/* Support routines for manipulating internal types for GDB. Copyright (C) 1992 Free Software Foundation, Inc. Contributed by Cygnus Support, using pieces from other GDB modules. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include "defs.h" #include #include "bfd.h" #include "symtab.h" #include "symfile.h" #include "objfiles.h" #include "gdbtypes.h" #include "expression.h" #include "language.h" #include "target.h" #include "value.h" #include "demangle.h" /* Alloc a new type structure and fill it with some defaults. If OBJFILE is non-NULL, then allocate the space for the type structure in that objfile's type_obstack. */ struct type * alloc_type (objfile) struct objfile *objfile; { register struct type *type; /* Alloc the structure and start off with all fields zeroed. */ if (objfile == NULL) { type = (struct type *) xmalloc (sizeof (struct type)); } else { type = (struct type *) obstack_alloc (&objfile -> type_obstack, sizeof (struct type)); } memset ((char *)type, 0, sizeof (struct type)); /* Initialize the fields that might not be zero. */ TYPE_CODE (type) = TYPE_CODE_UNDEF; TYPE_OBJFILE (type) = objfile; TYPE_VPTR_FIELDNO (type) = -1; return (type); } /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points to a pointer to memory where the pointer type should be stored. If *TYPEPTR is zero, update it to point to the pointer type we return. We allocate new memory if needed. */ struct type * make_pointer_type (type, typeptr) struct type *type; struct type **typeptr; { register struct type *ntype; /* New type */ struct objfile *objfile; ntype = TYPE_POINTER_TYPE (type); if (ntype) if (typeptr == 0) return ntype; /* Don't care about alloc, and have new type. */ else if (*typeptr == 0) { *typeptr = ntype; /* Tracking alloc, and we have new type. */ return ntype; } if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */ { ntype = alloc_type (TYPE_OBJFILE (type)); if (typeptr) *typeptr = ntype; } else /* We have storage, but need to reset it. */ { ntype = *typeptr; objfile = TYPE_OBJFILE (ntype); memset ((char *)ntype, 0, sizeof (struct type)); TYPE_OBJFILE (ntype) = objfile; } TYPE_TARGET_TYPE (ntype) = type; TYPE_POINTER_TYPE (type) = ntype; /* FIXME! Assume the machine has only one representation for pointers! */ TYPE_LENGTH (ntype) = TARGET_PTR_BIT / TARGET_CHAR_BIT; TYPE_CODE (ntype) = TYPE_CODE_PTR; /* pointers are unsigned */ TYPE_FLAGS (ntype) |= TYPE_FLAG_UNSIGNED; if (!TYPE_POINTER_TYPE (type)) /* Remember it, if don't have one. */ TYPE_POINTER_TYPE (type) = ntype; return ntype; } /* Given a type TYPE, return a type of pointers to that type. May need to construct such a type if this is the first use. */ struct type * lookup_pointer_type (type) struct type *type; { return make_pointer_type (type, (struct type **)0); } /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero, points to a pointer to memory where the reference type should be stored. If *TYPEPTR is zero, update it to point to the reference type we return. We allocate new memory if needed. */ struct type * make_reference_type (type, typeptr) struct type *type; struct type **typeptr; { register struct type *ntype; /* New type */ struct objfile *objfile; ntype = TYPE_REFERENCE_TYPE (type); if (ntype) if (typeptr == 0) return ntype; /* Don't care about alloc, and have new type. */ else if (*typeptr == 0) { *typeptr = ntype; /* Tracking alloc, and we have new type. */ return ntype; } if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */ { ntype = alloc_type (TYPE_OBJFILE (type)); if (typeptr) *typeptr = ntype; } else /* We have storage, but need to reset it. */ { ntype = *typeptr; objfile = TYPE_OBJFILE (ntype); memset ((char *)ntype, 0, sizeof (struct type)); TYPE_OBJFILE (ntype) = objfile; } TYPE_TARGET_TYPE (ntype) = type; TYPE_REFERENCE_TYPE (type) = ntype; /* FIXME! Assume the machine has only one