/* Target-dependent code for GDB, the GNU debugger. Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 2000, 2001, 2002, 2003 Free Software Foundation, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "defs.h" #include "frame.h" #include "inferior.h" #include "symtab.h" #include "target.h" #include "gdbcore.h" #include "gdbcmd.h" #include "symfile.h" #include "objfiles.h" #include "regcache.h" #include "value.h" #include "osabi.h" #include "regset.h" #include "solib-svr4.h" #include "ppc-tdep.h" #include "trad-frame.h" #include "frame-unwind.h" /* The following instructions are used in the signal trampoline code on GNU/Linux PPC. The kernel used to use magic syscalls 0x6666 and 0x7777 but now uses the sigreturn syscalls. We check for both. */ #define INSTR_LI_R0_0x6666 0x38006666 #define INSTR_LI_R0_0x7777 0x38007777 #define INSTR_LI_R0_NR_sigreturn 0x38000077 #define INSTR_LI_R0_NR_rt_sigreturn 0x380000AC #define INSTR_SC 0x44000002 /* Since the *-tdep.c files are platform independent (i.e, they may be used to build cross platform debuggers), we can't include system headers. Therefore, details concerning the sigcontext structure must be painstakingly rerecorded. What's worse, if these details ever change in the header files, they'll have to be changed here as well. */ /* __SIGNAL_FRAMESIZE from */ #define PPC_LINUX_SIGNAL_FRAMESIZE 64 /* From , offsetof(struct sigcontext_struct, regs) == 0x1c */ #define PPC_LINUX_REGS_PTR_OFFSET (PPC_LINUX_SIGNAL_FRAMESIZE + 0x1c) /* From , offsetof(struct sigcontext_struct, handler) == 0x14 */ #define PPC_LINUX_HANDLER_PTR_OFFSET (PPC_LINUX_SIGNAL_FRAMESIZE + 0x14) /* From , values for PT_NIP, PT_R1, and PT_LNK */ #define PPC_LINUX_PT_R0 0 #define PPC_LINUX_PT_R1 1 #define PPC_LINUX_PT_R2 2 #define PPC_LINUX_PT_R3 3 #define PPC_LINUX_PT_R4 4 #define PPC_LINUX_PT_R5 5 #define PPC_LINUX_PT_R6 6 #define PPC_LINUX_PT_R7 7 #define PPC_LINUX_PT_R8 8 #define PPC_LINUX_PT_R9 9 #define PPC_LINUX_PT_R10 10 #define PPC_LINUX_PT_R11 11 #define PPC_LINUX_PT_R12 12 #define PPC_LINUX_PT_R13 13 #define PPC_LINUX_PT_R14 14 #define PPC_LINUX_PT_R15 15 #define PPC_LINUX_PT_R16 16 #define PPC_LINUX_PT_R17 17 #define PPC_LINUX_PT_R18 18 #define PPC_LINUX_PT_R19 19 #define PPC_LINUX_PT_R20 20 #define PPC_LINUX_PT_R21 21 #define PPC_LINUX_PT_R22 22 #define PPC_LINUX_PT_R23 23 #define PPC_LINUX_PT_R24 24 #define PPC_LINUX_PT_R25 25 #define PPC_LINUX_PT_R26 26 #define PPC_LINUX_PT_R27 27 #define PPC_LINUX_PT_R28 28 #define PPC_LINUX_PT_R29 29 #define PPC_LINUX_PT_R30 30 #define PPC_LINUX_PT_R31 31 #define PPC_LINUX_PT_NIP 32 #define PPC_LINUX_PT_MSR 33 #define PPC_LINUX_PT_CTR 35 #define PPC_LINUX_PT_LNK 36 #define PPC_LINUX_PT_XER 37 #define PPC_LINUX_PT_CCR 38 #define PPC_LINUX_PT_MQ 39 #define PPC_LINUX_PT_FPR0 48 /* each FP reg occupies 2 slots in this space */ #define PPC_LINUX_PT_FPR31 (PPC_LINUX_PT_FPR0 + 2*31) #define PPC_LINUX_PT_FPSCR (PPC_LINUX_PT_FPR0 + 2*32 + 1) static int ppc_linux_at_sigtramp_return_path (CORE_ADDR pc); /* Determine if pc is in a signal trampoline... Ha! That's not what this does at all. wait_for_inferior in infrun.c calls PC_IN_SIGTRAMP in order to detect entry into a signal trampoline just after delivery of a signal. But on GNU/Linux, signal trampolines are used for the return path only. The kernel sets things up so that the signal handler is called directly. If we use in_sigtramp2() in place of in_sigtramp() (see below) we'll (often) end up with stop_pc in the trampoline and prev_pc in the (now exited) handler. The code there will cause a temporary breakpoint to be set on prev_pc which is not very likely to get hit again. If this is confusing, think of it this way... the code in wait_for_inferior() needs to be able to detect entry into a signal trampoline just after a signal is delivered, not after the handler has been run. So, we define in_sigtramp() below to return 1 if the following is true: 1) The previous frame is a real signal trampoline. - and - 2) pc is at the first or second instruction of the corresponding handler. Why the second instruction? It seems that wait_for_inferior() never sees the first instruction when single stepping. When a signal is delivered while stepping, the next instruction that would've been stepped over isn't, instead a signal is delivered and the first instruction