/* tc-riscv.c -- RISC-V assembler
Copyright (C) 2011-2018 Free Software Foundation, Inc.
Contributed by Andrew Waterman (andrew@sifive.com).
Based on MIPS target.
This file is part of GAS.
GAS is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GAS is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; see the file COPYING3. If not,
see . */
#include "as.h"
#include "config.h"
#include "subsegs.h"
#include "safe-ctype.h"
#include "itbl-ops.h"
#include "dwarf2dbg.h"
#include "dw2gencfi.h"
#include "struc-symbol.h"
#include "elf/riscv.h"
#include "opcode/riscv.h"
#include
/* Information about an instruction, including its format, operands
and fixups. */
struct riscv_cl_insn
{
/* The opcode's entry in riscv_opcodes. */
const struct riscv_opcode *insn_mo;
/* The encoded instruction bits. */
insn_t insn_opcode;
/* The frag that contains the instruction. */
struct frag *frag;
/* The offset into FRAG of the first instruction byte. */
long where;
/* The relocs associated with the instruction, if any. */
fixS *fixp;
};
#ifndef DEFAULT_ARCH
#define DEFAULT_ARCH "riscv64"
#endif
static const char default_arch[] = DEFAULT_ARCH;
static unsigned xlen = 0; /* width of an x-register */
static unsigned abi_xlen = 0; /* width of a pointer in the ABI */
static bfd_boolean rve_abi = FALSE;
#define LOAD_ADDRESS_INSN (abi_xlen == 64 ? "ld" : "lw")
#define ADD32_INSN (xlen == 64 ? "addiw" : "addi")
static unsigned elf_flags = 0;
/* This is the set of options which the .option pseudo-op may modify. */
struct riscv_set_options
{
int pic; /* Generate position-independent code. */
int rvc; /* Generate RVC code. */
int rve; /* Generate RVE code. */
int relax; /* Emit relocs the linker is allowed to relax. */
};
static struct riscv_set_options riscv_opts =
{
0, /* pic */
0, /* rvc */
0, /* rve */
1, /* relax */
};
static void
riscv_set_rvc (bfd_boolean rvc_value)
{
if (rvc_value)
elf_flags |= EF_RISCV_RVC;
riscv_opts.rvc = rvc_value;
}
static void
riscv_set_rve (bfd_boolean rve_value)
{
riscv_opts.rve = rve_value;
}
struct riscv_subset
{
const char *name;
struct riscv_subset *next;
};
static struct riscv_subset *riscv_subsets;
static bfd_boolean
riscv_subset_supports (unsigned xlen_required, const char *feature)
{
struct riscv_subset *s;
if (xlen_required && xlen != xlen_required)
return FALSE;
for (s = riscv_subsets; s != NULL; s = s->next)
if (strcasecmp (s->name, feature) == 0)
return TRUE;
return FALSE;
}
static bfd_boolean
riscv_multi_subset_supports (unsigned xlen_required, const char *features[])
{
unsigned i = 0;
bfd_boolean supported = TRUE;
for (;features[i]; ++i)
supported = supported && riscv_subset_supports (xlen_required, features[i]);
return supported;
}
static void
riscv_clear_subsets (void)
{
while (riscv_subsets != NULL)
{
struct riscv_subset *next = riscv_subsets->next;
free ((void *) riscv_subsets->name);
free (riscv_subsets);
riscv_subsets = next;
}
}
static void
riscv_add_subset (const char *subset)
{
struct riscv_subset *s = xmalloc (sizeof *s);
s->name = xstrdup (subset);
s->next = riscv_subsets;
riscv_subsets = s;
}
/* Set which ISA and extensions are available. */
static void
riscv_set_arch (const char *s)
{
const char *all_subsets = "imafdqc";
char *extension = NULL;
const char *p = s;
riscv_clear_subsets();
if (strncmp (p, "rv32", 4) == 0)
{
xlen = 32;
p += 4;
}
else if (strncmp (p, "rv64", 4) == 0)
{
xlen = 64;
p += 4;
}
else
as_fatal ("-march=%s: ISA string must begin with rv32 or rv64", s);
switch (*p)
{
case 'i':
break;
case 'e':
p++;
riscv_add_subset ("e");
riscv_add_subset ("i");
if (xlen > 32)
as_fatal ("-march=%s: rv%de is not a valid base ISA", s, xlen);
break;
case 'g':
p++;
for ( ; *all_subsets != 'q'; all_subsets++)
{
const char subset[] = {*all_subsets, '\0'};
riscv_add_subset (subset);
}
break;
default:
as_fatal ("-march=%s: first ISA subset must be `e', `i' or `g'", s);
}
while (*p)
{
if (*p == 'x')
{
char *subset = xstrdup (p);
char *q = subset;
while (*++q != '\0' && *q != '_')
;
*q = '\0';
if (extension)
as_fatal ("-march=%s: only one non-standard extension is supported"
" (found `%s' and `%s')", s, extension, subset);
extension = subset;
riscv_add_subset (subset);
p += strlen (subset);
}
else if (*p == '_')
p++;
else if ((all_subsets = strchr (all_subsets, *p)) != NULL)
{
const char subset[] = {*p, 0};
riscv_add_subset (subset);
all_subsets++;
p++;
}
else
as_fatal ("-march=%s: unsupported ISA subset `%c'", s, *p);
}
if (riscv_subset_supports (0, "e") && riscv_subset_supports (0, "f"))
as_fatal ("-march=%s: rv32e does not support the `f' extension", s);
if (riscv_subset_supports (0, "d") && !riscv_subset_supports (0, "f"))
as_fatal ("-march=%s: `d' extension requires `f' extension", s);
if (riscv_subset_supports (0, "q") && !riscv_subset_supports (0, "d"))
as_fatal ("-march=%s: `q' extension requires `d' extension", s);
if (riscv_subset_supports (0, "q") && xlen < 64)
as_fatal ("-march=%s: rv32 does not support the `q' extension", s);
free (extension);
}
/* Handle of the OPCODE hash table. */
static struct hash_control *op_hash = NULL;
/* Handle of the type of .insn hash table. */
static struct hash_control *insn_type_hash = NULL;
/* This array holds the chars that always start a comment. If the
pre-processor is disabled, these aren't very useful */
const char comment_chars[] = "#";
/* This array holds the chars that only start a comment at the beginning of
a line. If the line seems to have the form '# 123 filename'
.line and .file directives will appear in the pre-processed output */
/* Note that input_file.c hand checks for '#' at the beginning of the
first line of the input file. This is because the compiler outputs
#NO_APP at the beginning of its output. */
/* Also note that C style comments are always supported. */
const char line_comment_chars[] = "#";
/* This array holds machine specific line separator characters. */
const char line_separator_chars[] = ";";
/* Chars that can be used to separate mant from exp in floating point nums */
const char EXP_CHARS[] = "eE";
/* Chars that mean this number is a floating point constant */
/* As in 0f12.456 */
/* or 0d1.2345e12 */
const char FLT_CHARS[] = "rRsSfFdDxXpP";
/* Macros for encoding relaxation state for RVC branches and far jumps. */
#define RELAX_BRANCH_ENCODE(uncond, rvc, length) \
((relax_substateT) \
(0xc0000000 \
| ((uncond) ? 1 : 0) \
| ((rvc) ? 2 : 0) \
| ((length) << 2)))
#define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000)
#define RELAX_BRANCH_LENGTH(i) (((i) >> 2) & 0xF)
#define RELAX_BRANCH_RVC(i) (((i) & 2) != 0)
#define RELAX_BRANCH_UNCOND(i) (((i) & 1) != 0)
/* Is the given value a sign-extended 32-bit value? */
#define IS_SEXT_32BIT_NUM(x) \
(((x) &~ (offsetT) 0x7fffffff) == 0 \
|| (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
/* Is the given value a zero-extended 32-bit value? Or a negated one? */
#define IS_ZEXT_32BIT_NUM(x) \
(((x) &~ (offsetT) 0xffffffff) == 0 \
|| (((x) &~ (offsetT) 0xffffffff) == ~ (offsetT) 0xffffffff))
/* Change INSN's opcode so that the operand given by FIELD has value VALUE.
INSN is a riscv_cl_insn structure and VALUE is evaluated exactly once. */
#define INSERT_OPERAND(FIELD, INSN, VALUE) \
INSERT_BITS ((INSN).insn_opcode, VALUE, OP_MASK_##FIELD, OP_SH_##FIELD)
/* Determine if an instruction matches an opcode. */
#define OPCODE_MATCHES(OPCODE, OP) \
(((OPCODE) & MASK_##OP) == MATCH_##OP)
static char *expr_end;
/* The default target format to use. */
const char *
riscv_target_format (void)
{
return xlen == 64 ? "elf64-littleriscv" : "elf32-littleriscv";
}
/* Return the length of instruction INSN. */
static inline unsigned int
insn_length (const struct riscv_cl_insn *insn)
{
return riscv_insn_length (insn->insn_opcode);
}
/* Initialise INSN from opcode entry MO. Leave its position unspecified. */
static void
create_insn (struct riscv_cl_insn *insn, const struct riscv_opcode *mo)
{
insn->insn_mo = mo;
insn->insn_opcode = mo->match;
insn->frag = NULL;
insn->where = 0;
insn->fixp = NULL;
}
/* Install INSN at the location specified by its "frag" and "where" fields. */
static void
install_insn (const struct riscv_cl_insn *insn)
{
char *f = insn->frag->fr_literal + insn->where;
md_number_to_chars (f, insn->insn_opcode, insn_length (insn));
}
/* Move INSN to offset WHERE in FRAG. Adjust the fixups accordingly
and install the opcode in the new location. */
static void
move_insn (struct riscv_cl_insn *insn, fragS *frag, long where)
{
insn->frag = frag;
insn->where = where;
if (insn->fixp != NULL)
{
insn->fixp->fx_frag = frag;
insn->fixp->fx_where = where;
}
install_insn (insn);
}
/* Add INSN to the end of the output. */
static void
add_fixed_insn (struct riscv_cl_insn *insn)
{
char *f = frag_more (insn_length (insn));
move_insn (insn, frag_now, f - frag_now->fr_literal);
}
static void
add_relaxed_insn (struct riscv_cl_insn *insn, int max_chars, int var,
relax_substateT subtype, symbolS *symbol, offsetT offset)
{
frag_grow (max_chars);
move_insn (insn, frag_now, frag_more (0) - frag_now->fr_literal);
frag_var (rs_machine_dependent, max_chars, var,
subtype, symbol, offset, NULL);
}
/* Compute the length of a branch sequence, and adjust the stored length
accordingly. If FRAGP is NULL, the worst-case length is returned. */
static unsigned
relaxed_branch_length (fragS *fragp, asection *sec, int update)
{
int jump, rvc, length = 8;
if (!fragp)
return length;
jump = RELAX_BRANCH_UNCOND (fragp->fr_subtype);
rvc = RELAX_BRANCH_RVC (fragp->fr_subtype);
length = RELAX_BRANCH_LENGTH (fragp->fr_subtype);
/* Assume jumps are in range; the linker will catch any that aren't. */
length = jump ? 4 : 8;
if (fragp->fr_symbol != NULL
&& S_IS_DEFINED (fragp->fr_symbol)
&& !S_IS_WEAK (fragp->fr_symbol)
&& sec == S_GET_SEGMENT (fragp->fr_symbol))
{
offsetT val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
bfd_vma rvc_range = jump ? RVC_JUMP_REACH : RVC_BRANCH_REACH;
val -= fragp->fr_address + fragp->fr_fix;
if (rvc && (bfd_vma)(val + rvc_range/2) < rvc_range)
length = 2;
else if ((bfd_vma)(val + RISCV_BRANCH_REACH/2) < RISCV_BRANCH_REACH)
length = 4;
else if (!jump && rvc)
length = 6;
}
if (update)
fragp->fr_subtype = RELAX_BRANCH_ENCODE (jump, rvc, length);
return length;
}
/* Information about an opcode name, mnemonics and its value. */
struct opcode_name_t
{
const char *name;
unsigned int val;
};
/* List for all supported opcode name. */
static const struct opcode_name_t opcode_name_list[] =
{
{"C0", 0x0},
{"C1", 0x1},
{"C2", 0x2},
{"LOAD", 0x03},
{"LOAD_FP", 0x07},
{"CUSTOM_0", 0x0b},
{"MISC_MEM", 0x0f},
{"OP_IMM", 0x13},
{"AUIPC", 0x17},
{"OP_IMM_32", 0x1b},
/* 48b 0x1f. */
{"STORE", 0x23},
{"STORE_FP", 0x27},
{"CUSTOM_1", 0x2b},
{"AMO", 0x2f},
{"OP", 0x33},
{"LUI", 0x37},
{"OP_32", 0x3b},
/* 64b 0x3f. */
{"MADD", 0x43},
{"MSUB", 0x47},
{"NMADD", 0x4f},
{"NMSUB", 0x4b},
{"OP_FP", 0x53},
/*reserved 0x57. */
{"CUSTOM_2", 0x5b},
/* 48b 0x5f. */
{"BRANCH", 0x63},
{"JALR", 0x67},
