] - 'd'; if (i >= 0 && i < (int) ARRAY_SIZE (debug_sections) && debug_sections [i].name != NULL && strncmp (&name [1], debug_sections [i].name, debug_sections [i].len) == 0) flags |= SEC_DEBUGGING; } } /* As a GNU extension, if the name begins with .gnu.linkonce, we only link a single copy of the section. This is used to support g++. g++ will emit each template expansion in its own section. The symbols will be defined as weak, so that multiple definitions are permitted. The GNU linker extension is to actually discard all but one of the sections. */ if (strncmp (name, ".gnu.linkonce", sizeof ".gnu.linkonce" - 1) == 0 && elf_next_in_group (newsect) == NULL) flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD; bed = get_elf_backend_data (abfd); if (bed->elf_backend_section_flags) if (! bed->elf_backend_section_flags (&flags, hdr)) return FALSE; if (! bfd_set_section_flags (abfd, newsect, flags)) return FALSE; if ((flags & SEC_ALLOC) != 0) { Elf_Internal_Phdr *phdr; unsigned int i; /* Look through the phdrs to see if we need to adjust the lma. If all the p_paddr fields are zero, we ignore them, since some ELF linkers produce such output. */ phdr = elf_tdata (abfd)->phdr; for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++) { if (phdr->p_paddr != 0) break; } if (i < elf_elfheader (abfd)->e_phnum) { phdr = elf_tdata (abfd)->phdr; for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++) { /* This section is part of this segment if its file offset plus size lies within the segment's memory span and, if the section is loaded, the extent of the loaded data lies within the extent of the segment. Note - we used to check the p_paddr field as well, and refuse to set the LMA if it was 0. This is wrong though, as a perfectly valid initialised segment can have a p_paddr of zero. Some architectures, eg ARM, place special significance on the address 0 and executables need to be able to have a segment which covers this address. */ if (phdr->p_type == PT_LOAD && (bfd_vma) hdr->sh_offset >= phdr->p_offset && (hdr->sh_offset + hdr->sh_size <= phdr->p_offset + phdr->p_memsz) && ((flags & SEC_LOAD) == 0 || (hdr->sh_offset + hdr->sh_size <= phdr->p_offset + phdr->p_filesz))) { if ((flags & SEC_LOAD) == 0) newsect->lma = (phdr->p_paddr + hdr->sh_addr - phdr->p_vaddr); else /* We used to use the same adjustment for SEC_LOAD sections, but that doesn't work if the segment is packed with code from multiple VMAs. Instead we calculate the section LMA based on the segment LMA. It is assumed that the segment will contain sections with contiguous LMAs, even if the VMAs are not. */ newsect->lma = (phdr->p_paddr + hdr->sh_offset - phdr->p_offset); /* With contiguous segments, we can't tell from file offsets whether a section with zero size should be placed at the end of one segment or the beginning of the next. Decide based on vaddr. */ if (hdr->sh_addr >= phdr->p_vaddr && (hdr->sh_addr + hdr->sh_size <= phdr->p_vaddr + phdr->p_memsz)) break; } } } } return TRUE; } /* INTERNAL_FUNCTION bfd_elf_find_section SYNOPSIS struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name); DESCRIPTION Helper functions for GDB to locate the string tables. Since BFD hides string tables from callers, GDB needs to use an internal hook to find them. Sun's .stabstr, in particular, isn't even pointed to by the .stab section, so ordinary mechanisms wouldn't work to find it, even if we had some. */ struct elf_internal_shdr * bfd_elf_find_section (bfd *abfd, char *name) { Elf_Internal_Shdr **i_shdrp; char *shstrtab; unsigned int max; unsigned int i; i_shdrp = elf_elfsections (abfd); if (i_shdrp != NULL) { shstrtab = bfd_elf_get_str_section (abfd, elf_elfheader (abfd)->e_shstrndx); if (shstrtab != NULL) { max = elf_numsections (abfd); for (i = 1; i < max; i++) if (!strcmp (&shstrtab[i_shdrp[i]->sh_name], name)) return i_shdrp[i]; } } return 0; } const char *const bfd_elf_section_type_names[] = { "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB", "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE", "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM", }; /* ELF relocs are against symbols. If we are producing relocatable output, and the reloc is against an external symbol, and nothing has given us any additional addend, the resulting reloc will also be against the same symbol. In such a case, we don't want to change anything about the way the reloc is handled, since it will all be done at final link time. Rather than put special case code into bfd_perform_relocation, all the reloc types use this howto function. It just short circuits the reloc if producing relocatable output against an external symbol. */ bfd_reloc_status_type bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry, asymbol *symbol, void *data ATTRIBUTE_UNUSED, asection *input_section, bfd *output_bfd, char **error_message ATTRIBUTE_UNUSED) { if (output_bfd != NULL && (symbol->flags & BSF_SECTION_SYM) == 0 && (! reloc_entry->howto->partial_inplace || reloc_entry->addend == 0)) { reloc_entry->address += input_section->output_offset; return bfd_reloc_ok; } return bfd_reloc_continue; } /* Make sure sec_info_type is cleared if sec_info is cleared too. */ static void merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED, asection *sec) { BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE); sec->sec_info_type = ELF_INFO_TYPE_NONE; } /* Finish SHF_MERGE section merging. */ bfd_boolean _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info) { bfd *ibfd; asection *sec; if (!is_elf_hash_table (info->hash)) return FALSE; for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next) if ((ibfd->flags & DYNAMIC) == 0) for (sec = ibfd->sections; sec != NULL; sec = sec->next) if ((sec->flags & SEC_MERGE) != 0 && !bfd_is_abs_section (sec->output_section)) { struct bfd_elf_section_data *secdata; secdata = elf_section_data (sec); if (! _bfd_add_merge_section (abfd, &elf_hash_table (info)->merge_info, sec, &secdata->sec_info)) return FALSE; else if (secdata->sec_info) sec->sec_info_type = ELF_INFO_TYPE_MERGE; } if (elf_hash_table (info)->merge_info != NULL) _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info, merge_sections_remove_hook); return TRUE; } void _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info) { sec->output_section = bfd_abs_section_ptr; sec->output_offset = sec->vma; if (!is_elf_hash_table (info->hash)) return; sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS; } /* Copy the program header and other data from one object module to another. */ bfd_boolean _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd) { if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour || bfd_get_flavour (obfd) != bfd_target_elf_flavour) return TRUE; BFD_ASSERT (!elf_flags_init (obfd) || (elf_elfheader (obfd)->e_flags == elf_elfheader (ibfd)->e_flags)); elf_gp (obfd) = elf_gp (ibfd); elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags; elf_flags_init (obfd) = TRUE; return TRUE; } /* Print out the program headers. */ bfd_boolean _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg) { FILE *f = farg; Elf_Internal_Phdr *p; asection *s; bfd_byte *dynbuf = NULL; p = elf_tdata (abfd)->phdr; if (p != NULL) { unsigned int i, c; fprintf (f, _("\nProgram Header:\n")); c = elf_elfheader (abfd)->e_phnum; for (i = 0; i < c; i++, p++) { const char *pt; char buf[20]; switch (p->p_type) { case PT_NULL: pt = "NULL"; break; case PT_LOAD: pt = "LOAD"; break; case PT_DYNAMIC: pt = "DYNAMIC"; break; case PT_INTERP: pt = "INTERP"; break; case PT_NOTE: pt = "NOTE"; break; case PT_SHLIB: pt = "SHLIB"; break; case PT_PHDR: pt = "PHDR"; break; case PT_TLS: pt = "TLS"; break; case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break; case PT_GNU_STACK: pt = "STACK"; break; case PT_GNU_RELRO: pt = "RELRO"; break; default: sprintf (buf, "0x%lx", p->p_type); pt = buf; break; } fprintf (f, "%8s off 0x", pt); bfd_fprintf_vma (abfd, f, p->p_offset); fprintf (f, " vaddr 0x"); bfd_fprintf_vma (abfd, f, p->p_vaddr); fprintf (f, " paddr 0x"); bfd_fprintf_vma (abfd, f, p->p_paddr); fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align)); fprintf (f, " filesz 0x"); bfd_fprintf_vma (abfd, f, p->p_filesz); fprintf (f, " memsz 0x"); bfd_fprintf_vma (abfd, f, p->p_memsz); fprintf (f, " flags %c%c%c", (p->p_flags & PF_R) != 0 ? 'r' : '-', (p->p_flags & PF_W) != 0 ? 'w' : '-', (p->p_flags & PF_X) != 0 ? 'x' : '-'); if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0) fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)); fprintf (f, "\n"); } } s = bfd_get_section_by_name (abfd, ".dynamic"); if (s != NULL) { int elfsec; unsigned long shlink; bfd_byte *extdyn, *extdynend; size_t extdynsize; void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *); fprintf (f, _("\nDynamic Section:\n")); if (!bfd_malloc_and_get_section (abfd, s, &dynbuf)) goto error_return; elfsec = _bfd_elf_section_from_bfd_section (abfd, s); if (elfsec == -1) goto error_return; shlink = elf_elfsections (abfd)[elfsec]->sh_link; extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn; swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in; extdyn = dynbuf; extdynend = extdyn + s->size; for (; extdyn < extdynend; extdyn += extdynsize) { Elf_Internal_Dyn dyn; const char *name; char ab[20]; bfd_boolean stringp; (*swap_dyn_in) (abfd, extdyn, &dyn); if (dyn.d_tag == DT_NULL) break; stringp = FALSE; switch (dyn.d_tag) { default: sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag); name = ab; break; case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break; case DT_PLTRELSZ: name = "PLTRELSZ"; break; case DT_PLTGOT: name = "PLTGOT"; break; case DT_HASH: name = "HASH"; break; case DT_STRTAB: name = "STRTAB"; break; case DT_SYMTAB: name = "SYMTAB"; break; case DT_RELA: name = "RELA"; break; case DT_RELASZ: name = "RELASZ"; break; case DT_RELAENT: name = "RELAENT"; break; case DT_STRSZ: name = "STRSZ"; break; case DT_SYMENT: name = "SYMENT"; break; case DT_INIT: name = "INIT"; break; case DT_FINI: name = "FINI"; break; case DT_SONAME: name = "SONAME"; stringp = TRUE; break; case DT_RPATH: name = "RPATH"; stringp = TRUE; break; case DT_SYMBOLIC: name = "SYMBOLIC"; break; case DT_REL: name = "REL"; break; case DT_RELSZ: name = "RELSZ"; break; case DT_RELENT: name = "RELENT"; break; case DT_PLTREL: name = "PLTREL"; break; case DT_DEBUG: name = "DEBUG"; break; case DT_TEXTREL: name = "TEXTREL"; break; case DT_JMPREL: name = "JMPREL"; break; case DT_BIND_NOW: name = "BIND_NOW"; break; case DT_INIT_ARRAY: name = "INIT_ARRAY"; break; case DT_FINI_ARRAY: name = "FINI_ARRAY"; break; case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break; case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break; case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break; case DT_FLAGS: name = "FLAGS"; break; case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break; case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break; case DT_CHECKSUM: name = "CHECKSUM"; break; case DT_PLTPADSZ: name = "PLTPADSZ"; break; case DT_MOVEENT: name = "MOVEENT"; break; case DT_MOVESZ: name = "MOVESZ"; break; case DT_FEATURE: name = "FEATURE"; break; case DT_POSFLAG_1: name = "POSFLAG_1"; break; case DT_SYMINSZ: name = "SYMINSZ"; break; case DT_SYMINENT: name = "SYMINENT"; break; case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break; case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break; case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break; case DT_PLTPAD: name = "PLTPAD"; break; case DT_MOVETAB: name = "MOVETAB"; break; case DT_SYMINFO: name = "SYMINFO"; break; case DT_RELACOUNT: name = "RELACOUNT"; break; case DT_RELCOUNT: name = "RELCOUNT"; break; case DT_FLAGS_1: name = "FLAGS_1"; break; case DT_VERSYM: name = "VERSYM"; break; case DT_VERDEF: name = "VERDEF"; break; case DT_VERDEFNUM: name = "VERDEFNUM"; break; case DT_VERNEED: name = "VERNEED"; break; case DT_VERNEEDNUM: name = "VERNEEDNUM"; break; case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break; case DT_USED: name = "USED"; break; case DT_FILTER: name = "FILTER"; stringp = TRUE; break; } fprintf (f, " %-11s ", name); if (! stringp) fprintf (f, "0x%lx", (unsigned long) dyn.d_un.d_val); else { const char *string; unsigned int tagv = dyn.d_un.d_val; string = bfd_elf_string_from_elf_section (abfd, shlink, tagv); if (string == NULL) goto error_return; fprintf (f, "%s", string); } fprintf (f, "\n"); } free (dynbuf); dynbuf = NULL; } if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL) || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL)) { if (! _bfd_elf_slurp_version_tables (abfd, FALSE)) return FALSE; } if (elf_dynverdef (abfd) != 0) { Elf_Internal_Verdef *t; fprintf (f, _("\nVersion definitions:\n")); for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef) { fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx, t->vd_flags, t->vd_hash, t->vd_nodename ? t->vd_nodename : ""); if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL) { Elf_Internal_Verdaux *a; fprintf (f, "\t"); for (a = t->vd_auxptr->vda_nextptr; a != NULL; a = a->vda_nextptr) fprintf (f, "%s ", a->vda_nodename ? a->vda_nodename : ""); fprintf (f, "\n"); } } } if (elf_dynverref (abfd) != 0) { Elf_Internal_Verneed *t; fprintf (f, _("\nVersion References:\n")); for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref) { Elf_Internal_Vernaux *a; fprintf (f, _(" required from %s:\n"), t->vn_filename ? t->vn_filename : ""); for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr) fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash, a->vna_flags, a->vna_other, a->vna_nodename ? a->vna_nodename : ""); } } return TRUE; error_return: if (dynbuf != NULL) free (dynbuf); return FALSE; } /* Display ELF-specific fields of a symbol. */ void bfd_elf_print_symbol (bfd *abfd, void *filep, asymbol *symbol, bfd_print_symbol_type how) { FILE *file = filep; switch (how) { case bfd_print_symbol_name: fprintf (file, "%s", symbol->name); break; case bfd_print_symbol_more: fprintf (file, "elf "); bfd_fprintf_vma (abfd, file, symbol->value); fprintf (file, " %lx", (long) symbol->flags); break; case bfd_print_symbol_all: { const char *section_name; const char *name = NULL; const struct elf_backend_data *bed; unsigned char st_other; bfd_vma val; section_name = symbol->section ? symbol->section->name : "(*none*)"; bed = get_elf_backend_data (abfd); if (bed->elf_backend_print_symbol_all) name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol); if (name == NULL) { name = symbol->name; bfd_print_symbol_vandf (abfd, file, symbol); } fprintf (file, " %s\t", section_name); /* Print the "other" value for a symbol. For common symbols, we've already printed the size; now print the alignment. For other symbols, we have no specified alignment, and we've printed the address; now print the size. */ if (bfd_is_com_section (symbol->section)) val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value; else val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size; bfd_fprintf_vma (abfd, file, val); /* If we have version information, print it. */ if (elf_tdata (abfd)->dynversym_section != 0 && (elf_tdata (abfd)->dynverdef_section != 0 || elf_tdata (abfd)->dynverref_section != 0)) { unsigned int vernum; const char *version_string; vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION; if (vernum == 0) version_string = ""; else if (vernum == 1) version_string = "Base"; else if (vernum <= elf_tdata (abfd)->cverdefs) version_string = elf_tdata (abfd)->verdef[vernum - 1].vd_nodename; else { Elf_Internal_Verneed *t; version_string = ""; for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref) { Elf_Internal_Vernaux *a; for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr) { if (a->vna_other == vernum) { version_string = a->vna_nodename; break; } } } } if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0) fprintf (file, " %-11s", version_string); else { int i; fprintf (file, " (%s)", version_string); for (i = 10 - strlen (version_string); i > 0; --i) putc (' ', file); } } /* If the st_other field is not zero, print it. */ st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other; switch (st_other) { case 0: break; case STV_INTERNAL: fprintf (file, " .internal"); break; case STV_HIDDEN: fprintf (file, " .hidden"); break; case STV_PROTECTED: fprintf (file, " .protected"); break; default: /* Some other non-defined flags are also present, so print everything hex. */ fprintf (file, " 0x%02x", (unsigned int) st_other); } fprintf (file, " %s", name); } break; } } /* Create an entry in an ELF linker hash table. */ struct bfd_hash_entry * _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry, struct bfd_hash_table *table, const char *string) { /* Allocate the structure if it has not already been allocated by a subclass. */ if (entry == NULL) { entry = bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry)); if (entry == NULL) return entry; } /* Call the allocation method of the superclass. */ entry = _bfd_link_hash_newfunc (entry, table, string); if (entry != NULL) { struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry; struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table; /* Set local fields. */ ret->indx = -1; ret->dynindx = -1; ret->got = htab->init_got_refcount; ret->plt = htab->init_plt_refcount; memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry) - offsetof (struct elf_link_hash_entry, size))); /* Assume that we have been called by a non-ELF symbol reader. This flag is then reset by the code which reads an ELF input file. This ensures that a symbol created by a non-ELF symbol reader will have the flag set correctly. */ ret->non_elf = 1; } return entry; } /* Copy data from an indirect symbol to its direct symbol, hiding the old indirect symbol. Also used for copying flags to a weakdef. */ void _bfd_elf_link_hash_copy_indirect (const struct elf_backend_data *bed, struct elf_link_hash_entry *dir, struct elf_link_hash_entry *ind) { bfd_signed_vma tmp; bfd_signed_vma lowest_valid = bed->can_refcount; /* Copy down any references that we may have already seen to the symbol which just became indirect. */ dir->ref_dynamic |= ind->ref_dynamic; dir->ref_regular |= ind->ref_regular; dir->ref_regular_nonweak |= ind->ref_regular_nonweak; dir->non_got_ref |= ind->non_got_ref; dir->needs_plt |= ind->needs_plt; dir->pointer_equality_needed |= ind->pointer_equality_needed; if (ind->root.type != bfd_link_hash_indirect) return; /* Copy over the global and procedure linkage table refcount entries. These may have been already set up by a check_relocs routine. */ tmp = dir->got.refcount; if (tmp < lowest_valid) { dir->got.refcount = ind->got.refcount; ind->got.refcount = tmp; } else BFD_ASSERT (ind->got.refcount < lowest_valid); tmp = dir->plt.refcount; if (tmp < lowest_valid) { dir->plt.refcount = ind->plt.refcount; ind->plt.refcount = tmp; } else BFD_ASSERT (ind->plt.refcount < lowest_valid); if (dir->dynindx == -1) { dir->dynindx = ind->dynindx; dir->dynstr_index = ind->dynstr_index; ind->dynindx = -1; ind->dynstr_index = 0; } else BFD_ASSERT (ind->dynindx == -1); } void _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h, bfd_boolean force_local) { h->plt = elf_hash_table (info)->init_plt_offset; h->needs_plt = 0; if (force_local) { h->forced_local = 1; if (h->dynindx != -1) { h->dynindx = -1; _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr, h->dynstr_index); } } } /* Initialize an ELF linker hash table. */ bfd_boolean _bfd_elf_link_hash_table_init (struct elf_link_hash_table *table, bfd *abfd, struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *, struct bfd_hash_table *, const char *)) { bfd_boolean ret; int can_refcount = get_elf_backend_data (abfd)->can_refcount; table->dynamic_sections_created = FALSE; table->dynobj = NULL; table->init_got_refcount.refcount = can_refcount - 1; table->init_plt_refcount.refcount = can_refcount - 1; table->init_got_offset.offset = -(bfd_vma) 1; table->init_plt_offset.offset = -(bfd_vma) 1; /* The first dynamic symbol is a dummy. */ table->dynsymcount = 1; table->dynstr = NULL; table->bucketcount = 0; table->needed = NULL; table->hgot = NULL; table->merge_info = NULL; memset (&table->stab_info, 0, sizeof (table->stab_info)); memset (&table->eh_info, 0, sizeof (table->eh_info)); table->dynlocal = NULL; table->runpath = NULL; table->tls_sec = NULL; table->tls_size = 0; table->loaded = NULL; table->is_relocatable_executable = FALSE; ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc); table->root.type = bfd_link_elf_hash_table; return ret; } /* Create an ELF linker hash table. */ struct bfd_link_hash_table * _bfd_elf_link_hash_table_create (bfd *abfd) { struct elf_link_hash_table *ret; bfd_size_type amt = sizeof (struct elf_link_hash_table); ret = bfd_malloc (amt); if (ret == NULL) return NULL; if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc)) { free (ret); return NULL; } return &ret->root; } /* This is a hook for the ELF emulation code in the generic linker to tell the backend linker what file name to use for the DT_NEEDED entry for a dynamic object. */ void bfd_elf_set_dt_needed_name (bfd *abfd, const char *name) { if (bfd_get_flavour (abfd) == bfd_target_elf_flavour && bfd_get_format (abfd) == bfd_object) elf_dt_name (abfd) = name; } int bfd_elf_get_dyn_lib_class (bfd *abfd) { int lib_class; if (bfd_get_flavour (abfd) == bfd_target_elf_flavour && bfd_get_format (abfd) == bfd_object) lib_class = elf_dyn_lib_class (abfd); else lib_class = 0; return lib_class; } void bfd_elf_set_dyn_lib_class (bfd *abfd, int lib_class) { if (bfd_get_flavour (abfd) == bfd_target_elf_flavour && bfd_get_format (abfd) == bfd_object) elf_dyn_lib_class (abfd) = lib_class; } /* Get the list of DT_NEEDED entries for a link. This is a hook for the linker ELF emulation code. */ struct bfd_link_needed_list * bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED, struct bfd_link_info *info) { if (! is_elf_hash_table (info->hash)) return NULL; return elf_hash_table (info)->needed; } /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a hook for the linker ELF emulation code. */ struct bfd_link_needed_list * bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED, struct bfd_link_info *info) { if (! is_elf_hash_table (info->hash)) return NULL; return elf_hash_table (info)->runpath; } /* Get the name actually used for a dynamic object for a link. This is the SONAME entry if there is one. Otherwise, it is the string passed to bfd_elf_set_dt_needed_name, or it is the filename. */ const char * bfd_elf_get_dt_soname (bfd *abfd) { if (bfd_get_flavour (abfd) == bfd_target_elf_flavour && bfd_get_format (abfd) == bfd_object) return elf_dt_name (abfd); return NULL; } /* Get the list of DT_NEEDED entries from a BFD. This is a hook for the ELF linker emulation code. */ bfd_boolean bfd_elf_get_bfd_needed_list (bfd *abfd, struct bfd_link_needed_list **pneeded) { asection *s; bfd_byte *dynbuf = NULL; int elfsec; unsigned long shlink; bfd_byte *extdyn, *extdynend; size_t extdynsize; void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *); *pneeded = NULL; if (bfd_get_flavour (abfd) != bfd_target_elf_flavour || bfd_get_format (abfd) != bfd_object) return TRUE; s = bfd_get_section_by_name (abfd, ".dynamic"); if (s == NULL || s->size == 0) return TRUE; if (!bfd_malloc_and_get_section (abfd, s, &dynbuf)) goto error_return; elfsec = _bfd_elf_section_from_bfd_section (abfd, s); if (elfsec == -1) goto error_return; shlink = elf_elfsections (abfd)[elfsec]->sh_link; extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn; swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in; extdyn = dynbuf; extdynend = extdyn + s->size; for (; extdyn < extdynend; extdyn += extdynsize) { Elf_Internal_Dyn dyn; (*swap_dyn_in) (abfd, extdyn, &dyn); if (dyn.d_tag == DT_NULL) break; if (dyn.d_tag == DT_NEEDED) { const char *string; struct bfd_link_needed_list *l; unsigned int tagv = dyn.d_un.d_val; bfd_size_type amt; string = bfd_elf_string_from_elf_section (abfd, shlink, tagv); if (string == NULL) goto error_return; amt = sizeof *l; l = bfd_alloc (abfd, amt); if (l == NULL) goto error_return; l->by = abfd; l->name = string; l->next = *pneeded; *pneeded = l; } } free (dynbuf); return TRUE; error_return: if (dynbuf != NULL) free (dynbuf); return FALSE; } /* Allocate an ELF string table--force the first byte to be zero. */ struct bfd_strtab_hash * _bfd_elf_stringtab_init (void) { struct bfd_strtab_hash *ret; ret = _bfd_stringtab_init (); if (ret != NULL) { bfd_size_type loc; loc = _bfd_stringtab_add (ret, "", TRUE, FALSE); BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1); if (loc == (bfd_size_type) -1) { _bfd_stringtab_free (ret); ret = NULL; } } return ret; } /* ELF .o/exec file reading */ /* Create a new bfd section from an ELF section header. */ bfd_boolean bfd_section_from_shdr (bfd *abfd, unsigned int shindex) { Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[shindex]; Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd); const struct elf_backend_data *bed = get_elf_backend_data (abfd); const char *name; name = bfd_elf_string_from_elf_section (abfd, elf_elfheader (abfd)->e_shstrndx, hdr->sh_name); if (name == NULL) return FALSE; switch (hdr->sh_type) { case SHT_NULL: /* Inactive section. Throw it away. */ return TRUE; case SHT_PROGBITS: /* Normal section with contents. */ case SHT_NOBITS: /* .bss section. */ case SHT_HASH: /* .hash section. */ case SHT_NOTE: /* .note section. */ case SHT_INIT_ARRAY: /* .init_array section. */ case SHT_FINI_ARRAY: /* .fini_array section. */ case SHT_PREINIT_ARRAY: /* .preinit_array section. */ case SHT_GNU_LIBLIST: /* .gnu.liblist section. */ return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex); case SHT_DYNAMIC: /* Dynamic linking information. */ if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex)) return FALSE; if (hdr->sh_link > elf_numsections (abfd) || elf_elfsections (abfd)[hdr->sh_link] == NULL) return FALSE; if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB) { Elf_Internal_Shdr *dynsymhdr; /* The shared libraries distributed with hpux11 have a bogus sh_link field for the ".dynamic" section. Find the string table for the ".dynsym" section instead. */ if (elf_dynsymtab (abfd) != 0) { dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)]; hdr->sh_link = dynsymhdr->sh_link; } else { unsigned int i, num_sec; num_sec = elf_numsections (abfd); for (i = 1; i < num_sec; i++) { dynsymhdr = elf_elfsections (abfd)[i]; if (dynsymhdr->sh_type == SHT_DYNSYM) { hdr->sh_link = dynsymhdr->sh_link; break; } } } } break; case SHT_SYMTAB: /* A symbol table */ if (elf_onesymtab (abfd) == shindex) return TRUE; if (hdr->sh_entsize != bed->s->sizeof_sym) return FALSE; BFD_ASSERT (elf_onesymtab (abfd) == 0); elf_onesymtab (abfd) = shindex; elf_tdata (abfd)->symtab_hdr = *hdr; elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr; abfd->flags |= HAS_SYMS; /* Sometimes a shared object will map in the symbol table. If SHF_ALLOC is set, and this is a shared object, then we also treat this section as a BFD section. We can not base the decision purely on SHF_ALLOC, because that flag is sometimes set in a relocatable object file, which would confuse the linker. */ if ((hdr->sh_flags & SHF_ALLOC) != 0 && (abfd->flags & DYNAMIC) != 0 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex)) return FALSE; /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we can't read symbols without that section loaded as well. It is most likely specified by the next section header. */ if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex) { unsigned int i, num_sec; num_sec = elf_numsections (abfd); for (i = shindex + 1; i < num_sec; i++) { Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i]; if (hdr2->sh_type == SHT_SYMTAB_SHNDX && hdr2->sh_link == shindex) break; } if (i == num_sec) for (i = 1; i < shindex; i++) { Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i]; if (hdr2->sh_type == SHT_SYMTAB_SHNDX && hdr2->sh_link == shindex) break; } if (i != shindex) return bfd_section_from_shdr (abfd, i); } return TRUE; case SHT_DYNSYM: /* A dynamic symbol table */ if (elf_dynsymtab (abfd) == shindex) return TRUE; if (hdr->sh_entsize != bed->s->sizeof_sym) return FALSE; BFD_ASSERT (elf_dynsymtab (abfd) == 0); elf_dynsymtab (abfd) = shindex; elf_tdata (abfd)->dynsymtab_hdr = *hdr; elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr; abfd->flags |= HAS_SYMS; /* Besides being a symbol table, we also treat this as a regular section, so that objcopy can handle it. */ return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex); case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */ if (elf_symtab_shndx (abfd) == shindex) return TRUE; BFD_ASSERT (elf_symtab_shndx (abfd) == 0); elf_symtab_shndx (abfd) = shindex; elf_tdata (abfd)->symtab_shndx_hdr = *hdr; elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr; return TRUE; case SHT_STRTAB: /* A string table */ if (hdr->bfd_section != NULL) return TRUE; if (ehdr->e_shstrndx == shindex) { elf_tdata (abfd)->shstrtab_hdr = *hdr; elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr; return TRUE; } if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex) { symtab_strtab: elf_tdata (abfd)->strtab_hdr = *hdr; elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr; return TRUE; } if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex) { dynsymtab_strtab: elf_tdata (abfd)->dynstrtab_hdr = *hdr; hdr = &elf_tdata (abfd)->dynstrtab_hdr; elf_elfsections (abfd)[shindex] = hdr; /* We also treat this as a regular section, so that objcopy can handle it. */ return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex); } /* If the string table isn't one of the above, then treat it as a regular section. We need to scan all the headers to be sure, just in case this strtab section appeared before the above. */ if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0) { unsigned int i, num_sec; num_sec = elf_numsections (abfd); for (i = 1; i < num_sec; i++) { Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i]; if (hdr2->sh_link == shindex) { /* Prevent endless recursion on broken objects. */ if (i == shindex) return FALSE; if (! bfd_section_from_shdr (abfd, i)) return FALSE; if (elf_onesymtab (abfd) == i) goto symtab_strtab; if (elf_dynsymtab (abfd) == i) goto dynsymtab_strtab; } } } return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex); case SHT_REL: case SHT_RELA: /* *These* do a lot of work -- but build no sections! */ { asection *target_sect; Elf_Internal_Shdr *hdr2; unsigned int num_sec = elf_numsections (abfd); if (hdr->sh_entsize != (bfd_size_type) (hdr->sh_type == SHT_REL ? bed->s->sizeof_rel : bed->s->sizeof_rela)) return FALSE; /* Check for a bogus link to avoid crashing. */ if ((hdr->sh_link >= SHN_LORESERVE && hdr->sh_link <= SHN_HIRESERVE) || hdr->sh_link >= num_sec) { ((*_bfd_error_handler) (_("%B: invalid link %lu for reloc section %s (index %u)"), abfd, hdr->sh_link, name, shindex)); return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex); } /* For some incomprehensible reason Oracle distributes libraries for Solaris in which some of the objects have bogus sh_link fields. It would be nice if we could just reject them, but, unfortunately, some people need to use them. We scan through the section headers; if we find only one suitable symbol table, we clobber the sh_link to point to it. I hope this doesn't break anything. */ if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM) { unsigned int scan; int found; found = 0; for (scan = 1; scan < num_sec; scan++) { if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM) { if (found != 0) { found = 0; break; } found = scan; } } if (found != 0) hdr->sh_link = found; } /* Get the symbol table. */ if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM) && ! bfd_section_from_shdr (abfd, hdr->sh_link)) return FALSE; /* If this reloc section does not use the main symbol table we don't treat it as a reloc section. BFD can't adequately represent such a section, so at least for now, we don't try. We just present it as a normal section. We also can't use it as a reloc section if it points to the null section. */ if (hdr->sh_link != elf_onesymtab (abfd) || hdr->sh_info == SHN_UNDEF) return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex); /* Prevent endless recursion on broken objects. */ if (elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA) return FALSE; if (! bfd_section_from_shdr (abfd, hdr->sh_info)) return FALSE; target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info); if (target_sect == NULL) return FALSE; if ((target_sect->flags & SEC_RELOC) == 0 || target_sect->reloc_count == 0) hdr2 = &elf_section_data (target_sect)->rel_hdr; else { bfd_size_type amt; BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL); amt = sizeof (*hdr2); hdr2 = bfd_alloc (abfd, amt); elf_section_data (target_sect)->rel_hdr2 = hdr2; } *hdr2 = *hdr; elf_elfsections (abfd)[shindex] = hdr2; target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr); target_sect->flags |= SEC_RELOC; target_sect->relocation = NULL; target_sect->rel_filepos = hdr->sh_offset; /* In the section to which the relocations apply, mark whether its relocations are of the REL or RELA variety. */ if (hdr->sh_size != 0) target_sect->use_rela_p = hdr->sh_type == SHT_RELA; abfd->flags |= HAS_RELOC; return TRUE; } break; case SHT_GNU_verdef: elf_dynverdef (abfd) = shindex; elf_tdata (abfd)->dynverdef_hdr = *hdr; return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex); break; case SHT_GNU_versym: if (hdr->sh_entsize != sizeof (Elf_External_Versym)) return FALSE; elf_dynversym (abfd) = shindex; elf_tdata (abfd)->dynversym_hdr = *hdr; return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex); break; case SHT_GNU_verneed: elf_dynverref (abfd) = shindex; elf_tdata (abfd)->dynverref_hdr = *hdr; return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex); break; case SHT_SHLIB: return TRUE; case SHT_GROUP: /* We need a BFD section for objcopy and relocatable linking, and it's handy to have the signature available as the section name. */ if (hdr->sh_entsize != GRP_ENTRY_SIZE) return FALSE; name = group_signature (abfd, hdr); if (name == NULL) return FALSE; if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex)) return FALSE; if (hdr->contents != NULL) { Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents; unsigned int n_elt = hdr->sh_size / 4; asection *s; if (idx->flags & GRP_COMDAT) hdr->bfd_section->flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD; /* We try to keep the same section order as it comes in. */ idx += n_elt; while (--n_elt != 0) if ((s = (--idx)->shdr->bfd_section) != NULL && elf_next_in_group (s) != NULL) { elf_next_in_group (hdr->bfd_section) = s; break; } } break; default: /* Check for any processor-specific section types. */ return bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex); } return TRUE; } /* Return the section for the local symbol specified by ABFD, R_SYMNDX. Return SEC for sections that have no elf section, and NULL on error. */ asection * bfd_section_from_r_symndx (bfd *abfd, struct sym_sec_cache *cache, asection *sec, unsigned long r_symndx) { Elf_Internal_Shdr *symtab_hdr; unsigned char esym[sizeof (Elf64_External_Sym)]; Elf_External_Sym_Shndx eshndx; Elf_Internal_Sym isym; unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE; if (cache->abfd == abfd && cache->indx[ent] == r_symndx) return cache->sec[ent]; symtab_hdr = &elf_tdata (abfd)->symtab_hdr; if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx, &isym, esym, &eshndx) == NULL) return NULL; if (cache->abfd != abfd) { memset (cache->indx, -1, sizeof (cache->indx)); cache->abfd = abfd; } cache->indx[ent] = r_symndx; cache->sec[ent] = sec; if ((isym.st_shndx != SHN_UNDEF && isym.st_shndx < SHN_LORESERVE) || isym.st_shndx > SHN_HIRESERVE) { asection *s; s = bfd_section_from_elf_index (abfd, isym.st_shndx); if (s != NULL) cache->sec[ent] = s; } return cache->sec[ent]; } /* Given an ELF section number, retrieve the corresponding BFD section. */ asection * bfd_section_from_elf_index (bfd *abfd, unsigned int index) { if (index >= elf_numsections (abfd)) return NULL; return elf_elfsections (abfd)[index]->bfd_section; } static const struct bfd_elf_special_section special_sections_b[] = { { ".bss", 4, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE }, { NULL, 0, 0, 0, 0 } }; static const struct bfd_elf_special_section special_sections_c[] = { { ".comment", 8, 0, SHT_PROGBITS, 0 }, { NULL, 0, 0, 0, 0 } }; static const struct bfd_elf_special_section special_sections_d[] = { { ".data", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE }, { ".data1", 6, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE }, { ".debug", 6, 0, SHT_PROGBITS, 0 }, { ".debug_line", 11, 0, SHT_PROGBITS, 0 }, { ".debug_info", 11, 0, SHT_PROGBITS, 0 }, { ".debug_abbrev", 13, 0, SHT_PROGBITS, 0 }, { ".debug_aranges", 14, 0, SHT_PROGBITS, 0 }, { ".dynamic", 8, 0, SHT_DYNAMIC, SHF_ALLOC }, { ".dynstr", 7, 0, SHT_STRTAB, SHF_ALLOC }, { ".dynsym", 7, 0, SHT_DYNSYM, SHF_ALLOC }, { NULL, 0, 0, 0, 0 } }; static const struct bfd_elf_special_section special_sections_f[] = { { ".fini", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR }, { ".fini_array", 11, 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE }, { NULL, 0, 0, 0, 0 } }; static const struct bfd_elf_special_section special_sections_g[] = { { ".gnu.linkonce.b",15, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE }, { ".got", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE }, { ".gnu.version", 12, 0, SHT_GNU_versym, 0 }, { ".gnu.version_d", 14, 0, SHT_GNU_verdef, 0 }, { ".gnu.version_r", 14, 0, SHT_GNU_verneed, 0 }, { ".gnu.liblist", 12, 0, SHT_GNU_LIBLIST, SHF_ALLOC }, { ".gnu.conflict", 13, 0, SHT_RELA, SHF_ALLOC }, { NULL, 0, 0, 0, 0 } }; static const struct bfd_elf_special_section special_sections_h[] = { { ".hash", 5, 0, SHT_HASH, SHF_ALLOC }, { NULL, 0, 0, 0, 0 } }; static const struct bfd_elf_special_section special_sections_i[] = { { ".init", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR }, { ".init_array", 11, 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE }, { ".interp", 7, 0, SHT_PROGBITS, 0 }, { NULL, 0, 0, 0, 0 } }; static const struct bfd_elf_special_section special_sections_l[] = { { ".line", 5, 0, SHT_PROGBITS, 0 }, { NULL, 0, 0, 0, 0 } }; static const struct bfd_elf_special_section special_sections_n[] = { { ".note.GNU-stack",15, 0, SHT_PROGBITS, 0 }, { ".note", 5, -1, SHT_NOTE, 0 }, { NULL, 0, 0, 0, 0 } }; static const struct bfd_elf_special_section special_sections_p[] = { { ".preinit_array", 14, 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE }, { ".plt", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR }, { NULL, 0, 0, 0, 0 } }; static const struct bfd_elf_special_section special_sections_r[] = { { ".rodata", 7, -2, SHT_PROGBITS, SHF_ALLOC }, { ".rodata1", 8, 0, SHT_PROGBITS, SHF_ALLOC }, { ".rela", 5, -1, SHT_RELA, 0 }, { ".rel", 4, -1, SHT_REL, 0 }, { NULL, 0, 0, 0, 0 } }; static const struct bfd_elf_special_section special_sections_s[] = { { ".shstrtab", 9, 0, SHT_STRTAB, 0 }, { ".strtab", 7, 0, SHT_STRTAB, 0 }, { ".symtab", 7, 0, SHT_SYMTAB, 0 }, { ".stabstr", 5, 3, SHT_STRTAB, 0 }, { NULL, 0, 0, 0, 0 } }; static const struct bfd_elf_special_section special_sections_t[] = { { ".text", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR }, { ".tbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS }, { ".tdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS }, { NULL, 0, 0, 0, 0 } }; static const struct bfd_elf_special_section *special_sections[] = { special_sections_b, /* 'b' */ special_sections_c, /* 'b' */ special_sections_d, /* 'd' */ NULL, /* 'e' */ special_sections_f, /* 'f' */ special_sections_g, /* 'g' */ special_sections_h, /* 'h' */ special_sections_i, /* 'i' */ NULL, /* 'j' */ NULL, /* 'k' */ special_sections_l, /* 'l' */ NULL, /* 'm' */ special_sections_n, /* 'n' */ NULL, /* 'o' */ special_sections_p, /* 'p' */ NULL, /* 'q' */ special_sections_r, /* 'r' */ special_sections_s, /* 's' */ special_sections_t, /* 't' */ }; const struct bfd_elf_special_section * _bfd_elf_get_special_section (const char *name, const struct bfd_elf_special_section *spec, unsigned int rela) { int i; int len; len = strlen (name); for (i = 0; spec[i].prefix != NULL; i++) { int suffix_len; int prefix_len = spec[i].prefix_length; if (len < prefix_len) continue; if (memcmp (name, spec[i].prefix, prefix_len) != 0) continue; suffix_len = spec[i].suffix_length; if (suffix_len <= 0) { if (name[prefix_len] != 0) { if (suffix_len == 0) continue; if (name[prefix_len] != '.' && (suffix_len == -2 || (rela && spec[i].type == SHT_REL))) continue; } } else { if (len < prefix_len + suffix_len) continue; if (memcmp (name + len - suffix_len, spec[i].prefix + prefix_len, suffix_len) != 0) continue; } return &spec[i]; } return NULL; } const struct bfd_elf_special_section * _bfd_elf_get_sec_type_attr (bfd *abfd ATTRIBUTE_UNUSED, asection *sec) { int i; const struct bfd_elf_special_section *spec; /* See if this is one of the special sections. */ if (sec->name == NULL) return NULL; if (sec->name[0] != '.') return NULL; i = sec->name[1] - 'b'; if (i < 0 || i > 't' - 'b') return NULL; spec = special_sections[i]; if (spec == NULL) return NULL; return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p); } bfd_boolean _bfd_elf_new_section_hook (bfd *abfd, asection *sec) { struct bfd_elf_section_data *sdata; const struct elf_backend_data *bed; const struct bfd_elf_special_section *ssect; sdata = (struct bfd_elf_section_data *) sec->used_by_bfd; if (sdata == NULL) { sdata = bfd_zalloc (abfd, sizeof (*sdata)); if (sdata == NULL) return FALSE; sec->used_by_bfd = sdata; } /* Indicate whether or not this section should use RELA relocations. */ bed = get_elf_backend_data (abfd); sec->use_rela_p = bed->default_use_rela_p; /* When we read a file, we don't need section type and flags unless it is a linker created section. They will be overridden in _bfd_elf_make_section_from_shdr anyway. */ if (abfd->direction != read_direction || (sec->flags & SEC_LINKER_CREATED) != 0) { ssect = (*bed->get_sec_type_attr) (abfd, sec); if (ssect != NULL) { elf_section_type (sec) = ssect->type; elf_section_flags (sec) = ssect->attr; } } return TRUE; } /* Create a new bfd section from an ELF program header. Since program segments have no names, we generate a synthetic name of the form segment, where NUM is generally the index in the program header table. For segments that are split (see below) we generate the names segmenta and segmentb. Note that some program segments may have a file size that is different than (less than) the memory size. All this means is that at execution the system must allocate the amount of memory specified by the memory size, but only initialize it with the first "file size" bytes read from the file. This would occur for example, with program segments consisting of combined data+bss. To handle the above situation, this routine generates TWO bfd sections for the single program segment. The first has the length specified by the file size of the segment, and the second has the length specified by the difference between the two sizes. In effect, the segment is split into it's initialized and uninitialized parts. */ bfd_boolean _bfd_elf_make_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index, const char *typename) { asection *newsect; char *name; char namebuf[64]; size_t len; int split; split = ((hdr->p_memsz > 0) && (hdr->p_filesz > 0) && (hdr->p_memsz > hdr->p_filesz)); sprintf (namebuf, "%s%d%s", typename, index, split ? "a" : ""); len = strlen (namebuf) + 1; name = bfd_alloc (abfd, len); if (!name) return FALSE; memcpy (name, namebuf, len); newsect = bfd_make_section (abfd, name); if (newsect == NULL) return FALSE; newsect->vma = hdr->p_vaddr; newsect->lma = hdr->p_paddr; newsect->size = hdr->p_filesz; newsect->filepos = hdr->p_offset; newsect->flags |= SEC_HAS_CONTENTS; newsect->alignment_power = bfd_log2 (hdr->p_align); if (hdr->p_type == PT_LOAD) { newsect->flags |= SEC_ALLOC; newsect->flags |= SEC_LOAD; if (hdr->p_flags & PF_X) { /* FIXME: all we known is that it has execute PERMISSION, may be data. */ newsect->flags |= SEC_CODE; } } if (!(hdr->p_flags & PF_W)) { newsect->flags |= SEC_READONLY; } if (split) { sprintf (namebuf, "%s%db", typename, index); len = strlen (namebuf) + 1; name = bfd_alloc (abfd, len); if (!name) return FALSE; memcpy (name, namebuf, len); newsect = bfd_make_section (abfd, name); if (newsect == NULL) return FALSE; newsect->vma = hdr->p_vaddr + hdr->p_filesz; newsect->lma = hdr->p_paddr + hdr->p_filesz; newsect->size = hdr->p_memsz - hdr->p_filesz; if (hdr->p_type == PT_LOAD) { newsect->flags |= SEC_ALLOC; if (hdr->p_flags & PF_X) newsect->flags |= SEC_CODE; } if (!