of the handler is stepped over instead. That puts us on the second instruction. (I added the test for the first instruction long after the fact, just in case the observed behavior is ever fixed.) PC_IN_SIGTRAMP is called from blockframe.c as well in order to set the frame's type (if a SIGTRAMP_FRAME). Because of our strange definition of in_sigtramp below, we can't rely on the frame's type getting set correctly from within blockframe.c. This is why we take pains to set it in init_extra_frame_info(). NOTE: cagney/2002-11-10: I suspect the real problem here is that the get_prev_frame() only initializes the frame's type after the call to INIT_FRAME_INFO. get_prev_frame() should be fixed, this code shouldn't be working its way around a bug :-(. */ int ppc_linux_in_sigtramp (CORE_ADDR pc, char *func_name) { CORE_ADDR lr; CORE_ADDR sp; CORE_ADDR tramp_sp; char buf[4]; CORE_ADDR handler; lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum); if (!ppc_linux_at_sigtramp_return_path (lr)) return 0; sp = read_register (SP_REGNUM); if (target_read_memory (sp, buf, sizeof (buf)) != 0) return 0; tramp_sp = extract_unsigned_integer (buf, 4); if (target_read_memory (tramp_sp + PPC_LINUX_HANDLER_PTR_OFFSET, buf, sizeof (buf)) != 0) return 0; handler = extract_unsigned_integer (buf, 4); return (pc == handler || pc == handler + 4); } static int insn_is_sigreturn (unsigned long pcinsn) { switch(pcinsn) { case INSTR_LI_R0_0x6666: case INSTR_LI_R0_0x7777: case INSTR_LI_R0_NR_sigreturn: case INSTR_LI_R0_NR_rt_sigreturn: return 1; default: return 0; } } /* * The signal handler trampoline is on the stack and consists of exactly * two instructions. The easiest and most accurate way of determining * whether the pc is in one of these trampolines is by inspecting the * instructions. It'd be faster though if we could find a way to do this * via some simple address comparisons. */ static int ppc_linux_at_sigtramp_return_path (CORE_ADDR pc) { char buf[12]; unsigned long pcinsn; if (target_read_memory (pc - 4, buf, sizeof (buf)) != 0) return 0; /* extract the instruction at the pc */ pcinsn = extract_unsigned_integer (buf + 4, 4); return ( (insn_is_sigreturn (pcinsn) && extract_unsigned_integer (buf + 8, 4) == INSTR_SC) || (pcinsn == INSTR_SC && insn_is_sigreturn (extract_unsigned_integer (buf, 4)))); } static CORE_ADDR ppc_linux_skip_trampoline_code (CORE_ADDR pc) { char buf[4]; struct obj_section *sect; struct objfile *objfile; unsigned long insn; CORE_ADDR plt_start = 0; CORE_ADDR symtab = 0; CORE_ADDR strtab = 0; int num_slots = -1; int reloc_index = -1; CORE_ADDR plt_table; CORE_ADDR reloc; CORE_ADDR sym; long symidx; char symname[1024]; struct minimal_symbol *msymbol; /* Find the section pc is in; return if not in .plt */ sect = find_pc_section (pc); if (!sect || strcmp (sect->the_bfd_section->name, ".plt") != 0) return 0; objfile = sect->objfile; /* Pick up the instruction at pc. It had better be of the form li r11, IDX where IDX is an index into the plt_table. */ if (target_read_memory (pc, buf, 4) != 0) return 0; insn = extract_unsigned_integer (buf, 4); if ((insn & 0xffff0000) != 0x39600000 /* li r11, VAL */ ) return 0; reloc_index = (insn << 16) >> 16; /* Find the objfile that pc is in and obtain the information necessary for finding the symbol name. */ for (sect = objfile->sections; sect < objfile->sections_end; ++sect) { const char *secname = sect->the_bfd_section->name; if (strcmp (secname, ".plt") == 0) plt_start = sect->addr; else if (strcmp (secname, ".rela.plt") == 0) num_slots = ((int) sect->endaddr - (int) sect->addr) / 12; else if (strcmp (secname, ".dynsym") == 0) symtab = sect->addr; else if (strcmp (secname, ".dynstr") == 0) strtab = sect->addr; } /* Make sure we have all the information we need. */ if (plt_start == 0 || num_slots == -1 || symtab == 0 || strtab == 0) return 0; /* Compute the value of the plt table */ plt_table = plt_start + 72 + 8 * num_slots; /* Get address of the relocation entry (Elf32_Rela) */ if (target_read_memory (plt_table + reloc_index, buf, 4) != 0) return 0; reloc = extract_unsigned_integer (buf, 4); sect = find_pc_section (reloc); if (!sect) return 0; if (strcmp (sect->the_bfd_section->name, ".text") == 0) return reloc; /* Now get the r_info field which is the relocation type and symbol index. */ if (target_read_memory (reloc + 4, buf, 4) != 0) return 0; symidx = extract_unsigned_integer (buf, 4); /* Shift out the relocation type leaving just the symbol index */ /* symidx = ELF32_R_SYM(symidx); */ symidx = symidx >> 8; /* compute the address of the symbol */ sym = symtab + symidx * 4; /* Fetch the string table index */ if (target_read_memory (sym, buf, 4) != 0) return 0; symidx = extract_unsigned_integer (buf, 4); /* Fetch the string; we don't know how long it is. Is it possible that the following will fail because we're trying to fetch too much? */ if (target_read_memory (strtab + symidx, symname, sizeof (symname)) != 0) return 0; /* This might not work right if we have multiple symbols with the same name; the only way to really get it right is to perform the same sort of lookup as the dynamic linker. */ msymbol = lookup_minimal_symbol_text (symname, NULL); if (!msymbol) return 0; return SYMBOL_VALUE_ADDRESS (msymbol); } /* ppc_linux_memory_remove_breakpoints attempts to remove a breakpoint in much the same fashion as memory_remove_breakpoint in mem-break.c, but is careful not to write back the previous contents if the code in question has changed in between inserting the breakpoint and removing it. Here is the problem that we're trying to solve... Once upon a time, before introducing this function to remove breakpoints from the inferior, setting a breakpoint on a shared library function prior to running the program would not work properly. In order to understand the problem, it is first necessary to understand a little bit about dynamic linking on this platform. A call to a shared library function is accomplished via a bl (branch-and-link) instruction whose branch target is an entry in the procedure linkage table (PLT). The PLT in the object file is uninitialized. To gdb, prior to running the program, the entries in the PLT are all zeros. Once the program starts running, the shared libraries are loaded and the procedure linkage table is initialized, but the entries in the table are not (necessarily) resolved. Once a function is actually called, the code in the PLT is hit and the function is resolved. In order to better illustrate this, an example is in order; the following example is from the gdb testsuite. We start the program shmain. [kev@arroyo testsuite]$ ../gdb gdb.base/shmain [...] We place two breakpoints, one on shr1 and the other on main. (gdb) b shr1 Breakpoint 1 at 0x100409d4 (gdb) b main Breakpoint 2 at 0x100006a0: file gdb.base/shmain.c, line 44. Examine the instruction (and the immediatly following instruction) upon which the breakpoint was placed. Note that the PLT entry for shr1 contains zeros. (gdb) x/2i 0x100409d4 0x100409d4 : .long 0x0 0x100409d8 : .long 0x0 Now run 'til main. (gdb) r Starting program: gdb.base/shmain Breakpoint 1 at 0xffaf790: file gdb.base/shr1.c, line 19. Breakpoint 2, main () at gdb.base/shmain.c:44 44 g = 1; Examine the PLT again. Note that the loading of the shared library has initialized the PLT to code which loads a constant (which I think is an index into the GOT) into r11 and then branchs a short distance to the code which actually does the resolving. (gdb) x/2i 0x100409d4 0x100409d4 : li r11,4 0x100409d8 : b 0x10040984 (gdb) c Continuing. Breakpoint 1, shr1 (x=1) at gdb.base/shr1.c:19 19 l = 1; Now we've hit the breakpoint at shr1. (The breakpoint was reset from the PLT entry to the actual shr1 function after the shared library was loaded.) Note that the PLT entry has been resolved to contain a branch that takes us directly to shr1. (The real one, not the PLT entry.) (gdb) x/2i 0x100409d4 0x100409d4 : b 0xffaf76c 0x100409d8 : b 0x10040984 The thing to note here is that the PLT entry for shr1 has been changed twice. Now the problem should be obvious. GDB places a breakpoint (a trap instruction) on the zero value of the PLT entry for shr1. Later on, after the shared library had been loaded and the PLT initialized, GDB gets a signal indicating this fact and attempts (as it always does when it stops) to remove all the breakpoints. The breakpoint removal was causing the former contents (a zero word) to be written back to the now initialized PLT entry thus destroying a portion of the initialization that had occurred only a short time ago. When execution continued, the zero word would be executed as an instruction an