/*reserved 0x5b. */
{"JAL", 0x6f},
{"SYSTEM", 0x73},
/*reserved 0x77. */
{"CUSTOM_3", 0x7b},
/* >80b 0x7f. */
{NULL, 0}
};
/* Hash table for lookup opcode name. */
static struct hash_control *opcode_names_hash = NULL;
/* Initialization for hash table of opcode name. */
static void
init_opcode_names_hash (void)
{
const char *retval;
const struct opcode_name_t *opcode;
for (opcode = &opcode_name_list[0]; opcode->name != NULL; ++opcode)
{
retval = hash_insert (opcode_names_hash, opcode->name, (void *)opcode);
if (retval != NULL)
as_fatal (_("internal error: can't hash `%s': %s"),
opcode->name, retval);
}
}
/* Find `s` is a valid opcode name or not,
return the opcode name info if found. */
static const struct opcode_name_t *
opcode_name_lookup (char **s)
{
char *e;
char save_c;
struct opcode_name_t *o;
/* Find end of name. */
e = *s;
if (is_name_beginner (*e))
++e;
while (is_part_of_name (*e))
++e;
/* Terminate name. */
save_c = *e;
*e = '\0';
o = (struct opcode_name_t *) hash_find (opcode_names_hash, *s);
/* Advance to next token if one was recognized. */
if (o)
*s = e;
*e = save_c;
expr_end = e;
return o;
}
struct regname
{
const char *name;
unsigned int num;
};
enum reg_class
{
RCLASS_GPR,
RCLASS_FPR,
RCLASS_CSR,
RCLASS_MAX
};
static struct hash_control *reg_names_hash = NULL;
#define ENCODE_REG_HASH(cls, n) \
((void *)(uintptr_t)((n) * RCLASS_MAX + (cls) + 1))
#define DECODE_REG_CLASS(hash) (((uintptr_t)(hash) - 1) % RCLASS_MAX)
#define DECODE_REG_NUM(hash) (((uintptr_t)(hash) - 1) / RCLASS_MAX)
static void
hash_reg_name (enum reg_class class, const char *name, unsigned n)
{
void *hash = ENCODE_REG_HASH (class, n);
const char *retval = hash_insert (reg_names_hash, name, hash);
if (retval != NULL)
as_fatal (_("internal error: can't hash `%s': %s"), name, retval);
}
static void
hash_reg_names (enum reg_class class, const char * const names[], unsigned n)
{
unsigned i;
for (i = 0; i < n; i++)
hash_reg_name (class, names[i], i);
}
static unsigned int
reg_lookup_internal (const char *s, enum reg_class class)
{
struct regname *r = (struct regname *) hash_find (reg_names_hash, s);
if (r == NULL || DECODE_REG_CLASS (r) != class)
return -1;
if (riscv_opts.rve && class == RCLASS_GPR && DECODE_REG_NUM (r) > 15)
return -1;
return DECODE_REG_NUM (r);
}
static bfd_boolean
reg_lookup (char **s, enum reg_class class, unsigned int *regnop)
{
char *e;
char save_c;
int reg = -1;
/* Find end of name. */
e = *s;
if (is_name_beginner (*e))
++e;
while (is_part_of_name (*e))
++e;
/* Terminate name. */
save_c = *e;
*e = '\0';
/* Look for the register. Advance to next token if one was recognized. */
if ((reg = reg_lookup_internal (*s, class)) >= 0)
*s = e;
*e = save_c;
if (regnop)
*regnop = reg;
return reg >= 0;
}
static bfd_boolean
arg_lookup (char **s, const char *const *array, size_t size, unsigned *regnop)
{
const char *p = strchr (*s, ',');
size_t i, len = p ? (size_t)(p - *s) : strlen (*s);
if (len == 0)
return FALSE;
for (i = 0; i < size; i++)
if (array[i] != NULL && strncmp (array[i], *s, len) == 0)
{
*regnop = i;
*s += len;
return TRUE;
}
return FALSE;
}
/* For consistency checking, verify that all bits are specified either
by the match/mask part of the instruction definition, or by the
operand list.
`length` could be 0, 4 or 8, 0 for auto detection. */
static bfd_boolean
validate_riscv_insn (const struct riscv_opcode *opc, int length)
{
const char *p = opc->args;
char c;
insn_t used_bits = opc->mask;
int insn_width;
insn_t required_bits;
if (length == 0)
insn_width = 8 * riscv_insn_length (opc->match);
else
insn_width = 8 * length;
required_bits = ~0ULL >> (64 - insn_width);
if ((used_bits & opc->match) != (opc->match & required_bits))
{
as_bad (_("internal: bad RISC-V opcode (mask error): %s %s"),
opc->name, opc->args);
return FALSE;
}
#define USE_BITS(mask,shift) (used_bits |= ((insn_t)(mask) << (shift)))
while (*p)
switch (c = *p++)
{
case 'C': /* RVC */
switch (c = *p++)
{
case 'a': used_bits |= ENCODE_RVC_J_IMM (-1U); break;
case 'c': break; /* RS1, constrained to equal sp */
case 'i': used_bits |= ENCODE_RVC_SIMM3(-1U); break;
case 'j': used_bits |= ENCODE_RVC_IMM (-1U); break;
case 'o': used_bits |= ENCODE_RVC_IMM (-1U); break;
case 'k': used_bits |= ENCODE_RVC_LW_IMM (-1U); break;
case 'l': used_bits |= ENCODE_RVC_LD_IMM (-1U); break;
case 'm': used_bits |= ENCODE_RVC_LWSP_IMM (-1U); break;
case 'n': used_bits |= ENCODE_RVC_LDSP_IMM (-1U); break;
case 'p': used_bits |= ENCODE_RVC_B_IMM (-1U); break;
case 's': USE_BITS (OP_MASK_CRS1S, OP_SH_CRS1S); break;
case 't': USE_BITS (OP_MASK_CRS2S, OP_SH_CRS2S); break;
case 'u': used_bits |= ENCODE_RVC_IMM (-1U); break;
case 'v': used_bits |= ENCODE_RVC_IMM (-1U); break;
case 'w': break; /* RS1S, constrained to equal RD */
case 'x': break; /* RS2S, constrained to equal RD */
case 'K': used_bits |= ENCODE_RVC_ADDI4SPN_IMM (-1U); break;
case 'L': used_bits |= ENCODE_RVC_ADDI16SP_IMM (-1U); break;
case 'M': used_bits |= ENCODE_RVC_SWSP_IMM (-1U); break;
case 'N': used_bits |= ENCODE_RVC_SDSP_IMM (-1U); break;
case 'U': break; /* RS1, constrained to equal RD */
case 'V': USE_BITS (OP_MASK_CRS2, OP_SH_CRS2); break;
case '<': used_bits |= ENCODE_RVC_IMM (-1U); break;
case '>': used_bits |= ENCODE_RVC_IMM (-1U); break;
case '8': used_bits |= ENCODE_RVC_UIMM8 (-1U); break;
case 'S': USE_BITS (OP_MASK_CRS1S, OP_SH_CRS1S); break;
case 'T': USE_BITS (OP_MASK_CRS2, OP_SH_CRS2); break;
case 'D': USE_BITS (OP_MASK_CRS2S, OP_SH_CRS2S); break;
case 'F': /* funct */
switch (c = *p++)
{
case '4': USE_BITS (OP_MASK_CFUNCT4, OP_SH_CFUNCT4); break;
case '3': USE_BITS (OP_MASK_CFUNCT3, OP_SH_CFUNCT3); break;
default:
as_bad (_("internal: bad RISC-V opcode"
" (unknown operand type `CF%c'): %s %s"),
c, opc->name, opc->args);
return FALSE;
}
break;
default:
as_bad (_("internal: bad RISC-V opcode (unknown operand type `C%c'): %s %s"),
c, opc->name, opc->args);
return FALSE;
}
break;
case ',': break;
case '(': break;
case ')': break;
case '<': USE_BITS (OP_MASK_SHAMTW, OP_SH_SHAMTW); break;
case '>': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
case 'A': break;
case 'D': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
case 'Z': USE_BITS (OP_MASK_RS1, OP_SH_RS1); break;
case 'E': USE_BITS (OP_MASK_CSR, OP_SH_CSR); break;
case 'I': break;
case 'R': USE_BITS (OP_MASK_RS3, OP_SH_RS3); break;
case 'S': USE_BITS (OP_MASK_RS1, OP_SH_RS1); break;
case 'U': USE_BITS (OP_MASK_RS1, OP_SH_RS1); /* fallthru */
case 'T': USE_BITS (OP_MASK_RS2, OP_SH_RS2); break;
case 'd': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
case 'm': USE_BITS (OP_MASK_RM, OP_SH_RM); break;
case 's': USE_BITS (OP_MASK_RS1, OP_SH_RS1); break;
case 't': USE_BITS (OP_MASK_RS2, OP_SH_RS2); break;
case 'r': USE_BITS (OP_MASK_RS3, OP_SH_RS3); break;
case 'P': USE_BITS (OP_MASK_PRED, OP_SH_PRED); break;
case 'Q': USE_BITS (OP_MASK_SUCC, OP_SH_SUCC); break;
case 'o':
case 'j': used_bits |= ENCODE_ITYPE_IMM (-1U); break;
case 'a': used_bits |= ENCODE_UJTYPE_IMM (-1U); break;
case 'p': used_bits |= ENCODE_SBTYPE_IMM (-1U); break;
case 'q': used_bits |= ENCODE_STYPE_IMM (-1U); break;
case 'u': used_bits |= ENCODE_UTYPE_IMM (-1U); break;
case 'z': break;
case '[': break;
case ']': break;
case '0': break;
case 'F': /* funct */
switch (c = *p++)
{
case '7': USE_BITS (OP_MASK_FUNCT7, OP_SH_FUNCT7); break;
case '3': USE_BITS (OP_MASK_FUNCT3, OP_SH_FUNCT3); break;
case '2': USE_BITS (OP_MASK_FUNCT2, OP_SH_FUNCT2); break;
default:
as_bad (_("internal: bad RISC-V opcode"
" (unknown operand type `F%c'): %s %s"),
c, opc->name, opc->args);
return FALSE;
}
break;
case 'O': /* opcode */
switch (c = *p++)
{
case '4': USE_BITS (OP_MASK_OP, OP_SH_OP); break;
case '2': USE_BITS (OP_MASK_OP2, OP_SH_OP2); break;
default:
as_bad (_("internal: bad RISC-V opcode"
" (unknown operand type `F%c'): %s %s"),
c, opc->name, opc->args);
return FALSE;
}
break;
default:
as_bad (_("internal: bad RISC-V opcode "
"(unknown operand type `%c'): %s %s"),
c, opc->name, opc->args);
return FALSE;
}
#undef USE_BITS
if (used_bits != required_bits)
{
as_bad (_("internal: bad RISC-V opcode (bits 0x%lx undefined): %s %s"),
~(unsigned long)(used_bits & required_bits),
opc->name, opc->args);
return FALSE;
}
return TRUE;
}
struct percent_op_match
{
const char *str;
bfd_reloc_code_real_type reloc;
};
/* Common hash table initialization function for
instruction and .insn directive. */
static struct hash_control *
init_opcode_hash (const struct riscv_opcode *opcodes,
bfd_boolean insn_directive_p)
{
int i = 0;
int length;
struct hash_control *hash = hash_new ();
while (opcodes[i].name)
{
const char *name = opcodes[i].name;
const char *hash_error =
hash_insert (hash, name, (void *) &opcodes[i]);
if (hash_error)
{
fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
opcodes[i].name, hash_error);
/* Probably a memory allocation problem? Give up now. */
as_fatal (_("Broken assembler. No assembly attempted."));
}
do
{
if (opcodes[i].pinfo != INSN_MACRO)
{
if (insn_directive_p)
length = ((name[0] == 'c') ? 2 : 4);
else
length = 0; /* Let assembler determine the length. */
if (!validate_riscv_insn (&opcodes[i], length))
as_fatal (_("Broken assembler. No assembly attempted."));
}
else
gas_assert (!insn_directive_p);
++i;
}
while (opcodes[i].name && !strcmp (opcodes[i].name, name));
}
return hash;
}
/* This function is called once, at assembler startup time. It should set up
all the tables, etc. that the MD part of the assembler will need. */
void
md_begin (void)
{
unsigned long mach = xlen == 64 ? bfd_mach_riscv64 : bfd_mach_riscv32;
if (! bfd_set_arch_mach (stdoutput, bfd_arch_riscv, mach))
as_warn (_("Could not set architecture and machine"));
op_hash = init_opcode_hash (riscv_opcodes, FALSE);
insn_type_hash = init_opcode_hash (riscv_insn_types, TRUE);
reg_names_hash = hash_new ();
hash_reg_names (RCLASS_GPR, riscv_gpr_names_numeric, NGPR);
hash_reg_names (RCLASS_GPR, riscv_gpr_names_abi, NGPR);
hash_reg_names (RCLASS_FPR, riscv_fpr_names_numeric, NFPR);
hash_reg_names (RCLASS_FPR, riscv_fpr_names_abi, NFPR);
/* Add "fp" as an alias for "s0". */
hash_reg_name (RCLASS_GPR, "fp", 8);
opcode_names_hash = hash_new ();
init_opcode_names_hash ();
#define DECLARE_CSR(name, num) hash_reg_name (RCLASS_CSR, #name, num);
#define DECLARE_CSR_ALIAS(name, num) DECLARE_CSR(name, num);
#include "opcode/riscv-opc.h"
#undef DECLARE_CSR
/* Set the default alignment for the text section. */
record_alignment (text_section, riscv_opts.rvc ? 1 : 2);
}
static insn_t
riscv_apply_const_reloc (bfd_reloc_code_real_type reloc_type, bfd_vma value)
{
switch (reloc_type)
{
case BFD_RELOC_32:
return value;
case BFD_RELOC_RISCV_HI20:
return ENCODE_UTYPE_IMM (RISCV_CONST_HIGH_PART (value));
case BFD_RELOC_RISCV_LO12_S:
return ENCODE_STYPE_IMM (value);
case BFD_RELOC_RISCV_LO12_I:
return ENCODE_ITYPE_IMM (value);
default:
abort ();
}
}
/* Output an instruction. IP is the instruction information.