representation for references, and that it matches the (only) representation for pointers! */ TYPE_LENGTH (ntype) = TARGET_PTR_BIT / TARGET_CHAR_BIT; TYPE_CODE (ntype) = TYPE_CODE_REF; if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */ TYPE_REFERENCE_TYPE (type) = ntype; return ntype; } /* Same as above, but caller doesn't care about memory allocation details. */ struct type * lookup_reference_type (type) struct type *type; { return make_reference_type (type, (struct type **)0); } /* Lookup a function type that returns type TYPE. TYPEPTR, if nonzero, points to a pointer to memory where the function type should be stored. If *TYPEPTR is zero, update it to point to the function type we return. We allocate new memory if needed. */ struct type * make_function_type (type, typeptr) struct type *type; struct type **typeptr; { register struct type *ntype; /* New type */ struct objfile *objfile; ntype = TYPE_FUNCTION_TYPE (type); if (ntype) if (typeptr == 0) return ntype; /* Don't care about alloc, and have new type. */ else if (*typeptr == 0) { *typeptr = ntype; /* Tracking alloc, and we have new type. */ return ntype; } if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */ { ntype = alloc_type (TYPE_OBJFILE (type)); if (typeptr) *typeptr = ntype; } else /* We have storage, but need to reset it. */ { ntype = *typeptr; objfile = TYPE_OBJFILE (ntype); memset ((char *)ntype, 0, sizeof (struct type)); TYPE_OBJFILE (ntype) = objfile; } TYPE_TARGET_TYPE (ntype) = type; TYPE_FUNCTION_TYPE (type) = ntype; TYPE_LENGTH (ntype) = 1; TYPE_CODE (ntype) = TYPE_CODE_FUNC; if (!TYPE_FUNCTION_TYPE (type)) /* Remember it, if don't have one. */ TYPE_FUNCTION_TYPE (type) = ntype; return ntype; } /* Given a type TYPE, return a type of functions that return that type. May need to construct such a type if this is the first use. */ struct type * lookup_function_type (type) struct type *type; { return make_function_type (type, (struct type **)0); } /* Implement direct support for MEMBER_TYPE in GNU C++. May need to construct such a type if this is the first use. The TYPE is the type of the member. The DOMAIN is the type of the aggregate that the member belongs to. */ struct type * lookup_member_type (type, domain) struct type *type; struct type *domain; { register struct type *mtype; mtype = alloc_type (TYPE_OBJFILE (type)); smash_to_member_type (mtype, domain, type); return (mtype); } /* Allocate a stub method whose return type is TYPE. This apparently happens for speed of symbol reading, since parsing out the arguments to the method is cpu-intensive, the way we are doing it. So, we will fill in arguments later. This always returns a fresh type. */ struct type * allocate_stub_method (type) struct type *type; { struct type *mtype; mtype = alloc_type (TYPE_OBJFILE (type)); TYPE_TARGET_TYPE (mtype) = type; /* _DOMAIN_TYPE (mtype) = unknown yet */ /* _ARG_TYPES (mtype) = unknown yet */ TYPE_FLAGS (mtype) = TYPE_FLAG_STUB; TYPE_CODE (mtype) = TYPE_CODE_METHOD; TYPE_LENGTH (mtype) = 1; return (mtype); } /* Create an array type. Elements will be of type TYPE, and there will be NUM of them. Eventually this should be extended to take two more arguments which specify the bounds of the array and the type of the index. It should also be changed to be a "lookup" function, with the appropriate data structures added to the type field. Then read array type should call here. */ struct type * create_array_type (element_type, number) struct type *element_type; int number; { struct type *result_type; struct type *range_type; result_type = alloc_type (TYPE_OBJFILE (element_type)); TYPE_CODE (result_type) = TYPE_CODE_ARRAY; TYPE_TARGET_TYPE (result_type) = element_type; TYPE_LENGTH (result_type) = number * TYPE_LENGTH (element_type); TYPE_NFIELDS (result_type) = 1; TYPE_FIELDS (result_type) = (struct field *) obstack_alloc (&TYPE_OBJFILE (result_type) -> type_obstack, sizeof (struct field)); { /* Create range type. */ range_type = alloc_type (TYPE_OBJFILE (result_type)); TYPE_CODE (range_type) = TYPE_CODE_RANGE; TYPE_TARGET_TYPE (range_type) = builtin_type_int; /* FIXME */ /* This should never be needed. */ TYPE_LENGTH (range_type) = sizeof (int); TYPE_NFIELDS (range_type) = 2; TYPE_FIELDS (range_type) = (struct field *) obstack_alloc (&TYPE_OBJFILE (range_type) -> type_obstack, 2 * sizeof (struct field)); TYPE_FIELD_BITPOS (range_type, 0) = 0; /* FIXME */ TYPE_FIELD_BITPOS (range_type, 1) = number-1; /* FIXME */ TYPE_FIELD_TYPE (range_type, 0) = builtin_type_int; /* FIXME */ TYPE_FIELD_TYPE (range_type, 1) = builtin_type_int; /* FIXME */ } TYPE_FIELD_TYPE (result_type, 0) = range_type; TYPE_VPTR_FIELDNO (result_type) = -1; return (result_type); } /* Smash TYPE to be a type of members of DOMAIN with type TO_TYPE. A MEMBER is a wierd thing -- it amounts to a typed offset into a struct, e.g. "an int at offset 8". A MEMBER TYPE doesn't include the offset (that's the value of the MEMBER itself), but does include the structure type into which it points (for some reason). When "smashing" the type, we preserve the objfile that the old type pointed to, since we aren't changing where the type is actually allocated. */ void smash_to_member_type (type, domain, to_type) struct type *type; struct type *domain; struct type *to_type; { struct objfile *objfile; objfile = TYPE_OBJFILE (type); memset ((char *)type, 0, sizeof (struct type)); TYPE_OBJFILE (type) = objfile; TYPE_TARGET_TYPE (type) = to_type; TYPE_DOMAIN_TYPE (type) = domain; TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */ TYPE_CODE (type) = TYPE_CODE_MEMBER; } /* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE. METHOD just means `function that gets an extra "this" argument'. When "smashing" the type, we preserve the objfile that the old type pointed to, since we aren't changing where the type is actually allocated. */ void smash_to_method_type (type, domain, to_type, args) struct type *type; struct type *domain; struct type *to_type; struct type **args; { struct objfile *objfile; objfile = TYPE_OBJFILE (type); memset ((char *)type, 0, sizeof (struct type)); TYPE_OBJFILE (type) = objfile; TYPE_TARGET_TYPE (type) = to_type; TYPE_DOMAIN_TYPE (type) = domain; TYPE_ARG_TYPES (type) = args; TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */ TYPE_CODE (type) = TYPE_CODE_METHOD; } /* Return a typename for a struct/union/enum type without the tag qualifier. If the type has a NULL name, NULL is returned. */ char * type_name_no_tag (type) register const struct type *type; { register char *name; if ((name = TYPE_NAME (type)) != NULL) { switch (TYPE_CODE (type)) { case TYPE_CODE_STRUCT: if(!strncmp (name, "struct ", 7)) { name += 7; } break; case TYPE_CODE_UNION: if(!strncmp (name, "union ", 6)) { name += 6; } break; case TYPE_CODE_ENUM: if(!strncmp (name, "enum ", 5)) { name += 5; } break; default: /* To avoid -Wall warnings */ break; } } return (name); } /* Lookup a primitive type named NAME. Return zero if NAME is not a primitive type.*/ struct type * lookup_primitive_typename (name) char *name; { struct type ** const *p; for (p = current_language -> la_builtin_type_vector; *p != NULL; p++) { if (!strcmp ((**p) -> name, name)) { return (**p); } } return (NULL); } /* Lookup a typedef or primitive type named NAME, visible in lexical block BLOCK. If NOERR is nonzero, return zero if NAME is not suitably defined. */ struct type * lookup_typename (name, block, noerr) char *name; struct block *block; int noerr; { register struct symbol *sym; register struct type *tmp; sym = lookup_symbol (name, block, VAR_NAMESPACE, 0, (struct symtab **) NULL); if (sym == NULL || SYMBOL_CLASS (sym) != LOC_TYPEDEF) { tmp = lookup_primitive_typename (name); if (tmp) { return (tmp); } else