an illegal instruction trap was generated instead. (0 is not a legal instruction.) The fix for this problem was fairly straightforward. The function memory_remove_breakpoint from mem-break.c was copied to this file, modified slightly, and renamed to ppc_linux_memory_remove_breakpoint. In tm-linux.h, MEMORY_REMOVE_BREAKPOINT is defined to call this new function. The differences between ppc_linux_memory_remove_breakpoint () and memory_remove_breakpoint () are minor. All that the former does that the latter does not is check to make sure that the breakpoint location actually contains a breakpoint (trap instruction) prior to attempting to write back the old contents. If it does contain a trap instruction, we allow the old contents to be written back. Otherwise, we silently do nothing. The big question is whether memory_remove_breakpoint () should be changed to have the same functionality. The downside is that more traffic is generated for remote targets since we'll have an extra fetch of a memory word each time a breakpoint is removed. For the time being, we'll leave this self-modifying-code-friendly version in ppc-linux-tdep.c, but it ought to be migrated somewhere else in the event that some other platform has similar needs with regard to removing breakpoints in some potentially self modifying code. */ int ppc_linux_memory_remove_breakpoint (CORE_ADDR addr, char *contents_cache) { const unsigned char *bp; int val; int bplen; char old_contents[BREAKPOINT_MAX]; /* Determine appropriate breakpoint contents and size for this address. */ bp = BREAKPOINT_FROM_PC (&addr, &bplen); if (bp == NULL) error ("Software breakpoints not implemented for this target."); val = target_read_memory (addr, old_contents, bplen); /* If our breakpoint is no longer at the address, this means that the program modified the code on us, so it is wrong to put back the old value */ if (val == 0 && memcmp (bp, old_contents, bplen) == 0) val = target_write_memory (addr, contents_cache, bplen); return val; } /* For historic reasons, PPC 32 GNU/Linux follows PowerOpen rather than the 32 bit SYSV R4 ABI structure return convention - all structures, no matter their size, are put in memory. Vectors, which were added later, do get returned in a register though. */ static enum return_value_convention ppc_linux_return_value (struct gdbarch *gdbarch, struct type *valtype, struct regcache *regcache, void *readbuf, const void *writebuf) { if ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT || TYPE_CODE (valtype) == TYPE_CODE_UNION) && !((TYPE_LENGTH (valtype) == 16 || TYPE_LENGTH (valtype) == 8) && TYPE_VECTOR (valtype))) return RETURN_VALUE_STRUCT_CONVENTION; else return ppc_sysv_abi_return_value (gdbarch, valtype, regcache, readbuf, writebuf); } /* Fetch (and possibly build) an appropriate link_map_offsets structure for GNU/Linux PPC targets using the struct offsets defined in link.h (but without actual reference to that file). This makes it possible to access GNU/Linux PPC shared libraries from a GDB that was not built on an GNU/Linux PPC host (for cross debugging). */ struct link_map_offsets * ppc_linux_svr4_fetch_link_map_offsets (void) { static struct link_map_offsets lmo; static struct link_map_offsets *lmp = NULL; if (lmp == NULL) { lmp = &lmo; lmo.r_debug_size = 8; /* The actual size is 20 bytes, but this is all we need. */ lmo.r_map_offset = 4; lmo.r_map_size = 4; lmo.link_map_size = 20; /* The actual size is 560 bytes, but this is all we need. */ lmo.l_addr_offset = 0; lmo.l_addr_size = 4; lmo.l_name_offset = 4; lmo.l_name_size = 4; lmo.l_next_offset = 12; lmo.l_next_size = 4; lmo.l_prev_offset = 16; lmo.l_prev_size = 4; } return lmp; } /* Macros for matching instructions. Note that, since all the operands are masked off before they're or-ed into the instruction, you can use -1 to make masks. */ #define insn_d(opcd, rts, ra, d) \ ((((opcd) & 0x3f) << 26) \ | (((rts) & 0x1f) << 21) \ | (((ra) & 0x1f) << 16) \ | ((d) & 0xffff)) #define insn_ds(opcd, rts, ra, d, xo) \ ((((opcd) & 0x3f) << 26) \ | (((rts) & 0x1f) << 21) \ | (((ra) & 0x1f) << 16) \ | ((d) & 0xfffc) \ | ((xo) & 0x3)) #define insn_xfx(opcd, rts, spr, xo) \ ((((opcd) & 0x3f) << 26) \ | (((rts) & 0x1f) << 21) \ | (((spr) & 0x1f) << 16) \ | (((spr) & 0x3e0) << 6) \ | (((xo) & 0x3ff) << 1)) /* Read a PPC instruction