ADDRESS_EXPR is an operand of the instruction to be used with
RELOC_TYPE. */
static void
append_insn (struct riscv_cl_insn *ip, expressionS *address_expr,
bfd_reloc_code_real_type reloc_type)
{
dwarf2_emit_insn (0);
if (reloc_type != BFD_RELOC_UNUSED)
{
reloc_howto_type *howto;
gas_assert (address_expr);
if (reloc_type == BFD_RELOC_12_PCREL
|| reloc_type == BFD_RELOC_RISCV_JMP)
{
int j = reloc_type == BFD_RELOC_RISCV_JMP;
int best_case = riscv_insn_length (ip->insn_opcode);
unsigned worst_case = relaxed_branch_length (NULL, NULL, 0);
add_relaxed_insn (ip, worst_case, best_case,
RELAX_BRANCH_ENCODE (j, best_case == 2, worst_case),
address_expr->X_add_symbol,
address_expr->X_add_number);
return;
}
else
{
howto = bfd_reloc_type_lookup (stdoutput, reloc_type);
if (howto == NULL)
as_bad (_("Unsupported RISC-V relocation number %d"), reloc_type);
ip->fixp = fix_new_exp (ip->frag, ip->where,
bfd_get_reloc_size (howto),
address_expr, FALSE, reloc_type);
ip->fixp->fx_tcbit = riscv_opts.relax;
}
}
add_fixed_insn (ip);
install_insn (ip);
/* We need to start a new frag after any instruction that can be
optimized away or compressed by the linker during relaxation, to prevent
the assembler from computing static offsets across such an instruction.
This is necessary to get correct EH info. */
if (reloc_type == BFD_RELOC_RISCV_CALL
|| reloc_type == BFD_RELOC_RISCV_CALL_PLT
|| reloc_type == BFD_RELOC_RISCV_HI20
|| reloc_type == BFD_RELOC_RISCV_PCREL_HI20
|| reloc_type == BFD_RELOC_RISCV_TPREL_HI20
|| reloc_type == BFD_RELOC_RISCV_TPREL_ADD)
{
frag_wane (frag_now);
frag_new (0);
}
}
/* Build an instruction created by a macro expansion. This is passed
a pointer to the count of instructions created so far, an
expression, the name of the instruction to build, an operand format
string, and corresponding arguments. */
static void
macro_build (expressionS *ep, const char *name, const char *fmt, ...)
{
const struct riscv_opcode *mo;
struct riscv_cl_insn insn;
bfd_reloc_code_real_type r;
va_list args;
va_start (args, fmt);
r = BFD_RELOC_UNUSED;
mo = (struct riscv_opcode *) hash_find (op_hash, name);
gas_assert (mo);
/* Find a non-RVC variant of the instruction. append_insn will compress
it if possible. */
while (riscv_insn_length (mo->match) < 4)
mo++;
gas_assert (strcmp (name, mo->name) == 0);
create_insn (&insn, mo);
for (;;)
{
switch (*fmt++)
{
case 'd':
INSERT_OPERAND (RD, insn, va_arg (args, int));
continue;
case 's':
INSERT_OPERAND (RS1, insn, va_arg (args, int));
continue;
case 't':
INSERT_OPERAND (RS2, insn, va_arg (args, int));
continue;
case '>':
INSERT_OPERAND (SHAMT, insn, va_arg (args, int));
continue;
case 'j':
case 'u':
case 'q':
gas_assert (ep != NULL);
r = va_arg (args, int);
continue;
case '\0':
break;
case ',':
continue;
default:
as_fatal (_("internal error: invalid macro"));
}
break;
}
va_end (args);
gas_assert (r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
append_insn (&insn, ep, r);
}
/* Sign-extend 32-bit mode constants that have bit 31 set and all higher bits
unset. */
static void
normalize_constant_expr (expressionS *ex)
{
if (xlen > 32)
return;
if ((ex->X_op == O_constant || ex->X_op == O_symbol)
&& IS_ZEXT_32BIT_NUM (ex->X_add_number))
ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
- 0x80000000);
}
/* Fail if an expression EX is not a constant. IP is the instruction using EX.
MAYBE_CSR is true if the symbol may be an unrecognized CSR name. */
static void
check_absolute_expr (struct riscv_cl_insn *ip, expressionS *ex,
bfd_boolean maybe_csr)
{
if (ex->X_op == O_big)
as_bad (_("unsupported large constant"));
else if (maybe_csr && ex->X_op == O_symbol)
as_bad (_("unknown CSR `%s'"),
S_GET_NAME (ex->X_add_symbol));
else if (ex->X_op != O_constant)
as_bad (_("Instruction %s requires absolute expression"),
ip->insn_mo->name);
normalize_constant_expr (ex);
}
static symbolS *
make_internal_label (void)
{
return (symbolS *) local_symbol_make (FAKE_LABEL_NAME, now_seg,
(valueT) frag_now_fix (), frag_now);
}
/* Load an entry from the GOT. */
static void
pcrel_access (int destreg, int tempreg, expressionS *ep,
const char *lo_insn, const char *lo_pattern,
bfd_reloc_code_real_type hi_reloc,
bfd_reloc_code_real_type lo_reloc)
{
expressionS ep2;
ep2.X_op = O_symbol;
ep2.X_add_symbol = make_internal_label ();
ep2.X_add_number = 0;
macro_build (ep, "auipc", "d,u", tempreg, hi_reloc);
macro_build (&ep2, lo_insn, lo_pattern, destreg, tempreg, lo_reloc);
}
static void
pcrel_load (int destreg, int tempreg, expressionS *ep, const char *lo_insn,
bfd_reloc_code_real_type hi_reloc,
bfd_reloc_code_real_type lo_reloc)
{
pcrel_access (destreg, tempreg, ep, lo_insn, "d,s,j", hi_reloc, lo_reloc);
}
static void
pcrel_store (int srcreg, int tempreg, expressionS *ep, const char *lo_insn,
bfd_reloc_code_real_type hi_reloc,
bfd_reloc_code_real_type lo_reloc)
{
pcrel_access (srcreg, tempreg, ep, lo_insn, "t,s,q", hi_reloc, lo_reloc);
}
/* PC-relative function call using AUIPC/JALR, relaxed to JAL. */
static void
riscv_call (int destreg, int tempreg, expressionS *ep,
bfd_reloc_code_real_type reloc)
{
macro_build (ep, "auipc", "d,u", tempreg, reloc);
macro_build (NULL, "jalr", "d,s", destreg, tempreg);
}
/* Load an integer constant into a register. */
static void
load_const (int reg, expressionS *ep)
{
int shift = RISCV_IMM_BITS;
expressionS upper = *ep, lower = *ep;
lower.X_add_number = (int32_t) ep->X_add_number << (32-shift) >> (32-shift);
upper.X_add_number -= lower.X_add_number;
if (ep->X_op != O_constant)
{
as_bad (_("unsupported large constant"));
return;
}
if (xlen > 32 && !IS_SEXT_32BIT_NUM (ep->X_add_number))
{
/* Reduce to a signed 32-bit constant using SLLI and ADDI. */
while (((upper.X_add_number >> shift) & 1) == 0)
shift++;
upper.X_add_number = (int64_t) upper.X_add_number >> shift;
load_const (reg, &upper);
macro_build (NULL, "slli", "d,s,>", reg, reg, shift);
if (lower.X_add_number != 0)
macro_build (&lower, "addi", "d,s,j", reg, reg, BFD_RELOC_RISCV_LO12_I);
}
else
{
/* Simply emit LUI and/or ADDI to build a 32-bit signed constant. */
int hi_reg = 0;
if (upper.X_add_number != 0)
{
macro_build (ep, "lui", "d,u", reg, BFD_RELOC_RISCV_HI20);
hi_reg = reg;
}
if (lower.X_add_number != 0 || hi_reg == 0)
macro_build (ep, ADD32_INSN, "d,s,j", reg, hi_reg,
BFD_RELOC_RISCV_LO12_I);
}
}
/* Expand RISC-V assembly macros into one or more instructions. */
static void
macro (struct riscv_cl_insn *ip, expressionS *imm_expr,
bfd_reloc_code_real_type *imm_reloc)
{
int rd = (ip->insn_opcode >> OP_SH_RD) & OP_MASK_RD;
int rs1 = (ip->insn_opcode >> OP_SH_RS1) & OP_MASK_RS1;
int rs2 = (ip->insn_opcode >> OP_SH_RS2) & OP_MASK_RS2;
int mask = ip->insn_mo->mask;
switch (mask)
{
case M_LI:
load_const (rd, imm_expr);
break;
case M_LA:
case M_LLA:
/* Load the address of a symbol into a register. */
if (!IS_SEXT_32BIT_NUM (imm_expr->X_add_number))
as_bad (_("offset too large"));
if (imm_expr->X_op == O_constant)
load_const (rd, imm_expr);
else if (riscv_opts.pic && mask == M_LA) /* Global PIC symbol */
pcrel_load (rd, rd, imm_expr, LOAD_ADDRESS_INSN,
BFD_RELOC_RISCV_GOT_HI20, BFD_RELOC_RISCV_PCREL_LO12_I);
else /* Local PIC symbol, or any non-PIC symbol */
pcrel_load (rd, rd, imm_expr, "addi",
BFD_RELOC_RISCV_PCREL_HI20, BFD_RELOC_RISCV_PCREL_LO12_I);
break;
case M_LA_TLS_GD:
pcrel_load (rd, rd, imm_expr, "addi",
BFD_RELOC_RISCV_TLS_GD_HI20, BFD_RELOC_RISCV_PCREL_LO12_I);
break;
case M_LA_TLS_IE:
pcrel_load (rd, rd, imm_expr, LOAD_ADDRESS_INSN,
BFD_RELOC_RISCV_TLS_GOT_HI20, BFD_RELOC_RISCV_PCREL_LO12_I);
break;
case M_LB:
pcrel_load (rd, rd, imm_expr, "lb",
BFD_RELOC_RISCV_PCREL_HI20, BFD_RELOC_RISCV_PCREL_LO12_I);
break;
case M_LBU:
pcrel_load (rd, rd, imm_expr, "lbu",
BFD_RELOC_RISCV_PCREL_HI20, BFD_RELOC_RISCV_PCREL_LO12_I);
break;
case M_LH:
pcrel_load (rd, rd, imm_expr, "lh",
BFD_RELOC_RISCV_PCREL_HI20, BFD_RELOC_RISCV_PCREL_LO12_I);
break;
case M_LHU:
pcrel_load (rd, rd, imm_expr, "lhu",
BFD_RELOC_RISCV_PCREL_HI20, BFD_RELOC_RISCV_PCREL_LO12_I);
break;
case M_LW:
pcrel_load (rd, rd, imm_expr, "lw",
BFD_RELOC_RISCV_PCREL_HI20, BFD_RELOC_RISCV_PCREL_LO12_I);
break;
case M_LWU:
pcrel_load (rd, rd, imm_expr, "lwu",
BFD_RELOC_RISCV_PCREL_HI20, BFD_RELOC_RISCV_PCREL_LO12_I);
break;
case M_LD:
pcrel_load (rd, rd, imm_expr, "ld",
BFD_RELOC_RISCV_PCREL_HI20, BFD_RELOC_RISCV_PCREL_LO12_I);
break;
case M_FLW:
pcrel_load (rd, rs1, imm_expr, "flw",
BFD_RELOC_RISCV_PCREL_HI20, BFD_RELOC_RISCV_PCREL_LO12_I);
break;
case M_FLD:
pcrel_load (rd, rs1, imm_expr, "fld",
BFD_RELOC_RISCV_PCREL_HI20, BFD_RELOC_RISCV_PCREL_LO12_I);
break;
case M_SB:
pcrel_store (rs2, rs1, imm_expr, "sb",
BFD_RELOC_RISCV_PCREL_HI20, BFD_RELOC_RISCV_PCREL_LO12_S);
break;
case M_SH:
pcrel_store (rs2, rs1, imm_expr, "sh",
BFD_RELOC_RISCV_PCREL_HI20, BFD_RELOC_RISCV_PCREL_LO12_S);
break;
case M_SW:
pcrel_store (rs2, rs1, imm_expr, "sw",
BFD_RELOC_RISCV_PCREL_HI20, BFD_RELOC_RISCV_PCREL_LO12_S);
break;
case M_SD:
pcrel_store (rs2, rs1, imm_expr, "sd",
BFD_RELOC_RISCV_PCREL_HI20, BFD_RELOC_RISCV_PCREL_LO12_S);
break;
case M_FSW:
pcrel_store (rs2, rs1, imm_expr, "fsw",
BFD_RELOC_RISCV_PCREL_HI20, BFD_RELOC_RISCV_PCREL_LO12_S);
break;
case M_FSD:
pcrel_store (rs2, rs1, imm_expr, "fsd",
BFD_RELOC_RISCV_PCREL_HI20, BFD_RELOC_RISCV_PCREL_LO12_S);
break;
case M_CALL:
riscv_call (rd, rs1, imm_expr, *imm_reloc);
break;
default:
as_bad (_("Macro %s not implemented"), ip->insn_mo->name);
break;
}
}
static const struct percent_op_match percent_op_utype[] =
{
{"%tprel_hi", BFD_RELOC_RISCV_TPREL_HI20},
{"%pcrel_hi", BFD_RELOC_RISCV_PCREL_HI20},
