# Copyright 2015-2020 Free Software Foundation, Inc. # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see . # Test vector register access for s390 platforms. if { ![istarget s390-*-*] && ![istarget s390x-*-* ] } { verbose "Skipping s390 vector register tests." return } standard_testfile .S if [isnative] { # Create a temporary directory, to take a core dump there later. set coredir [standard_output_file ${testfile}.d] remote_exec build "rm -rf $coredir" remote_exec build "mkdir $coredir" } if { [prepare_for_testing "failed to prepare" $testfile $srcfile \ [list "additional_flags=-mzarch"]] } { return -1 } if ![runto_main] { untested "could not run to main" return -1 } # Run to the first vector instruction and step it. If the inferior # doesn't crash, we have vector support. gdb_breakpoint "check_vx" gdb_continue_to_breakpoint "first vector insn" set before_pc 0 gdb_test_multiple "x/i \$pc" "get PC at vector insn" { -re "(0x\\S+)\\s+\\S+\\s+vlr\\s+.*$gdb_prompt $" { set before_pc $expect_out(1,string) } } gdb_test_multiple "stepi" "check for vector support" { -re "Program received signal SIGILL,.*\r\n$gdb_prompt $" { unsupported "no vector support." return } -re "\[0-9\]+.*\r\n$gdb_prompt $" { pass "vector support available" } -re "$gdb_prompt $" { fail "no vector support (unknown error)" return } } # Has the PC advanced by the expected amount? The kernel may do # something special for the first vector insn in the process. set after_pc 0 gdb_test_multiple "x/i \$pc" "get PC after vector insn" { -re "(0x\\S+)\\s+.*$gdb_prompt $" { set after_pc $expect_out(1,string) } } if [expr $before_pc + 6 != $after_pc] { fail "stepping first vector insn" } # Lift the core file limit, if possible, and change into the temporary # directory. if { $coredir != "" } { gdb_test {print (int) setrlimit (4, &(unsigned long [2]){~0UL, ~0UL})} \ " = .*" "setrlimit" gdb_test "print (int) chdir (\"${coredir}\")" " = 0" "chdir" } # Initialize all vector registers with GDB "set" commands, using # distinct values. Handle left and right halves separately, in # pseudo-random order. set a_high 1 set a_low 2 set b_high 3 set b_low 5 set a [expr ($a_high << 32) | $a_low] set b [expr ($b_high << 32) | $b_low] for {set j 0} {$j < 32} {incr j 1} { set i [expr 17 * $j % 32] gdb_test_no_output \ "set \$v$i.v2_int64\[0\] = [expr $a * ($i + 1)]" \ "set v$i left" set i [expr 19 * (31 - $j) % 32] gdb_test_no_output \ "set \$v$i.v2_int64\[1\] = [expr $b * (32 - $i)]" \ "set v$i right" } # Verify a vector register's union members. gdb_test "info register v0 v31" \ "v4_float .* v2_double .* v16_int8 .* v8_int16 .* v4_int32 .* v2_int64 .* uint128\ .*v4_float .* v2_double .* v16_int8 .* v8_int16 .* v4_int32 .* v2_int64 .* uint128 .*" # Let the inferior store all vector registers in a buffer, then dump # the buffer and check it. gdb_continue_to_breakpoint "store vrs" set vregs [capture_command_output "x/64xg &save_area" ""] set i 0 foreach {- left right} [regexp -all -inline -line {^.*:\s+(\w+)\s+(\w+)} $vregs] { if [expr $left != $a * ($i + 1) || $right != $b * (32 - $i)] { fail "verify \$v$i after set" } if { $i < 16 } { # Check that the FP register was updated accordingly. gdb_test "info register f$i" "raw ${left}.*" } incr i 1 } if { $i != 32 } { fail "dump save area (bad output)" } # Let the inferior change all VRs according to a simple algorithm, # then print all VRs and compare their values with our result of the # same algorithm. gdb_continue_to_breakpoint "change vrs" set vregs [capture_command_output "info registers vector" ""] # Format a 128-bit value, given individual 4-byte values, as hex. # Suppress leading zeros. proc hex128 {a_high a_low b_high b_low} { set result [format "%x%08x%08x%08x" $a_high $a_low $b_high $b_low] regsub -- "^0*" $result "" result if { $result eq "" } { set result 0 } return $result } set j 1 foreach {- r i val} [regexp -all -inline -line \ {^(\D*)(\d+)\s+.*?uint128 = 0x([0-9a-f]+?)} $vregs] { if { $r ne "v" } { fail "info registers vector: bad line $j" } elseif { $val ne [hex128 \ [expr $a_high * ($i + 1) * $a_high ] \ [expr $a_low * ($i + 1) * $a_low ] \ [expr $b_high * (32 - $i) * $b_high * 32] \ [expr $b_low * (32 - $i) * $b_low * 32] ] } { fail "compare \$v$i" } incr j 1 } if { $j != 33 } { fail "info registers vector" } if { $coredir == "" } { return } # Take a core dump. gdb_test "signal SIGABRT" "Program terminated with signal SIGABRT, .*" gdb_exit # Find the core file and rename it (avoid accumulating core files). set cores [glob -nocomplain -directory $coredir *core*] if {[llength $cores] != 1} { untested "core file not found" remote_exec build "rm -rf $coredir" return -1 } set destcore [standard_output_file ${testfile}.core] remote_exec build "mv [file join $coredir [lindex $cores 0]] $destcore" remote_exec build "rm -rf $coredir" # Restart gdb and load the core file. Compare the VRs. clean_restart ${testfile} with_test_prefix "core" { set core_loaded [gdb_core_cmd $destcore "load"] if { $core_loaded != -1 } { set vregs_from_core [capture_command_output "info registers vector" ""] if { $vregs_from_core eq $vregs } { pass "compare vector registers" } else { fail "vector registers mismatch" } } }