from memory. PPC instructions are always big-endian, no matter what endianness the program is running in, so we can't use read_memory_integer or one of its friends here. */ static unsigned int read_insn (CORE_ADDR pc) { unsigned char buf[4]; read_memory (pc, buf, 4); return (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf[3]; } /* An instruction to match. */ struct insn_pattern { unsigned int mask; /* mask the insn with this... */ unsigned int data; /* ...and see if it matches this. */ int optional; /* If non-zero, this insn may be absent. */ }; /* Return non-zero if the instructions at PC match the series described in PATTERN, or zero otherwise. PATTERN is an array of 'struct insn_pattern' objects, terminated by an entry whose mask is zero. When the match is successful, fill INSN[i] with what PATTERN[i] matched. If PATTERN[i] is optional, and the instruction wasn't present, set INSN[i] to 0 (which is not a valid PPC instruction). INSN should have as many elements as PATTERN. Note that, if PATTERN contains optional instructions which aren't present in memory, then INSN will have holes, so INSN[i] isn't necessarily the i'th instruction in memory. */ static int insns_match_pattern (CORE_ADDR pc, struct insn_pattern *pattern, unsigned int *insn) { int i; for (i = 0; pattern[i].mask; i++) { insn[i] = read_insn (pc); if ((insn[i] & pattern[i].mask) == pattern[i].data) pc += 4; else if (pattern[i].optional) insn[i] = 0; else return 0; } return 1; } /* Return the 'd' field of the d-form instruction INSN, properly sign-extended. */ static CORE_ADDR insn_d_field (unsigned int insn) { return ((((CORE_ADDR) insn & 0xffff) ^ 0x8000) - 0x8000); } /* Return the 'ds' field of the ds-form instruction INSN, with the two zero bits concatenated at the right, and properly sign-extended. */ static CORE_ADDR insn_ds_field (unsigned int insn) { return ((((CORE_ADDR) insn & 0xfffc) ^ 0x8000) - 0x8000); } /* If DESC is the address of a 64-bit PowerPC GNU/Linux function descriptor, return the descriptor's entry point. */ static CORE_ADDR ppc64_desc_entry_point (CORE_ADDR desc) { /* The first word of the descriptor is the entry point. */ return (CORE_ADDR) read_memory_unsigned_integer (desc, 8); } /* Pattern for the standard linkage function. These are built by build_plt_stub in elf64-ppc.c, whose GLINK argument is always zero. */ static struct insn_pattern ppc64_standard_linkage[] = { /* addis r12, r2, */ { insn_d (-1, -1, -1, 0), insn_d (15, 12, 2, 0), 0 }, /* std r2, 40(r1) */ { -1, insn_ds (62, 2, 1, 40, 0), 0 }, /* ld r11, (r12) */ { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 0 }, /* addis r12, r12, 1 */ { insn_d (-1, -1, -1, -1), insn_d (15, 12, 2, 1), 1 }, /* ld r2, (r12) */ { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 2, 12, 0, 0), 0 }, /* addis r12, r12, 1 */ { insn_d (-1, -1, -1, -1), insn_d (15, 12, 2, 1), 1 }, /* mtctr r11 */ { insn_xfx (-1, -1, -1, -1), insn_xfx (31, 11, 9, 467), 0 }, /* ld r11, (r12) */ { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 0 }, /* bctr */ { -1, 0x4e800420, 0 }, { 0, 0, 0 } }; #define PPC64_STANDARD_LINKAGE_LEN \ (sizeof (ppc64_standard_linkage) / sizeof (ppc64_standard_linkage[0])) /* Recognize a 64-bit PowerPC GNU/Linux linkage function --- what GDB calls a "solib trampoline". */ static int ppc64_in_solib_call_trampoline (CORE_ADDR pc, char *name) { /* Detecting solib call trampolines on PPC64 GNU/Linux is a pain. It's not specifically solib call trampolines that are the issue. Any call from one function to another function that uses a different TOC requires a trampoline, to save the caller's TOC pointer and then load the callee's TOC. An executable or shared library may have more than one TOC, so even intra-object calls may require a trampoline. Since executable and shared libraries will all have their own distinct TOCs, every inter-object call is also an inter-TOC call, and requires a trampoline --- so "solib call trampolines" are just a special case. The 64-bit PowerPC GNU/Linux ABI calls these call trampolines "linkage functions". Since they need to be near the functions that call them, they all appear in .text, not in any special section. The .plt section just contains an array of function descriptors, from which the linkage functions load the callee's entry point, TOC value, and environment