{"%tls_ie_pcrel_hi", BFD_RELOC_RISCV_TLS_GOT_HI20},
{"%tls_gd_pcrel_hi", BFD_RELOC_RISCV_TLS_GD_HI20},
{"%hi", BFD_RELOC_RISCV_HI20},
{0, 0}
};
static const struct percent_op_match percent_op_itype[] =
{
{"%lo", BFD_RELOC_RISCV_LO12_I},
{"%tprel_lo", BFD_RELOC_RISCV_TPREL_LO12_I},
{"%pcrel_lo", BFD_RELOC_RISCV_PCREL_LO12_I},
{0, 0}
};
static const struct percent_op_match percent_op_stype[] =
{
{"%lo", BFD_RELOC_RISCV_LO12_S},
{"%tprel_lo", BFD_RELOC_RISCV_TPREL_LO12_S},
{"%pcrel_lo", BFD_RELOC_RISCV_PCREL_LO12_S},
{0, 0}
};
static const struct percent_op_match percent_op_rtype[] =
{
{"%tprel_add", BFD_RELOC_RISCV_TPREL_ADD},
{0, 0}
};
/* Return true if *STR points to a relocation operator. When returning true,
move *STR over the operator and store its relocation code in *RELOC.
Leave both *STR and *RELOC alone when returning false. */
static bfd_boolean
parse_relocation (char **str, bfd_reloc_code_real_type *reloc,
const struct percent_op_match *percent_op)
{
for ( ; percent_op->str; percent_op++)
if (strncasecmp (*str, percent_op->str, strlen (percent_op->str)) == 0)
{
int len = strlen (percent_op->str);
if (!ISSPACE ((*str)[len]) && (*str)[len] != '(')
continue;
*str += strlen (percent_op->str);
*reloc = percent_op->reloc;
/* Check whether the output BFD supports this relocation.
If not, issue an error and fall back on something safe. */
if (*reloc != BFD_RELOC_UNUSED
&& !bfd_reloc_type_lookup (stdoutput, *reloc))
{
as_bad ("relocation %s isn't supported by the current ABI",
percent_op->str);
*reloc = BFD_RELOC_UNUSED;
}
return TRUE;
}
return FALSE;
}
static void
my_getExpression (expressionS *ep, char *str)
{
char *save_in;
save_in = input_line_pointer;
input_line_pointer = str;
expression (ep);
expr_end = input_line_pointer;
input_line_pointer = save_in;
}
/* Parse string STR as a 16-bit relocatable operand. Store the
expression in *EP and the relocation, if any, in RELOC.
Return the number of relocation operators used (0 or 1).
On exit, EXPR_END points to the first character after the expression. */
static size_t
my_getSmallExpression (expressionS *ep, bfd_reloc_code_real_type *reloc,
char *str, const struct percent_op_match *percent_op)
{
size_t reloc_index;
unsigned crux_depth, str_depth, regno;
char *crux;
/* First, check for integer registers. */
if (reg_lookup (&str, RCLASS_GPR, ®no))
{
ep->X_op = O_register;
ep->X_add_number = regno;
return 0;
}
/* Search for the start of the main expression.
End the loop with CRUX pointing to the start
of the main expression and with CRUX_DEPTH containing the number
of open brackets at that point. */
reloc_index = -1;
str_depth = 0;
do
{
reloc_index++;
crux = str;
crux_depth = str_depth;
/* Skip over whitespace and brackets, keeping count of the number
of brackets. */
while (*str == ' ' || *str == '\t' || *str == '(')
if (*str++ == '(')
str_depth++;
}
while (*str == '%'
&& reloc_index < 1
&& parse_relocation (&str, reloc, percent_op));
my_getExpression (ep, crux);
str = expr_end;
/* Match every open bracket. */
while (crux_depth > 0 && (*str == ')' || *str == ' ' || *str == '\t'))
if (*str++ == ')')
crux_depth--;
if (crux_depth > 0)
as_bad ("unclosed '('");
expr_end = str;
return reloc_index;
}
/* Parse opcode name, could be an mnemonics or number. */
static size_t
my_getOpcodeExpression (expressionS *ep, bfd_reloc_code_real_type *reloc,
char *str, const struct percent_op_match *percent_op)
{
const struct opcode_name_t *o = opcode_name_lookup (&str);
if (o != NULL)
{
ep->X_op = O_constant;
ep->X_add_number = o->val;
return 0;
}
return my_getSmallExpression (ep, reloc, str, percent_op);
}
/* Detect and handle implicitly zero load-store offsets. For example,
"lw t0, (t1)" is shorthand for "lw t0, 0(t1)". Return TRUE iff such
an implicit offset was detected. */
static bfd_boolean
riscv_handle_implicit_zero_offset (expressionS *ep, const char *s)
{
/* Check whether there is only a single bracketed expression left.
If so, it must be the base register and the constant must be zero. */
if (*s == '(' && strchr (s + 1, '(') == 0)
{
ep->X_op = O_constant;
ep->X_add_number = 0;
return TRUE;
}
return FALSE;
}
/* This routine assembles an instruction into its binary format. As a
side effect, it sets the global variable imm_reloc to the type of
relocation to do if one of the operands is an address expression. */
static const char *
riscv_ip (char *str, struct riscv_cl_insn *ip, expressionS *imm_expr,
bfd_reloc_code_real_type *imm_reloc, struct hash_control *hash)
{
char *s;
const char *args;
char c = 0;
struct riscv_opcode *insn;
char *argsStart;
unsigned int regno;
char save_c = 0;
int argnum;
const struct percent_op_match *p;
const char *error = "unrecognized opcode";
/* Parse the name of the instruction. Terminate the string if whitespace
is found so that hash_find only sees the name part of the string. */
for (s = str; *s != '\0'; ++s)
if (ISSPACE (*s))
{
save_c = *s;
*s++ = '\0';
break;
}
insn = (struct riscv_opcode *) hash_find (hash, str);
argsStart = s;
for ( ; insn && insn->name && strcmp (insn->name, str) == 0; insn++)
{
if (!riscv_multi_subset_supports (insn->xlen_requirement, insn->subset))
continue;
create_insn (ip, insn);
argnum = 1;
imm_expr->X_op = O_absent;
*imm_reloc = BFD_RELOC_UNUSED;
p = percent_op_itype;
for (args = insn->args;; ++args)
{
s += strspn (s, " \t");
switch (*args)
{
case '\0': /* End of args. */
if (insn->pinfo != INSN_MACRO)
{
if (!insn->match_func (insn, ip->insn_opcode))
break;
/* For .insn, insn->match and insn->mask are 0. */
if (riscv_insn_length ((insn->match == 0 && insn->mask == 0)
? ip->insn_opcode
: insn->match) == 2
&& !riscv_opts.rvc)
break;
}
if (*s != '\0')
break;
/* Successful assembly. */
error = NULL;
goto out;
case 'C': /* RVC */
switch (*++args)
{
case 's': /* RS1 x8-x15 */
if (!reg_lookup (&s, RCLASS_GPR, ®no)
|| !(regno >= 8 && regno <= 15))
break;
INSERT_OPERAND (CRS1S, *ip, regno % 8);
continue;
case 'w': /* RS1 x8-x15, constrained to equal RD x8-x15. */
if (!reg_lookup (&s, RCLASS_GPR, ®no)
|| EXTRACT_OPERAND (CRS1S, ip->insn_opcode) + 8 != regno)
break;
continue;
case 't': /* RS2 x8-x15 */
if (!reg_lookup (&s, RCLASS_GPR, ®no)
|| !(regno >= 8 && regno <= 15))
break;
INSERT_OPERAND (CRS2S, *ip, regno % 8);
continue;
case 'x': /* RS2 x8-x15, constrained to equal RD x8-x15. */
if (!reg_lookup (&s, RCLASS_GPR, ®no)
|| EXTRACT_OPERAND (CRS2S, ip->insn_opcode) + 8 != regno)
break;
continue;
case 'U': /* RS1, constrained to equal RD. */
if (!reg_lookup (&s, RCLASS_GPR, ®no)
|| EXTRACT_OPERAND (RD, ip->insn_opcode) != regno)
break;
continue;
case 'V': /* RS2 */
if (!reg_lookup (&s, RCLASS_GPR, ®no))
break;
INSERT_OPERAND (CRS2, *ip, regno);
continue;
case 'c': /* RS1, constrained to equal sp. */
if (!reg_lookup (&s, RCLASS_GPR, ®no)
|| regno != X_SP)
break;
continue;
case '>':
if (my_getSmallExpression (imm_expr, imm_reloc, s, p)
|| imm_expr->X_op != O_constant
|| imm_expr->X_add_number <= 0
|| imm_expr->X_add_number >= 64)
break;
ip->insn_opcode |= ENCODE_RVC_IMM (imm_expr->X_add_number);
rvc_imm_done:
s = expr_end;
imm_expr->X_op = O_absent;
continue;
case '<':
if (my_getSmallExpression (imm_expr, imm_reloc, s, p)
|| imm_expr->X_op != O_constant
|| !VALID_RVC_IMM (imm_expr->X_add_number)
|| imm_expr->X_add_number <= 0
|| imm_expr->X_add_number >= 32)
break;
ip->insn_opcode |= ENCODE_RVC_IMM (imm_expr->X_add_number);
goto rvc_imm_done;
case '8':
if (my_getSmallExpression (imm_expr, imm_reloc, s, p)
|| imm_expr->X_op != O_constant
|| !VALID_RVC_UIMM8 (imm_expr->X_add_number)
|| imm_expr->X_add_number < 0
|| imm_expr->X_add_number >= 256)
break;
ip->insn_opcode |= ENCODE_RVC_UIMM8 (imm_expr->X_add_number);
goto rvc_imm_done;
case 'i':
if (my_getSmallExpression (imm_expr, imm_reloc, s, p)
|| imm_expr->X_op != O_constant
|| imm_expr->X_add_number == 0
|| !VALID_RVC_SIMM3 (imm_expr->X_add_number))
break;
ip->insn_opcode |= ENCODE_RVC_SIMM3 (imm_expr->X_add_number);
goto rvc_imm_done;
case 'j':
if (my_getSmallExpression (imm_expr, imm_reloc, s, p)
|| imm_expr->X_op != O_constant
|| imm_expr->X_add_number == 0
|| !VALID_RVC_IMM (imm_expr->X_add_number))
break;
ip->insn_opcode |= ENCODE_RVC_IMM (imm_expr->X_add_number);
goto rvc_imm_done;
case 'k':
if (riscv_handle_implicit_zero_offset (imm_expr, s))
continue;
if (my_getSmallExpression (imm_expr, imm_reloc, s, p)
|| imm_expr->X_op != O_constant
|| !VALID_RVC_LW_IMM (imm_expr->X_add_number))
break;
ip->insn_opcode |= ENCODE_RVC_LW_IMM (imm_expr->X_add_number);
goto rvc_imm_done;
case 'l':
if (riscv_handle_implicit_zero_offset (imm_expr, s))
continue;
if (my_getSmallExpression (imm_expr, imm_reloc, s, p)
|| imm_expr->X_op != O_constant
|| !VALID_RVC_LD_IMM (imm_expr->X_add_number))
break;
ip->insn_opcode |= ENCODE_RVC_LD_IMM (imm_expr->X_add_number);
goto rvc_imm_done;
case 'm':
if (riscv_handle_implicit_zero_offset (imm_expr, s))
continue;
if (my_getSmallExpression (imm_expr, imm_reloc, s, p)
|| imm_expr->X_op != O_constant
|| !VALID_RVC_LWSP_IMM (imm_expr->X_add_number))
break;
ip->insn_opcode |=
ENCODE_RVC_LWSP_IMM (imm_expr->X_add_number);
goto rvc_imm_done;
case 'n':
if (riscv_handle_implicit_zero_offset (imm_expr, s))
continue;
if (my_getSmallExpression (imm_expr, imm_reloc, s, p)
|| imm_expr->X_op != O_constant
|| !VALID_RVC_LDSP_IMM (imm_expr->X_add_number))
break;
ip->insn_opcode |=
ENCODE_RVC_LDSP_IMM (imm_expr->X_add_number);
goto rvc_imm_done;
case 'o':
if (my_getSmallExpression (imm_expr, imm_reloc, s, p)
|| imm_expr->X_op != O_constant
/* C.addiw, c.li, and c.andi allow zero immediate.