(hdr->p_flags & PF_W)) newsect->flags |= SEC_READONLY; } return TRUE; } bfd_boolean bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index) { const struct elf_backend_data *bed; switch (hdr->p_type) { case PT_NULL: return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "null"); case PT_LOAD: return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "load"); case PT_DYNAMIC: return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "dynamic"); case PT_INTERP: return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "interp"); case PT_NOTE: if (! _bfd_elf_make_section_from_phdr (abfd, hdr, index, "note")) return FALSE; if (! elfcore_read_notes (abfd, hdr->p_offset, hdr->p_filesz)) return FALSE; return TRUE; case PT_SHLIB: return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "shlib"); case PT_PHDR: return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "phdr"); case PT_GNU_EH_FRAME: return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "eh_frame_hdr"); case PT_GNU_STACK: return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "stack"); case PT_GNU_RELRO: return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "relro"); default: /* Check for any processor-specific program segment types. */ bed = get_elf_backend_data (abfd); return bed->elf_backend_section_from_phdr (abfd, hdr, index, "proc"); } } /* Initialize REL_HDR, the section-header for new section, containing relocations against ASECT. If USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL relocations. */ bfd_boolean _bfd_elf_init_reloc_shdr (bfd *abfd, Elf_Internal_Shdr *rel_hdr, asection *asect, bfd_boolean use_rela_p) { char *name; const struct elf_backend_data *bed = get_elf_backend_data (abfd); bfd_size_type amt = sizeof ".rela" + strlen (asect->name); name = bfd_alloc (abfd, amt); if (name == NULL) return FALSE; sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name); rel_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name, FALSE); if (rel_hdr->sh_name == (unsigned int) -1) return FALSE; rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL; rel_hdr->sh_entsize = (use_rela_p ? bed->s->sizeof_rela : bed->s->sizeof_rel); rel_hdr->sh_addralign = 1 << bed->s->log_file_align; rel_hdr->sh_flags = 0; rel_hdr->sh_addr = 0; rel_hdr->sh_size = 0; rel_hdr->sh_offset = 0; return TRUE; } /* Set up an ELF internal section header for a section. */ static void elf_fake_sections (bfd *abfd, asection *asect, void *failedptrarg) { const struct elf_backend_data *bed = get_elf_backend_data (abfd); bfd_boolean *failedptr = failedptrarg; Elf_Internal_Shdr *this_hdr; if (*failedptr) { /* We already failed; just get out of the bfd_map_over_sections loop. */ return; } this_hdr = &elf_section_data (asect)->this_hdr; this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), asect->name, FALSE); if (this_hdr->sh_name == (unsigned int) -1) { *failedptr = TRUE; return; } this_hdr->sh_flags = 0; if ((asect->flags & SEC_ALLOC) != 0 || asect->user_set_vma) this_hdr->sh_addr = asect->vma; else this_hdr->sh_addr = 0; this_hdr->sh_offset = 0; this_hdr->sh_size = asect->size; this_hdr->sh_link = 0; this_hdr->sh_addralign = 1 << asect->alignment_power; /* The sh_entsize and sh_info fields may have been set already by copy_private_section_data. */ this_hdr->bfd_section = asect; this_hdr->contents = NULL; /* If the section type is unspecified, we set it based on asect->flags. */ if (this_hdr->sh_type == SHT_NULL) { if ((asect->flags & SEC_GROUP) != 0) { /* We also need to mark SHF_GROUP here for relocatable link. */ struct bfd_link_order *l; asection *elt; for (l = asect->map_head.link_order; l != NULL; l = l->next) if (l->type == bfd_indirect_link_order && (elt = elf_next_in_group (l->u.indirect.section)) != NULL) do { /* The name is not important. Anything will do. */ elf_group_name (elt->output_section) = "G"; elf_section_flags (elt->output_section) |= SHF_GROUP; elt = elf_next_in_group (elt); /* During a relocatable link, the lists are circular. */ } while (elt != elf_next_in_group (l->u.indirect.section)); this_hdr->sh_type = SHT_GROUP; } else if ((asect->flags & SEC_ALLOC) != 0 && (((asect->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0) || (asect->flags & SEC_NEVER_LOAD) != 0)) this_hdr->sh_type = SHT_NOBITS; else this_hdr->sh_type = SHT_PROGBITS; } switch (this_hdr->sh_type) { default: break; case SHT_STRTAB: case SHT_INIT_ARRAY: case SHT_FINI_ARRAY: case SHT_PREINIT_ARRAY: case SHT_NOTE: case SHT_NOBITS: case SHT_PROGBITS: break; case SHT_HASH: this_hdr->sh_entsize = bed->s->sizeof_hash_entry; break; case SHT_DYNSYM: this_hdr->sh_entsize = bed->s->sizeof_sym; break; case SHT_DYNAMIC: this_hdr->sh_entsize = bed->s->sizeof_dyn; break; case SHT_RELA: if (get_elf_backend_data (abfd)->may_use_rela_p) this_hdr->sh_entsize = bed->s->sizeof_rela; break; case SHT_REL: if (get_elf_backend_data (abfd)->may_use_rel_p) this_hdr->sh_entsize = bed->s->sizeof_rel; break; case SHT_GNU_versym: this_hdr->sh_entsize = sizeof (Elf_External_Versym); break; case SHT_GNU_verdef: this_hdr->sh_entsize = 0; /* objcopy or strip will copy over sh_info, but may not set cverdefs. The linker will set cverdefs, but sh_info will be zero. */ if (this_hdr->sh_info == 0) this_hdr->sh_info = elf_tdata (abfd)->cverdefs; else BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs); break; case SHT_GNU_verneed: this_hdr->sh_entsize = 0; /* objcopy or strip will copy over sh_info, but may not set cverrefs. The linker will set cverrefs, but sh_info will be zero. */ if (this_hdr->sh_info == 0) this_hdr->sh_info = elf_tdata (abfd)->cverrefs; else BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs); break; case SHT_GROUP: this_hdr->sh_entsize = 4; break; } if ((asect->flags & SEC_ALLOC) != 0) this_hdr->sh_flags |= SHF_ALLOC; if ((asect->flags & SEC_READONLY) == 0) this_hdr->sh_flags |= SHF_WRITE; if ((asect->flags & SEC_CODE) != 0) this_hdr->sh_flags |= SHF_EXECINSTR; if ((asect->flags & SEC_MERGE) != 0) { this_hdr->sh_flags |= SHF_MERGE; this_hdr->sh_entsize = asect->entsize; if ((asect->flags & SEC_STRINGS) != 0) this_hdr->sh_flags |= SHF_STRINGS; } if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL) this_hdr->sh_flags |= SHF_GROUP; if ((asect->flags & SEC_THREAD_LOCAL) != 0) { this_hdr->sh_flags |= SHF_TLS; if (asect->size == 0 && (asect->flags & SEC_HAS_CONTENTS) == 0) { struct bfd_link_order *o; this_hdr->sh_size = 0; for (o = asect->map_head.link_order; o != NULL; o = o->next) if (this_hdr->sh_size < o->offset + o->size) this_hdr->sh_size = o->offset + o->size; if (this_hdr->sh_size) this_hdr->sh_type = SHT_NOBITS; } } /* Check for processor-specific section types. */ if (bed->elf_backend_fake_sections && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect)) *failedptr = TRUE; /* If the section has relocs, set up a section header for the SHT_REL[A] section. If two relocation sections are required for this section, it is up to the processor-specific back-end to create the other. */ if ((asect->flags & SEC_RELOC) != 0 && !_bfd_elf_init_reloc_shdr (abfd, &elf_section_data (asect)->rel_hdr, asect, asect->use_rela_p)) *failedptr = TRUE; } /* Fill in the contents of a SHT_GROUP section. */ void bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg) { bfd_boolean *failedptr = failedptrarg; unsigned long symindx; asection *elt, *first; unsigned char *loc; struct bfd_link_order *l; bfd_boolean gas; /* Ignore linker created group section. See elfNN_ia64_object_p in elfxx-ia64.c. */ if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP) || *failedptr) return; symindx = 0; if (elf_group_id (sec) != NULL) symindx = elf_group_id (sec)->udata.i; if (symindx == 0) { /* If called from the assembler, swap_out_syms will have set up elf_section_syms; If called for "ld -r", use target_index. */ if (elf_section_syms (abfd) != NULL) symindx = elf_section_syms (abfd)[sec->index]->udata.i; else symindx = sec->target_index; } elf_section_data (sec)->this_hdr.sh_info = symindx; /* The contents won't be allocated for "ld -r" or objcopy. */ gas = TRUE; if (sec->contents == NULL) { gas = FALSE; sec->contents = bfd_alloc (abfd, sec->size); /* Arrange for the section to be written out. */ elf_section_data (sec)->this_hdr.contents = sec->contents; if (sec->contents == NULL) { *failedptr = TRUE; return; } } loc = sec->contents + sec->size; /* Get the pointer to the first section in the group that gas squirreled away here. objcopy arranges for this to be set to the start of the input section group. */ first = elt = elf_next_in_group (sec); /* First element is a flag word. Rest of section is elf section indices for all the sections of the group. Write them backwards just to keep the group in the same order as given in .section directives, not that it matters. */ while (elt != NULL) { asection *s; unsigned int idx; loc -= 4; s = elt; if (!gas) s = s->output_section; idx = 0; if (s != NULL) idx = elf_section_data (s)->this_idx; H_PUT_32 (abfd, idx, loc); elt = elf_next_in_group (elt); if (elt == first) break; } /* If this is a relocatable link, then the above did nothing because SEC is the output section. Look through the input sections instead. */ for (l = sec->map_head.link_order; l != NULL; l = l->next) if (l->type == bfd_indirect_link_order && (elt = elf_next_in_group (l->u.indirect.section)) != NULL) do { loc -= 4; H_PUT_32 (abfd, elf_section_data (elt->output_section)->this_idx, loc); elt = elf_next_in_group (elt); /* During a relocatable link, the lists are circular. */ } while (elt != elf_next_in_group (l->u.indirect.section)); if ((loc -= 4) != sec->contents) abort (); H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc); } /* Assign all ELF section numbers. The dummy first section is handled here too. The link/info pointers for the standard section types are filled in here too, while we're at it. */ static bfd_boolean assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info) { struct elf_obj_tdata *t = elf_tdata (abfd); asection *sec; unsigned int section_number, secn; Elf_Internal_Shdr **i_shdrp; struct bfd_elf_section_data *d; section_number = 1; _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd)); /* SHT_GROUP sections are in relocatable files only. */ if (link_info == NULL || link_info->relocatable) { /* Put SHT_GROUP sections first. */ for (sec = abfd->sections; sec != NULL; sec = sec->next) { d = elf_section_data (sec); if (d->this_hdr.sh_type == SHT_GROUP) { if (sec->flags & SEC_LINKER_CREATED) { /* Remove the linker created SHT_GROUP sections. */ bfd_section_list_remove (abfd, sec); abfd->section_count--; } else { if (section_number == SHN_LORESERVE) section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE; d->this_idx = section_number++; } } } } for (sec = abfd->sections; sec; sec = sec->next) { d = elf_section_data (sec); if (d->this_hdr.sh_type != SHT_GROUP) { if (section_number == SHN_LORESERVE) section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE; d->this_idx = section_number++; } _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name); if ((sec->flags & SEC_RELOC) == 0) d->rel_idx = 0; else { if (section_number == SHN_LORESERVE) section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE; d->rel_idx = section_number++; _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr.sh_name); } if (d->rel_hdr2) { if (section_number == SHN_LORESERVE) section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE; d->rel_idx2 = section_number++; _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr2->sh_name); } else d->rel_idx2 = 0; } if (section_number == SHN_LORESERVE) section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE; t->shstrtab_section = section_number++; _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name); elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section; if (bfd_get_symcount (abfd) > 0) { if (section_number == SHN_LORESERVE) section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE; t->symtab_section = section_number++; _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name); if (section_number > SHN_LORESERVE - 2) { if (section_number == SHN_LORESERVE) section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE; t->symtab_shndx_section = section_number++; t->symtab_shndx_hdr.sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), ".symtab_shndx", FALSE); if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1) return FALSE; } if (section_number == SHN_LORESERVE) section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE; t->strtab_section = section_number++; _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name); } _bfd_elf_strtab_finalize (elf_shstrtab (abfd)); t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd)); elf_numsections (abfd) = section_number; elf_elfheader (abfd)->e_shnum = section_number; if (section_number > SHN_LORESERVE) elf_elfheader (abfd)->e_shnum -= SHN_HIRESERVE + 1 - SHN_LORESERVE; /* Set up the list of section header pointers, in agreement with the indices. */ i_shdrp = bfd_zalloc2 (abfd, section_number, sizeof (Elf_Internal_Shdr *)); if (i_shdrp == NULL) return FALSE; i_shdrp[0] = bfd_zalloc (abfd, sizeof (Elf_Internal_Shdr)); if (i_shdrp[0] == NULL) { bfd_release (abfd, i_shdrp); return FALSE; } elf_elfsections (abfd) = i_shdrp; i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr; if (bfd_get_symcount (abfd) > 0) { i_shdrp[t->symtab_section] = &t->symtab_hdr; if (elf_numsections (abfd) > SHN_LORESERVE) { i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr; t->symtab_shndx_hdr.sh_link = t->symtab_section; } i_shdrp[t->strtab_section] = &t->strtab_hdr; t->symtab_hdr.sh_link = t->strtab_section; } for (sec = abfd->sections; sec; sec = sec->next) { struct bfd_elf_section_data *d = elf_section_data (sec); asection *s; const char *name; i_shdrp[d->this_idx] = &d->this_hdr; if (d->rel_idx != 0) i_shdrp[d->rel_idx] = &d->rel_hdr; if (d->rel_idx2 != 0) i_shdrp[d->rel_idx2] = d->rel_hdr2; /* Fill in the sh_link and sh_info fields while we're at it. */ /* sh_link of a reloc section is the section index of the symbol table. sh_info is the section index of the section to which the relocation entries apply. */ if (d->rel_idx != 0) { d->rel_hdr.sh_link = t->symtab_section; d->rel_hdr.sh_info = d->this_idx; } if (d->rel_idx2 != 0) { d->rel_hdr2->sh_link = t->symtab_section; d->rel_hdr2->sh_info = d->this_idx; } /* We need to set up sh_link for SHF_LINK_ORDER. */ if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0) { s = elf_linked_to_section (sec); if (s) d->this_hdr.sh_link = elf_section_data (s)->this_idx; else { struct bfd_link_order *p; /* Find out what the corresponding section in output is. */ for (p = sec->map_head.link_order; p != NULL; p = p->next) { s = p->u.indirect.section; if (p->type == bfd_indirect_link_order && (bfd_get_flavour (s->owner) == bfd_target_elf_flavour)) { Elf_Internal_Shdr ** const elf_shdrp = elf_elfsections (s->owner); int elfsec = _bfd_elf_section_from_bfd_section (s->owner, s); elfsec = elf_shdrp[elfsec]->sh_link; /* PR 290: The Intel C compiler generates SHT_IA_64_UNWIND with SHF_LINK_ORDER. But it doesn't set the sh_link or sh_info fields. Hence we could get the situation where elfsec is 0. */ if (elfsec == 0) { const struct elf_backend_data *bed = get_elf_backend_data (abfd); if (bed->link_order_error_handler) bed->link_order_error_handler (_("%B: warning: sh_link not set for section `%A'"), abfd, s); } else { s = elf_shdrp[elfsec]->bfd_section; if (elf_discarded_section (s)) { asection *kept; (*_bfd_error_handler) (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"), abfd, d->this_hdr.bfd_section, s, s->owner); /* Point to the kept section if it has the same size as the discarded one. */ kept = _bfd_elf_check_kept_section (s); if (kept == NULL) { bfd_set_error (bfd_error_bad_value); return FALSE; } s = kept; } s = s->output_section; BFD_ASSERT (s != NULL); d->this_hdr.sh_link = elf_section_data (s)->this_idx; } break; } } } } switch (d->this_hdr.sh_type) { case SHT_REL: case SHT_RELA: /* A reloc section which we are treating as a normal BFD section. sh_link is the section index of the symbol table. sh_info is the section index of the section to which the relocation entries apply. We assume that an allocated reloc section uses the dynamic symbol table. FIXME: How can we be sure? */ s = bfd_get_section_by_name (abfd, ".dynsym"); if (s != NULL) d->this_hdr.sh_link = elf_section_data (s)->this_idx; /* We look up the section the relocs apply to by name. */ name = sec->name; if (d->this_hdr.sh_type == SHT_REL) name += 4; else name += 5; s = bfd_get_section_by_name (abfd, name); if (s != NULL) d->this_hdr.sh_info = elf_section_data (s)->this_idx; break; case SHT_STRTAB: /* We assume that a section named .stab*str is a stabs string section. We look for a section with the same name but without the trailing ``str'', and set its sh_link field to point to this section. */ if (strncmp (sec->name, ".stab", sizeof ".stab" - 1) == 0 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0) { size_t len; char *alc; len = strlen (sec->name); alc = bfd_malloc (len - 2); if (alc == NULL) return FALSE; memcpy (alc, sec->name, len - 3); alc[len - 3] = '\0'; s = bfd_get_section_by_name (abfd, alc); free (alc); if (s != NULL) { elf_section_data (s)->this_hdr.sh_link = d->this_idx; /* This is a .stab section. */ if (elf_section_data (s)->this_hdr.sh_entsize == 0) elf_section_data (s)->this_hdr.sh_entsize = 4 + 2 * bfd_get_arch_size (abfd) / 8; } } break; case SHT_DYNAMIC: case SHT_DYNSYM: case SHT_GNU_verneed: case SHT_GNU_verdef: /* sh_link is the section header index of the string table used for the dynamic entries, or the symbol table, or the version strings. */ s = bfd_get_section_by_name (abfd, ".dynstr"); if (s != NULL) d->this_hdr.sh_link = elf_section_data (s)->this_idx; break; case SHT_GNU_LIBLIST: /* sh_link is the section header index of the prelink library list used for the dynamic entries, or the symbol table, or the version strings. */ s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC) ? ".dynstr" : ".gnu.libstr"); if (s != NULL) d->this_hdr.sh_link = elf_section_data (s)->this_idx; break; case SHT_HASH: case SHT_GNU_versym: /* sh_link is the section header index of the symbol table this hash table or version table is for. */ s = bfd_get_section_by_name (abfd, ".dynsym"); if (s != NULL) d->this_hdr.sh_link = elf_section_data (s)->this_idx; break; case SHT_GROUP: d->this_hdr.sh_link = t->symtab_section; } } for (secn = 1; secn < section_number; ++secn) if (i_shdrp[secn] == NULL) i_shdrp[secn] = i_shdrp[0]; else i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd), i_shdrp[secn]->sh_name); return TRUE; } /* Map symbol from it's internal number to the external number, moving all local symbols to be at the head of the list. */ static int sym_is_global (bfd *abfd, asymbol *sym) { /* If the backend has a special mapping, use it. */ const struct elf_backend_data *bed = get_elf_backend_data (abfd); if (bed->elf_backend_sym_is_global) return (*bed->elf_backend_sym_is_global) (abfd, sym); return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0 || bfd_is_und_section (bfd_get_section (sym)) || bfd_is_com_section (bfd_get_section (sym))); } static bfd_boolean elf_map_symbols (bfd *abfd) { unsigned int symcount = bfd_get_symcount (abfd); asymbol **syms = bfd_get_outsymbols (abfd); asymbol **sect_syms; unsigned int num_locals = 0; unsigned int num_globals = 0; unsigned int num_locals2 = 0; unsigned int num_globals2 = 0; int max_index = 0; unsigned int idx; asection *asect; asymbol **new_syms; #ifdef DEBUG fprintf (stderr, "elf_map_symbols\n"); fflush (stderr); #endif for (asect = abfd->sections; asect; asect = asect->next) { if (max_index < asect->index) max_index = asect->index; } max_index++; sect_syms = bfd_zalloc2 (abfd, max_index, sizeof (asymbol *)); if (sect_syms == NULL) return FALSE; elf_section_syms (abfd) = sect_syms; elf_num_section_syms (abfd) = max_index; /* Init sect_syms entries for any section symbols we have already decided to output. */ for (idx = 0; idx < symcount; idx++) { asymbol *sym = syms[idx]; if ((sym->flags & BSF_SECTION_SYM) != 0 && sym->value == 0) { asection *sec; sec = sym->section; if (sec->owner != NULL) { if (sec->owner != abfd) { if (sec->output_offset != 0) continue; sec = sec->output_section; /* Empty sections in the input files may have had a section symbol created for them. (See the comment near the end of _bfd_generic_link_output_symbols in linker.c). If the linker script discards such sections then we will reach this point. Since we know that we cannot avoid this case, we detect it and skip the abort and the assignment to the sect_syms array. To reproduce this particular case try running the linker testsuite test ld-scripts/weak.exp for an ELF port that uses the generic linker. */ if (sec->owner == NULL) continue; BFD_ASSERT (sec->owner == abfd); } sect_syms[sec->index] = syms[idx]; } } } /* Classify all of the symbols. */ for (idx = 0; idx < symcount; idx++) { if (!sym_is_global (abfd, syms[idx])) num_locals++; else num_globals++; } /* We will be adding a section symbol for each BFD section. Most normal sections will already have a section symbol in outsymbols, but eg. SHT_GROUP sections will not, and we need the section symbol mapped at least in that case. */ for (asect = abfd->sections; asect; asect = asect->next) { if (sect_syms[asect->index] == NULL) { if (!sym_is_global (abfd, asect->symbol)) num_locals++; else num_globals++; } } /* Now sort the symbols so the local symbols are first. */ new_syms = bfd_alloc2 (abfd, num_locals + num_globals, sizeof (asymbol *)); if (new_syms == NULL) return FALSE; for (idx = 0; idx < symcount; idx++) { asymbol *sym = syms[idx]; unsigned int i; if (!sym_is_global (abfd, sym)) i = num_locals2++; else i = num_locals + num_globals2++; new_syms[i] = sym; sym->udata.i = i + 1; } for (asect = abfd->sections; asect; asect = asect->next) { if (sect_syms[asect->index] == NULL) { asymbol *sym = asect->symbol; unsigned int i; sect_syms[asect->index] = sym; if (!sym_is_global (abfd, sym)) i = num_locals2++; else i = num_locals + num_globals2++; new_syms[i] = sym; sym->udata.i = i + 1; } } bfd_set_symtab (abfd, new_syms, num_locals + num_globals); elf_num_locals (abfd) = num_locals; elf_num_globals (abfd) = num_globals; return TRUE; } /* Align to the maximum file alignment that could be required for any ELF data structure. */ static inline file_ptr align_file_position (file_ptr off, int align) { return (off + align - 1) & ~(align - 1); } /* Assign a file position to a section, optionally aligning to the required section alignment. */ file_ptr _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp, file_ptr offset, bfd_boolean align) { if (align) { unsigned int al; al = i_shdrp->sh_addralign; if (al > 1) offset = BFD_ALIGN (offset, al); } i_shdrp->sh_offset = offset; if (i_shdrp->bfd_section != NULL) i_shdrp->bfd_section->filepos = offset; if (i_shdrp->sh_type != SHT_NOBITS) offset += i_shdrp->sh_size; return offset; } /* Compute the file positions we are going to put the sections at, and otherwise prepare to begin writing out the ELF file. If LINK_INFO is not NULL, this is being called by the ELF backend linker. */ bfd_boolean _bfd_elf_compute_section_file_positions (bfd *abfd, struct bfd_link_info *link_info) { const struct elf_backend_data *bed = get_elf_backend_data (abfd); bfd_boolean failed; struct bfd_strtab_hash *strtab = NULL; Elf_Internal_Shdr *shstrtab_hdr; if (abfd->output_has_begun) return TRUE; /* Do any elf backend specific processing first. */ if (bed->elf_backend_begin_write_processing) (*bed->elf_backend_begin_write_processing) (abfd, link_info); if (! prep_headers (abfd)) return FALSE; /* Post process the headers if necessary. */ if (bed->elf_backend_post_process_headers) (*bed->elf_backend_post_process_headers) (abfd, link_info); failed = FALSE; bfd_map_over_sections (abfd, elf_fake_sections, &failed); if (failed) return FALSE; if (!assign_section_numbers (abfd, link_info)) return FALSE; /* The backend linker builds symbol table information itself. */ if (link_info == NULL && bfd_get_symcount (abfd) > 0) { /* Non-zero if doing a relocatable link. */ int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC)); if (! swap_out_syms (abfd, &strtab, relocatable_p)) return FALSE; } if (link_info == NULL) { bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed); if (failed) return FALSE; } shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr; /* sh_name was set in prep_headers. */ shstrtab_hdr->sh_type = SHT_STRTAB; shstrtab_hdr->sh_flags = 0; shstrtab_hdr->sh_addr = 0; shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd)); shstrtab_hdr->sh_entsize = 0; shstrtab_hdr->sh_link = 0; shstrtab_hdr->sh_info = 0; /* sh_offset is set in assign_file_positions_except_relocs. */ shstrtab_hdr->sh_addralign = 1; if (!assign_file_positions_except_relocs (abfd, link_info)) return FALSE; if (link_info == NULL && bfd_get_symcount (abfd) > 0) { file_ptr off; Elf_Internal_Shdr *hdr; off = elf_tdata (abfd)->next_file_pos; hdr = &elf_tdata (abfd)->symtab_hdr; off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE); hdr = &elf_tdata (abfd)->symtab_shndx_hdr; if (hdr->sh_size != 0) off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE); hdr = &elf_tdata (abfd)->strtab_hdr; off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE); elf_tdata (abfd)->next_file_pos = off; /* Now that we know where the .strtab section goes, write it out. */ if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0 || ! _bfd_stringtab_emit (abfd, strtab)) return FALSE; _bfd_stringtab_free (strtab); } abfd->output_has_begun = TRUE; return TRUE; } /* Create a mapping from a set of sections to a program segment. */ static struct elf_segment_map * make_mapping (bfd *abfd, asection **sections, unsigned int from, unsigned int to, bfd_boolean phdr) { struct elf_segment_map *m; unsigned int i; asection **hdrpp; bfd_size_type amt; amt = sizeof (struct elf_segment_map); amt += (to - from - 1) * sizeof (asection *); m = bfd_zalloc (abfd, amt); if (m == NULL) return NULL; m->next = NULL; m->p_type = PT_LOAD; for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++) m->sections[i - from] = *hdrpp; m->count = to - from; if (from == 0 && phdr) { /* Include the headers in the first PT_LOAD segment. */ m->includes_filehdr = 1; m->includes_phdrs = 1; } return m; } /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL on failure. */ struct elf_segment_map * _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec) { struct elf_segment_map *m; m = bfd_zalloc (abfd, sizeof (struct elf_segment_map)); if (m == NULL) return NULL; m->next = NULL; m->p_type = PT_DYNAMIC; m->count = 1; m->sections[0] = dynsec; return m; } /* Set up a mapping from BFD sections to program segments. */ static bfd_boolean map_sections_to_segments (bfd *abfd) { asection **sections = NULL; asection *s; unsigned int i; unsigned int count; struct elf_segment_map *mfirst; struct elf_segment_map **pm; struct elf_segment_map *m; asection *last_hdr; bfd_vma last_size; unsigned int phdr_index; bfd_vma maxpagesize; asection **hdrpp; bfd_boolean phdr_in_segment = TRUE; bfd_boolean writable; int tls_count = 0; asection *first_tls = NULL; asection *dynsec, *eh_frame_hdr; bfd_size_type amt; if (elf_tdata (abfd)->segment_map != NULL) return TRUE; if (bfd_count_sections (abfd) == 0) return TRUE; /* Select the allocated sections, and sort them. */ sections = bfd_malloc2 (bfd_count_sections (abfd), sizeof (asection *)); if (sections == NULL) goto error_return; i = 0; for (s = abfd->sections; s != NULL; s = s->next) { if ((s->flags & SEC_ALLOC) != 0) { sections[i] = s; ++i; } } BFD_ASSERT (i <= bfd_count_sections (abfd)); count = i; qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections); /* Build the mapping. */ mfirst = NULL; pm = &mfirst; /* If we have a .interp section, then create a PT_PHDR segment for the program headers and a PT_INTERP segment for the .interp section. */ s = bfd_get_section_by_name (abfd, ".interp"); if (s != NULL && (s->flags & SEC_LOAD) != 0) { amt = sizeof (struct elf_segment_map); m = bfd_zalloc (abfd, amt); if (m == NULL) goto error_return; m->next = NULL; m->p_type = PT_PHDR; /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */ m->p_flags = PF_R | PF_X; m->p_flags_valid = 1; m->includes_phdrs = 1; *pm = m; pm = &m->next; amt = sizeof (struct elf_segment_map); m = bfd_zalloc (abfd, amt); if (m == NULL) goto error_return; m->next = NULL; m->p_type = PT_INTERP; m->count = 1; m->sections[0] = s; *pm = m; pm = &m->next; } /* Look through the sections. We put sections in the same program segment when the start of the second section can be placed within a few bytes of the end of the first section. */ last_hdr = NULL; last_size = 0; phdr_index = 0; maxpagesize = get_elf_backend_data (abfd)->maxpagesize; writable = FALSE; dynsec = bfd_get_section_by_name (abfd, ".dynamic"); if (dynsec != NULL && (dynsec->flags & SEC_LOAD) == 0) dynsec = NULL; /* Deal with -Ttext or something similar such that the first section is not adjacent to the program headers. This is an approximation, since at this point we don't know exactly how many program headers we will need. */ if (count > 0) { bfd_size_type phdr_size; phdr_size = elf_tdata (abfd)->program_header_size; if (phdr_size == 0) phdr_size = get_elf_backend_data (abfd)->s->sizeof_phdr; if ((abfd->flags & D_PAGED) == 0 || sections[0]->lma < phdr_size || sections[0]->lma % maxpagesize < phdr_size % maxpagesize) phdr_in_segment = FALSE; } for (i = 0, hdrpp = sections; i < count; i++, hdrpp++) { asection *hdr; bfd_boolean new_segment; hdr = *hdrpp; /* See if this section and the last one will fit in the same segment. */ if (last_hdr == NULL) { /* If we don't have a segment yet, then we don't need a new one (we build the last one after this loop). */ new_segment = FALSE; } else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma) { /* If this section has a different relation between the virtual address and the load address, then we need a new segment. */ new_segment = TRUE; } else if (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) < BFD_ALIGN (hdr->lma, maxpagesize)) { /* If putting this section in this segment would force us to skip a page in the segment, then we need a new segment. */ new_segment = TRUE; } else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0) { /* We don't want to put a loadable section after a nonloadable section in the same segment. Consider .tbss sections as loadable for this purpose. */ new_segment = TRUE; } else if ((abfd->flags & D_PAGED) == 0) { /* If the file is not demand paged, which means that we don't require the sections to be correctly aligned in the file, then there is no other reason for a new segment. */ new_segment = FALSE; } else if (! writable && (hdr->flags & SEC_READONLY) == 0 && (((last_hdr->lma + last_size - 1) & ~(maxpagesize - 1)) != (hdr->lma & ~(maxpagesize - 1)))) { /* We don't want to put a writable section in a read only segment, unless they are on the same page in memory anyhow. We already know that the last section does not bring us past the current section on the page, so the only case in which the new section is not on the same page as the previous section is when the previous section ends precisely on a page boundary. */ new_segment = TRUE; } else { /* Otherwise, we can use the same segment. */ new_segment = FALSE; } if (! new_segment) { if ((hdr->flags & SEC_READONLY) == 0) writable = TRUE; last_hdr = hdr; /* .tbss sections effectively have zero size. */ if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL) last_size = hdr->size; else last_size = 0; continue; } /* We need a new program segment. We must create a new program header holding all the sections from phdr_index until hdr. */ m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment); if (m == NULL) goto error_return; *pm = m; pm = &m->next; if ((hdr->flags & SEC_READONLY) == 0) writable = TRUE; else writable = FALSE; last_hdr = hdr; /* .tbss sections effectively have zero size. */ if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL) last_size = hdr->size; else last_size = 0; phdr_index = i; phdr_in_segment = FALSE; } /* Create a final PT_LOAD program segment. */ if (last_hdr != NULL) { m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment); if (m == NULL) goto error_return; *pm = m; pm = &m->next; } /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */ if (dynsec != NULL) { m = _bfd_elf_make_dynamic_segment (abfd, dynsec); if (m == NULL) goto error_return; *pm = m; pm = &m->next; } /* For each loadable .note section, add a PT_NOTE segment. We don't use bfd_get_section_by_name, because if we link together nonloadable .note sections and loadable .note sections, we will generate two .note sections in the output file. FIXME: Using names for section types is bogus anyhow. */ for (s = abfd->sections; s != NULL; s = s->next) { if ((s->flags & SEC_LOAD) != 0 && strncmp (s->name, ".note", 5) == 0) { amt = sizeof (struct elf_segment_map); m = bfd_zalloc (abfd, amt); if (m == NULL) goto error_return; m->next = NULL; m->p_type = PT_NOTE; m->count = 1; m->sections[0] = s; *pm = m; pm = &m->next; } if (s->flags & SEC_THREAD_LOCAL) { if (! tls_count) first_tls = s; tls_count++; } } /* If there are any SHF_TLS output sections, add PT_TLS segment. */ if (tls_count > 0) { int i; amt = sizeof (struct elf_segment_map); amt += (tls_count - 1) * sizeof (asection *); m = bfd_zalloc (abfd, amt); if (m == NULL) goto error_return; m->next = NULL; m->p_type = PT_TLS; m->count = tls_count; /* Mandated PF_R. */ m->p_flags = PF_R; m->p_flags_valid = 1; for (i = 0; i < tls_count; ++i) { BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL); m->sections[i] = first_tls; first_tls = first_tls->next; } *pm = m; pm = &m->next; } /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME segment. */ eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr; if (eh_frame_hdr != NULL && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0) { amt = sizeof (struct elf_segment_map); m = bfd_zalloc (abfd, amt); if (m == NULL) goto error_return; m->next = NULL; m->p_type = PT_GNU_EH_FRAME; m->count = 1; m->sections[0] = eh_frame_hdr->output_section; *pm = m; pm = &m->next; } if (elf_tdata (abfd)->stack_flags) { amt = sizeof (struct elf_segment_map); m = bfd_zalloc (abfd, amt); if (m == NULL) goto error_return; m->next = NULL; m->p_type = PT_GNU_STACK; m->p_flags = elf_tdata (abfd)->stack_flags; m->p_flags_valid = 1; *pm = m; pm = &m->next; } if (elf_tdata (abfd)->relro) { amt = sizeof (struct elf_segment_map); m = bfd_zalloc (abfd, amt); if (m == NULL) goto error_return; m->next = NULL; m->p_type = PT_GNU_RELRO; m->p_flags = PF_R; m->p_flags_valid = 1; *pm = m; pm = &m->next; } free (sections); sections = NULL; elf_tdata (abfd)->segment_map = mfirst; return TRUE; error_return: if (sections != NULL) free (sections); return FALSE; } /* Sort sections by address. */ static int elf_sort_sections (const void *arg1, const void *arg2) { const asection *sec1 = *(const asection **) arg1; const asection *sec2 = *(const asection **) arg2; bfd_size_type size1, size2; /* Sort by LMA first, since this is the address used to place the section into a segment. */ if (sec1->lma < sec2->lma) return -1; else if (sec1->lma > sec2->lma) return 1; /* Then sort by VMA. Normally the LMA and the VMA will be the same, and this will do nothing. */ if (sec1->vma < sec2->vma) return -1; else if (sec1->vma > sec2->vma) return 1; /* Put !SEC_LOAD sections after SEC_LOAD ones. */ #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0) if (TOEND (sec1)) { if (TOEND (sec2)) { /* If the indicies are the same, do not return 0 here, but continue to try the next comparison. */ if (sec1->target_index - sec2->target_index != 0) return sec1->target_index - sec2->target_index; } else return 1; } else if (TOEND (sec2)) return -1; #undef TOEND /* Sort by size, to put zero sized sections before others at the same address. */ size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0; size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0; if (size1 < size2) return -1; if (size1 > size2) return 1; return sec1->target_index - sec2->target_index; } /* Ian Lance Taylor writes: We shouldn't be using % with a negative signed number. That's just not good. We have to make sure either that the number is not negative, or that the number has an unsigned type. When the types are all the same size they wind up as unsigned. When file_ptr is a larger signed type, the arithmetic winds up as signed long long, which is wrong. What we're trying to say here is something like ``increase OFF by the least amount that will cause it to be equal to the VMA modulo the page size.'' */ /* In other words, something like: vma_offset = m->sections[0]->vma % bed->maxpagesize; off_offset = off % bed->maxpagesize; if (vma_offset < off_offset) adjustment = vma_offset + bed->maxpagesize - off_offset; else adjustment = vma_offset - off_offset; which can can be collapsed into the expression below. */ static file_ptr vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize) { return ((vma - off) % maxpagesize); } /* Assign file positions to the sections based on the mapping from sections to segments. This function also sets up some fields in the file header, and writes out the program headers. */ static bfd_boolean assign_file_positions_for_segments (bfd *abfd, struct bfd_link_info *link_info) { const struct elf_backend_data *bed = get_elf_backend_data (abfd); unsigned int count; struct elf_segment_map *m; unsigned int alloc; Elf_Internal_Phdr *phdrs; file_ptr off, voff; bfd_vma filehdr_vaddr, filehdr_paddr; bfd_vma phdrs_vaddr, phdrs_paddr; Elf_Internal_Phdr *p; if (elf_tdata (abfd)->segment_map == NULL) { if (! map_sections_to_segments (abfd)) return FALSE; } else { /* The placement algorithm assumes that non allocated sections are not in PT_LOAD segments. We ensure this here by removing such sections from the segment map. We also remove excluded sections. */ for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next) { unsigned int new_count; unsigned int i; new_count = 0; for (i = 0; i < m->count; i ++) { if ((m->sections[i]->flags & SEC_EXCLUDE) == 0 && ((m->sections[i]->flags & SEC_ALLOC) != 0 || m->p_type != PT_LOAD)) { if (i != new_count) m->sections[new_count] = m->sections[i]; new_count ++; } } if (new_count != m->count) m->count = new_count; } } if (bed->elf_backend_modify_segment_map) { if (! (*bed->elf_backend_modify_segment_map) (abfd, link_info)) return FALSE; } count = 0; for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next) ++count; elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr; elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr; elf_elfheader (abfd)->e_phnum = count; if (count == 0) { elf_tdata (abfd)->next_file_pos = bed->s->sizeof_ehdr; return TRUE; } /* If we already counted the number of program segments, make sure that we allocated enough space. This happens when SIZEOF_HEADERS is used in a linker script. */ alloc = elf_tdata (abfd)->program_header_size / bed->s->sizeof_phdr; if (alloc != 0 && count > alloc) { ((*_bfd_error_handler) (_("%B: Not enough room for program headers (allocated %u, need %u)"), abfd, alloc, count)); bfd_set_error (bfd_error_bad_value); return FALSE; } if (alloc == 0) alloc = count; phdrs = bfd_alloc2 (abfd, alloc, sizeof (Elf_Internal_Phdr)); if (phdrs == NULL) return FALSE; off = bed->s->sizeof_ehdr; off += alloc * bed->s->sizeof_phdr; filehdr_vaddr = 0; filehdr_paddr = 0; phdrs_vaddr = 0; phdrs_paddr = 0; for (m = elf_tdata (abfd)->segment_map, p = phdrs; m != NULL; m = m->next, p++) { unsigned int i; asection **secpp; /* If elf_segment_map is not from map_sections_to_segments, the sections may not be correctly ordered. NOTE: sorting should not be done to the PT_NOTE section of a corefile, which may contain several pseudo-sections artificially created by bfd. Sorting these pseudo-sections breaks things badly. */ if (m->count > 1 && !(elf_elfheader (abfd)->e_type == ET_CORE && m->p_type == PT_NOTE)) qsort (m->sections, (size_t) m->count, sizeof (asection *), elf_sort_sections); /* An ELF segment (described by Elf_Internal_Phdr) may contain a number of sections with contents contributing to both p_filesz and p_memsz, followed by a number of sections with no contents that just contribute to p_memsz. In this loop, OFF tracks next available file offset for PT_LOAD and PT_NOTE segments. VOFF is an adjustment we use for segments that have no file contents but need zero filled memory allocation. */ voff = 0; p->p_type = m->p_type; p->p_flags = m->p_flags; if (p->p_type == PT_LOAD && m->count > 0) { bfd_size_type align; bfd_vma adjust; unsigned int align_power = 0; for (i = 0, secpp = m->sections; i < m->count; i++, secpp++) { unsigned int secalign; secalign = bfd_get_section_alignment (abfd, *secpp); if (secalign > align_power) align_power = secalign; } align = (bfd_size_type) 1 << align_power; if ((abfd->flags & D_PAGED) != 0 && bed->maxpagesize > align) align = bed->maxpagesize; adjust = vma_page_aligned_bias (m->sections[0]->vma, off, align); off += adjust; if (adjust != 0 && !m->includes_filehdr && !m->includes_phdrs && (ufile_ptr) off >= align) { /* If the first section isn't loadable, the same holds for any other sections. Since the segment won't need file space, we can make p_offset overlap some prior segment. However, .tbss is special. If a segment starts with .tbss, we need to look at the next section to decide whether the segment has any loadable sections. */ i = 0; while ((m->sections[i]->flags & SEC_LOAD) == 0) { if ((m->sections[i]->flags & SEC_THREAD_LOCAL) == 0 || ++i >= m->count) { off -= adjust; voff = adjust - align; break; } } } } /* Make sure the .dynamic section is the first section in the PT_DYNAMIC segment. */ else if (p->p_type == PT_DYNAMIC && m->count > 1 && strcmp (m->sections[0]->name, ".dynamic") != 0) { _bfd_error_handler (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"), abfd); bfd_set_error (bfd_error_bad_value); return FALSE; } if (m->count == 0) p->p_vaddr = 0; else p->p_vaddr = m->sections[0]->vma; if (m->p_paddr_valid) p->p_paddr = m->p_paddr; else if (m->count == 0) p->p_paddr = 0; else p->p_paddr = m->sections[0]->lma; if (p->p_type == PT_LOAD && (abfd->flags & D_PAGED) != 0) p->p_align = bed->maxpagesize; else if (m->count == 0) p->p_align = 1 << bed->s->log_file_align; else p->p_align = 0; p->p_offset = 0; p->p_filesz = 0; p->p_memsz = 0; if (m->includes_filehdr) { if (! m->p_flags_valid) p->p_flags |= PF_R; p->p_offset = 0; p->p_filesz = bed->s->sizeof_ehdr; p->p_memsz = bed->s->sizeof_ehdr; if (m->count > 0) { BFD_ASSERT (p->p_type == PT_LOAD); if (p->p_vaddr < (bfd_vma) off) { (*_bfd_error_handler) (_("%B: Not enough room for program headers, try linking with -N"), abfd); bfd_set_error (bfd_error_bad_value); return FALSE; } p->p_vaddr -= off; if (! m->p_paddr_valid) p->p_paddr -= off; } if (p->p_type == PT_LOAD) { filehdr_vaddr = p->p_vaddr; filehdr_paddr = p->p_paddr; } } if (m->includes_phdrs) { if (! m->p_flags_valid) p->p_flags |= PF_R; if (m->includes_filehdr) { if (p->p_type == PT_LOAD) { phdrs_vaddr = p->p_vaddr + bed->s->sizeof_ehdr; phdrs_paddr = p->p_paddr + bed->s->sizeof_ehdr; } } else { p->p_offset = bed->s->sizeof_ehdr; if (m->count > 0) { BFD_ASSERT (p->p_type == PT_LOAD); p->p_vaddr -= off - p->p_offset; if (! m->p_paddr_valid) p->p_paddr -= off - p->p_offset; } if (p->p_type == PT_LOAD) { phdrs_vaddr = p->p_vaddr; phdrs_paddr = p->p_paddr; } else phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr; } p->p_filesz += alloc * bed->s->sizeof_phdr; p->p_memsz += alloc * bed->s->sizeof_phdr; } if (p->p_type == PT_LOAD || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)) { if (! m->includes_filehdr && ! m->includes_phdrs) p->p_offset = off + voff; else { file_ptr adjust; adjust = off - (p->p_offset + p->p_filesz); p->p_filesz += adjust; p->p_memsz += adjust; } } for (i = 0, secpp = m->sections; i < m->count; i++, secpp++) { asection *sec; flagword flags; bfd_size_type align; sec = *secpp; flags = sec->flags; align = 1 << bfd_get_section_alignment (abfd, sec); if (p->p_type == PT_LOAD || p->p_type == PT_TLS) { bfd_signed_vma adjust; if ((flags & SEC_LOAD) != 0) { adjust = sec->lma - (p->p_paddr + p->p_filesz); if (adjust < 0) { (*_bfd_error_handler) (_("%B: section %A lma 0x%lx overlaps previous sections"), abfd, sec, (unsigned long) sec->lma); adjust = 0; } off += adjust; p->p_filesz += adjust; p->p_memsz += adjust; } /* .tbss is special. It doesn't contribute to p_memsz of normal segments. */ else if ((flags & SEC_THREAD_LOCAL) == 0 || p->p_type == PT_TLS) { /* The section VMA must equal the file position modulo the page size. */ bfd_size_type page = align; if ((abfd->flags & D_PAGED) != 0 && bed->maxpagesize > page) page = bed->maxpagesize; adjust = vma_page_aligned_bias (sec->vma, p->p_vaddr + p->p_memsz, page); p->p_memsz += adjust; } } if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core) { /* The section at i == 0 is the one that actually contains everything. */ if (i == 0) { sec->filepos = off; off += sec->size; p->p_filesz = sec->size; p->p_memsz = 0; p->p_align = 1; } else { /* The rest are fake sections that shouldn't be written. */ sec->filepos = 0; sec->size = 0; sec->flags = 0; continue; } } else { if (p->p_type == PT_LOAD) { sec->filepos = off; /* FIXME: The SEC_HAS_CONTENTS test here dates back to 1997, and the exact reason for it isn't clear. One plausible explanation is that it is to work around a problem we have with linker scripts using data statements in NOLOAD sections. I don't think it makes a great deal of sense to have such a section assigned to a PT_LOAD segment, but apparently people do this. The data statement results in a bfd_data_link_order being built, and these need section contents to write into. Eventually, we get to _bfd_elf_write_object_contents which writes any section with contents to the output. Make room here for the write, so that following segments are not trashed. */ if ((flags & SEC_LOAD) != 0 || (flags & SEC_HAS_CONTENTS) != 0) off += sec->size; } if ((flags & SEC_LOAD) != 0) { p->p_filesz += sec->size; p->p_memsz += sec->size; } /* PR ld/594: Sections in note segments which are not loaded contribute to the file size but not the in-memory size. */ else if (p->p_type == PT_NOTE && (flags & SEC_HAS_CONTENTS) != 0) p->p_filesz += sec->size; /* .tbss is special. It doesn't contribute to p_memsz of normal segments. */ else if ((flags & SEC_THREAD_LOCAL) == 0 || p->p_type == PT_TLS) p->p_memsz += sec->size; if (p->p_type == PT_TLS && sec->size == 0 && (sec->flags & SEC_HAS_CONTENTS) == 0) { struct bfd_link_order *o; bfd_vma tbss_size = 0; for (o = sec->map_head.link_order; o != NULL; o = o->next) if (tbss_size < o->offset + o->size) tbss_size = o->offset + o->size; p->p_memsz += tbss_size; } if (align > p->p_align && (p->p_type != PT_LOAD || (abfd->flags & D_PAGED) == 0)) p->p_align = align; } if (! m->p_flags_valid) { p->p_flags |= PF_R; if ((flags & SEC_CODE) != 0) p->p_flags |= PF_X; if ((flags & SEC_READONLY) == 0) p->p_flags |= PF_W; } } } /* Now that we have set the section file positions, we can set up the file positions for the non PT_LOAD segments. */ for (m = elf_tdata (abfd)->segment_map, p = phdrs; m != NULL; m = m->next, p++) { if (p->p_type != PT_LOAD && m->count > 0) { BFD_ASSERT (! m->includes_filehdr && ! m->includes_phdrs); /* If the section has not yet been assigned a file position, do so now. The ARM BPABI requires that .dynamic section not be marked SEC_ALLOC because it is not part of any PT_LOAD segment, so it will not be processed above. */ if (p->p_type == PT_DYNAMIC && m->sections[0]->filepos == 0) { unsigned int i; Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd); i = 1; while (i_shdrpp[i]->bfd_section != m->sections[0]) ++i; off = (_bfd_elf_assign_file_position_for_section (i_shdrpp[i], off, TRUE)); p->p_filesz = m->sections[0]->size; } p->p_offset = m->sections[0]->filepos; } if (m->count == 0) { if (m->includes_filehdr) { p->p_vaddr = filehdr_vaddr; if (! m->p_paddr_valid) p->p_paddr = filehdr_paddr; } else if (m->includes_phdrs) { p->p_vaddr = phdrs_vaddr; if (! m->p_paddr_valid) p->p_paddr = phdrs_paddr; } else if (p->p_type == PT_GNU_RELRO) { Elf_Internal_Phdr *lp; for (lp = phdrs; lp < phdrs + count; ++lp) { if (lp->p_type == PT_LOAD && lp->p_vaddr <= link_info->relro_end && lp->p_vaddr >= link_info->relro_start && lp->p_vaddr + lp->p_filesz >= link_info->relro_end) break; } if (lp < phdrs + count && link_info->relro_end > lp->p_vaddr) { p->p_vaddr = lp->p_vaddr; p->p_paddr = lp->p_paddr; p->p_offset = lp->p_offset; p->p_filesz = link_info->relro_end - lp->p_vaddr; p->p_memsz = p->p_filesz; p->p_align = 1; p->p_flags = (lp->p_flags & ~PF_W); } else { memset (p, 0, sizeof *p); p->p_type = PT_NULL; } } } } /* Clear out any program headers we allocated but did not use. */ for (; count < alloc; count++, p++) { memset (p, 0, sizeof *p); p->p_type = PT_NULL; } elf_tdata (abfd)->phdr = phdrs; elf_tdata (abfd)->next_file_pos = off; /* Write out the program headers. */ if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0 || bed->s->write_out_phdrs (abfd, phdrs, alloc) != 0) return FALSE; return TRUE; } /* Get the size of the program header. If this is called by the linker before any of the section VMA's are set, it can't calculate the correct value for a strange memory layout. This only happens when SIZEOF_HEADERS is used in a linker script. In this case, SORTED_HDRS is NULL and we assume the normal scenario of one text and one data segment (exclusive of .interp and .dynamic). ??? User written scripts must either not use SIZEOF_HEADERS, or assume there