if (!tmp && noerr) { return (NULL); } else { error ("No type named %s.", name); } } return (SYMBOL_TYPE (sym)); } struct type * lookup_unsigned_typename (name) char *name; { char *uns = alloca (strlen (name) + 10); strcpy (uns, "unsigned "); strcpy (uns + 9, name); return (lookup_typename (uns, (struct block *) NULL, 0)); } /* Lookup a structure type named "struct NAME", visible in lexical block BLOCK. */ struct type * lookup_struct (name, block) char *name; struct block *block; { register struct symbol *sym; sym = lookup_symbol (name, block, STRUCT_NAMESPACE, 0, (struct symtab **) NULL); if (sym == NULL) { error ("No struct type named %s.", name); } if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT) { error ("This context has class, union or enum %s, not a struct.", name); } return (SYMBOL_TYPE (sym)); } /* Lookup a union type named "union NAME", visible in lexical block BLOCK. */ struct type * lookup_union (name, block) char *name; struct block *block; { register struct symbol *sym; sym = lookup_symbol (name, block, STRUCT_NAMESPACE, 0, (struct symtab **) NULL); if (sym == NULL) { error ("No union type named %s.", name); } if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_UNION) { error ("This context has class, struct or enum %s, not a union.", name); } return (SYMBOL_TYPE (sym)); } /* Lookup an enum type named "enum NAME", visible in lexical block BLOCK. */ struct type * lookup_enum (name, block) char *name; struct block *block; { register struct symbol *sym; sym = lookup_symbol (name, block, STRUCT_NAMESPACE, 0, (struct symtab **) NULL); if (sym == NULL) { error ("No enum type named %s.", name); } if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM) { error ("This context has class, struct or union %s, not an enum.", name); } return (SYMBOL_TYPE (sym)); } /* Lookup a template type named "template NAME", visible in lexical block BLOCK. */ struct type * lookup_template_type (name, type, block) char *name; struct type *type; struct block *block; { struct symbol *sym; char *nam = (char*) alloca(strlen(name) + strlen(type->name) + 4); strcpy (nam, name); strcat (nam, "<"); strcat (nam, type->name); strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */ sym = lookup_symbol (nam, block, VAR_NAMESPACE, 0, (struct symtab **)NULL); if (sym == NULL) { error ("No template type named %s.", name); } if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT) { error ("This context has class, union or enum %s, not a struct.", name); } return (SYMBOL_TYPE (sym)); } /* Given a type TYPE, lookup the type of the component of type named NAME. If NOERR is nonzero, return zero if NAME is not suitably defined. */ struct type * lookup_struct_elt_type (type, name, noerr) struct type *type; char *name; int noerr; { int i; if (TYPE_CODE (type) != TYPE_CODE_STRUCT && TYPE_CODE (type) != TYPE_CODE_UNION) { target_terminal_ours (); fflush (stdout); fprintf (stderr, "Type "); type_print (type, "", stderr, -1); error (" is not a structure or union type."); } check_stub_type (type); for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--) { char *t_field_name = TYPE_FIELD_NAME (type, i); if (t_field_name && !strcmp (t_field_name, name)) { return TYPE_FIELD_TYPE (type, i); } } /* OK, it's not in this class. Recursively check the baseclasses. */ for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--) { struct type *t; t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 0); if (t != NULL) { return t; } } if (noerr) { return NULL; } target_terminal_ours (); fflush (stdout); fprintf (stderr, "Type "); type_print (type, "", stderr, -1); fprintf (stderr, " has no component named "); fputs_filtered (name, stderr); error ("."); return (struct type *)-1; /* For lint */ } /* This function is really horrible, but to avoid it, there would need to be more filling in of forward references. */ void