C.addi allows zero immediate as hint. Otherwise this
is same as 'j'. */
|| !VALID_RVC_IMM (imm_expr->X_add_number))
break;
ip->insn_opcode |= ENCODE_RVC_IMM (imm_expr->X_add_number);
goto rvc_imm_done;
case 'K':
if (my_getSmallExpression (imm_expr, imm_reloc, s, p)
|| imm_expr->X_op != O_constant
|| !VALID_RVC_ADDI4SPN_IMM (imm_expr->X_add_number)
|| imm_expr->X_add_number == 0)
break;
ip->insn_opcode |=
ENCODE_RVC_ADDI4SPN_IMM (imm_expr->X_add_number);
goto rvc_imm_done;
case 'L':
if (my_getSmallExpression (imm_expr, imm_reloc, s, p)
|| imm_expr->X_op != O_constant
|| !VALID_RVC_ADDI16SP_IMM (imm_expr->X_add_number)
|| imm_expr->X_add_number == 0)
break;
ip->insn_opcode |=
ENCODE_RVC_ADDI16SP_IMM (imm_expr->X_add_number);
goto rvc_imm_done;
case 'M':
if (riscv_handle_implicit_zero_offset (imm_expr, s))
continue;
if (my_getSmallExpression (imm_expr, imm_reloc, s, p)
|| imm_expr->X_op != O_constant
|| !VALID_RVC_SWSP_IMM (imm_expr->X_add_number))
break;
ip->insn_opcode |=
ENCODE_RVC_SWSP_IMM (imm_expr->X_add_number);
goto rvc_imm_done;
case 'N':
if (riscv_handle_implicit_zero_offset (imm_expr, s))
continue;
if (my_getSmallExpression (imm_expr, imm_reloc, s, p)
|| imm_expr->X_op != O_constant
|| !VALID_RVC_SDSP_IMM (imm_expr->X_add_number))
break;
ip->insn_opcode |=
ENCODE_RVC_SDSP_IMM (imm_expr->X_add_number);
goto rvc_imm_done;
case 'u':
p = percent_op_utype;
if (my_getSmallExpression (imm_expr, imm_reloc, s, p))
break;
rvc_lui:
if (imm_expr->X_op != O_constant
|| imm_expr->X_add_number <= 0
|| imm_expr->X_add_number >= RISCV_BIGIMM_REACH
|| (imm_expr->X_add_number >= RISCV_RVC_IMM_REACH / 2
&& (imm_expr->X_add_number <
RISCV_BIGIMM_REACH - RISCV_RVC_IMM_REACH / 2)))
break;
ip->insn_opcode |= ENCODE_RVC_IMM (imm_expr->X_add_number);
goto rvc_imm_done;
case 'v':
if (my_getSmallExpression (imm_expr, imm_reloc, s, p)
|| (imm_expr->X_add_number & (RISCV_IMM_REACH - 1))
|| ((int32_t)imm_expr->X_add_number
!= imm_expr->X_add_number))
break;
imm_expr->X_add_number =
((uint32_t) imm_expr->X_add_number) >> RISCV_IMM_BITS;
goto rvc_lui;
case 'p':
goto branch;
case 'a':
goto jump;
case 'S': /* Floating-point RS1 x8-x15. */
if (!reg_lookup (&s, RCLASS_FPR, ®no)
|| !(regno >= 8 && regno <= 15))
break;
INSERT_OPERAND (CRS1S, *ip, regno % 8);
continue;
case 'D': /* Floating-point RS2 x8-x15. */
if (!reg_lookup (&s, RCLASS_FPR, ®no)
|| !(regno >= 8 && regno <= 15))
break;
INSERT_OPERAND (CRS2S, *ip, regno % 8);
continue;
case 'T': /* Floating-point RS2. */
if (!reg_lookup (&s, RCLASS_FPR, ®no))
break;
INSERT_OPERAND (CRS2, *ip, regno);
continue;
case 'F':
switch (*++args)
{
case '4':
if (my_getSmallExpression (imm_expr, imm_reloc, s, p)
|| imm_expr->X_op != O_constant
|| imm_expr->X_add_number < 0
|| imm_expr->X_add_number >= 16)
{
as_bad (_("bad value for funct4 field, "
"value must be 0...15"));
break;
}
INSERT_OPERAND (CFUNCT4, *ip, imm_expr->X_add_number);
imm_expr->X_op = O_absent;
s = expr_end;
continue;
case '3':
if (my_getSmallExpression (imm_expr, imm_reloc, s, p)
|| imm_expr->X_op != O_constant
|| imm_expr->X_add_number < 0
|| imm_expr->X_add_number >= 8)
{
as_bad (_("bad value for funct3 field, "
"value must be 0...7"));
break;
}
INSERT_OPERAND (CFUNCT3, *ip, imm_expr->X_add_number);
imm_expr->X_op = O_absent;
s = expr_end;
continue;
default:
as_bad (_("bad compressed FUNCT field"
" specifier 'CF%c'\n"),
*args);
}
break;
default:
as_bad (_("bad RVC field specifier 'C%c'\n"), *args);
}
break;
case ',':
++argnum;
if (*s++ == *args)
continue;
s--;
break;
case '(':
case ')':
case '[':
case ']':
if (*s++ == *args)
continue;
break;
case '<': /* Shift amount, 0 - 31. */
my_getExpression (imm_expr, s);
check_absolute_expr (ip, imm_expr, FALSE);
if ((unsigned long) imm_expr->X_add_number > 31)
as_bad (_("Improper shift amount (%lu)"),
(unsigned long) imm_expr->X_add_number);
INSERT_OPERAND (SHAMTW, *ip, imm_expr->X_add_number);
imm_expr->X_op = O_absent;
s = expr_end;
continue;
case '>': /* Shift amount, 0 - (XLEN-1). */
my_getExpression (imm_expr, s);
check_absolute_expr (ip, imm_expr, FALSE);
if ((unsigned long) imm_expr->X_add_number >= xlen)
as_bad (_("Improper shift amount (%lu)"),
(unsigned long) imm_expr->X_add_number);
INSERT_OPERAND (SHAMT, *ip, imm_expr->X_add_number);
imm_expr->X_op = O_absent;
s = expr_end;
continue;
case 'Z': /* CSRRxI immediate. */
my_getExpression (imm_expr, s);
check_absolute_expr (ip, imm_expr, FALSE);
if ((unsigned long) imm_expr->X_add_number > 31)
as_bad (_("Improper CSRxI immediate (%lu)"),
(unsigned long) imm_expr->X_add_number);
INSERT_OPERAND (RS1, *ip, imm_expr->X_add_number);
imm_expr->X_op = O_absent;
s = expr_end;
continue;
case 'E': /* Control register. */
if (reg_lookup (&s, RCLASS_CSR, ®no))
INSERT_OPERAND (CSR, *ip, regno);
else
{
my_getExpression (imm_expr, s);
check_absolute_expr (ip, imm_expr, TRUE);
if ((unsigned long) imm_expr->X_add_number > 0xfff)
as_bad (_("Improper CSR address (%lu)"),
(unsigned long) imm_expr->X_add_number);
INSERT_OPERAND (CSR, *ip, imm_expr->X_add_number);
imm_expr->X_op = O_absent;
s = expr_end;
}
continue;
case 'm': /* Rounding mode. */
if (arg_lookup (&s, riscv_rm, ARRAY_SIZE (riscv_rm), ®no))
{
INSERT_OPERAND (RM, *ip, regno);
continue;
}
break;
case 'P':
case 'Q': /* Fence predecessor/successor. */
if (arg_lookup (&s, riscv_pred_succ, ARRAY_SIZE (riscv_pred_succ),
®no))
{
if (*args == 'P')
INSERT_OPERAND (PRED, *ip, regno);
else
INSERT_OPERAND (SUCC, *ip, regno);
continue;
}
break;
case 'd': /* Destination register. */
case 's': /* Source register. */
case 't': /* Target register. */
case 'r': /* rs3. */
if (reg_lookup (&s, RCLASS_GPR, ®no))
{
c = *args;
if (*s == ' ')
++s;
/* Now that we have assembled one operand, we use the args
string to figure out where it goes in the instruction. */
switch (c)
{
case 's':
INSERT_OPERAND (RS1, *ip, regno);
break;
case 'd':
INSERT_OPERAND (RD, *ip, regno);
break;
case 't':
INSERT_OPERAND (RS2, *ip, regno);
break;
case 'r':
INSERT_OPERAND (RS3, *ip, regno);
break;
}
continue;
}
break;
case 'D': /* Floating point rd. */
case 'S': /* Floating point rs1. */
case 'T': /* Floating point rs2. */
case 'U': /* Floating point rs1 and rs2. */
case 'R': /* Floating point rs3. */
if (reg_lookup (&s, RCLASS_FPR, ®no))
{
c = *args;
if (*s == ' ')
++s;
switch (c)
{
case 'D':
INSERT_OPERAND (RD, *ip, regno);
break;
case 'S':
INSERT_OPERAND (RS1, *ip, regno);
break;
case 'U':
INSERT_OPERAND (RS1, *ip, regno);
/* fallthru */
case 'T':
INSERT_OPERAND (RS2, *ip, regno);
break;
case 'R':
INSERT_OPERAND (RS3, *ip, regno);
break;
}
continue;
}
break;
case 'I':
my_getExpression (imm_expr, s);
if (imm_expr->X_op != O_big
&& imm_expr->X_op != O_constant)
break;
normalize_constant_expr (imm_expr);
s = expr_end;
continue;
case 'A':
my_getExpression (imm_expr, s);
normalize_constant_expr (imm_expr);
/* The 'A' format specifier must be a symbol. */
if (imm_expr->X_op != O_symbol)
break;
*imm_reloc = BFD_RELOC_32;
s = expr_end;
continue;
case 'B':
my_getExpression (imm_expr, s);
normalize_constant_expr (imm_expr);
/* The 'B' format specifier must be a symbol or a constant. */
if (imm_expr->X_op != O_symbol && imm_expr->X_op != O_constant)
break;
if (imm_expr->X_op == O_symbol)
*imm_reloc = BFD_RELOC_32;
s = expr_end;
continue;
case 'j': /* Sign-extended immediate. */
*imm_reloc = BFD_RELOC_RISCV_LO12_I;
p = percent_op_itype;
goto alu_op;
case 'q': /* Store displacement. */
p = percent_op_stype;
*imm_reloc = BFD_RELOC_RISCV_LO12_S;
goto load_store;
case 'o': /* Load displacement. */
p = percent_op_itype;
*imm_reloc = BFD_RELOC_RISCV_LO12_I;
goto load_store;
case '0': /* AMO "displacement," which must be zero. */
p = percent_op_rtype;
*imm_reloc = BFD_RELOC_UNUSED;
load_store:
if (riscv_handle_implicit_zero_offset (imm_expr, s))
continue;
alu_op:
/* If this value won't fit into a 16 bit offset, then go
find a macro that will generate the 32 bit offset
code pattern. */
if (!my_getSmallExpression (imm_expr, imm_reloc, s, p))
{
normalize_constant_expr (imm_expr);
if (imm_expr->X_op != O_constant
|| (*args == '0' && imm_expr->X_add_number != 0)
|| imm_expr->X_add_number >= (signed)RISCV_IMM_REACH/2
|| imm_expr->X_add_number < -(signed)RISCV_IMM_REACH/2)
break;
}
s = expr_end;
continue;
case 'p': /* PC-relative offset. */
branch:
*imm_reloc = BFD_RELOC_12_PCREL;
my_getExpression (imm_expr, s);
s = expr_end;
continue;
case 'u': /* Upper 20 bits. */
p = percent_op_utype;
if (!my_getSmallExpression (imm_expr, imm_reloc, s, p)
&& imm_expr->X_op == O_constant)
{
if (imm_expr->X_add_number < 0
|| imm_expr->X_add_number >= (signed)RISCV_BIGIMM_REACH)