pointer. So in_plt_section is useless. The linkage functions don't have any special linker symbols to name them, either. The only way I can see to recognize them is to actually look at their code. They're generated by ppc_build_one_stub and some other functions in bfd/elf64-ppc.c, so that should show us all the instruction sequences we need to recognize. */ unsigned int insn[PPC64_STANDARD_LINKAGE_LEN]; return insns_match_pattern (pc, ppc64_standard_linkage, insn); } /* When the dynamic linker is doing lazy symbol resolution, the first call to a function in another object will go like this: - The user's function calls the linkage function: 100007c4: 4b ff fc d5 bl 10000498 100007c8: e8 41 00 28 ld r2,40(r1) - The linkage function loads the entry point (and other stuff) from the function descriptor in the PLT, and jumps to it: 10000498: 3d 82 00 00 addis r12,r2,0 1000049c: f8 41 00 28 std r2,40(r1) 100004a0: e9 6c 80 98 ld r11,-32616(r12) 100004a4: e8 4c 80 a0 ld r2,-32608(r12) 100004a8: 7d 69 03 a6 mtctr r11 100004ac: e9 6c 80 a8 ld r11,-32600(r12) 100004b0: 4e 80 04 20 bctr - But since this is the first time that PLT entry has been used, it sends control to its glink entry. That loads the number of the PLT entry and jumps to the common glink0 code: 10000c98: 38 00 00 00 li r0,0 10000c9c: 4b ff ff dc b 10000c78 - The common glink0 code then transfers control to the dynamic linker's fixup code: 10000c78: e8 41 00 28 ld r2,40(r1) 10000c7c: 3d 82 00 00 addis r12,r2,0 10000c80: e9 6c 80 80 ld r11,-32640(r12) 10000c84: e8 4c 80 88 ld r2,-32632(r12) 10000c88: 7d 69 03 a6 mtctr r11 10000c8c: e9 6c 80 90 ld r11,-32624(r12) 10000c90: 4e 80 04 20 bctr Eventually, this code will figure out how to skip all of this, including the dynamic linker. At the moment, we just get through the linkage function. */ /* If the current thread is about to execute a series of instructions at PC matching the ppc64_standard_linkage pattern, and INSN is the result from that pattern match, return the code address to which the standard linkage function will send them. (This doesn't deal with dynamic linker lazy symbol resolution stubs.) */ static CORE_ADDR ppc64_standard_linkage_target (CORE_ADDR pc, unsigned int *insn) { struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); /* The address of the function descriptor this linkage function references. */ CORE_ADDR desc = ((CORE_ADDR) read_register (tdep->ppc_gp0_regnum + 2) + (insn_d_field (insn[0]) << 16) + insn_ds_field (insn[2])); /* The first word of the descriptor is the entry point. Return that. */ return ppc64_desc_entry_point (desc); } /* Given that we've begun executing a call trampoline at PC, return the entry point of the function the trampoline will go to. */ static CORE_ADDR ppc64_skip_trampoline_code (CORE_ADDR pc) { unsigned int ppc64_standard_linkage_insn[PPC64_STANDARD_LINKAGE_LEN]; if (insns_match_pattern (pc, ppc64_standard_linkage, ppc64_standard_linkage_insn)) return ppc64_standard_linkage_target (pc, ppc64_standard_linkage_insn); else return 0; } /* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG) on PPC64 GNU/Linux. Usually a function pointer's representation is simply the address of the function. On GNU/Linux on the 64-bit PowerPC however, a function pointer is represented by a pointer to a TOC entry. This TOC entry contains three words, the first word is the address of the function, the second word is the TOC pointer (r2), and the third word is the static chain value. Throughout GDB it is currently assumed that a function pointer contains the address of the function, which is not easy to fix. In addition, the conversion of a function address to a function pointer would require allocation of a TOC entry in the inferior's memory space, with all its drawbacks. To be able to call C++ virtual methods in the inferior (which are called via function pointers), find_function_addr uses this function to get the function address from a function pointer. */ /* If ADDR points at what is clearly a function descriptor, transform it into the address of the corresponding function. Be conservative, otherwize GDB will do the transformation on any random addresses such as occures when there is no symbol table. */ static CORE_ADDR ppc64_linux_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr, struct target_ops *targ) { struct section_table *s = target_section_by_addr (targ, addr); /* Check if ADDR points to a function descriptor. */ if (s && strcmp (s->the_bfd_section->name, ".opd") == 0) return get_target_memory_unsigned (targ, addr, 8); return addr; } enum { ELF_NGREG = 48, ELF_NFPREG = 33, ELF_NVRREG = 33 }; enum { ELF_FPREGSET_SIZE = (ELF_NFPREG * 8) }; static void right_supply_register (struct regcache *regcache, int wordsize, int regnum, const bfd_byte *buf) { regcache_raw_supply (regcache, regnum, (buf + wordsize - register_size (current_gdbarch, regnum))); } /* Extract the register values found in the WORDSIZED ABI GREGSET, storing their values in REGCACHE. Note that some are left-aligned, while others are right aligned. */ void ppc_linux_supply_gregset (struct regcache *regcache, int regnum, const void *gregs, size_t size, int wordsize) { int regi; struct gdbarch *regcache_arch = get_regcache_arch (regcache); struct gdbarch_tdep *regcache_tdep = gdbarch_tdep (regcache_arch); const bfd_byte *buf = gregs; for (regi = 0; regi < 32; regi++) right_supply_register (regcache, wordsize, regi, buf + wordsize * regi); right_supply_register (regcache, wordsize, gdbarch_pc_regnum (regcache_arch), buf + wordsize * PPC_LINUX_PT_NIP); right_supply_register (regcache, wordsize, regcache_tdep->ppc_lr_regnum, buf + wordsize * PPC_LINUX_PT_LNK); regcache_raw_supply (regcache, regcache_tdep->ppc_cr_regnum, buf + wordsize * PPC_LINUX_PT_CCR); regcache_raw_supply (regcache, regcache_tdep->ppc_xer_regnum, buf + wordsize * PPC_LINUX_PT_XER); regcache_raw_supply (regcache, regcache_tdep->ppc_ctr_regnum, buf + wordsize * PPC_LINUX_PT_CTR); if (regcache_tdep->ppc_mq_regnum != -1) right_supply_register (regcache, wordsize, regcache_tdep->ppc_mq_regnum, buf + wordsize * PPC_LINUX_PT_MQ); right_supply_register (regcache, wordsize, regcache_tdep->ppc_ps_regnum, buf + wordsize * PPC_LINUX_PT_MSR); } static void ppc32_linux_supply_gregset (const struct regset *regset, struct regcache *regcache, int regnum, const void *gregs, size_t size) { ppc_linux_supply_gregset (regcache, regnum, gregs, size, 4); } static struct regset ppc32_linux_gregset = { NULL, ppc32_linux_supply_gregset }; struct ppc_linux_sigtramp_cache { CORE_ADDR base; struct trad_frame_saved_reg *saved_regs; }; static struct ppc_linux_sigtramp_cache * ppc_linux_sigtramp_cache (struct frame_info *next_frame, void **this_cache) { CORE_ADDR regs; CORE_ADDR gpregs; CORE_ADDR fpregs; int i; struct ppc_linux_sigtramp_cache *cache; struct gdbarch *gdbarch = get_frame_arch (next_frame); struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); if ((*this_cache) != NULL) return (*this_cache); cache = FRAME_OBSTACK_ZALLOC (struct ppc_linux_sigtramp_cache); (*this_cache) = cache; cache->saved_regs = trad_frame_alloc_saved_regs (next_frame); cache->base = frame_unwind_register_unsigned (next_frame, SP_REGNUM); /* Find the register pointer, which gives the address of the register buffers. */ if (tdep->wordsize == 4) regs = (cache->base + 0xd0 /* Offset to ucontext_t. */ + 0x30 /* Offset to .reg. */); else regs = (cache->base + 0x80 /* Offset to ucontext_t. */ + 0xe0 /* Offset to .reg. */); /* And the corresponding register buffers. */ gpregs = read_memory_unsigned_integer (regs, tdep->wordsize); fpregs = gpregs + 48 * tdep->wordsize; /* General purpose. */ for (i = 0; i < 32; i++) { int regnum = i + tdep->ppc_gp0_regnum; cache->saved_regs[regnum].addr = gpregs + i * tdep->wordsize; } cache->saved_regs[PC_REGNUM].addr = gpregs + 32 * tdep->wordsize; cache->saved_regs[tdep->ppc_ctr_regnum].addr = gpregs + 35 * tdep->wordsize; cache->saved_regs[tdep->ppc_lr_regnum].addr = gpregs + 36 * tdep->wordsize; cache->saved_regs[tdep->ppc_xer_regnum].addr = gpregs + 37 * tdep->wordsize; cache->saved_regs[tdep->ppc_cr_regnum].addr = gpregs + 38 * tdep->wordsize; /* Floating point registers. */ for (i = 0; i < 32; i++) { int regnum = i + FP0_REGNUM; cache->saved_regs[regnum].addr = fpregs + i * tdep->wordsize; } cache->saved_regs[tdep->ppc_fpscr_regnum].addr = fpregs + 32 * tdep->wordsize; return cache; } static void ppc_linux_sigtramp_this_id (struct frame_info *next_frame, void **this_cache, struct frame_id *this_id) { struct ppc_linux_sigtramp_cache *info = ppc_linux_sigtramp_cache (next_frame, this_cache); (*this_id) = frame_id_build (info->base, frame_pc_unwind (next_frame)); } static void ppc_linux_sigtramp_prev_register (struct frame_info *next_frame, void **this_cache, int regnum, int *optimizedp, enum lval_type *lvalp, CORE_ADDR *addrp, int *realnump, void *valuep) { struct ppc_linux_sigtramp_cache *info = ppc_linux_sigtramp_cache (next_frame, this_cache); trad_frame_prev_register (next_frame, info->saved_regs, regnum, optimizedp, lvalp, addrp, realnump, valuep); } static const struct frame_unwind ppc_linux_sigtramp_unwind = { SIGTRAMP_FRAME, ppc_linux_sigtramp_this_id, ppc_linux_sigtramp_prev_register }; static const struct frame_unwind * ppc_linux_sigtramp_sniffer (struct frame_info *next_frame) { struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (next_frame)); if (frame_pc_unwind (next_frame) > frame_unwind_register_unsigned (next_frame, SP_REGNUM)) /* Assume anything that is vaguely on the stack is a signal trampoline. */ return &ppc_linux_sigtramp_unwind; else return NULL; } static void ppc64_linux_supply_gregset (const struct regset *regset, struct regcache * regcache, int regnum, const void *gregs, size_t size) { ppc_linux_supply_gregset (regcache, regnum, gregs, size, 8); } static struct regset ppc64_linux_gregset = { NULL, ppc64_linux_supply_gregset }; void ppc_linux_supply_fpregset (const struct regset *regset, struct regcache * regcache, int regnum, const void *fpset, size_t size) { int regi; struct gdbarch *regcache_arch = get_regcache_arch (regcache); struct gdbarch_tdep *regcache_tdep = gdbarch_tdep (regcache_arch); const bfd_byte *buf = fpset; for (regi = 0; regi < 32; regi++) regcache_raw_supply (regcache, FP0_REGNUM + regi, buf + 8 * regi); /* The FPSCR is stored in the low order word of the last doubleword in the fpregset. */ regcache_raw_supply (regcache, regcache_tdep->ppc_fpscr_regnum, buf + 8 * 32 + 4); } static struct regset ppc_linux_fpregset = { NULL, ppc_linux_supply_fpregset }; static const struct regset * ppc_linux_regset_from_core_section (struct gdbarch *core_arch, const char *sect_name, size_t sect_size) { struct gdbarch_tdep *tdep = gdbarch_tdep (core_arch); if (strcmp (sect_name, ".reg") == 0) { if (tdep->wordsize == 4) return &ppc32_linux_gregset; else return &ppc64_linux_gregset; } if (strcmp (sect_name, ".reg2") == 0) return &ppc_linux_fpregset; return NULL; } static void ppc_linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch) { struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); if (tdep->wordsize == 4) { /* Until November 2001, gcc did not comply with the 32 bit SysV R4 ABI requirement that structures less than or equal to 8 bytes should be returned in registers. Instead GCC was using the the AIX/PowerOpen ABI - everything returned in memory (well ignoring vectors that is). When this was corrected, it wasn't fixed for GNU/Linux native platform. Use the PowerOpen struct convention. */ set_gdbarch_return_value (gdbarch, ppc_linux_return_value); set_gdbarch_memory_remove_breakpoint (gdbarch, ppc_linux_memory_remove_breakpoint); /* Shared library handling. */ set_gdbarch_in_solib_call_trampoline (gdbarch, in_plt_section); set_gdbarch_skip_trampoline_code (gdbarch, ppc_linux_skip_trampoline_code); set_solib_svr4_fetch_link_map_offsets (gdbarch, ppc_linux_svr4_fetch_link_map_offsets); } if (tdep->wordsize == 8) { /* Handle PPC64 GNU/Linux function pointers (which are really function descriptors). */ set_gdbarch_convert_from_func_ptr_addr (gdbarch, ppc64_linux_convert_from_func_ptr_addr); set_gdbarch_in_solib_call_trampoline (gdbarch, ppc64_in_solib_call_trampoline); set_gdbarch_skip_trampoline_code (gdbarch, ppc64_skip_trampoline_code); /* PPC64 malloc's entry-point is called ".malloc". */ set_gdbarch_name_of_malloc (gdbarch, ".malloc"); } set_gdbarch_regset_from_core_section (gdbarch, ppc_linux_regset_from_core_section); frame_unwind_append_sniffer (gdbarch, ppc_linux_sigtramp_sniffer); } void _initialize_ppc_linux_tdep (void) { /* Register for all sub-familes of the POWER/PowerPC: 32-bit and 64-bit PowerPC, and the older rs6k. */ gdbarch_register_osabi (bfd_arch_powerpc, bfd_mach_ppc, GDB_OSABI_LINUX, ppc_linux_init_abi); gdbarch_register_osabi (bfd_arch_powerpc, bfd_mach_ppc64, GDB_OSABI_LINUX, ppc_linux_init_abi); gdbarch_register_osabi (bfd_arch_rs6000, bfd_mach_rs6k, GDB_OSABI_LINUX, ppc_linux_init_abi); }