will be two segments. */ static bfd_size_type get_program_header_size (bfd *abfd) { size_t segs; asection *s; const struct elf_backend_data *bed = get_elf_backend_data (abfd); /* We can't return a different result each time we're called. */ if (elf_tdata (abfd)->program_header_size != 0) return elf_tdata (abfd)->program_header_size; if (elf_tdata (abfd)->segment_map != NULL) { struct elf_segment_map *m; segs = 0; for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next) ++segs; elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr; return elf_tdata (abfd)->program_header_size; } /* Assume we will need exactly two PT_LOAD segments: one for text and one for data. */ segs = 2; s = bfd_get_section_by_name (abfd, ".interp"); if (s != NULL && (s->flags & SEC_LOAD) != 0) { /* If we have a loadable interpreter section, we need a PT_INTERP segment. In this case, assume we also need a PT_PHDR segment, although that may not be true for all targets. */ segs += 2; } if (bfd_get_section_by_name (abfd, ".dynamic") != NULL) { /* We need a PT_DYNAMIC segment. */ ++segs; } if (elf_tdata (abfd)->eh_frame_hdr) { /* We need a PT_GNU_EH_FRAME segment. */ ++segs; } if (elf_tdata (abfd)->stack_flags) { /* We need a PT_GNU_STACK segment. */ ++segs; } if (elf_tdata (abfd)->relro) { /* We need a PT_GNU_RELRO segment. */ ++segs; } for (s = abfd->sections; s != NULL; s = s->next) { if ((s->flags & SEC_LOAD) != 0 && strncmp (s->name, ".note", 5) == 0) { /* We need a PT_NOTE segment. */ ++segs; } } for (s = abfd->sections; s != NULL; s = s->next) { if (s->flags & SEC_THREAD_LOCAL) { /* We need a PT_TLS segment. */ ++segs; break; } } /* Let the backend count up any program headers it might need. */ if (bed->elf_backend_additional_program_headers) { int a; a = (*bed->elf_backend_additional_program_headers) (abfd); if (a == -1) abort (); segs += a; } elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr; return elf_tdata (abfd)->program_header_size; } /* Work out the file positions of all the sections. This is called by _bfd_elf_compute_section_file_positions. All the section sizes and VMAs must be known before this is called. Reloc sections come in two flavours: Those processed specially as "side-channel" data attached to a section to which they apply, and those that bfd doesn't process as relocations. The latter sort are stored in a normal bfd section by bfd_section_from_shdr. We don't consider the former sort here, unless they form part of the loadable image. Reloc sections not assigned here will be handled later by assign_file_positions_for_relocs. We also don't set the positions of the .symtab and .strtab here. */ static bfd_boolean assign_file_positions_except_relocs (bfd *abfd, struct bfd_link_info *link_info) { struct elf_obj_tdata * const tdata = elf_tdata (abfd); Elf_Internal_Ehdr * const i_ehdrp = elf_elfheader (abfd); Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd); unsigned int num_sec = elf_numsections (abfd); file_ptr off; const struct elf_backend_data *bed = get_elf_backend_data (abfd); if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0 && bfd_get_format (abfd) != bfd_core) { Elf_Internal_Shdr **hdrpp; unsigned int i; /* Start after the ELF header. */ off = i_ehdrp->e_ehsize; /* We are not creating an executable, which means that we are not creating a program header, and that the actual order of the sections in the file is unimportant. */ for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++) { Elf_Internal_Shdr *hdr; hdr = *hdrpp; if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA) && hdr->bfd_section == NULL) || i == tdata->symtab_section || i == tdata->symtab_shndx_section || i == tdata->strtab_section) { hdr->sh_offset = -1; } else off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE); if (i == SHN_LORESERVE - 1) { i += SHN_HIRESERVE + 1 - SHN_LORESERVE; hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE; } } } else { unsigned int i; Elf_Internal_Shdr **hdrpp; /* Assign file positions for the loaded sections based on the assignment of sections to segments. */ if (! assign_file_positions_for_segments (abfd, link_info)) return FALSE; /* Assign file positions for the other sections. */ off = elf_tdata (abfd)->next_file_pos; for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++) { Elf_Internal_Shdr *hdr; hdr = *hdrpp; if (hdr->bfd_section != NULL && hdr->bfd_section->filepos != 0) hdr->sh_offset = hdr->bfd_section->filepos; else if ((hdr->sh_flags & SHF_ALLOC) != 0) { ((*_bfd_error_handler) (_("%B: warning: allocated section `%s' not in segment"), abfd, (hdr->bfd_section == NULL ? "*unknown*" : hdr->bfd_section->name))); if ((abfd->flags & D_PAGED) != 0) off += vma_page_aligned_bias (hdr->sh_addr, off, bed->maxpagesize); else off += vma_page_aligned_bias (hdr->sh_addr, off, hdr->sh_addralign); off = _bfd_elf_assign_file_position_for_section (hdr, off, FALSE); } else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA) && hdr->bfd_section == NULL) || hdr == i_shdrpp[tdata->symtab_section] || hdr == i_shdrpp[tdata->symtab_shndx_section] || hdr == i_shdrpp[tdata->strtab_section]) hdr->sh_offset = -1; else off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE); if (i == SHN_LORESERVE - 1) { i += SHN_HIRESERVE + 1 - SHN_LORESERVE; hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE; } } } /* Place the section headers. */ off = align_file_position (off, 1 << bed->s->log_file_align); i_ehdrp->e_shoff = off; off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize; elf_tdata (abfd)->next_file_pos = off; return TRUE; } static bfd_boolean prep_headers (bfd *abfd) { Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */ Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */ Elf_Internal_Shdr **i_shdrp; /* Section header table, internal form */ struct elf_strtab_hash *shstrtab; const struct elf_backend_data *bed = get_elf_backend_data (abfd); i_ehdrp = elf_elfheader (abfd); i_shdrp = elf_elfsections (abfd); shstrtab = _bfd_elf_strtab_init (); if (shstrtab == NULL) return FALSE; elf_shstrtab (abfd) = shstrtab; i_ehdrp->e_ident[EI_MAG0] = ELFMAG0; i_ehdrp->e_ident[EI_MAG1] = ELFMAG1; i_ehdrp->e_ident[EI_MAG2] = ELFMAG2; i_ehdrp->e_ident[EI_MAG3] = ELFMAG3; i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass; i_ehdrp->e_ident[EI_DATA] = bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB; i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current; if ((abfd->flags & DYNAMIC) != 0) i_ehdrp->e_type = ET_DYN; else if ((abfd->flags & EXEC_P) != 0) i_ehdrp->e_type = ET_EXEC; else if (bfd_get_format (abfd) == bfd_core) i_ehdrp->e_type = ET_CORE; else i_ehdrp->e_type = ET_REL; switch (bfd_get_arch (abfd)) { case bfd_arch_unknown: i_ehdrp->e_machine = EM_NONE; break; /* There used to be a long list of cases here, each one setting e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE in the corresponding bfd definition. To avoid duplication, the switch was removed. Machines that need special handling can generally do it in elf_backend_final_write_processing(), unless they need the information earlier than the final write. Such need can generally be supplied by replacing the tests for e_machine with the conditions used to determine it. */ default: i_ehdrp->e_machine = bed->elf_machine_code; } i_ehdrp->e_version = bed->s->ev_current; i_ehdrp->e_ehsize = bed->s->sizeof_ehdr; /* No program header, for now. */ i_ehdrp->e_phoff = 0; i_ehdrp->e_phentsize = 0; i_ehdrp->e_phnum = 0; /* Each bfd section is section header entry. */ i_ehdrp->e_entry = bfd_get_start_address (abfd); i_ehdrp->e_shentsize = bed->s->sizeof_shdr; /* If we're building an executable, we'll need a program header table. */ if (abfd->flags & EXEC_P) /* It all happens later. */ ; else { i_ehdrp->e_phentsize = 0; i_phdrp = 0; i_ehdrp->e_phoff = 0; } elf_tdata (abfd)->symtab_hdr.sh_name = (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE); elf_tdata (abfd)->strtab_hdr.sh_name = (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE); elf_tdata (abfd)->shstrtab_hdr.sh_name = (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE); if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1) return FALSE; return TRUE; } /* Assign file positions for all the reloc sections which are not part of the loadable file image. */ void _bfd_elf_assign_file_positions_for_relocs (bfd *abfd) { file_ptr off; unsigned int i, num_sec; Elf_Internal_Shdr **shdrpp; off = elf_tdata (abfd)->next_file_pos; num_sec = elf_numsections (abfd); for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++) { Elf_Internal_Shdr *shdrp; shdrp = *shdrpp; if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA) && shdrp->sh_offset == -1) off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE); } elf_tdata (abfd)->next_file_pos = off; } bfd_boolean _bfd_elf_write_object_contents (bfd *abfd) { const struct elf_backend_data *bed = get_elf_backend_data (abfd); Elf_Internal_Ehdr *i_ehdrp; Elf_Internal_Shdr **i_shdrp; bfd_boolean failed; unsigned int count, num_sec; if (! abfd->output_has_begun && ! _bfd_elf_compute_section_file_positions (abfd, NULL)) return FALSE; i_shdrp = elf_elfsections (abfd); i_ehdrp = elf_elfheader (abfd); failed = FALSE; bfd_map_over_sections (abfd, bed->s->write_relocs, &failed); if (failed) return FALSE; _bfd_elf_assign_file_positions_for_relocs (abfd); /* After writing the headers, we need to write the sections too... */ num_sec = elf_numsections (abfd); for (count = 1; count < num_sec; count++) { if (bed->elf_backend_section_processing) (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]); if (i_shdrp[count]->contents) { bfd_size_type amt = i_shdrp[count]->sh_size; if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt) return FALSE; } if (count == SHN_LORESERVE - 1) count += SHN_HIRESERVE + 1 - SHN_LORESERVE; } /* Write out the section header names. */ if (elf_shstrtab (abfd) != NULL && (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0 || ! _bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd)))) return FALSE; if (bed->elf_backend_final_write_processing) (*bed->elf_backend_final_write_processing) (abfd, elf_tdata (abfd)->linker); return bed->s->write_shdrs_and_ehdr (abfd); } bfd_boolean _bfd_elf_write_corefile_contents (bfd *abfd) { /* Hopefully this can be done just like an object file. */ return _bfd_elf_write_object_contents (abfd); } /* Given a section, search the header to find them. */ int _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect) { const struct elf_backend_data *bed; int index; if (elf_section_data (asect) != NULL && elf_section_data (asect)->this_idx != 0) return elf_section_data (asect)->this_idx; if (bfd_is_abs_section (asect)) index = SHN_ABS; else if (bfd_is_com_section (asect)) index = SHN_COMMON; else if (bfd_is_und_section (asect)) index = SHN_UNDEF; else index = -1; bed = get_elf_backend_data (abfd); if (bed->elf_backend_section_from_bfd_section) { int retval = index; if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval)) return retval; } if (index == -1) bfd_set_error (bfd_error_nonrepresentable_section); return index; } /* Given a BFD symbol, return the index in the ELF symbol table, or -1 on error. */ int _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr) { asymbol *asym_ptr = *asym_ptr_ptr; int idx; flagword flags = asym_ptr->flags; /* When gas creates relocations against local labels, it creates its own symbol for the section, but does put the symbol into the symbol chain, so udata is 0. When the linker is generating relocatable output, this section symbol may be for one of the input sections rather than the output section. */ if (asym_ptr->udata.i == 0 && (flags & BSF_SECTION_SYM) && asym_ptr->section) { int indx; if (asym_ptr->section->output_section != NULL) indx = asym_ptr->section->output_section->index; else indx = asym_ptr->section->index; if (indx < elf_num_section_syms (abfd) && elf_section_syms (abfd)[indx] != NULL) asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i; } idx = asym_ptr->udata.i; if (idx == 0) { /* This case can occur when using --strip-symbol on a symbol which is used in a relocation entry. */ (*_bfd_error_handler) (_("%B: symbol `%s' required but not present"), abfd, bfd_asymbol_name (asym_ptr)); bfd_set_error (bfd_error_no_symbols); return -1; } #if DEBUG & 4 { fprintf (stderr, "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n", (long) asym_ptr, asym_ptr->name, idx, flags, elf_symbol_flags (flags)); fflush (stderr); } #endif return idx; } /* Copy private BFD data. This copies any program header information. */ static bfd_boolean copy_private_bfd_data (bfd *ibfd, bfd *obfd) { Elf_Internal_Ehdr *iehdr; struct elf_segment_map *map; struct elf_segment_map *map_first; struct elf_segment_map **pointer_to_map; Elf_Internal_Phdr *segment; asection *section; unsigned int i; unsigned int num_segments; bfd_boolean phdr_included = FALSE; bfd_vma maxpagesize; struct elf_segment_map *phdr_adjust_seg = NULL; unsigned int phdr_adjust_num = 0; const struct elf_backend_data *bed; if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour || bfd_get_flavour (obfd) != bfd_target_elf_flavour) return TRUE; if (elf_tdata (ibfd)->phdr == NULL) return TRUE; bed = get_elf_backend_data (ibfd); iehdr = elf_elfheader (ibfd); map_first = NULL; pointer_to_map = &map_first; num_segments = elf_elfheader (ibfd)->e_phnum; maxpagesize = get_elf_backend_data (obfd)->maxpagesize; /* Returns the end address of the segment + 1. */ #define SEGMENT_END(segment, start) \ (start + (segment->p_memsz > segment->p_filesz \ ? segment->p_memsz : segment->p_filesz)) #define SECTION_SIZE(section, segment) \ (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \ != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \ ? section->size : 0) /* Returns TRUE if the given section is contained within the given segment. VMA addresses are compared. */ #define IS_CONTAINED_BY_VMA(section, segment) \ (section->vma >= segment->p_vaddr \ && (section->vma + SECTION_SIZE (section, segment) \ <= (SEGMENT_END (segment, segment->p_vaddr)))) /* Returns TRUE if the given section is contained within the given segment. LMA addresses are compared. */ #define IS_CONTAINED_BY_LMA(section, segment, base) \ (section->lma >= base \ && (section->lma + SECTION_SIZE (section, segment) \ <= SEGMENT_END (segment, base))) /* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */ #define IS_COREFILE_NOTE(p, s) \ (p->p_type == PT_NOTE \ && bfd_get_format (ibfd) == bfd_core \ && s->vma == 0 && s->lma == 0 \ && (bfd_vma) s->filepos >= p->p_offset \ && ((bfd_vma) s->filepos + s->size \ <= p->p_offset + p->p_filesz)) /* The complicated case when p_vaddr is 0 is to handle the Solaris linker, which generates a PT_INTERP section with p_vaddr and p_memsz set to 0. */ #define IS_SOLARIS_PT_INTERP(p, s) \ (p->p_vaddr == 0 \ && p->p_paddr == 0 \ && p->p_memsz == 0 \ && p->p_filesz > 0 \ && (s->flags & SEC_HAS_CONTENTS) != 0 \ && s->size > 0 \ && (bfd_vma) s->filepos >= p->p_offset \ && ((bfd_vma) s->filepos + s->size \ <= p->p_offset + p->p_filesz)) /* Decide if the given section should be included in the given segment. A section will be included if: 1. It is within the address space of the segment -- we use the LMA if that is set for the segment and the VMA otherwise, 2. It is an allocated segment, 3. There is an output section associated with it, 4. The section has not already been allocated to a previous segment. 5. PT_GNU_STACK segments do not include any sections. 6. PT_TLS segment includes only SHF_TLS sections. 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments. 8. PT_DYNAMIC should not contain empty sections at the beginning (with the possible exception of .dynamic). */ #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \ ((((segment->p_paddr \ ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \ : IS_CONTAINED_BY_VMA (section, segment)) \ && (section->flags & SEC_ALLOC) != 0) \ || IS_COREFILE_NOTE (segment, section)) \ && section->output_section != NULL \ && segment->p_type != PT_GNU_STACK \ && (segment->p_type != PT_TLS \ || (section->flags & SEC_THREAD_LOCAL)) \ && (segment->p_type == PT_LOAD \ || segment->p_type == PT_TLS \ || (section->flags & SEC_THREAD_LOCAL) == 0) \ && (segment->p_type != PT_DYNAMIC \ || SECTION_SIZE (section, segment) > 0 \ || (segment->p_paddr \ ? segment->p_paddr != section->lma \ : segment->p_vaddr != section->vma) \ || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \ == 0)) \ && ! section->segment_mark) /* Returns TRUE iff seg1 starts after the end of seg2. */ #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \ (seg1->field >= SEGMENT_END (seg2, seg2->field)) /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both their VMA address ranges and their LMA address ranges overlap. It is possible to have overlapping VMA ranges without overlapping LMA ranges. RedBoot images for example can have both .data and .bss mapped to the same VMA range, but with the .data section mapped to a different LMA. */ #define SEGMENT_OVERLAPS(seg1, seg2) \ ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \ || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \ && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \ || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr))) /* Initialise the segment mark field. */ for (section = ibfd->sections; section != NULL; section = section->next) section->segment_mark = FALSE; /* Scan through the segments specified in the program header of the input BFD. For this first scan we look for overlaps in the loadable segments. These can be created by weird parameters to objcopy. Also, fix some solaris weirdness. */ for (i = 0, segment = elf_tdata (ibfd)->phdr; i < num_segments; i++, segment++) { unsigned int j; Elf_Internal_Phdr *segment2; if (segment->p_type == PT_INTERP) for (section = ibfd->sections; section; section = section->next) if (IS_SOLARIS_PT_INTERP (segment, section)) { /* Mininal change so that the normal section to segment assignment code will work. */ segment->p_vaddr = section->vma; break; } if (segment->p_type != PT_LOAD) continue; /* Determine if this segment overlaps any previous segments. */ for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2 ++) { bfd_signed_vma extra_length; if (segment2->p_type != PT_LOAD || ! SEGMENT_OVERLAPS (segment, segment2)) continue; /* Merge the two segments together. */ if (segment2->p_vaddr < segment->p_vaddr) { /* Extend SEGMENT2 to include SEGMENT and then delete SEGMENT. */ extra_length = SEGMENT_END (segment, segment->p_vaddr) - SEGMENT_END (segment2, segment2->p_vaddr); if (extra_length > 0) { segment2->p_memsz += extra_length; segment2->p_filesz += extra_length; } segment->p_type = PT_NULL; /* Since we have deleted P we must restart the outer loop. */ i = 0; segment = elf_tdata (ibfd)->phdr; break; } else { /* Extend SEGMENT to include SEGMENT2 and then delete SEGMENT2. */ extra_length = SEGMENT_END (segment2, segment2->p_vaddr) - SEGMENT_END (segment, segment->p_vaddr); if (extra_length > 0) { segment->p_memsz += extra_length; segment->p_filesz += extra_length; } segment2->p_type = PT_NULL; } } } /* The second scan attempts to assign sections to segments. */ for (i = 0, segment = elf_tdata (ibfd)->phdr; i < num_segments; i ++, segment ++) { unsigned int section_count; asection ** sections; asection * output_section; unsigned int isec; bfd_vma matching_lma; bfd_vma suggested_lma; unsigned int j; bfd_size_type amt; if (segment->p_type == PT_NULL) continue; /* Compute how many sections might be placed into this segment. */ for (section = ibfd->sections, section_count = 0; section != NULL; section = section->next) if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed)) ++section_count; /* Allocate a segment map big enough to contain all of the sections we have selected. */ amt = sizeof (struct elf_segment_map); amt += ((bfd_size_type) section_count - 1) * sizeof (asection *); map = bfd_alloc (obfd, amt); if (map == NULL) return FALSE; /* Initialise the fields of the segment map. Default to using the physical address of the segment in the input BFD. */ map->next = NULL; map->p_type = segment->p_type; map->p_flags = segment->p_flags; map->p_flags_valid = 1; map->p_paddr = segment->p_paddr; map->p_paddr_valid = 1; /* Determine if this segment contains the ELF file header and if it contains the program headers themselves. */ map->includes_filehdr = (segment->p_offset == 0 && segment->p_filesz >= iehdr->e_ehsize); map->includes_phdrs = 0; if (! phdr_included || segment->p_type != PT_LOAD) { map->includes_phdrs = (segment->p_offset <= (bfd_vma) iehdr->e_phoff && (segment->p_offset + segment->p_filesz >= ((bfd_vma) iehdr->e_phoff + iehdr->e_phnum * iehdr->e_phentsize))); if (segment->p_type == PT_LOAD && map->includes_phdrs) phdr_included = TRUE; } if (section_count == 0) { /* Special segments, such as the PT_PHDR segment, may contain no sections, but ordinary, loadable segments should contain something. They are allowed by the ELF spec however, so only a warning is produced. */ if (segment->p_type == PT_LOAD) (*_bfd_error_handler) (_("%B: warning: Empty loadable segment detected, is this intentional ?\n"), ibfd); map->count = 0; *pointer_to_map = map; pointer_to_map = &map->next; continue; } /* Now scan the sections in the input BFD again and attempt to add their corresponding output sections to the segment map. The problem here is how to handle an output section which has been moved (ie had its LMA changed). There are four possibilities: 1. None of the sections have been moved. In this case we can continue to use the segment LMA from the input BFD. 2. All of the sections have been moved by the same amount. In this case we can change the segment's LMA to match the LMA of the first section. 3. Some of the sections have been moved, others have not. In this case those sections which have not been moved can be placed in the current segment which will have to have its size, and possibly its LMA changed, and a new segment or segments will have to be created to contain the other sections. 