as_bad (_("lui expression not in range 0..1048575"));
*imm_reloc = BFD_RELOC_RISCV_HI20;
imm_expr->X_add_number <<= RISCV_IMM_BITS;
}
s = expr_end;
continue;
case 'a': /* 20-bit PC-relative offset. */
jump:
my_getExpression (imm_expr, s);
s = expr_end;
*imm_reloc = BFD_RELOC_RISCV_JMP;
continue;
case 'c':
my_getExpression (imm_expr, s);
s = expr_end;
if (strcmp (s, "@plt") == 0)
{
*imm_reloc = BFD_RELOC_RISCV_CALL_PLT;
s += 4;
}
else
*imm_reloc = BFD_RELOC_RISCV_CALL;
continue;
case 'O':
switch (*++args)
{
case '4':
if (my_getOpcodeExpression (imm_expr, imm_reloc, s, p)
|| imm_expr->X_op != O_constant
|| imm_expr->X_add_number < 0
|| imm_expr->X_add_number >= 128
|| (imm_expr->X_add_number & 0x3) != 3)
{
as_bad (_("bad value for opcode field, "
"value must be 0...127 and "
"lower 2 bits must be 0x3"));
break;
}
INSERT_OPERAND (OP, *ip, imm_expr->X_add_number);
imm_expr->X_op = O_absent;
s = expr_end;
continue;
case '2':
if (my_getOpcodeExpression (imm_expr, imm_reloc, s, p)
|| imm_expr->X_op != O_constant
|| imm_expr->X_add_number < 0
|| imm_expr->X_add_number >= 3)
{
as_bad (_("bad value for opcode field, "
"value must be 0...2"));
break;
}
INSERT_OPERAND (OP2, *ip, imm_expr->X_add_number);
imm_expr->X_op = O_absent;
s = expr_end;
continue;
default:
as_bad (_("bad Opcode field specifier 'O%c'\n"), *args);
}
break;
case 'F':
switch (*++args)
{
case '7':
if (my_getSmallExpression (imm_expr, imm_reloc, s, p)
|| imm_expr->X_op != O_constant
|| imm_expr->X_add_number < 0
|| imm_expr->X_add_number >= 128)
{
as_bad (_("bad value for funct7 field, "
"value must be 0...127"));
break;
}
INSERT_OPERAND (FUNCT7, *ip, imm_expr->X_add_number);
imm_expr->X_op = O_absent;
s = expr_end;
continue;
case '3':
if (my_getSmallExpression (imm_expr, imm_reloc, s, p)
|| imm_expr->X_op != O_constant
|| imm_expr->X_add_number < 0
|| imm_expr->X_add_number >= 8)
{
as_bad (_("bad value for funct3 field, "
"value must be 0...7"));
break;
}
INSERT_OPERAND (FUNCT3, *ip, imm_expr->X_add_number);
imm_expr->X_op = O_absent;
s = expr_end;
continue;
case '2':
if (my_getSmallExpression (imm_expr, imm_reloc, s, p)
|| imm_expr->X_op != O_constant
|| imm_expr->X_add_number < 0
|| imm_expr->X_add_number >= 4)
{
as_bad (_("bad value for funct2 field, "
"value must be 0...3"));
break;
}
INSERT_OPERAND (FUNCT2, *ip, imm_expr->X_add_number);
imm_expr->X_op = O_absent;
s = expr_end;
continue;
default:
as_bad (_("bad FUNCT field specifier 'F%c'\n"), *args);
}
break;
case 'z':
if (my_getSmallExpression (imm_expr, imm_reloc, s, p)
|| imm_expr->X_op != O_constant
|| imm_expr->X_add_number != 0)
break;
s = expr_end;
imm_expr->X_op = O_absent;
continue;
default:
as_fatal (_("internal error: bad argument type %c"), *args);
}
break;
}
s = argsStart;
error = _("illegal operands");
}
out:
/* Restore the character we might have clobbered above. */
if (save_c)
*(argsStart - 1) = save_c;
return error;
}
void
md_assemble (char *str)
{
struct riscv_cl_insn insn;
expressionS imm_expr;
bfd_reloc_code_real_type imm_reloc = BFD_RELOC_UNUSED;
const char *error = riscv_ip (str, &insn, &imm_expr, &imm_reloc, op_hash);
if (error)
{
as_bad ("%s `%s'", error, str);
return;
}
if (insn.insn_mo->pinfo == INSN_MACRO)
macro (&insn, &imm_expr, &imm_reloc);
else
append_insn (&insn, &imm_expr, imm_reloc);
}
const char *
md_atof (int type, char *litP, int *sizeP)
{
return ieee_md_atof (type, litP, sizeP, TARGET_BYTES_BIG_ENDIAN);
}
void
md_number_to_chars (char *buf, valueT val, int n)
{
number_to_chars_littleendian (buf, val, n);
}
const char *md_shortopts = "O::g::G:";
enum options
{
OPTION_MARCH = OPTION_MD_BASE,
OPTION_PIC,
OPTION_NO_PIC,
OPTION_MABI,
OPTION_RELAX,
OPTION_NO_RELAX,
OPTION_END_OF_ENUM
};
struct option md_longopts[] =
{
{"march", required_argument, NULL, OPTION_MARCH},
{"fPIC", no_argument, NULL, OPTION_PIC},
{"fpic", no_argument, NULL, OPTION_PIC},
{"fno-pic", no_argument, NULL, OPTION_NO_PIC},
{"mabi", required_argument, NULL, OPTION_MABI},
{"mrelax", no_argument, NULL, OPTION_RELAX},
{"mno-relax", no_argument, NULL, OPTION_NO_RELAX},
{NULL, no_argument, NULL, 0}
};
size_t md_longopts_size = sizeof (md_longopts);
enum float_abi {
FLOAT_ABI_DEFAULT = -1,
FLOAT_ABI_SOFT,
FLOAT_ABI_SINGLE,
FLOAT_ABI_DOUBLE,
FLOAT_ABI_QUAD
};
static enum float_abi float_abi = FLOAT_ABI_DEFAULT;
static void
riscv_set_abi (unsigned new_xlen, enum float_abi new_float_abi, bfd_boolean rve)
{
abi_xlen = new_xlen;
float_abi = new_float_abi;
rve_abi = rve;
}
int
md_parse_option (int c, const char *arg)
{
switch (c)
{
case OPTION_MARCH:
riscv_set_arch (arg);
break;
case OPTION_NO_PIC:
riscv_opts.pic = FALSE;
break;
case OPTION_PIC:
riscv_opts.pic = TRUE;
break;
case OPTION_MABI:
if (strcmp (arg, "ilp32") == 0)
riscv_set_abi (32, FLOAT_ABI_SOFT, FALSE);
else if (strcmp (arg, "ilp32e") == 0)
riscv_set_abi (32, FLOAT_ABI_SOFT, TRUE);
else if (strcmp (arg, "ilp32f") == 0)
riscv_set_abi (32, FLOAT_ABI_SINGLE, FALSE);
else if (strcmp (arg, "ilp32d") == 0)
riscv_set_abi (32, FLOAT_ABI_DOUBLE, FALSE);
else if (strcmp (arg, "ilp32q") == 0)
riscv_set_abi (32, FLOAT_ABI_QUAD, FALSE);
else if (strcmp (arg, "lp64") == 0)
riscv_set_abi (64, FLOAT_ABI_SOFT, FALSE);
else if (strcmp (arg, "lp64f") == 0)
riscv_set_abi (64, FLOAT_ABI_SINGLE, FALSE);
else if (strcmp (arg, "lp64d") == 0)
riscv_set_abi (64, FLOAT_ABI_DOUBLE, FALSE);
else if (strcmp (arg, "lp64q") == 0)
riscv_set_abi (64, FLOAT_ABI_QUAD, FALSE);
else
return 0;
break;
case OPTION_RELAX:
riscv_opts.relax = TRUE;
break;
case OPTION_NO_RELAX:
riscv_opts.relax = FALSE;
break;
default:
return 0;
}
return 1;
}
void
riscv_after_parse_args (void)
{
if (xlen == 0)
{
if (strcmp (default_arch, "riscv32") == 0)
xlen = 32;
else if (strcmp (default_arch, "riscv64") == 0)
xlen = 64;
else
as_bad ("unknown default architecture `%s'", default_arch);
}
if (riscv_subsets == NULL)
riscv_set_arch (xlen == 64 ? "rv64g" : "rv32g");
/* Add the RVC extension, regardless of -march, to support .option rvc. */
riscv_set_rvc (FALSE);
if (riscv_subset_supports (0, "c"))
riscv_set_rvc (TRUE);
else
riscv_add_subset ("c");
/* Enable RVE if specified by the -march option. */
riscv_set_rve (FALSE);
if (riscv_subset_supports (0, "e"))
riscv_set_rve (TRUE);
/* Infer ABI from ISA if not specified on command line. */
if (abi_xlen == 0)
abi_xlen = xlen;
else if (abi_xlen > xlen)
as_bad ("can't have %d-bit ABI on %d-bit ISA", abi_xlen, xlen);
else if (abi_xlen < xlen)
as_bad ("%d-bit ABI not yet supported on %d-bit ISA", abi_xlen, xlen);
if (float_abi == FLOAT_ABI_DEFAULT)
{
struct riscv_subset *subset;
/* Assume soft-float unless D extension is present. */
float_abi = FLOAT_ABI_SOFT;
for (subset = riscv_subsets; subset != NULL; subset = subset->next)
{
if (strcasecmp (subset->name, "D") == 0)
float_abi = FLOAT_ABI_DOUBLE;
if (strcasecmp (subset->name, "Q") == 0)
float_abi = FLOAT_ABI_QUAD;
}
}
if (rve_abi)
elf_flags |= EF_RISCV_RVE;
/* Insert float_abi into the EF_RISCV_FLOAT_ABI field of elf_flags. */
elf_flags |= float_abi * (EF_RISCV_FLOAT_ABI & ~(EF_RISCV_FLOAT_ABI << 1));
}
long
md_pcrel_from (fixS *fixP)
{
return fixP->fx_where + fixP->fx_frag->fr_address;
}
/* Apply a fixup to the object file. */
void
md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
{
unsigned int subtype;
bfd_byte *buf = (bfd_byte *) (fixP->fx_frag->fr_literal + fixP->fx_where);
bfd_boolean relaxable = FALSE;
offsetT loc;
segT sub_segment;
/* Remember value for tc_gen_reloc. */
fixP->fx_addnumber = *valP;
switch (fixP->fx_r_type)
{
case BFD_RELOC_RISCV_HI20:
case BFD_RELOC_RISCV_LO12_I:
case BFD_RELOC_RISCV_LO12_S:
bfd_putl32 (riscv_apply_const_reloc (fixP->fx_r_type, *valP)
| bfd_getl32 (buf), buf);
if (fixP->fx_addsy == NULL)
fixP->fx_done = TRUE;
relaxable = TRUE;
break;
case BFD_RELOC_RISCV_GOT_HI20:
case BFD_RELOC_RISCV_ADD8:
case BFD_RELOC_RISCV_ADD16:
case BFD_RELOC_RISCV_ADD32:
case BFD_RELOC_RISCV_ADD64:
case BFD_RELOC_RISCV_SUB6:
case BFD_RELOC_RISCV_SUB8:
case BFD_RELOC_RISCV_SUB16:
case BFD_RELOC_RISCV_SUB32:
case BFD_RELOC_RISCV_SUB64:
case BFD_RELOC_RISCV_RELAX:
break;
case BFD_RELOC_RISCV_TPREL_HI20:
case BFD_RELOC_RISCV_TPREL_LO12_I:
case BFD_RELOC_RISCV_TPREL_LO12_S:
case BFD_RELOC_RISCV_TPREL_ADD:
relaxable = TRUE;
/* Fall through. */
case BFD_RELOC_RISCV_TLS_GOT_HI20:
case BFD_RELOC_RISCV_TLS_GD_HI20:
case BFD_RELOC_RISCV_TLS_DTPREL32:
case BFD_RELOC_RISCV_TLS_DTPREL64:
if (fixP->fx_addsy != NULL)
S_SET_THREAD_LOCAL (fixP->fx_addsy);
else
as_bad_where (fixP->fx_file, fixP->fx_line,
_("TLS relocation against a constant"));
break;
case BFD_RELOC_32:
/* Use pc-relative relocation for FDE initial location.