fill_in_vptr_fieldno (type) struct type *type; { if (TYPE_VPTR_FIELDNO (type) < 0) { int i; for (i = 1; i < TYPE_N_BASECLASSES (type); i++) { fill_in_vptr_fieldno (TYPE_BASECLASS (type, i)); if (TYPE_VPTR_FIELDNO (TYPE_BASECLASS (type, i)) >= 0) { TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (TYPE_BASECLASS (type, i)); TYPE_VPTR_BASETYPE (type) = TYPE_VPTR_BASETYPE (TYPE_BASECLASS (type, i)); break; } } } } /* Added by Bryan Boreham, Kewill, Sun Sep 17 18:07:17 1989. If this is a stubbed struct (i.e. declared as struct foo *), see if we can find a full definition in some other file. If so, copy this definition, so we can use it in future. If not, set a flag so we don't waste too much time in future. (FIXME, this doesn't seem to be happening...) This used to be coded as a macro, but I don't think it is called often enough to merit such treatment. */ struct complaint stub_noname_complaint = {"stub type has NULL name", 0, 0}; void check_stub_type (type) struct type *type; { if (TYPE_FLAGS(type) & TYPE_FLAG_STUB) { char* name = type_name_no_tag (type); struct symbol *sym; if (name == NULL) { complain (&stub_noname_complaint, 0); return; } sym = lookup_symbol (name, 0, STRUCT_NAMESPACE, 0, (struct symtab **) NULL); if (sym) { memcpy ((char *)type, (char *)SYMBOL_TYPE(sym), sizeof (struct type)); } } } /* Ugly hack to convert method stubs into method types. He ain't kiddin'. This demangles the name of the method into a string including argument types, parses out each argument type, generates a string casting a zero to that type, evaluates the string, and stuffs the resulting type into an argtype vector!!! Then it knows the type of the whole function (including argument types for overloading), which info used to be in the stab's but was removed to hack back the space required for them. */ void check_stub_method (type, i, j) struct type *type; int i; int j; { struct fn_field *f; char *mangled_name = gdb_mangle_name (type, i, j); char *demangled_name = cplus_demangle (mangled_name, DMGL_PARAMS | DMGL_ANSI); char *argtypetext, *p; int depth = 0, argcount = 1; struct type **argtypes; struct type *mtype; if (demangled_name == NULL) { error ("Internal: Cannot demangle mangled name `%s'.", mangled_name); } /* Now, read in the parameters that define this type. */ argtypetext = strchr (demangled_name, '(') + 1; p = argtypetext; while (*p) { if (*p == '(') { depth += 1; } else if (*p == ')') { depth -= 1; } else if (*p == ',' && depth == 0) { argcount += 1; } p += 1; } /* We need two more slots: one for the THIS pointer, and one for the NULL [...] or void [end of arglist]. */ argtypes = (struct type **) obstack_alloc (&TYPE_OBJFILE (type) -> type_obstack, (argcount+2) * sizeof (struct type *)); p = argtypetext; argtypes[0] = lookup_pointer_type (type); argcount = 1; if (*p != ')') /* () means no args, skip while */ { depth = 0; while (*p) { if (depth <= 0 && (*p == ',' || *p == ')')) { argtypes[argcount] = parse_and_eval_type (argtypetext, p - argtypetext); argcount += 1; argtypetext = p + 1; } if (*p == '(') { depth += 1; } else if (*p == ')') { depth -= 1; } p += 1; } } if (p[-2] != '.') /* ... */ { argtypes[argcount] = builtin_type_void; /* Ellist terminator */ } else { argtypes[argcount] = NULL; /* List terminator */ } free (demangled_name); f = TYPE_FN_FIELDLIST1 (type, i); TYPE_FN_FIELD_PHYSNAME (f, j) = mangled_name; /* Now update the old "stub" type into a real type. */ mtype = TYPE_FN_FIELD_TYPE (f, j); TYPE_DOMAIN_TYPE (mtype) = type; TYPE_ARG_TYPES (mtype) = argtypes; TYPE_FLAGS (mtype) &= ~TYPE_FLAG_STUB; TYPE_FN_FIELD_STUB (f, j) = 0; } const struct cplus_struct_type cplus_struct_default; void allocate_cplus_struct_type (type) struct type *type; { if (!HAVE_CPLUS_STRUCT (type)) { TYPE_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *) obstack_alloc (¤t_objfile -> type_obstack, sizeof (struct cplus_struct_type)); *(TYPE_CPLUS_SPECIFIC(type)) = cplus_struct_default; } } /* Helper function to initialize the standard scalar types. If NAME is non-NULL and OBJFILE is non-NULL, then we make a copy of the string pointed to by name in the type_obstack for that objfile, and initialize the type name to that copy. There are places (mipsread.c in particular, where init_type is called with a NULL value for NAME). */ struct type * init_type (code, length, flags, name, objfile) enum type_code code; int length; int flags; char *name; struct objfile *objfile; { register struct type *type; type = alloc_type (objfile); TYPE_CODE (type) = code; TYPE_LENGTH (type) = length; TYPE_FLAGS (type) |= flags; if ((name != NULL) && (objfile != NULL)) { TYPE_NAME (type) = obsavestring (name, strlen (name), &objfile -> type_obstack); } else { TYPE_NAME (type) = name; } /* C++ fancies. */ if (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION) { INIT_CPLUS_SPECIFIC (type); } return (type); } /* Look up a fundamental type for the specified objfile. May need to construct such a type if this is the first use. Some object file formats (ELF, COFF, etc) do not define fundamental types such as "int" or "double". Others (stabs for example), do define fundamental types. For the formats which don't provide fundamental types, gdb can create such types, using defaults reasonable for the current target machine. FIXME: Some compilers distinguish explicitly signed integral types (signed short, signed int, signed long) from "regular" integral types (short, int, long) in the debugging information. There is some dis- agreement as to how useful this feature is. In particular, gcc does not support this. Also, only some debugging formats allow the distinction to be passed on to a debugger. For now, we always just use "short", "int", or "long" as the type name, for both the implicit and explicitly signed types. This also makes life easier for the gdb test suite since we don't have to account for the differences in output depending upon what the compiler and debugging format support. We will probably have to re-examine the issue when gdb starts taking it's fundamental type information directly from the debugging information supplied by the compiler. fnf@cygnus.com */ struct type * lookup_fundamental_type (objfile, typeid) struct objfile *objfile; int typeid; { register struct type *type = NULL; register struct type **typep; register int nbytes; if (typeid < 0 || typeid >= FT_NUM_MEMBERS) { error ("internal error - invalid fundamental type id %d", typeid); } else { /* If this is the first time we */ if (objfile -> fundamental_types == NULL) { nbytes = FT_NUM_MEMBERS * sizeof (struct type *); objfile -> fundamental_types = (struct type **) obstack_alloc (&objfile -> type_obstack, nbytes); memset ((char *)objfile -> fundamental_types, 0, nbytes); } typep = objfile -> fundamental_types + typeid; if ((type = *typep) == NULL) { switch (typeid) { default: error ("internal error: unhandled type id %d", typeid); break; case FT_VOID: type = init_type (TYPE_CODE_VOID, TARGET_CHAR_BIT / TARGET_CHAR_BIT, 0, "void", objfile); break; case FT_BOOLEAN: type = init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT, TYPE_FLAG_UNSIGNED, "boolean", objfile); break; case FT_STRING: type = init_type (TYPE_CODE_PASCAL_ARRAY, TARGET_CHAR_BIT / TARGET_CHAR_BIT, 0, "string", objfile); break; case FT_CHAR: type = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT, 0, "char", objfile); break; case FT_SIGNED_CHAR: type = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT, TYPE_FLAG_SIGNED, "signed char", objfile); break; case FT_UNSIGNED_CHAR: type = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT, TYPE_FLAG_UNSIGNED, "unsigned char", objfile); break; case FT_SHORT: type = init_type (TYPE_CODE_INT, TARGET_SHORT_BIT / TARGET_CHAR_BIT, 