4. The sections have been moved, but not by the same amount. In this case we can change the segment's LMA to match the LMA of the first section and we will have to create a new segment or segments to contain the other sections. In order to save time, we allocate an array to hold the section pointers that we are interested in. As these sections get assigned to a segment, they are removed from this array. */ /* Gcc 2.96 miscompiles this code on mips. Don't do casting here to work around this long long bug. */ sections = bfd_malloc2 (section_count, sizeof (asection *)); if (sections == NULL) return FALSE; /* Step One: Scan for segment vs section LMA conflicts. Also add the sections to the section array allocated above. Also add the sections to the current segment. In the common case, where the sections have not been moved, this means that we have completely filled the segment, and there is nothing more to do. */ isec = 0; matching_lma = 0; suggested_lma = 0; for (j = 0, section = ibfd->sections; section != NULL; section = section->next) { if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed)) { output_section = section->output_section; sections[j ++] = section; /* The Solaris native linker always sets p_paddr to 0. We try to catch that case here, and set it to the correct value. Note - some backends require that p_paddr be left as zero. */ if (segment->p_paddr == 0 && segment->p_vaddr != 0 && (! bed->want_p_paddr_set_to_zero) && isec == 0 && output_section->lma != 0 && (output_section->vma == (segment->p_vaddr + (map->includes_filehdr ? iehdr->e_ehsize : 0) + (map->includes_phdrs ? (iehdr->e_phnum * iehdr->e_phentsize) : 0)))) map->p_paddr = segment->p_vaddr; /* Match up the physical address of the segment with the LMA address of the output section. */ if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr) || IS_COREFILE_NOTE (segment, section) || (bed->want_p_paddr_set_to_zero && IS_CONTAINED_BY_VMA (output_section, segment)) ) { if (matching_lma == 0) matching_lma = output_section->lma; /* We assume that if the section fits within the segment then it does not overlap any other section within that segment. */ map->sections[isec ++] = output_section; } else if (suggested_lma == 0) suggested_lma = output_section->lma; } } BFD_ASSERT (j == section_count); /* Step Two: Adjust the physical address of the current segment, if necessary. */ if (isec == section_count) { /* All of the sections fitted within the segment as currently specified. This is the default case. Add the segment to the list of built segments and carry on to process the next program header in the input BFD. */ map->count = section_count; *pointer_to_map = map; pointer_to_map = &map->next; free (sections); continue; } else { if (matching_lma != 0) { /* At least one section fits inside the current segment. Keep it, but modify its physical address to match the LMA of the first section that fitted. */ map->p_paddr = matching_lma; } else { /* None of the sections fitted inside the current segment. Change the current segment's physical address to match the LMA of the first section. */ map->p_paddr = suggested_lma; } /* Offset the segment physical address from the lma to allow for space taken up by elf headers. */ if (map->includes_filehdr) map->p_paddr -= iehdr->e_ehsize; if (map->includes_phdrs) { map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize; /* iehdr->e_phnum is just an estimate of the number of program headers that we will need. Make a note here of the number we used and the segment we chose to hold these headers, so that we can adjust the offset when we know the correct value. */ phdr_adjust_num = iehdr->e_phnum; phdr_adjust_seg = map; } } /* Step Three: Loop over the sections again, this time assigning those that fit to the current segment and removing them from the sections array; but making sure not to leave large gaps. Once all possible sections have been assigned to the current segment it is added to the list of built segments and if sections still remain to be assigned, a new segment is constructed before repeating the loop. */ isec = 0; do { map->count = 0; suggested_lma = 0; /* Fill the current segment with sections that fit. */ for (j = 0; j < section_count; j++) { section = sections[j]; if (section == NULL) continue; output_section = section->output_section; BFD_ASSERT (output_section != NULL); if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr) || IS_COREFILE_NOTE (segment, section)) { if (map->count == 0) { /* If the first section in a segment does not start at the beginning of the segment, then something is wrong. */ if (output_section->lma != (map->p_paddr + (map->includes_filehdr ? iehdr->e_ehsize : 0) + (map->includes_phdrs ? iehdr->e_phnum * iehdr->e_phentsize : 0))) abort (); } else { asection * prev_sec; prev_sec = map->sections[map->count - 1]; /* If the gap between the end of the previous section and the start of this section is more than maxpagesize then we need to start a new segment. */ if ((BFD_ALIGN (prev_sec->lma + prev_sec->size, maxpagesize) < BFD_ALIGN (output_section->lma, maxpagesize)) || ((prev_sec->lma + prev_sec->size) > output_section->lma)) { if (suggested_lma == 0) suggested_lma = output_section->lma; continue; } } map->sections[map->count++] = output_section; ++isec; sections[j] = NULL; section->segment_mark = TRUE; } else if (suggested_lma == 0) suggested_lma = output_section->lma; } BFD_ASSERT (map->count > 0); /* Add the current segment to the list of built segments. */ *pointer_to_map = map; pointer_to_map = &map->next; if (isec < section_count) { /* We still have not allocated all of the sections to segments. Create a new segment here, initialise it and carry on looping. */ amt = sizeof (struct elf_segment_map); amt += ((bfd_size_type) section_count - 1) * sizeof (asection *); map = bfd_alloc (obfd, amt); if (map == NULL) { free (sections); return FALSE; } /* Initialise the fields of the segment map. Set the physical physical address to the LMA of the first section that has not yet been assigned. */ map->next = NULL; map->p_type = segment->p_type; map->p_flags = segment->p_flags; map->p_flags_valid = 1; map->p_paddr = suggested_lma; map->p_paddr_valid = 1; map->includes_filehdr = 0; map->includes_phdrs = 0; } } while (isec < section_count); free (sections); } /* The Solaris linker creates program headers in which all the p_paddr fields are zero. When we try to objcopy or strip such a file, we get confused. Check for this case, and if we find it reset the p_paddr_valid fields. */ for (map = map_first; map != NULL; map = map->next) if (map->p_paddr != 0) break; if (map == NULL) for (map = map_first; map != NULL; map = map->next) map->p_paddr_valid = 0; elf_tdata (obfd)->segment_map = map_first; /* If we had to estimate the number of program headers that were going to be needed, then check our estimate now and adjust the offset if necessary. */ if (phdr_adjust_seg != NULL) { unsigned int count; for (count = 0, map = map_first; map != NULL; map = map->next) count++; if (count > phdr_adjust_num) phdr_adjust_seg->p_paddr -= (count - phdr_adjust_num) * iehdr->e_phentsize; } #undef SEGMENT_END #undef SECTION_SIZE #undef IS_CONTAINED_BY_VMA #undef IS_CONTAINED_BY_LMA #undef IS_COREFILE_NOTE #undef IS_SOLARIS_PT_INTERP #undef INCLUDE_SECTION_IN_SEGMENT #undef SEGMENT_AFTER_SEGMENT #undef SEGMENT_OVERLAPS return TRUE; } /* Copy private section information. This copies over the entsize field, and sometimes the info field. */ bfd_boolean _bfd_elf_copy_private_section_data (bfd *ibfd, asection *isec, bfd *obfd, asection *osec) { Elf_Internal_Shdr *ihdr, *ohdr; if (ibfd->xvec->flavour != bfd_target_elf_flavour || obfd->xvec->flavour != bfd_target_elf_flavour) return TRUE; ihdr = &elf_section_data (isec)->this_hdr; ohdr = &elf_section_data (osec)->this_hdr; ohdr->sh_entsize = ihdr->sh_entsize; if (ihdr->sh_type == SHT_SYMTAB || ihdr->sh_type == SHT_DYNSYM || ihdr->sh_type == SHT_GNU_verneed || ihdr->sh_type == SHT_GNU_verdef) ohdr->sh_info = ihdr->sh_info; /* Set things up for objcopy. The output SHT_GROUP section will have its elf_next_in_group pointing back to the input group members. Ignore linker created group section. See elfNN_ia64_object_p in elfxx-ia64.c. */ if (elf_sec_group (isec) == NULL || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0) { elf_next_in_group (osec) = elf_next_in_group (isec); elf_group_name (osec) = elf_group_name (isec); } osec->use_rela_p = isec->use_rela_p; return TRUE; } /* Copy private header information. */ bfd_boolean _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd) { if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour || bfd_get_flavour (obfd) != bfd_target_elf_flavour) return TRUE; /* Copy over private BFD data if it has not already been copied. This must be done here, rather than in the copy_private_bfd_data entry point, because the latter is called after the section contents have been set, which means that the program headers have already been worked out. */ if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL) { if (! copy_private_bfd_data (ibfd, obfd)) return FALSE; } return TRUE; } /* Copy private symbol information. If this symbol is in a section which we did not map into a BFD section, try to map the section index correctly. We use special macro definitions for the mapped section indices; these definitions are interpreted by the swap_out_syms function. */ #define MAP_ONESYMTAB (SHN_HIOS + 1) #define MAP_DYNSYMTAB (SHN_HIOS + 2) #define MAP_STRTAB (SHN_HIOS + 3) #define MAP_SHSTRTAB (SHN_HIOS + 4) #define MAP_SYM_SHNDX (SHN_HIOS + 5) bfd_boolean _bfd_elf_copy_private_symbol_data (bfd *ibfd, asymbol *isymarg, bfd *obfd, asymbol *osymarg) { elf_symbol_type *isym, *osym; if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour || bfd_get_flavour (obfd) != bfd_target_elf_flavour) return TRUE; isym = elf_symbol_from (ibfd, isymarg); osym = elf_symbol_from (obfd, osymarg); if (isym != NULL && osym != NULL && bfd_is_abs_section (isym->symbol.section)) { unsigned int shndx; shndx = isym->internal_elf_sym.st_shndx; if (shndx == elf_onesymtab (ibfd)) shndx = MAP_ONESYMTAB; else if (shndx == elf_dynsymtab (ibfd)) shndx = MAP_DYNSYMTAB; else if (shndx == elf_tdata (ibfd)->strtab_section) shndx = MAP_STRTAB; else if (shndx == elf_tdata (ibfd)->shstrtab_section) shndx = MAP_SHSTRTAB; else if (shndx == elf_tdata (ibfd)->symtab_shndx_section) shndx = MAP_SYM_SHNDX; osym->internal_elf_sym.st_shndx = shndx; } return TRUE; } /* Swap out the symbols. */ static bfd_boolean swap_out_syms (bfd *abfd, struct bfd_strtab_hash **sttp, int relocatable_p) { const struct elf_backend_data *bed; int symcount; asymbol **syms; struct bfd_strtab_hash *stt; Elf_Internal_Shdr *symtab_hdr; Elf_Internal_Shdr *symtab_shndx_hdr; Elf_Internal_Shdr *symstrtab_hdr; bfd_byte *outbound_syms; bfd_byte *outbound_shndx; int idx; bfd_size_type amt; bfd_boolean name_local_sections; if (!elf_map_symbols (abfd)) return FALSE; /* Dump out the symtabs. */ stt = _bfd_elf_stringtab_init (); if (stt == NULL) return FALSE; bed = get_elf_backend_data (abfd); symcount = bfd_get_symcount (abfd); symtab_hdr = &elf_tdata (abfd)->symtab_hdr; symtab_hdr->sh_type = SHT_SYMTAB; symtab_hdr->sh_entsize = bed->s->sizeof_sym; symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1); symtab_hdr->sh_info = elf_num_locals (abfd) + 1; symtab_hdr->sh_addralign = 1 << bed->s->log_file_align; symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr; symstrtab_hdr->sh_type = SHT_STRTAB; outbound_syms = bfd_alloc2 (abfd, 1 + symcount, bed->s->sizeof_sym); if (outbound_syms == NULL) { _bfd_stringtab_free (stt); return FALSE; } symtab_hdr->contents = outbound_syms; outbound_shndx = NULL; symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr; if (symtab_shndx_hdr->sh_name != 0) { amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx); outbound_shndx = bfd_zalloc2 (abfd, 1 + symcount, sizeof (Elf_External_Sym_Shndx)); if (outbound_shndx == NULL) { _bfd_stringtab_free (stt); return FALSE; } symtab_shndx_hdr->contents = outbound_shndx; symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX; symtab_shndx_hdr->sh_size = amt; symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx); symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx); } /* Now generate the data (for "contents"). */ { /* Fill in zeroth symbol and swap it out. */ Elf_Internal_Sym sym; sym.st_name = 0; sym.st_value = 0; sym.st_size = 0; sym.st_info = 0; sym.st_other = 0; sym.st_shndx = SHN_UNDEF; bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx); outbound_syms += bed->s->sizeof_sym; if (outbound_shndx != NULL) outbound_shndx += sizeof (Elf_External_Sym_Shndx); } name_local_sections = (bed->elf_backend_name_local_section_symbols && bed->elf_backend_name_local_section_symbols (abfd)); syms = bfd_get_outsymbols (abfd); for (idx = 0; idx < symcount; idx++) { Elf_Internal_Sym sym; bfd_vma value = syms[idx]->value; elf_symbol_type *type_ptr; flagword flags = syms[idx]->flags; int type; if (!name_local_sections && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM) { /* Local section symbols have no name. */ sym.st_name = 0; } else { sym.st_name = (unsigned long) _bfd_stringtab_add (stt, syms[idx]->name, TRUE, FALSE); if (sym.st_name == (unsigned long) -1) { _bfd_stringtab_free (stt); return FALSE; } } type_ptr = elf_symbol_from (abfd, syms[idx]); if ((flags & BSF_SECTION_SYM) == 0 && bfd_is_com_section (syms[idx]->section)) { /* ELF common symbols put the alignment into the `value' field, and the size into the `size' field. This is backwards from how BFD handles it, so reverse it here. */ sym.st_size = value; if (type_ptr == NULL || type_ptr->internal_elf_sym.st_value == 0) sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value)); else sym.st_value = type_ptr->internal_elf_sym.st_value; sym.st_shndx = _bfd_elf_section_from_bfd_section (abfd, syms[idx]->section); } else { asection *sec = syms[idx]->section; int shndx; if (sec->output_section) { value += sec->output_offset; sec = sec->output_section; } /* Don't add in the section vma for relocatable output. */ if (! relocatable_p) value += sec->vma; sym.st_value = value; sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0; if (bfd_is_abs_section (sec) && type_ptr != NULL && type_ptr->internal_elf_sym.st_shndx != 0) { /* This symbol is in a real ELF section which we did not create as a BFD section. Undo the mapping done by copy_private_symbol_data. */ shndx = type_ptr->internal_elf_sym.st_shndx; switch (shndx) { case MAP_ONESYMTAB: shndx = elf_onesymtab (abfd); break; case MAP_DYNSYMTAB: shndx = elf_dynsymtab (abfd); break; case MAP_STRTAB: shndx = elf_tdata (abfd)->strtab_section; break; case MAP_SHSTRTAB: shndx = elf_tdata (abfd)->shstrtab_section; break; case MAP_SYM_SHNDX: shndx = elf_tdata (abfd)->symtab_shndx_section; break; default: break; } } else { shndx = _bfd_elf_section_from_bfd_section (abfd, sec); if (shndx == -1) { asection *sec2; /* Writing this would be a hell of a lot easier if we had some decent documentation on bfd, and knew what to expect of the library, and what to demand of applications. For example, it appears that `objcopy' might not set the section of a symbol to be a section that is actually in the output file. */ sec2 = bfd_get_section_by_name (abfd, sec->name); if (sec2 == NULL) { _bfd_error_handler (_("\ Unable to find equivalent output section for symbol '%s' from section '%s'"), syms[idx]->name ? syms[idx]->name : "", sec->name); bfd_set_error (bfd_error_invalid_operation); _bfd_stringtab_free (stt); return FALSE; } shndx = _bfd_elf_section_from_bfd_section (abfd, sec2); BFD_ASSERT (shndx != -1); } } sym.st_shndx = shndx; } if ((flags & BSF_THREAD_LOCAL) != 0) type = STT_TLS; else if ((flags & BSF_FUNCTION) != 0) type = STT_FUNC; else if ((flags & BSF_OBJECT) != 0) type = STT_OBJECT; else type = STT_NOTYPE; if (syms[idx]->section->flags & SEC_THREAD_LOCAL) type = STT_TLS; /* Processor-specific types. */ if (type_ptr != NULL && bed->elf_backend_get_symbol_type) type = ((*bed->elf_backend_get_symbol_type) (&type_ptr->internal_elf_sym, type)); if (flags & BSF_SECTION_SYM) { if (flags & BSF_GLOBAL) sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); else sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION); } else if (bfd_is_com_section (syms[idx]->section)) sym.st_info = ELF_ST_INFO (STB_GLOBAL, type); else if (bfd_is_und_section (syms[idx]->section)) sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK) ? STB_WEAK : STB_GLOBAL), type); else if (flags & BSF_FILE) sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE); else { int bind = STB_LOCAL; if (flags & BSF_LOCAL) bind = STB_LOCAL; else if (flags & BSF_WEAK) bind = STB_WEAK; else if (flags & BSF_GLOBAL) bind = STB_GLOBAL; sym.st_info = ELF_ST_INFO (bind, type); } if (type_ptr != NULL) sym.st_other = type_ptr->internal_elf_sym.st_other; else sym.st_other = 0; bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx); outbound_syms += bed->s->sizeof_sym; if (outbound_shndx != NULL) outbound_shndx += sizeof (Elf_External_Sym_Shndx); } *sttp = stt; symstrtab_hdr->sh_size = _bfd_stringtab_size (stt); symstrtab_hdr->sh_type = SHT_STRTAB; symstrtab_hdr->sh_flags = 0; symstrtab_hdr->sh_addr = 0; symstrtab_hdr->sh_entsize = 0; symstrtab_hdr->sh_link = 0; symstrtab_hdr->sh_info = 0; symstrtab_hdr->sh_addralign = 1; return TRUE; } /* Return the number of bytes required to hold the symtab vector. Note that we base it on the count plus 1, since we will null terminate the vector allocated based on this size. However, the ELF symbol table always has a dummy entry as symbol #0, so it ends up even. */ long _bfd_elf_get_symtab_upper_bound (bfd *abfd) { long symcount; long symtab_size; Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr; symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym; symtab_size = (symcount + 1) * (sizeof (asymbol *)); if (symcount > 0) symtab_size -= sizeof (asymbol *); return symtab_size; } long _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd) { long symcount; long symtab_size; Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr; if (elf_dynsymtab (abfd) == 0) { bfd_set_error (bfd_error_invalid_operation); return -1; } symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym; symtab_size = (symcount + 1) * (sizeof (asymbol *)); if (symcount > 0) symtab_size -= sizeof (asymbol *); return symtab_size; } long _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED, sec_ptr asect) { return (asect->reloc_count + 1) * sizeof (arelent *); } /* Canonicalize the relocs. */ long _bfd_elf_canonicalize_reloc (bfd *abfd, sec_ptr section, arelent **relptr, asymbol **symbols) { arelent *tblptr; unsigned int i; const struct elf_backend_data *bed = get_elf_backend_data (abfd); if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE)) return -1; tblptr = section->relocation; for (i = 0; i < section->reloc_count; i++) *relptr++ = tblptr++; *relptr = NULL; return section->reloc_count; } long _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation) { const struct elf_backend_data *bed = get_elf_backend_data (abfd); long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE); if (symcount >= 0) bfd_get_symcount (abfd) = symcount; return symcount; } long _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd, asymbol **allocation) { const struct elf_backend_data *bed = get_elf_backend_data (abfd); long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE); if (symcount >= 0) bfd_get_dynamic_symcount (abfd) = symcount; return symcount; } /* Return the size required for the dynamic reloc entries. Any loadable section that was actually installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the dynamic symbol table, is considered to be a dynamic reloc section. */ long _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd) { long ret; asection *s; if (elf_dynsymtab (abfd) == 0) { bfd_set_error (bfd_error_invalid_operation); return -1; } ret = sizeof (arelent *); for (s = abfd->sections; s != NULL; s = s->next) if ((s->flags & SEC_LOAD) != 0 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd) && (elf_section_data (s)->this_hdr.sh_type == SHT_REL || elf_section_data (s)->this_hdr.sh_type == SHT_RELA)) ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize) * sizeof (arelent *)); return ret; } /* Canonicalize the dynamic relocation entries. Note that we return the dynamic relocations as a single block, although they are actually associated with particular sections; the interface, which was designed for SunOS style shared libraries, expects that there is only one set of dynamic relocs. Any loadable section that was actually installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the dynamic symbol table, is considered to be a dynamic reloc section. */ long _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd, arelent **storage, asymbol **syms) { bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean); asection *s; long ret; if (elf_dynsymtab (abfd) == 0) { bfd_set_error (bfd_error_invalid_operation); return -1; } slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table; ret = 0; for (s = abfd->sections; s != NULL; s = s->next) { if ((s->flags & SEC_LOAD) != 0 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd) && (elf_section_data (s)->this_hdr.sh_type == SHT_REL || elf_section_data (s)->this_hdr.sh_type == SHT_RELA)) { arelent *p; long count, i; if (! (*slurp_relocs) (abfd, s, syms, TRUE)) return -1; count = s->size / elf_section_data (s)->this_hdr.sh_entsize; p = s->relocation; for (i = 0; i < count; i++) *storage++ = p++; ret += count; } } *storage = NULL; return ret; } /* Read in the version information. */ bfd_boolean _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver) { bfd_byte *contents = NULL; unsigned int freeidx = 0; if (elf_dynverref (abfd) != 0) { Elf_Internal_Shdr *hdr; Elf_External_Verneed *everneed; Elf_Internal_Verneed *iverneed; unsigned int i; bfd_byte *contents_end; hdr = &elf_tdata (abfd)->dynverref_hdr; elf_tdata (abfd)->verref = bfd_zalloc2 (abfd, hdr->sh_info, sizeof (Elf_Internal_Verneed)); if (elf_tdata (abfd)->verref == NULL) goto error_return; elf_tdata (abfd)->cverrefs = hdr->sh_info; contents = bfd_malloc (hdr->sh_size); if (contents == NULL) { error_return_verref: elf_tdata (abfd)->verref = NULL; elf_tdata (abfd)->cverrefs = 0; goto error_return; } if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size) goto error_return_verref; if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verneed)) goto error_return_verref; BFD_ASSERT (sizeof (Elf_External_Verneed) == sizeof (Elf_External_Vernaux)); contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed); everneed = (Elf_External_Verneed *) contents; iverneed = elf_tdata (abfd)->verref; for (i = 0; i < hdr->sh_info; i++, iverneed++) { Elf_External_Vernaux *evernaux; Elf_Internal_Vernaux *ivernaux; unsigned int j; _bfd_elf_swap_verneed_in (abfd, everneed, iverneed); iverneed->vn_bfd = abfd; iverneed->vn_filename = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, iverneed->vn_file); if (iverneed->vn_filename == NULL) goto error_return_verref; if (iverneed->vn_cnt == 0) iverneed->vn_auxptr = NULL; else { iverneed->vn_auxptr = bfd_alloc2 (abfd, iverneed->vn_cnt, sizeof (Elf_Internal_Vernaux)); if (iverneed->vn_auxptr == NULL) goto error_return_verref; } if (iverneed->vn_aux > (size_t) (contents_end - (bfd_byte *) everneed)) goto error_return_verref; evernaux = ((Elf_External_Vernaux *) ((bfd_byte *) everneed + iverneed->vn_aux)); ivernaux = iverneed->vn_auxptr; for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++) { _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux); ivernaux->vna_nodename = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, ivernaux->vna_name); if (ivernaux->vna_nodename == NULL) goto error_return_verref; if (j + 1 < iverneed->vn_cnt) ivernaux->vna_nextptr = ivernaux + 1; else ivernaux->vna_nextptr = NULL; if (ivernaux->vna_next > (size_t) (contents_end - (bfd_byte *) evernaux)) goto error_return_verref; evernaux = ((Elf_External_Vernaux *) ((bfd_byte *) evernaux + ivernaux->vna_next)); if (ivernaux->vna_other > freeidx) freeidx = ivernaux->vna_other; } if (i + 1 < hdr->sh_info) iverneed->vn_nextref = iverneed + 1; else iverneed->vn_nextref = NULL; if (iverneed->vn_next > (size_t) (contents_end - (bfd_byte *) everneed)) goto error_return_verref; everneed = ((Elf_External_Verneed *) ((bfd_byte *) everneed + iverneed->vn_next)); } free (contents); contents = NULL; } if (elf_dynverdef (abfd) != 0) { Elf_Internal_Shdr *hdr; Elf_External_Verdef *everdef; Elf_Internal_Verdef *iverdef; Elf_Internal_Verdef *iverdefarr; Elf_Internal_Verdef iverdefmem; unsigned int i; unsigned int maxidx; bfd_byte *contents_end_def, *contents_end_aux; hdr = &elf_tdata (abfd)->dynverdef_hdr; contents = bfd_malloc (hdr->sh_size); if (contents == NULL) goto error_return; if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size) goto error_return; if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verdef)) goto error_return; BFD_ASSERT (sizeof (Elf_External_Verdef) >= sizeof (Elf_External_Verdaux)); contents_end_def = contents + hdr->sh_size - sizeof (Elf_External_Verdef); contents_end_aux = contents + hdr->sh_size - sizeof (Elf_External_Verdaux); /* We know the number of entries in the section but not the maximum index. Therefore we have to run through all entries and find the maximum. */ everdef = (Elf_External_Verdef *) contents; maxidx = 0; for (i = 0; i < hdr->sh_info; ++i) { _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem); if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx) maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION); if (iverdefmem.vd_next > (size_t) (contents_end_def - (bfd_byte *) everdef)) goto error_return; everdef = ((Elf_External_Verdef *) ((bfd_byte *) everdef + iverdefmem.vd_next)); } if (default_imported_symver) { if (freeidx > maxidx) maxidx = ++freeidx; else freeidx = ++maxidx; } elf_tdata (abfd)->verdef = bfd_zalloc2 (abfd, maxidx, sizeof (Elf_Internal_Verdef)); if (elf_tdata (abfd)->verdef == NULL) goto error_return; elf_tdata (abfd)->cverdefs = maxidx; everdef = (Elf_External_Verdef *) contents; iverdefarr = elf_tdata (abfd)->verdef; for (i = 0; i < hdr->sh_info; i++) { Elf_External_Verdaux *everdaux; Elf_Internal_Verdaux *iverdaux; unsigned int j; _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem); if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0) { error_return_verdef: elf_tdata (abfd)->verdef = NULL; elf_tdata (abfd)->cverdefs = 0; goto error_return; } iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1]; memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef)); iverdef->vd_bfd = abfd; if (iverdef->vd_cnt == 0) iverdef->vd_auxptr = NULL; else { iverdef->vd_auxptr = bfd_alloc2 (abfd, iverdef->vd_cnt, sizeof (Elf_Internal_Verdaux)); if (iverdef->vd_auxptr == NULL) goto error_return_verdef; } if (iverdef->vd_aux > (size_t) (contents_end_aux - (bfd_byte *) everdef)) goto error_return_verdef; everdaux = ((Elf_External_Verdaux *) ((bfd_byte *) everdef + iverdef->vd_aux)); iverdaux = iverdef->vd_auxptr; for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++) { _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux); iverdaux->vda_nodename = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, iverdaux->vda_name); if (iverdaux->vda_nodename == NULL) goto error_return_verdef; if (j + 1 < iverdef->vd_cnt) iverdaux->vda_nextptr = iverdaux + 1; else iverdaux->vda_nextptr = NULL; if (iverdaux->vda_next > (size_t) (contents_end_aux - (bfd_byte *) everdaux)) goto error_return_verdef; everdaux = ((Elf_External_Verdaux *) ((bfd_byte *) everdaux + iverdaux->vda_next)); } if (iverdef->vd_cnt) iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename; if ((size_t) (iverdef - iverdefarr) + 1 < maxidx) iverdef->vd_nextdef = iverdef + 1; else iverdef->vd_nextdef = NULL; everdef = ((Elf_External_Verdef *) ((bfd_byte *) everdef + iverdef->vd_next)); } free (contents); contents = NULL; } else if (default_imported_symver) { if (freeidx < 3) freeidx = 3; else freeidx++; elf_tdata (abfd)->verdef = bfd_zalloc2 (abfd, freeidx, sizeof (Elf_Internal_Verdef)); if (elf_tdata (abfd)->verdef == NULL) goto error_return; elf_tdata (abfd)->cverdefs = freeidx; } /* Create a default version based on the soname. */ if (default_imported_symver) { Elf_Internal_Verdef *iverdef; Elf_Internal_Verdaux *iverdaux; iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];; iverdef->vd_version = VER_DEF_CURRENT; iverdef->vd_flags = 0; iverdef->vd_ndx = freeidx; iverdef->vd_cnt = 1; iverdef->vd_bfd = abfd; iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd); if (iverdef->vd_nodename == NULL) goto error_return_verdef; iverdef->vd_nextdef = NULL; iverdef->vd_auxptr = bfd_alloc (abfd, sizeof (Elf_Internal_Verdaux)); if (iverdef->vd_auxptr == NULL) goto error_return_verdef; iverdaux = iverdef->vd_auxptr; iverdaux->vda_nodename = iverdef->vd_nodename; iverdaux->vda_nextptr = NULL; } return TRUE; error_return: if (contents != NULL) free (contents); return FALSE; } asymbol * _bfd_elf_make_empty_symbol (bfd *abfd) { elf_symbol_type *newsym; bfd_size_type amt = sizeof (elf_symbol_type); newsym = bfd_zalloc (abfd, amt); if (!newsym) return NULL; else { newsym->symbol.the_bfd = abfd; return &newsym->symbol; } } void _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED, asymbol *symbol, symbol_info *ret) { bfd_symbol_info (symbol, ret); } /* Return whether a symbol name implies a local symbol. Most targets use this function for the is_local_label_name entry point, but some override it. */ bfd_boolean _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED, const char *name) { /* Normal local symbols start with ``.L''. */ if (name[0] == '.' && name[1] == 'L') return TRUE; /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate DWARF debugging symbols starting with ``..''. */ if (name[0] == '.' && name[1] == '.') return TRUE; /* gcc will sometimes generate symbols beginning with ``_.L_'' when emitting DWARF debugging output. I suspect this is actually a small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call ASM_GENERATE_INTERNAL_LABEL, and this causes the leading underscore to be emitted on some ELF targets). For ease of use, we treat such symbols as local. */ if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_') return TRUE; return FALSE; } alent * _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED, asymbol *symbol ATTRIBUTE_UNUSED) { abort (); return NULL; } bfd_boolean _bfd_elf_set_arch_mach (bfd *abfd, enum bfd_architecture arch, unsigned long machine) { /* If this isn't the right architecture for this backend, and this isn't the generic backend, fail. */ if (arch != get_elf_backend_data (abfd)->arch && arch != bfd_arch_unknown && get_elf_backend_data (abfd)->arch != bfd_arch_unknown) return FALSE; return bfd_default_set_arch_mach (abfd, arch, machine); } /* Find the function to a particular section and offset, for error reporting. */ static bfd_boolean elf_find_function (bfd *abfd ATTRIBUTE_UNUSED, asection *section, asymbol **symbols, bfd_vma offset, const char **filename_ptr, const char **functionname_ptr) { const char *filename; asymbol *func, *file; bfd_vma low_func; asymbol **p; /* ??? Given multiple file symbols, it is impossible to reliably choose the right file name for global symbols. File symbols are local symbols, and thus all file symbols must sort before any global symbols. The ELF spec may be interpreted to say that a file symbol must sort before other local symbols, but currently ld -r doesn't do this. So, for ld -r output, it is possible to make a better choice of file name for local symbols by ignoring file symbols appearing after a given local symbol. */ enum { nothing_seen, symbol_seen, file_after_symbol_seen } state; filename = NULL; func = NULL; file = NULL; low_func = 0; state = nothing_seen; for (p = symbols; *p != NULL; p++) { elf_symbol_type *q; q = (elf_symbol_type *) *p; switch (ELF_ST_TYPE (q->internal_elf_sym.st_info)) { default: break; case STT_FILE: file = &q->symbol; if (state == symbol_seen) state = file_after_symbol_seen; continue; case STT_SECTION: continue; case STT_NOTYPE: case STT_FUNC: if (bfd_get_section (&q->symbol) == section && q->symbol.value >= low_func && q->symbol.value <= offset) { func = (asymbol *) q; low_func = q->symbol.value; if (file == NULL) filename = NULL; else if (ELF_ST_BIND (q->internal_elf_sym.st_info) != STB_LOCAL && state == file_after_symbol_seen) filename = NULL; else filename = bfd_asymbol_name (file); } break; } if (state == nothing_seen) state = symbol_seen; } if (func == NULL) return FALSE; if (filename_ptr) *filename_ptr = filename; if (functionname_ptr) *functionname_ptr = bfd_asymbol_name (func); return TRUE; } /* Find the nearest line to a particular section and offset, for error reporting. */ bfd_boolean _bfd_elf_find_nearest_line (bfd *abfd, asection *section, asymbol **symbols, bfd_vma offset, const char **filename_ptr, const char **functionname_ptr, unsigned int *line_ptr) { bfd_boolean found; if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset, filename_ptr, functionname_ptr, line_ptr)) { if (!*functionname_ptr) elf_find_function (abfd, section, symbols, offset, *filename_ptr ? NULL : filename_ptr, functionname_ptr); return TRUE; } if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset, filename_ptr, functionname_ptr, line_ptr, 0, &elf_tdata (abfd)->dwarf2_find_line_info)) { if (!*functionname_ptr) elf_find_function (abfd, section, symbols, offset, *filename_ptr ? NULL : filename_ptr, functionname_ptr); return TRUE; } if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset, &found, filename_ptr, functionname_ptr, line_ptr, &elf_tdata (abfd)->line_info)) return FALSE; if (found && (*functionname_ptr || *line_ptr)) return TRUE; if (symbols == NULL) return FALSE; if (! elf_find_function (abfd, section, symbols, offset, filename_ptr, functionname_ptr)) return FALSE; *line_ptr = 0; return TRUE; } /* Find the line for a symbol. */ bfd_boolean _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol, const char **filename_ptr, unsigned int *line_ptr) { return _bfd_dwarf2_find_line (abfd, symbols, symbol, filename_ptr, line_ptr, 0, &elf_tdata (abfd)->dwarf2_find_line_info); } /* After a call to bfd_find_nearest_line, successive calls to bfd_find_inliner_info can be used to get source information about each level of function inlining that terminated at the address passed to bfd_find_nearest_line. Currently this is only supported for DWARF2 with appropriate DWARF3 extensions. */ bfd_boolean _bfd_elf_find_inliner_info (bfd *abfd, const char **filename_ptr, const char **functionname_ptr, unsigned int *line_ptr) { bfd_boolean found; found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr, functionname_ptr, line_ptr, & elf_tdata (abfd)->dwarf2_find_line_info); return found; } int _bfd_elf_sizeof_headers (bfd *abfd, bfd_boolean reloc) { int ret; ret = get_elf_backend_data (abfd)->s->sizeof_ehdr; if (! reloc) ret += get_program_header_size (abfd); return ret; } bfd_boolean _bfd_elf_set_section_contents (bfd *abfd, sec_ptr section, const void *location, file_ptr offset, bfd_size_type count) { Elf_Internal_Shdr *hdr; bfd_signed_vma pos; if (! abfd->output_has_begun && ! _bfd_elf_compute_section_file_positions (abfd, NULL)) return FALSE; hdr = &elf_section_data (section)->this_hdr; pos = hdr->sh_offset + offset; if (bfd_seek (abfd, pos, SEEK_SET) != 0 || bfd_bwrite (location, count, abfd) != count) return FALSE; return TRUE; } void _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr ATTRIBUTE_UNUSED, Elf_Internal_Rela *dst ATTRIBUTE_UNUSED) { abort (); } /* Try to convert a non-ELF reloc into an ELF one. */ bfd_boolean _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc) { /* Check whether we really have an ELF howto. */ if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec) { bfd_reloc_code_real_type code; reloc_howto_type *howto; /* Alien reloc: Try to determine its type to replace it with an equivalent ELF reloc. */ if (areloc->howto->pc_relative) { switch (areloc->howto->bitsize) { case 8: code = BFD_RELOC_8_PCREL; break; case 12: code = BFD_RELOC_12_PCREL; break; case 16: code = BFD_RELOC_16_PCREL; break; case 24: code = BFD_RELOC_24_PCREL; break; case 32: code = BFD_RELOC_32_PCREL; break; case 64: code = BFD_RELOC_64_PCREL; break; default: goto fail; } howto = bfd_reloc_type_lookup (abfd, code); if (areloc->howto->pcrel_offset != howto->pcrel_offset) { if (howto->pcrel_offset) areloc->addend += areloc->address; else areloc->addend -= areloc->address; /* addend is unsigned!! */ } } else { switch (areloc->howto->bitsize) { case 8: code = BFD_RELOC_8; break; case 14: code = BFD_RELOC_14; break; case 16: code = BFD_RELOC_16; break; case 26: code = BFD_RELOC_26; break; case 32: code = BFD_RELOC_32; break; case 64: code = BFD_RELOC_64; break; default: goto fail; } howto = bfd_reloc_type_lookup (abfd, code); } if (howto) areloc->howto = howto; else goto fail; } return TRUE; fail: (*_bfd_error_handler) (_("%B: unsupported relocation type %s"), abfd, areloc->howto->name); bfd_set_error (bfd_error_bad_value); return FALSE; } bfd_boolean _bfd_elf_close_and_cleanup (bfd *abfd) { if (bfd_get_format (abfd) == bfd_object) { if (elf_shstrtab (abfd) != NULL) _bfd_elf_strtab_free (elf_shstrtab (abfd)); _bfd_dwarf2_cleanup_debug_info (abfd); } return _bfd_generic_close_and_cleanup (abfd); } /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY in the relocation's offset. Thus we cannot allow any sort of sanity range-checking to interfere. There is nothing else to do in processing this reloc. */ bfd_reloc_status_type _bfd_elf_rel_vtable_reloc_fn (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED, struct bfd_symbol *symbol ATTRIBUTE_UNUSED, void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED, bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED) { return bfd_reloc_ok; } /* Elf core file support. Much of this only works on native toolchains, since we rely on knowing the machine-dependent procfs structure in order to pick out details about the corefile. */ #ifdef HAVE_SYS_PROCFS_H # include #endif /* FIXME: this is kinda wrong, but it's what gdb wants. */ static int elfcore_make_pid (bfd *abfd) { return ((elf_tdata (abfd)->core_lwpid << 16) + (elf_tdata (abfd)->core_pid)); } /* If there isn't a section called NAME, make one, using data from SECT. Note, this function will generate a reference to NAME, so you shouldn't deallocate or overwrite it. */ static bfd_boolean elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect) { asection *sect2; if (bfd_get_section_by_name (abfd, name) != NULL) return TRUE; sect2 = bfd_make_section (abfd, name); if (sect2 == NULL) return FALSE; sect2->size = sect->size; sect2->filepos = sect->filepos; sect2->flags = sect->flags; sect2->alignment_power = sect->alignment_power; return TRUE; } /* Create a pseudosection containing SIZE bytes at FILEPOS. This actually creates up to two pseudosections: - For the single-threaded case, a section named NAME, unless such a section already exists. - For the multi-threaded case, a section named "NAME/PID", where PID is elfcore_make_pid (abfd). Both pseudosections have identical contents. */ bfd_boolean _bfd_elfcore_make_pseudosection (bfd *abfd, char *name, size_t size, ufile_ptr filepos) { char buf[100]; char *threaded_name; size_t len; asection *sect; /* Build the section name. */ sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd)); len = strlen (buf) + 1; threaded_name = bfd_alloc (abfd, len); if (threaded_name == NULL) return FALSE; memcpy (threaded_name, buf, len); sect = bfd_make_section_anyway (abfd, threaded_name); if (sect == NULL) return FALSE; sect->size = size; sect->filepos = filepos; sect->flags = SEC_HAS_CONTENTS; sect->alignment_power = 2; return elfcore_maybe_make_sect (abfd, name, sect); } /* prstatus_t exists on: solaris 2.5+ linux 2.[01] + glibc unixware 4.2 */ #if defined (HAVE_PRSTATUS_T) static bfd_boolean elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note) { size_t size; int offset; if (note->descsz == sizeof (prstatus_t)) { prstatus_t prstat; size = sizeof (prstat.pr_reg); offset = offsetof (prstatus_t, pr_reg); memcpy (&prstat, note->descdata, sizeof (prstat)); /* Do not overwrite the core signal if it has already been set by another thread. */ if (elf_tdata (abfd)->core_signal == 0) elf_tdata (abfd)->core_signal = prstat.pr_cursig; elf_tdata (abfd)->core_pid = prstat.pr_pid; /* pr_who exists on: solaris 2.5+ unixware 4.2 pr_who doesn't exist on: linux 2.[01] */ #if defined (HAVE_PRSTATUS_T_PR_WHO) elf_tdata (abfd)->core_lwpid = prstat.pr_who; #endif } #if defined (HAVE_PRSTATUS32_T) else if (note->descsz == sizeof (prstatus32_t)) { /* 64-bit host, 32-bit corefile */ prstatus32_t prstat; size = sizeof (prstat.pr_reg); offset = offsetof (prstatus32_t, pr_reg); memcpy (&prstat, note->descdata, sizeof (prstat)); /* Do not overwrite the core signal if it has already been set by another thread. */ if (elf_tdata (abfd)->core_signal == 0) elf_tdata (abfd)->core_signal = prstat.pr_cursig; elf_tdata (abfd)->core_pid = prstat.pr_pid; /* pr_who exists on: solaris 2.5+ unixware 4.2 pr_who doesn't exist on: linux 2.[01] */ #if defined (HAVE_PRSTATUS32_T_PR_WHO) elf_tdata (abfd)->core_lwpid = prstat.pr_who; #endif } #endif /* HAVE_PRSTATUS32_T */ else { /* Fail - we don't know how to handle any other note size (ie. data object type). */ return TRUE; } /* Make a ".reg/999" section and a ".reg" section. */ return _bfd_elfcore_make_pseudosection (abfd, ".reg", size, note->descpos + offset); } #endif /* defined (HAVE_PRSTATUS_T) */ /* Create a pseudosection containing the exact contents of NOTE. */ static bfd_boolean elfcore_make_note_pseudosection (bfd *abfd, char *name, Elf_Internal_Note *note) { return _bfd_elfcore_make_pseudosection (abfd, name, note->descsz, note->descpos); } /* There isn't a consistent prfpregset_t across platforms, but it doesn't matter, because we don't have to pick this data structure apart. */ static bfd_boolean elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note) { return elfcore_make_note_pseudosection (abfd, ".reg2", note); } /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note type of 5 (NT_PRXFPREG). Just include the whole note's contents literally. */ static bfd_boolean elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note) { return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note); } #if defined (HAVE_PRPSINFO_T) typedef prpsinfo_t elfcore_psinfo_t; #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */ typedef prpsinfo32_t elfcore_psinfo32_t; #endif #endif #if defined (HAVE_PSINFO_T) typedef psinfo_t elfcore_psinfo_t; #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */ typedef psinfo32_t elfcore_psinfo32_t; #endif #endif /* return a malloc'ed copy of a string at START which is at most MAX bytes long, possibly without a terminating '\0'. the copy will always have a terminating '\0'. */ char * _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max) { char *dups; char *end = memchr (start, '\0', max); size_t len; if (end == NULL) len = max; else len = end - start; dups = bfd_alloc (abfd, len + 1); if (dups == NULL) return NULL; memcpy (dups, start, len); dups[len] = '\0'; return dups; } #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) static bfd_boolean elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note) { if (note->descsz == sizeof (elfcore_psinfo_t)) { elfcore_psinfo_t psinfo; memcpy (&psinfo, note->descdata, sizeof (psinfo)); elf_tdata (abfd)->core_program = _bfd_elfcore_strndup (abfd, psinfo.pr_fname, sizeof (psinfo.pr_fname)); elf_tdata (abfd)->core_command = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs, sizeof (psinfo.pr_psargs)); } #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T) else if (note->descsz == sizeof (elfcore_psinfo32_t)) { /* 64-bit host, 32-bit corefile */ elfcore_psinfo32_t psinfo; memcpy (&psinfo, note->descdata, sizeof (psinfo)); elf_tdata (abfd)->core_program = _bfd_elfcore_strndup (abfd, psinfo.pr_fname, sizeof (psinfo.pr_fname)); elf_tdata (abfd)->core_command = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs, sizeof (psinfo.pr_psargs)); } #endif else { /* Fail - we don't know how to handle any other note size (ie. data object type). */ return TRUE; } /* Note that for some reason, a spurious space is tacked onto the end of the args in some (at least one anyway) implementations, so strip it off if it exists. */ { char *command = elf_tdata (abfd)->core_command; int n = strlen (command); if (0 < n && command[n - 1] == ' ') command[n - 1] = '\0'; } return TRUE; } #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */ #if defined (HAVE_PSTATUS_T) static bfd_boolean elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note) { if (note->descsz == sizeof (pstatus_t) #if defined (HAVE_PXSTATUS_T) || note->descsz == sizeof (pxstatus_t) #endif ) { pstatus_t pstat; memcpy (&pstat, note->descdata, sizeof (pstat)); elf_tdata (abfd)->core_pid = pstat.pr_pid; } #if defined (HAVE_PSTATUS32_T) else if (note->descsz == sizeof (pstatus32_t)) { /* 64-bit host, 32-bit corefile */ pstatus32_t pstat; memcpy (&pstat, note->descdata, sizeof (pstat)); elf_tdata (abfd)->core_pid = pstat.pr_pid; } #endif /* Could grab some more details from the "representative" lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an NT_LWPSTATUS note, presumably. */ return TRUE; } #endif /* defined (HAVE_PSTATUS_T) */ #if defined (HAVE_LWPSTATUS_T) static bfd_boolean elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note) { lwpstatus_t lwpstat; char buf[100]; char *name; size_t len; asection *sect; if (note->descsz != sizeof (lwpstat) #if defined (HAVE_LWPXSTATUS_T) && note->descsz != sizeof (lwpxstatus_t) #endif ) return TRUE; memcpy (&lwpstat, note->descdata, sizeof (lwpstat)); elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid; elf_tdata (abfd)->core_signal = lwpstat.pr_cursig; /* Make a ".reg/999" section. */ sprintf (buf, ".reg/%d", elfcore_make_pid (abfd)); len = strlen (buf) + 1; name = bfd_alloc (abfd, len); if (name == NULL) return FALSE; memcpy (name, buf, len); sect = bfd_make_section_anyway (abfd, name); if (sect == NULL) return FALSE; #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT) sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs); sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs); #endif #if defined (HAVE_LWPSTATUS_T_PR_REG) sect->size = sizeof (lwpstat.pr_reg); sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg); #endif sect->flags = SEC_HAS_CONTENTS; sect->alignment_power = 2; if (!elfcore_maybe_make_sect (abfd, ".reg", sect)) return FALSE; /* Make a ".reg2/999" section */ sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd)); len = strlen (buf) + 1; name = bfd_alloc (abfd, len); if (name == NULL) return FALSE; memcpy (name, buf, len); sect = bfd_make_section_anyway (abfd, name); if (sect == NULL) return FALSE; #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT) sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs); sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs); #endif #if defined (HAVE_LWPSTATUS_T_PR_FPREG) sect->size = sizeof (lwpstat.pr_fpreg); sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg); #endif sect->flags = SEC_HAS_CONTENTS; sect->alignment_power = 2; return elfcore_maybe_make_sect (abfd, ".reg2", sect); } #endif /* defined (HAVE_LWPSTATUS_T) */ #if defined (HAVE_WIN32_PSTATUS_T) static bfd_boolean elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note) { char buf[30]; char *name; size_t len; asection *sect; win32_pstatus_t pstatus; if (note->descsz < sizeof (pstatus)) return TRUE; memcpy (&pstatus, note->descdata, sizeof (pstatus)); switch (pstatus.data_type) { case NOTE_INFO_PROCESS: /* FIXME: need to add ->core_command. */ elf_tdata (abfd)->core_signal = pstatus.data.process_info.signal; elf_tdata (abfd)->core_pid = pstatus.data.process_info.pid; break; case NOTE_INFO_THREAD: /* Make a ".reg/999" section. */ sprintf (buf, ".reg/%ld", (long) pstatus.data.thread_info.tid); len = strlen (buf) + 1; name = bfd_alloc (abfd, len); if (name == NULL) return FALSE; memcpy (name, buf, len); sect = bfd_make_section_anyway (abfd, name); if (sect == NULL) return FALSE; sect->size = sizeof (pstatus.data.thread_info.thread_context); sect->filepos = (note->descpos + offsetof (struct win32_pstatus, data.thread_info.thread_context)); sect->flags = SEC_HAS_CONTENTS; sect->alignment_power = 2; if (pstatus.data.thread_info.is_active_thread) if (! elfcore_maybe_make_sect (abfd, ".reg", sect)) return FALSE; break; case NOTE_INFO_MODULE: /* Make a ".module/xxxxxxxx" section. */ sprintf (buf, ".module/%08lx", (long) pstatus.data.module_info.base_address); len = strlen (buf) + 1; name = bfd_alloc (abfd, len); if (name == NULL) return