The symbol address in .eh_frame may be adjusted in
_bfd_elf_discard_section_eh_frame, and the content of
.eh_frame will be adjusted in _bfd_elf_write_section_eh_frame.
Therefore, we cannot insert a relocation whose addend symbol is
in .eh_frame. Othrewise, the value may be adjusted twice.*/
if (fixP->fx_addsy && fixP->fx_subsy
&& (sub_segment = S_GET_SEGMENT (fixP->fx_subsy))
&& strcmp (sub_segment->name, ".eh_frame") == 0
&& S_GET_VALUE (fixP->fx_subsy)
== fixP->fx_frag->fr_address + fixP->fx_where)
{
fixP->fx_r_type = BFD_RELOC_RISCV_32_PCREL;
fixP->fx_subsy = NULL;
break;
}
/* Fall through. */
case BFD_RELOC_64:
case BFD_RELOC_16:
case BFD_RELOC_8:
case BFD_RELOC_RISCV_CFA:
if (fixP->fx_addsy && fixP->fx_subsy)
{
fixP->fx_next = xmemdup (fixP, sizeof (*fixP), sizeof (*fixP));
fixP->fx_next->fx_addsy = fixP->fx_subsy;
fixP->fx_next->fx_subsy = NULL;
fixP->fx_next->fx_offset = 0;
fixP->fx_subsy = NULL;
switch (fixP->fx_r_type)
{
case BFD_RELOC_64:
fixP->fx_r_type = BFD_RELOC_RISCV_ADD64;
fixP->fx_next->fx_r_type = BFD_RELOC_RISCV_SUB64;
break;
case BFD_RELOC_32:
fixP->fx_r_type = BFD_RELOC_RISCV_ADD32;
fixP->fx_next->fx_r_type = BFD_RELOC_RISCV_SUB32;
break;
case BFD_RELOC_16:
fixP->fx_r_type = BFD_RELOC_RISCV_ADD16;
fixP->fx_next->fx_r_type = BFD_RELOC_RISCV_SUB16;
break;
case BFD_RELOC_8:
fixP->fx_r_type = BFD_RELOC_RISCV_ADD8;
fixP->fx_next->fx_r_type = BFD_RELOC_RISCV_SUB8;
break;
case BFD_RELOC_RISCV_CFA:
/* Load the byte to get the subtype. */
subtype = bfd_get_8 (NULL, &((fragS *) (fixP->fx_frag->fr_opcode))->fr_literal[fixP->fx_where]);
loc = fixP->fx_frag->fr_fix - (subtype & 7);
switch (subtype)
{
case DW_CFA_advance_loc1:
fixP->fx_where = loc + 1;
fixP->fx_next->fx_where = loc + 1;
fixP->fx_r_type = BFD_RELOC_RISCV_SET8;
fixP->fx_next->fx_r_type = BFD_RELOC_RISCV_SUB8;
break;
case DW_CFA_advance_loc2:
fixP->fx_size = 2;
fixP->fx_next->fx_size = 2;
fixP->fx_where = loc + 1;
fixP->fx_next->fx_where = loc + 1;
fixP->fx_r_type = BFD_RELOC_RISCV_SET16;
fixP->fx_next->fx_r_type = BFD_RELOC_RISCV_SUB16;
break;
case DW_CFA_advance_loc4:
fixP->fx_size = 4;
fixP->fx_next->fx_size = 4;
fixP->fx_where = loc;
fixP->fx_next->fx_where = loc;
fixP->fx_r_type = BFD_RELOC_RISCV_SET32;
fixP->fx_next->fx_r_type = BFD_RELOC_RISCV_SUB32;
break;
default:
if (subtype < 0x80 && (subtype & 0x40))
{
/* DW_CFA_advance_loc */
fixP->fx_frag = (fragS *) fixP->fx_frag->fr_opcode;
fixP->fx_next->fx_frag = fixP->fx_frag;
fixP->fx_r_type = BFD_RELOC_RISCV_SET6;
fixP->fx_next->fx_r_type = BFD_RELOC_RISCV_SUB6;
}
else
as_fatal (_("internal error: bad CFA value #%d"), subtype);
break;
}
break;
default:
/* This case is unreachable. */
abort ();
}
}
/* Fall through. */
case BFD_RELOC_RVA:
/* If we are deleting this reloc entry, we must fill in the
value now. This can happen if we have a .word which is not
resolved when it appears but is later defined. */
if (fixP->fx_addsy == NULL)
{
gas_assert (fixP->fx_size <= sizeof (valueT));
md_number_to_chars ((char *) buf, *valP, fixP->fx_size);
fixP->fx_done = 1;
}
break;
case BFD_RELOC_RISCV_JMP:
if (fixP->fx_addsy)
{
/* Fill in a tentative value to improve objdump readability. */
bfd_vma target = S_GET_VALUE (fixP->fx_addsy) + *valP;
bfd_vma delta = target - md_pcrel_from (fixP);
bfd_putl32 (bfd_getl32 (buf) | ENCODE_UJTYPE_IMM (delta), buf);
}
break;
case BFD_RELOC_12_PCREL:
if (fixP->fx_addsy)
{
/* Fill in a tentative value to improve objdump readability. */
bfd_vma target = S_GET_VALUE (fixP->fx_addsy) + *valP;
bfd_vma delta = target - md_pcrel_from (fixP);
bfd_putl32 (bfd_getl32 (buf) | ENCODE_SBTYPE_IMM (delta), buf);
}
break;
case BFD_RELOC_RISCV_RVC_BRANCH:
if (fixP->fx_addsy)
{
/* Fill in a tentative value to improve objdump readability. */
bfd_vma target = S_GET_VALUE (fixP->fx_addsy) + *valP;
bfd_vma delta = target - md_pcrel_from (fixP);
bfd_putl16 (bfd_getl16 (buf) | ENCODE_RVC_B_IMM (delta), buf);
}
break;
case BFD_RELOC_RISCV_RVC_JUMP:
if (fixP->fx_addsy)
{
/* Fill in a tentative value to improve objdump readability. */
bfd_vma target = S_GET_VALUE (fixP->fx_addsy) + *valP;
bfd_vma delta = target - md_pcrel_from (fixP);
bfd_putl16 (bfd_getl16 (buf) | ENCODE_RVC_J_IMM (delta), buf);
}
break;
case BFD_RELOC_RISCV_CALL:
case BFD_RELOC_RISCV_CALL_PLT:
relaxable = TRUE;
break;
case BFD_RELOC_RISCV_PCREL_HI20:
case BFD_RELOC_RISCV_PCREL_LO12_S:
case BFD_RELOC_RISCV_PCREL_LO12_I:
relaxable = riscv_opts.relax;
break;
case BFD_RELOC_RISCV_ALIGN:
break;
default:
/* We ignore generic BFD relocations we don't know about. */
if (bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type) != NULL)
as_fatal (_("internal error: bad relocation #%d"), fixP->fx_r_type);
}
if (fixP->fx_subsy != NULL)
as_bad_where (fixP->fx_file, fixP->fx_line,
_("unsupported symbol subtraction"));
/* Add an R_RISCV_RELAX reloc if the reloc is relaxable. */
if (relaxable && fixP->fx_tcbit && fixP->fx_addsy != NULL)
{
fixP->fx_next = xmemdup (fixP, sizeof (*fixP), sizeof (*fixP));
fixP->fx_next->fx_addsy = fixP->fx_next->fx_subsy = NULL;
fixP->fx_next->fx_r_type = BFD_RELOC_RISCV_RELAX;
}
}
/* Because the value of .cfi_remember_state may changed after relaxation,
we insert a fix to relocate it again in link-time. */
void
riscv_pre_output_hook (void)
{
const frchainS *frch;
const asection *s;
for (s = stdoutput->sections; s; s = s->next)
for (frch = seg_info (s)->frchainP; frch; frch = frch->frch_next)
{
fragS *frag;
for (frag = frch->frch_root; frag; frag = frag->fr_next)
{
if (frag->fr_type == rs_cfa)
{
expressionS exp;
symbolS *add_symbol = frag->fr_symbol->sy_value.X_add_symbol;
symbolS *op_symbol = frag->fr_symbol->sy_value.X_op_symbol;
exp.X_op = O_subtract;
exp.X_add_symbol = add_symbol;
exp.X_add_number = 0;
exp.X_op_symbol = op_symbol;
fix_new_exp (frag, (int) frag->fr_offset, 1, &exp, 0,
BFD_RELOC_RISCV_CFA);
}
}
}
}
/* This structure is used to hold a stack of .option values. */
struct riscv_option_stack
{
struct riscv_option_stack *next;
struct riscv_set_options options;
};
static struct riscv_option_stack *riscv_opts_stack;
/* Handle the .option pseudo-op. */
static void
s_riscv_option (int x ATTRIBUTE_UNUSED)
{
char *name = input_line_pointer, ch;
while (!is_end_of_line[(unsigned char) *input_line_pointer])
++input_line_pointer;
ch = *input_line_pointer;
*input_line_pointer = '\0';
if (strcmp (name, "rvc") == 0)
riscv_set_rvc (TRUE);
else if (strcmp (name, "norvc") == 0)
riscv_set_rvc (FALSE);
else if (strcmp (name, "pic") == 0)
riscv_opts.pic = TRUE;
else if (strcmp (name, "nopic") == 0)
riscv_opts.pic = FALSE;
else if (strcmp (name, "relax") == 0)
riscv_opts.relax = TRUE;
else if (strcmp (name, "norelax") == 0)
riscv_opts.relax = FALSE;
else if (strcmp (name, "push") == 0)
{
struct riscv_option_stack *s;
s = (struct riscv_option_stack *) xmalloc (sizeof *s);
s->next = riscv_opts_stack;
s->options = riscv_opts;
riscv_opts_stack = s;
}
else if (strcmp (name, "pop") == 0)
{
struct riscv_option_stack *s;
s = riscv_opts_stack;
if (s == NULL)
as_bad (_(".option pop with no .option push"));
else
{
riscv_opts = s->options;
riscv_opts_stack = s->next;
free (s);
}
}
else
{
as_warn (_("Unrecognized .option directive: %s\n"), name);
}
*input_line_pointer = ch;
demand_empty_rest_of_line ();
}
/* Handle the .dtprelword and .dtpreldword pseudo-ops. They generate
a 32-bit or 64-bit DTP-relative relocation (BYTES says which) for
use in DWARF debug information. */
static void
s_dtprel (int bytes)
{
expressionS ex;
char *p;
expression (&ex);
if (ex.X_op != O_symbol)
{
as_bad (_("Unsupported use of %s"), (bytes == 8
? ".dtpreldword"
: ".dtprelword"));
ignore_rest_of_line ();
}
p = frag_more (bytes);
md_number_to_chars (p, 0, bytes);
fix_new_exp (frag_now, p - frag_now->fr_literal, bytes, &ex, FALSE,
(bytes == 8
? BFD_RELOC_RISCV_TLS_DTPREL64
: BFD_RELOC_RISCV_TLS_DTPREL32));
demand_empty_rest_of_line ();
}
/* Handle the .bss pseudo-op. */
static void
s_bss (int ignore ATTRIBUTE_UNUSED)
{
subseg_set (bss_section, 0);
demand_empty_rest_of_line ();
}
static void
riscv_make_nops (char *buf, bfd_vma bytes)
{
bfd_vma i = 0;
/* RISC-V instructions cannot begin or end on odd addresses, so this case
means we are not within a valid instruction sequence. It is thus safe
to use a zero byte, even though that is not a valid instruction. */
if (bytes % 2 == 1)
buf[i++] = 0;
/* Use at most one 2-byte NOP. */