0, "short", objfile); break; case FT_SIGNED_SHORT: type = init_type (TYPE_CODE_INT, TARGET_SHORT_BIT / TARGET_CHAR_BIT, TYPE_FLAG_SIGNED, "short", objfile); /* FIXME -fnf */ break; case FT_UNSIGNED_SHORT: type = init_type (TYPE_CODE_INT, TARGET_SHORT_BIT / TARGET_CHAR_BIT, TYPE_FLAG_UNSIGNED, "unsigned short", objfile); break; case FT_INTEGER: type = init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT, 0, "int", objfile); break; case FT_SIGNED_INTEGER: type = init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT, TYPE_FLAG_SIGNED, "int", objfile); /* FIXME -fnf */ break; case FT_UNSIGNED_INTEGER: type = init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT, TYPE_FLAG_UNSIGNED, "unsigned int", objfile); break; case FT_FIXED_DECIMAL: type = init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT, 0, "fixed decimal", objfile); break; case FT_LONG: type = init_type (TYPE_CODE_INT, TARGET_LONG_BIT / TARGET_CHAR_BIT, 0, "long", objfile); break; case FT_SIGNED_LONG: type = init_type (TYPE_CODE_INT, TARGET_LONG_BIT / TARGET_CHAR_BIT, TYPE_FLAG_SIGNED, "long", objfile); /* FIXME -fnf */ break; case FT_UNSIGNED_LONG: type = init_type (TYPE_CODE_INT, TARGET_LONG_BIT / TARGET_CHAR_BIT, TYPE_FLAG_UNSIGNED, "unsigned long", objfile); break; case FT_LONG_LONG: type = init_type (TYPE_CODE_INT, TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT, 0, "long long", objfile); break; case FT_SIGNED_LONG_LONG: type = init_type (TYPE_CODE_INT, TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT, TYPE_FLAG_SIGNED, "signed long long", objfile); break; case FT_UNSIGNED_LONG_LONG: type = init_type (TYPE_CODE_INT, TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT, TYPE_FLAG_UNSIGNED, "unsigned long long", objfile); break; case FT_FLOAT: type = init_type (TYPE_CODE_FLT, TARGET_FLOAT_BIT / TARGET_CHAR_BIT, 0, "float", objfile); break; case FT_DBL_PREC_FLOAT: type = init_type (TYPE_CODE_FLT, TARGET_DOUBLE_BIT / TARGET_CHAR_BIT, 0, "double", objfile); break; case FT_FLOAT_DECIMAL: type = init_type (TYPE_CODE_FLT, TARGET_DOUBLE_BIT / TARGET_CHAR_BIT, 0, "floating decimal", objfile); break; case FT_EXT_PREC_FLOAT: type = init_type (TYPE_CODE_FLT, TARGET_LONG_DOUBLE_BIT / TARGET_CHAR_BIT, 0, "long double", objfile); break; case FT_COMPLEX: type = init_type (TYPE_CODE_FLT, TARGET_COMPLEX_BIT / TARGET_CHAR_BIT, 0, "complex", objfile); break; case FT_DBL_PREC_COMPLEX: type = init_type (TYPE_CODE_FLT, TARGET_DOUBLE_COMPLEX_BIT / TARGET_CHAR_BIT, 0, "double complex", objfile); break; case FT_EXT_PREC_COMPLEX: type = init_type (TYPE_CODE_FLT, TARGET_DOUBLE_COMPLEX_BIT / TARGET_CHAR_BIT, 0, "long double complex", objfile); break; } /* Install the newly created type in the objfile's fundamental_types vector. */ *typep = type; } } return (type); } #if MAINTENANCE_CMDS static void print_bit_vector (bits, nbits) B_TYPE *bits; int nbits; { int bitno; for (bitno = 0; bitno < nbits; bitno++) { if ((bitno % 8) == 0) { puts_filtered (" "); } if (B_TST (bits, bitno)) { printf_filtered ("1"); } else { printf_filtered ("0"); } } } static void print_cplus_stuff (type, spaces) struct type *type; int spaces; { int bitno; printfi_filtered (spaces, "cplus_stuff: @ 0x%x\n", TYPE_CPLUS_SPECIFIC (type)); printfi_filtered (spaces, "n_baseclasses: %d\n", TYPE_N_BASECLASSES (type)); if (TYPE_N_BASECLASSES (type) > 0) { printfi_filtered (spaces, "virtual_field_bits: %d @ 0x%x:", TYPE_N_BASECLASSES (type), TYPE_FIELD_VIRTUAL_BITS (type)); print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type)); puts_filtered ("\n"); } if (TYPE_NFIELDS (type) > 0) { if (TYPE_FIELD_PRIVATE_BITS (type) != NULL) { printfi_filtered (spaces, "private_field_bits: %d @ 0x%x:", TYPE_NFIELDS (type), TYPE_FIELD_PRIVATE_BITS (type)); print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type), TYPE_NFIELDS (type)); puts_filtered ("\n"); } if (TYPE_FIELD_PROTECTED_BITS (type) != NULL) { printfi_filtered (spaces, "protected_field_bits: %d @ 0x%x:", TYPE_NFIELDS (type), TYPE_FIELD_PROTECTED_BITS (type)); print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type), TYPE_NFIELDS (type)); puts_filtered ("\n"); } } } void recursive_dump_type (type, spaces) struct type *type; int spaces; { int idx; printfi_filtered (spaces, "type node @ 0x%x\n", type); printfi_filtered (spaces, "name: @ 0x%x '%s'\n", TYPE_NAME (type), TYPE_NAME (type) ? TYPE_NAME (type) : ""); printfi_filtered (spaces, "code: 0x%x ", TYPE_CODE (type)); switch (TYPE_CODE (type)) { case TYPE_CODE_UNDEF: printf_filtered ("TYPE_CODE_UNDEF"); break; case TYPE_CODE_PTR: printf_filtered ("TYPE_CODE_PTR"); break; case TYPE_CODE_ARRAY: printf_filtered ("TYPE_CODE_ARRAY"); break; case TYPE_CODE_STRUCT: printf_filtered ("TYPE_CODE_STRUCT"); break; case TYPE_CODE_UNION: printf_filtered ("TYPE_CODE_UNION"); break; case TYPE_CODE_ENUM: printf_filtered ("TYPE_CODE_ENUM"); break; case TYPE_CODE_FUNC: printf_filtered ("TYPE_CODE_FUNC"); break; case TYPE_CODE_INT: printf_filtered ("TYPE_CODE_INT"); break; case TYPE_CODE_FLT: printf_filtered ("TYPE_CODE_FLT"); break; case TYPE_CODE_VOID: printf_filtered ("TYPE_CODE_VOID"); break; case TYPE_CODE_SET: printf_filtered ("TYPE_CODE_SET"); break; case TYPE_CODE_RANGE: printf_filtered ("TYPE_CODE_RANGE"); break; case TYPE_CODE_PASCAL_ARRAY: printf_filtered ("TYPE_CODE_PASCAL_ARRAY"); break; case TYPE_CODE_ERROR: printf_filtered ("TYPE_CODE_ERROR"); break; case TYPE_CODE_MEMBER: printf_filtered ("TYPE_CODE_MEMBER"); break; case TYPE_CODE_METHOD: printf_filtered ("TYPE_CODE_METHOD"); break; case TYPE_CODE_REF: printf_filtered ("TYPE_CODE_REF"); break; case TYPE_CODE_CHAR: printf_filtered ("TYPE_CODE_CHAR"); break; case TYPE_CODE_BOOL: printf_filtered ("TYPE_CODE_BOOL"); break; default: printf_filtered (""); break; } puts_filtered ("\n"); printfi_filtered (spaces, "length: %d\n", TYPE_LENGTH (type)); printfi_filtered (spaces, "objfile: @ 0x%x\n", TYPE_OBJFILE (type)); printfi_filtered (spaces, "target_type: @ 0x%x\n", TYPE_TARGET_TYPE (type)); if (TYPE_TARGET_TYPE (type) != NULL) { recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2); } printfi_filtered (spaces, "pointer_type: @ 0x%x\n", TYPE_POINTER_TYPE (type)); printfi_filtered (spaces, "reference_type: @ 0x%x\n", TYPE_REFERENCE_TYPE (type)); printfi_filtered (spaces, "function_type: @ 0x%x\n", TYPE_FUNCTION_TYPE (type)); printfi_filtered (spaces, "flags: 0x%x", TYPE_FLAGS (type)); if (TYPE_FLAGS (type) & TYPE_FLAG_UNSIGNED) { puts_filtered (" TYPE_FLAG_UNSIGNED"); } if (TYPE_FLAGS (type) & TYPE_FLAG_SIGNED) { puts_filtered (" TYPE_FLAG_SIGNED"); } if (TYPE_FLAGS (type) & TYPE_FLAG_STUB) { puts_filtered (" TYPE_FLAG_STUB"); } puts_filtered ("\n"); printfi_filtered (spaces, "nfields: %d @ 0x%x\n", TYPE_NFIELDS (type), TYPE_FIELDS (type)); for (idx = 0; idx < TYPE_NFIELDS (type); idx++) { printfi_filtered (spaces + 2, "[%d] bitpos %d bitsize %d type 0x%x name 0x%x '%s'\n", idx, TYPE_FIELD_BITPOS (type, idx), TYPE_FIELD_BITSIZE (type, idx), TYPE_FIELD_TYPE (type, idx), TYPE_FIELD_NAME (type, idx), TYPE_FIELD_NAME (type, idx) != NULL ? TYPE_FIELD_NAME (type, idx) : ""); if (TYPE_FIELD_TYPE (type, idx) != NULL) { recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4); } } printfi_filtered (spaces, "vptr_basetype: @ 0x%x\n", TYPE_VPTR_BASETYPE (type)); if (TYPE_VPTR_BASETYPE (type) != NULL) { recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2); } printfi_filtered (spaces, "vptr_fieldno: %d\n", TYPE_VPTR_FIELDNO (type)); switch (TYPE_CODE (type)) { case TYPE_CODE_METHOD: case TYPE_CODE_FUNC: printfi_filtered (spaces, "arg_types: @ 0x%x\n", TYPE_ARG_TYPES (type)); break; case TYPE_CODE_STRUCT: print_cplus_stuff (type, spaces); break; } } #endif /* MAINTENANCE_CMDS */