FALSE; memcpy (name, buf, len); sect = bfd_make_section_anyway (abfd, name); if (sect == NULL) return FALSE; sect->size = note->descsz; sect->filepos = note->descpos; sect->flags = SEC_HAS_CONTENTS; sect->alignment_power = 2; break; default: return TRUE; } return TRUE; } #endif /* HAVE_WIN32_PSTATUS_T */ static bfd_boolean elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note) { const struct elf_backend_data *bed = get_elf_backend_data (abfd); switch (note->type) { default: return TRUE; case NT_PRSTATUS: if (bed->elf_backend_grok_prstatus) if ((*bed->elf_backend_grok_prstatus) (abfd, note)) return TRUE; #if defined (HAVE_PRSTATUS_T) return elfcore_grok_prstatus (abfd, note); #else return TRUE; #endif #if defined (HAVE_PSTATUS_T) case NT_PSTATUS: return elfcore_grok_pstatus (abfd, note); #endif #if defined (HAVE_LWPSTATUS_T) case NT_LWPSTATUS: return elfcore_grok_lwpstatus (abfd, note); #endif case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */ return elfcore_grok_prfpreg (abfd, note); #if defined (HAVE_WIN32_PSTATUS_T) case NT_WIN32PSTATUS: return elfcore_grok_win32pstatus (abfd, note); #endif case NT_PRXFPREG: /* Linux SSE extension */ if (note->namesz == 6 && strcmp (note->namedata, "LINUX") == 0) return elfcore_grok_prxfpreg (abfd, note); else return TRUE; case NT_PRPSINFO: case NT_PSINFO: if (bed->elf_backend_grok_psinfo) if ((*bed->elf_backend_grok_psinfo) (abfd, note)) return TRUE; #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) return elfcore_grok_psinfo (abfd, note); #else return TRUE; #endif case NT_AUXV: { asection *sect = bfd_make_section_anyway (abfd, ".auxv"); if (sect == NULL) return FALSE; sect->size = note->descsz; sect->filepos = note->descpos; sect->flags = SEC_HAS_CONTENTS; sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32; return TRUE; } } } static bfd_boolean elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp) { char *cp; cp = strchr (note->namedata, '@'); if (cp != NULL) { *lwpidp = atoi(cp + 1); return TRUE; } return FALSE; } static bfd_boolean elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note) { /* Signal number at offset 0x08. */ elf_tdata (abfd)->core_signal = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08); /* Process ID at offset 0x50. */ elf_tdata (abfd)->core_pid = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50); /* Command name at 0x7c (max 32 bytes, including nul). */ elf_tdata (abfd)->core_command = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31); return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo", note); } static bfd_boolean elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note) { int lwp; if (elfcore_netbsd_get_lwpid (note, &lwp)) elf_tdata (abfd)->core_lwpid = lwp; if (note->type == NT_NETBSDCORE_PROCINFO) { /* NetBSD-specific core "procinfo". Note that we expect to find this note before any of the others, which is fine, since the kernel writes this note out first when it creates a core file. */ return elfcore_grok_netbsd_procinfo (abfd, note); } /* As of Jan 2002 there are no other machine-independent notes defined for NetBSD core files. If the note type is less than the start of the machine-dependent note types, we don't understand it. */ if (note->type < NT_NETBSDCORE_FIRSTMACH) return TRUE; switch (bfd_get_arch (abfd)) { /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and PT_GETFPREGS == mach+2. */ case bfd_arch_alpha: case bfd_arch_sparc: switch (note->type) { case NT_NETBSDCORE_FIRSTMACH+0: return elfcore_make_note_pseudosection (abfd, ".reg", note); case NT_NETBSDCORE_FIRSTMACH+2: return elfcore_make_note_pseudosection (abfd, ".reg2", note); default: return TRUE; } /* On all other arch's, PT_GETREGS == mach+1 and PT_GETFPREGS == mach+3. */ default: switch (note->type) { case NT_NETBSDCORE_FIRSTMACH+1: return elfcore_make_note_pseudosection (abfd, ".reg", note); case NT_NETBSDCORE_FIRSTMACH+3: return elfcore_make_note_pseudosection (abfd, ".reg2", note); default: return TRUE; } } /* NOTREACHED */ } static bfd_boolean elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, pid_t *tid) { void *ddata = note->descdata; char buf[100]; char *name; asection *sect; short sig; unsigned flags; /* nto_procfs_status 'pid' field is at offset 0. */ elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata); /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */ *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4); /* nto_procfs_status 'flags' field is at offset 8. */ flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8); /* nto_procfs_status 'what' field is at offset 14. */ if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0) { elf_tdata (abfd)->core_signal = sig; elf_tdata (abfd)->core_lwpid = *tid; } /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores do not come from signals so we make sure we set the current thread just in case. */ if (flags & 0x00000080) elf_tdata (abfd)->core_lwpid = *tid; /* Make a ".qnx_core_status/%d" section. */ sprintf (buf, ".qnx_core_status/%ld", (long) *tid); name = bfd_alloc (abfd, strlen (buf) + 1); if (name == NULL) return FALSE; strcpy (name, buf); sect = bfd_make_section_anyway (abfd, name); if (sect == NULL) return FALSE; sect->size = note->descsz; sect->filepos = note->descpos; sect->flags = SEC_HAS_CONTENTS; sect->alignment_power = 2; return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect)); } static bfd_boolean elfcore_grok_nto_regs (bfd *abfd, Elf_Internal_Note *note, pid_t tid, char *base) { char buf[100]; char *name; asection *sect; /* Make a "(base)/%d" section. */ sprintf (buf, "%s/%ld", base, (long) tid); name = bfd_alloc (abfd, strlen (buf) + 1); if (name == NULL) return FALSE; strcpy (name, buf); sect = bfd_make_section_anyway (abfd, name); if (sect == NULL) return FALSE; sect->size = note->descsz; sect->filepos = note->descpos; sect->flags = SEC_HAS_CONTENTS; sect->alignment_power = 2; /* This is the current thread. */ if (elf_tdata (abfd)->core_lwpid == tid) return elfcore_maybe_make_sect (abfd, base, sect); return TRUE; } #define BFD_QNT_CORE_INFO 7 #define BFD_QNT_CORE_STATUS 8 #define BFD_QNT_CORE_GREG 9 #define BFD_QNT_CORE_FPREG 10 static bfd_boolean elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note) { /* Every GREG section has a STATUS section before it. Store the tid from the previous call to pass down to the next gregs function. */ static pid_t tid = 1; switch (note->type) { case BFD_QNT_CORE_INFO: return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note); case BFD_QNT_CORE_STATUS: return elfcore_grok_nto_status (abfd, note, &tid); case BFD_QNT_CORE_GREG: return elfcore_grok_nto_regs (abfd, note, tid, ".reg"); case BFD_QNT_CORE_FPREG: return elfcore_grok_nto_regs (abfd, note, tid, ".reg2"); default: return TRUE; } } /* Function: elfcore_write_note Inputs: buffer to hold note name of note type of note data for note size of data for note Return: End of buffer containing note. */ char * elfcore_write_note (bfd *abfd, char *buf, int *bufsiz, const char *name, int type, const void *input, int size) { Elf_External_Note *xnp; size_t namesz; size_t pad; size_t newspace; char *p, *dest; namesz = 0; pad = 0; if (name != NULL) { const struct elf_backend_data *bed; namesz = strlen (name) + 1; bed = get_elf_backend_data (abfd); pad = -namesz & ((1 << bed->s->log_file_align) - 1); } newspace = 12 + namesz + pad + size; p = realloc (buf, *bufsiz + newspace); dest = p + *bufsiz; *bufsiz += newspace; xnp = (Elf_External_Note *) dest; H_PUT_32 (abfd, namesz, xnp->namesz); H_PUT_32 (abfd, size, xnp->descsz); H_PUT_32 (abfd, type, xnp->type); dest = xnp->name; if (name != NULL) { memcpy (dest, name, namesz); dest += namesz; while (pad != 0) { *dest++ = '\0'; --pad; } } memcpy (dest, input, size); return p; } #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) char * elfcore_write_prpsinfo (bfd *abfd, char *buf, int *bufsiz, const char *fname, const char *psargs) { int note_type; char *note_name = "CORE"; #if defined (HAVE_PSINFO_T) psinfo_t data; note_type = NT_PSINFO; #else prpsinfo_t data; note_type = NT_PRPSINFO; #endif memset (&data, 0, sizeof (data)); strncpy (data.pr_fname, fname, sizeof (data.pr_fname)); strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs)); return elfcore_write_note (abfd, buf, bufsiz, note_name, note_type, &data, sizeof (data)); } #endif /* PSINFO_T or PRPSINFO_T */ #if defined (HAVE_PRSTATUS_T) char * elfcore_write_prstatus (bfd *abfd, char *buf, int *bufsiz, long pid, int cursig, const void *gregs) { prstatus_t prstat; char *note_name = "CORE"; memset (&prstat, 0, sizeof (prstat)); prstat.pr_pid = pid; prstat.pr_cursig = cursig; memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg)); return elfcore_write_note (abfd, buf, bufsiz, note_name, NT_PRSTATUS, &prstat, sizeof (prstat)); } #endif /* HAVE_PRSTATUS_T */ #if defined (HAVE_LWPSTATUS_T) char * elfcore_write_lwpstatus (bfd *abfd, char *buf, int *bufsiz, long pid, int cursig, const void *gregs) { lwpstatus_t lwpstat; char *note_name = "CORE"; memset (&lwpstat, 0, sizeof (lwpstat)); lwpstat.pr_lwpid = pid >> 16; lwpstat.pr_cursig = cursig; #if defined (HAVE_LWPSTATUS_T_PR_REG) memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg)); #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT) #if !defined(gregs) memcpy (lwpstat.pr_context.uc_mcontext.gregs, gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs)); #else memcpy (lwpstat.pr_context.uc_mcontext.__gregs, gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs)); #endif #endif return elfcore_write_note (abfd, buf, bufsiz, note_name, NT_LWPSTATUS, &lwpstat, sizeof (lwpstat)); } #endif /* HAVE_LWPSTATUS_T */ #if defined (HAVE_PSTATUS_T) char * elfcore_write_pstatus (bfd *abfd, char *buf, int *bufsiz, long pid, int cursig, const void *gregs) { pstatus_t pstat; char *note_name = "CORE"; memset (&pstat, 0, sizeof (pstat)); pstat.pr_pid = pid & 0xffff; buf = elfcore_write_note (abfd, buf, bufsiz, note_name, NT_PSTATUS, &pstat, sizeof (pstat)); return buf; } #endif /* HAVE_PSTATUS_T */ char * elfcore_write_prfpreg (bfd *abfd, char *buf, int *bufsiz, const void *fpregs, int size) { char *note_name = "CORE"; return elfcore_write_note (abfd, buf, bufsiz, note_name, NT_FPREGSET, fpregs, size); } char * elfcore_write_prxfpreg (bfd *abfd, char *buf, int *bufsiz, const void *xfpregs, int size) { char *note_name = "LINUX"; return elfcore_write_note (abfd, buf, bufsiz, note_name, NT_PRXFPREG, xfpregs, size); } static bfd_boolean elfcore_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size) { char *buf; char *p; if (size <= 0) return TRUE; if (bfd_seek (abfd, offset, SEEK_SET) != 0) return FALSE; buf = bfd_malloc (size); if (buf == NULL) return FALSE; if (bfd_bread (buf, size, abfd) != size) { error: free (buf); return FALSE; } p = buf; while (p < buf + size) { /* FIXME: bad alignment assumption. */ Elf_External_Note *xnp = (Elf_External_Note *) p; Elf_Internal_Note in; in.type = H_GET_32 (abfd, xnp->type); in.namesz = H_GET_32 (abfd, xnp->namesz); in.namedata = xnp->name; in.descsz = H_GET_32 (abfd, xnp->descsz); in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4); in.descpos = offset + (in.descdata - buf); if (strncmp (in.namedata, "NetBSD-CORE", 11) == 0) { if (! elfcore_grok_netbsd_note (abfd, &in)) goto error; } else if (strncmp (in.namedata, "QNX", 3) == 0) { if (! elfcore_grok_nto_note (abfd, &in)) goto error; } else { if (! elfcore_grok_note (abfd, &in)) goto error; } p = in.descdata + BFD_ALIGN (in.descsz, 4); } free (buf); return TRUE; } /* Providing external access to the ELF program header table. */ /* Return an upper bound on the number of bytes required to store a copy of ABFD's program header table entries. Return -1 if an error occurs; bfd_get_error will return an appropriate code. */ long bfd_get_elf_phdr_upper_bound (bfd *abfd) { if (abfd->xvec->flavour != bfd_target_elf_flavour) { bfd_set_error (bfd_error_wrong_format); return -1; } return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr); } /* Copy ABFD's program header table entries to *PHDRS. The entries will be stored as an array of Elf_Internal_Phdr structures, as defined in include/elf/internal.h. To find out how large the buffer needs to be, call bfd_get_elf_phdr_upper_bound. Return the number of program header table entries read, or -1 if an error occurs; bfd_get_error will return an appropriate code. */ int bfd_get_elf_phdrs (bfd *abfd, void *phdrs) { int num_phdrs; if (abfd->xvec->flavour != bfd_target_elf_flavour) { bfd_set_error (bfd_error_wrong_format); return -1; } num_phdrs = elf_elfheader (abfd)->e_phnum; memcpy (phdrs, elf_tdata (abfd)->phdr, num_phdrs * sizeof (Elf_Internal_Phdr)); return num_phdrs; } void _bfd_elf_sprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, char *buf, bfd_vma value) { #ifdef BFD64 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */ i_ehdrp = elf_elfheader (abfd); if (i_ehdrp == NULL) sprintf_vma (buf, value); else { if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64) { #if BFD_HOST_64BIT_LONG sprintf (buf, "%016lx", value); #else sprintf (buf, "%08lx%08lx", _bfd_int64_high (value), _bfd_int64_low (value)); #endif } else sprintf (buf, "%08lx", (unsigned long) (value & 0xffffffff)); } #else sprintf_vma (buf, value); #endif } void _bfd_elf_fprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, void *stream, bfd_vma value) { #ifdef BFD64 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */ i_ehdrp = elf_elfheader (abfd); if (i_ehdrp == NULL) fprintf_vma ((FILE *) stream, value); else { if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64) { #if BFD_HOST_64BIT_LONG fprintf ((FILE *) stream, "%016lx", value); #else fprintf ((FILE *) stream, "%08lx%08lx", _bfd_int64_high (value), _bfd_int64_low (value)); #endif } else fprintf ((FILE *) stream, "%08lx", (unsigned long) (value & 0xffffffff)); } #else fprintf_vma ((FILE *) stream, value); #endif } enum elf_reloc_type_class _bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED) { return reloc_class_normal; } /* For RELA architectures, return the relocation value for a relocation against a local symbol. */ bfd_vma _bfd_elf_rela_local_sym (bfd *abfd, Elf_Internal_Sym *sym, asection **psec, Elf_Internal_Rela *rel) { asection *sec = *psec; bfd_vma relocation; relocation = (sec->output_section->vma + sec->output_offset + sym->st_value); if ((sec->flags & SEC_MERGE) && ELF_ST_TYPE (sym->st_info) == STT_SECTION && sec->sec_info_type == ELF_INFO_TYPE_MERGE) { rel->r_addend = _bfd_merged_section_offset (abfd, psec, elf_section_data (sec)->sec_info, sym->st_value + rel->r_addend); if (sec != *psec) { /* If we have changed the section, and our original section is marked with SEC_EXCLUDE, it means that the original SEC_MERGE section has been completely subsumed in some other SEC_MERGE section. In this case, we need to leave some info around for --emit-relocs. */ if ((sec->flags & SEC_EXCLUDE) != 0) sec->kept_section = *psec; sec = *psec; } rel->r_addend -= relocation; rel->r_addend += sec->output_section->vma + sec->output_offset; } return relocation; } bfd_vma _bfd_elf_rel_local_sym (bfd *abfd, Elf_Internal_Sym *sym, asection **psec, bfd_vma addend) { asection *sec = *psec; if (sec->sec_info_type != ELF_INFO_TYPE_MERGE) return sym->st_value + addend; return _bfd_merged_section_offset (abfd, psec, elf_section_data (sec)->sec_info, sym->st_value + addend); } bfd_vma _bfd_elf_section_offset (bfd *abfd, struct bfd_link_info *info, asection *sec, bfd_vma offset) { switch (sec->sec_info_type) { case ELF_INFO_TYPE_STABS: return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info, offset); case ELF_INFO_TYPE_EH_FRAME: return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset); default: return offset; } } /* Create a new BFD as if by bfd_openr. Rather than opening a file, reconstruct an ELF file by reading the segments out of remote memory based on the ELF file header at EHDR_VMA and the ELF program headers it points to. If not null, *LOADBASEP is filled in with the difference between the VMAs from which the segments were read, and the VMAs the file headers (and hence BFD's idea of each section's VMA) put them at. The function TARGET_READ_MEMORY is called to copy LEN bytes from the remote memory at target address VMA into the local buffer at MYADDR; it should return zero on success or an `errno' code on failure. TEMPL must be a BFD for an ELF target with the word size and byte order found in the remote memory. */ bfd * bfd_elf_bfd_from_remote_memory (bfd *templ, bfd_vma ehdr_vma, bfd_vma *loadbasep, int (*target_read_memory) (bfd_vma, bfd_byte *, int)) { return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory) (templ, ehdr_vma, loadbasep, target_read_memory); } long _bfd_elf_get_synthetic_symtab (bfd *abfd, long symcount ATTRIBUTE_UNUSED, asymbol **syms ATTRIBUTE_UNUSED, long dynsymcount, asymbol **dynsyms, asymbol **ret) { const struct elf_backend_data *bed = get_elf_backend_data (abfd); asection *relplt; asymbol *s; const char *relplt_name; bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean); arelent *p; long count, i, n; size_t size; Elf_Internal_Shdr *hdr; char *names; asection *plt; *ret = NULL; if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0) return 0; if (dynsymcount <= 0) return 0; if (!bed->plt_sym_val) return 0; relplt_name = bed->relplt_name; if (relplt_name == NULL) relplt_name = bed->default_use_rela_p ? ".rela.plt" : ".rel.plt"; relplt = bfd_get_section_by_name (abfd, relplt_name); if (relplt == NULL) return 0; hdr = &elf_section_data (relplt)->this_hdr; if (hdr->sh_link != elf_dynsymtab (abfd) || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA)) return 0; plt = bfd_get_section_by_name (abfd, ".plt"); if (plt == NULL) return 0; slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table; if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE)) return -1; count = relplt->size / hdr->sh_entsize; size = count * sizeof (asymbol); p = relplt->relocation; for (i = 0; i < count; i++, s++, p++) size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt"); s = *ret = bfd_malloc (size); if (s == NULL) return -1; names = (char *) (s + count); p = relplt->relocation; n = 0; for (i = 0; i < count; i++, s++, p++) { size_t len; bfd_vma addr; addr = bed->plt_sym_val (i, plt, p); if (addr == (bfd_vma) -1) continue; *s = **p->sym_ptr_ptr; s->section = plt; s->value = addr - plt->vma; s->name = names; len = strlen ((*p->sym_ptr_ptr)->name); memcpy (names, (*p->sym_ptr_ptr)->name, len); names += len; memcpy (names, "@plt", sizeof ("@plt")); names += sizeof ("@plt"); ++n; } return n; } /* Sort symbol by binding and section. We want to put definitions sorted by section at the beginning. */ static int elf_sort_elf_symbol (const void *arg1, const void *arg2) { const Elf_Internal_Sym *s1; const Elf_Internal_Sym *s2; int shndx; /* Make sure that undefined symbols are at the end. */ s1 = (const Elf_Internal_Sym *) arg1; if (s1->st_shndx == SHN_UNDEF) return 1; s2 = (const Elf_Internal_Sym *) arg2; if (s2->st_shndx == SHN_UNDEF) return -1; /* Sorted by section index. */ shndx = s1->st_shndx - s2->st_shndx; if (shndx != 0) return shndx; /* Sorted by binding. */ return ELF_ST_BIND (s1->st_info) - ELF_ST_BIND (s2->st_info); } struct elf_symbol { Elf_Internal_Sym *sym; const char *name; }; static int elf_sym_name_compare (const void *arg1, const void *arg2) { const struct elf_symbol *s1 = (const struct elf_symbol *) arg1; const struct elf_symbol *s2 = (const struct elf_symbol *) arg2; return strcmp (s1->name, s2->name); } /* Check if 2 sections define the same set of local and global symbols. */ bfd_boolean bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2) { bfd *bfd1, *bfd2; const struct elf_backend_data *bed1, *bed2; Elf_Internal_Shdr *hdr1, *hdr2; bfd_size_type symcount1, symcount2; Elf_Internal_Sym *isymbuf1, *isymbuf2; Elf_Internal_Sym *isymstart1 = NULL, *isymstart2 = NULL, *isym; Elf_Internal_Sym *isymend; struct elf_symbol *symp, *symtable1 = NULL, *symtable2 = NULL; bfd_size_type count1, count2, i; int shndx1, shndx2; bfd_boolean result; bfd1 = sec1->owner; bfd2 = sec2->owner; /* If both are .gnu.linkonce sections, they have to have the same section name. */ if (strncmp (sec1->name, ".gnu.linkonce", sizeof ".gnu.linkonce" - 1) == 0 && strncmp (sec2->name, ".gnu.linkonce", sizeof ".gnu.linkonce" - 1) == 0) return strcmp (sec1->name + sizeof ".gnu.linkonce", sec2->name + sizeof ".gnu.linkonce") == 0; /* Both sections have to be in ELF. */ if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour || bfd_get_flavour (bfd2) != bfd_target_elf_flavour) return FALSE; if (elf_section_type (sec1) != elf_section_type (sec2)) return FALSE; if ((elf_section_flags (sec1) & SHF_GROUP) != 0 && (elf_section_flags (sec2) & SHF_GROUP) != 0) { /* If both are members of section groups, they have to have the same group name. */ if (strcmp (elf_group_name (sec1), elf_group_name (sec2)) != 0) return FALSE; } shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1); shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2); if (shndx1 == -1 || shndx2 == -1) return FALSE; bed1 = get_elf_backend_data (bfd1); bed2 = get_elf_backend_data (bfd2); hdr1 = &elf_tdata (bfd1)->symtab_hdr; symcount1 = hdr1->sh_size / bed1->s->sizeof_sym; hdr2 = &elf_tdata (bfd2)->symtab_hdr; symcount2 = hdr2->sh_size / bed2->s->sizeof_sym; if (symcount1 == 0 || symcount2 == 0) return FALSE; isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0, NULL, NULL, NULL); isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0, NULL, NULL, NULL); result = FALSE; if (isymbuf1 == NULL || isymbuf2 == NULL) goto done; /* Sort symbols by binding and section. Global definitions are at the beginning. */ qsort (isymbuf1, symcount1, sizeof (Elf_Internal_Sym), elf_sort_elf_symbol); qsort (isymbuf2, symcount2, sizeof (Elf_Internal_Sym), elf_sort_elf_symbol); /* Count definitions in the section. */ count1 = 0; for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++) { if (isym->st_shndx == (unsigned int) shndx1) { if (count1 == 0) isymstart1 = isym; count1++; } if (count1 && isym->st_shndx != (unsigned int) shndx1) break; } count2 = 0; for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++) { if (isym->st_shndx == (unsigned int) shndx2) { if (count2 == 0) isymstart2 = isym; count2++; } if (count2 && isym->st_shndx != (unsigned int) shndx2) break; } if (count1 == 0 || count2 == 0 || count1 != count2) goto done; symtable1 = bfd_malloc (count1 * sizeof (struct elf_symbol)); symtable2 = bfd_malloc (count1 * sizeof (struct elf_symbol)); if (symtable1 == NULL || symtable2 == NULL) goto done; symp = symtable1; for (isym = isymstart1, isymend = isym + count1; isym < isymend; isym++) { symp->sym = isym; symp->name = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link, isym->st_name); symp++; } symp = symtable2; for (isym = isymstart2, isymend = isym + count1; isym < isymend; isym++) { symp->sym = isym; symp->name = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link, isym->st_name); symp++; } /* Sort symbol by name. */ qsort (symtable1, count1, sizeof (struct elf_symbol), elf_sym_name_compare); qsort (symtable2, count1, sizeof (struct elf_symbol), elf_sym_name_compare); for (i = 0; i < count1; i++) /* Two symbols must have the same binding, type and name. */ if (symtable1 [i].sym->st_info != symtable2 [i].sym->st_info || symtable1 [i].sym->st_other != symtable2 [i].sym->st_other || strcmp (symtable1 [i].name, symtable2 [i].name) != 0) goto done; result = TRUE; done: if (symtable1) free (symtable1); if (symtable2) free (symtable2); if (isymbuf1) free (isymbuf1); if (isymbuf2) free (isymbuf2); return result; }