if ((bytes - i) % 4 == 2)
{
md_number_to_chars (buf + i, RVC_NOP, 2);
i += 2;
}
/* Fill the remainder with 4-byte NOPs. */
for ( ; i < bytes; i += 4)
md_number_to_chars (buf + i, RISCV_NOP, 4);
}
/* Called from md_do_align. Used to create an alignment frag in a
code section by emitting a worst-case NOP sequence that the linker
will later relax to the correct number of NOPs. We can't compute
the correct alignment now because of other linker relaxations. */
bfd_boolean
riscv_frag_align_code (int n)
{
bfd_vma bytes = (bfd_vma) 1 << n;
bfd_vma insn_alignment = riscv_opts.rvc ? 2 : 4;
bfd_vma worst_case_bytes = bytes - insn_alignment;
char *nops;
expressionS ex;
/* If we are moving to a smaller alignment than the instruction size, then no
alignment is required. */
if (bytes <= insn_alignment)
return TRUE;
/* When not relaxing, riscv_handle_align handles code alignment. */
if (!riscv_opts.relax)
return FALSE;
nops = frag_more (worst_case_bytes);
ex.X_op = O_constant;
ex.X_add_number = worst_case_bytes;
riscv_make_nops (nops, worst_case_bytes);
fix_new_exp (frag_now, nops - frag_now->fr_literal, 0,
&ex, FALSE, BFD_RELOC_RISCV_ALIGN);
return TRUE;
}
/* Implement HANDLE_ALIGN. */
void
riscv_handle_align (fragS *fragP)
{
switch (fragP->fr_type)
{
case rs_align_code:
/* When relaxing, riscv_frag_align_code handles code alignment. */
if (!riscv_opts.relax)
{
bfd_signed_vma bytes = (fragP->fr_next->fr_address
- fragP->fr_address - fragP->fr_fix);
/* We have 4 byte uncompressed nops. */
bfd_signed_vma size = 4;
bfd_signed_vma excess = bytes % size;
char *p = fragP->fr_literal + fragP->fr_fix;
if (bytes <= 0)
break;
/* Insert zeros or compressed nops to get 4 byte alignment. */
if (excess)
{
riscv_make_nops (p, excess);
fragP->fr_fix += excess;
p += excess;
}
/* Insert variable number of 4 byte uncompressed nops. */
riscv_make_nops (p, size);
fragP->fr_var = size;
}
break;
default:
break;
}
}
int
md_estimate_size_before_relax (fragS *fragp, asection *segtype)
{
return (fragp->fr_var = relaxed_branch_length (fragp, segtype, FALSE));
}
/* Translate internal representation of relocation info to BFD target
format. */
arelent *
tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
{
arelent *reloc = (arelent *) xmalloc (sizeof (arelent));
reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
*reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
reloc->addend = fixp->fx_addnumber;
reloc->howto = bfd_reloc_type_lookup (stdoutput, fixp->fx_r_type);
if (reloc->howto == NULL)
{
if ((fixp->fx_r_type == BFD_RELOC_16 || fixp->fx_r_type == BFD_RELOC_8)
&& fixp->fx_addsy != NULL && fixp->fx_subsy != NULL)
{
/* We don't have R_RISCV_8/16, but for this special case,
we can use R_RISCV_ADD8/16 with R_RISCV_SUB8/16. */
return reloc;
}
as_bad_where (fixp->fx_file, fixp->fx_line,
_("cannot represent %s relocation in object file"),
bfd_get_reloc_code_name (fixp->fx_r_type));
return NULL;
}
return reloc;
}
int
riscv_relax_frag (asection *sec, fragS *fragp, long stretch ATTRIBUTE_UNUSED)
{
if (RELAX_BRANCH_P (fragp->fr_subtype))
{
offsetT old_var = fragp->fr_var;
fragp->fr_var = relaxed_branch_length (fragp, sec, TRUE);
return fragp->fr_var - old_var;
}
return 0;
}
/* Expand far branches to multi-instruction sequences. */
static void
md_convert_frag_branch (fragS *fragp)
{
bfd_byte *buf;
expressionS exp;
fixS *fixp;
insn_t insn;
int rs1, reloc;
buf = (bfd_byte *)fragp->fr_literal + fragp->fr_fix;
exp.X_op = O_symbol;
exp.X_add_symbol = fragp->fr_symbol;
exp.X_add_number = fragp->fr_offset;
gas_assert (fragp->fr_var == RELAX_BRANCH_LENGTH (fragp->fr_subtype));
if (RELAX_BRANCH_RVC (fragp->fr_subtype))
{
switch (RELAX_BRANCH_LENGTH (fragp->fr_subtype))
{
case 8:
case 4:
/* Expand the RVC branch into a RISC-V one. */
insn = bfd_getl16 (buf);
rs1 = 8 + ((insn >> OP_SH_CRS1S) & OP_MASK_CRS1S);
if ((insn & MASK_C_J) == MATCH_C_J)
insn = MATCH_JAL;
else if ((insn & MASK_C_JAL) == MATCH_C_JAL)
insn = MATCH_JAL | (X_RA << OP_SH_RD);
else if ((insn & MASK_C_BEQZ) == MATCH_C_BEQZ)
insn = MATCH_BEQ | (rs1 << OP_SH_RS1);
else if ((insn & MASK_C_BNEZ) == MATCH_C_BNEZ)
insn = MATCH_BNE | (rs1 << OP_SH_RS1);
else
abort ();
bfd_putl32 (insn, buf);
break;
case 6:
/* Invert the branch condition. Branch over the jump. */
insn = bfd_getl16 (buf);
insn ^= MATCH_C_BEQZ ^ MATCH_C_BNEZ;
insn |= ENCODE_RVC_B_IMM (6);
bfd_putl16 (insn, buf);
buf += 2;
goto jump;
case 2:
/* Just keep the RVC branch. */
reloc = RELAX_BRANCH_UNCOND (fragp->fr_subtype)
? BFD_RELOC_RISCV_RVC_JUMP : BFD_RELOC_RISCV_RVC_BRANCH;
fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
2, &exp, FALSE, reloc);
buf += 2;
goto done;
default:
abort ();
}
}
switch (RELAX_BRANCH_LENGTH (fragp->fr_subtype))
{
case 8:
gas_assert (!RELAX_BRANCH_UNCOND (fragp->fr_subtype));
/* Invert the branch condition. Branch over the jump. */
insn = bfd_getl32 (buf);
insn ^= MATCH_BEQ ^ MATCH_BNE;
insn |= ENCODE_SBTYPE_IMM (8);
md_number_to_chars ((char *) buf, insn, 4);
buf += 4;
jump:
/* Jump to the target. */
fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
4, &exp, FALSE, BFD_RELOC_RISCV_JMP);
md_number_to_chars ((char *) buf, MATCH_JAL, 4);
buf += 4;
break;
case 4:
reloc = RELAX_BRANCH_UNCOND (fragp->fr_subtype)
? BFD_RELOC_RISCV_JMP : BFD_RELOC_12_PCREL;
fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
4, &exp, FALSE, reloc);
buf += 4;
break;
default:
abort ();
}
done:
fixp->fx_file = fragp->fr_file;
fixp->fx_line = fragp->fr_line;
gas_assert (buf == (bfd_byte *)fragp->fr_literal
+ fragp->fr_fix + fragp->fr_var);
fragp->fr_fix += fragp->fr_var;
}
/* Relax a machine dependent frag. This returns the amount by which
the current size of the frag should change. */
void
md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT asec ATTRIBUTE_UNUSED,
fragS *fragp)
{
gas_assert (RELAX_BRANCH_P (fragp->fr_subtype));
md_convert_frag_branch (fragp);
}
void
md_show_usage (FILE *stream)
{
fprintf (stream, _("\
RISC-V options:\n\
-fpic generate position-independent code\n\
-fno-pic don't generate position-independent code (default)\n\
-march=ISA set the RISC-V architecture\n\
-mabi=ABI set the RISC-V ABI\n\
-mrelax enable relax (default)\n\
-mno-relax disable relax\n\
"));
}
/* Standard calling conventions leave the CFA at SP on entry. */
void
riscv_cfi_frame_initial_instructions (void)
{
cfi_add_CFA_def_cfa_register (X_SP);
}
int
tc_riscv_regname_to_dw2regnum (char *regname)
{
int reg;
if ((reg = reg_lookup_internal (regname, RCLASS_GPR)) >= 0)
return reg;
if ((reg = reg_lookup_internal (regname, RCLASS_FPR)) >= 0)
return reg + 32;
as_bad (_("unknown register `%s'"), regname);
return -1;
}
void
riscv_elf_final_processing (void)
{
elf_elfheader (stdoutput)->e_flags |= elf_flags;
}
/* Parse the .sleb128 and .uleb128 pseudos. Only allow constant expressions,
since these directives break relaxation when used with symbol deltas. */
static void
s_riscv_leb128 (int sign)
{
expressionS exp;
char *save_in = input_line_pointer;
expression (&exp);
if (exp.X_op != O_constant)
as_bad (_("non-constant .%cleb128 is not supported"), sign ? 's' : 'u');
demand_empty_rest_of_line ();
input_line_pointer = save_in;
return s_leb128 (sign);
}
/* Parse the .insn directive. */
static void
s_riscv_insn (int x ATTRIBUTE_UNUSED)
{
char *str = input_line_pointer;
struct riscv_cl_insn insn;
expressionS imm_expr;
bfd_reloc_code_real_type imm_reloc = BFD_RELOC_UNUSED;
char save_c;
while (!is_end_of_line[(unsigned char) *input_line_pointer])
++input_line_pointer;
save_c = *input_line_pointer;
*input_line_pointer = '\0';
const char *error = riscv_ip (str, &insn, &imm_expr,
&imm_reloc, insn_type_hash);
if (error)
{
as_bad ("%s `%s'", error, str);
}
else
{
gas_assert (insn.insn_mo->pinfo != INSN_MACRO);
append_insn (&insn, &imm_expr, imm_reloc);
}
*input_line_pointer = save_c;
demand_empty_rest_of_line ();
}
/* Pseudo-op table. */
static const pseudo_typeS riscv_pseudo_table[] =
{
/* RISC-V-specific pseudo-ops. */
{"option", s_riscv_option, 0},
{"half", cons, 2},
{"word", cons, 4},
{"dword", cons, 8},
{"dtprelword", s_dtprel, 4},
{"dtpreldword", s_dtprel, 8},
{"bss", s_bss, 0},
{"uleb128", s_riscv_leb128, 0},
{"sleb128", s_riscv_leb128, 1},
{"insn", s_riscv_insn, 0},
{ NULL, NULL, 0 },
};
void
riscv_pop_insert (void)
{
extern void pop_insert (const pseudo_typeS *);
pop_insert (riscv_pseudo_table);
}