/* tc-v850.c -- Assembler code for the NEC V850 Copyright (C) 1996, 1997, 1998 Free Software Foundation. This file is part of GAS, the GNU Assembler. GAS is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GAS is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GAS; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include #include #include "as.h" #include "subsegs.h" #include "opcode/v850.h" #define AREA_ZDA 0 #define AREA_SDA 1 #define AREA_TDA 2 /* sign-extend a 16-bit number */ #define SEXT16(x) ((((x) & 0xffff) ^ (~ 0x7fff)) + 0x8000) /* Temporarily holds the reloc in a cons expression. */ static bfd_reloc_code_real_type hold_cons_reloc; /* Set to TRUE if we want to be pedantic about signed overflows. */ static boolean warn_signed_overflows = FALSE; static boolean warn_unsigned_overflows = FALSE; /* Indicates the target BFD machine number. */ static int machine = -1; /* Indicates the target processor(s) for the assemble. */ static unsigned int processor_mask = -1; /* Structure to hold information about predefined registers. */ struct reg_name { const char * name; int value; }; /* Generic assembler global variables which must be defined by all targets. */ /* Characters which always start a comment. */ const char comment_chars[] = "#"; /* Characters which start a comment at the beginning of a line. */ const char line_comment_chars[] = ";#"; /* Characters which may be used to separate multiple commands on a single line. */ const char line_separator_chars[] = ";"; /* Characters which are used to indicate an exponent in a floating point number. */ const char EXP_CHARS[] = "eE"; /* Characters which mean that a number is a floating point constant, as in 0d1.0. */ const char FLT_CHARS[] = "dD"; const relax_typeS md_relax_table[] = { /* Conditional branches. */ {0xff, -0x100, 2, 1}, {0x1fffff, -0x200000, 6, 0}, /* Unconditional branches. */ {0xff, -0x100, 2, 3}, {0x1fffff, -0x200000, 4, 0}, }; static segT sdata_section = NULL; static segT tdata_section = NULL; static segT zdata_section = NULL; static segT sbss_section = NULL; static segT tbss_section = NULL; static segT zbss_section = NULL; static segT rosdata_section = NULL; static segT rozdata_section = NULL; static segT scommon_section = NULL; static segT tcommon_section = NULL; static segT zcommon_section = NULL; /* start-sanitize-v850e */ static segT call_table_data_section = NULL; static segT call_table_text_section = NULL; /* end-sanitize-v850e */ /* fixups */ #define MAX_INSN_FIXUPS (5) struct v850_fixup { expressionS exp; int opindex; bfd_reloc_code_real_type reloc; }; struct v850_fixup fixups [MAX_INSN_FIXUPS]; static int fc; void v850_sdata (int ignore) { obj_elf_section_change_hook(); subseg_set (sdata_section, (subsegT) get_absolute_expression ()); demand_empty_rest_of_line (); } void v850_tdata (int ignore) { obj_elf_section_change_hook(); subseg_set (tdata_section, (subsegT) get_absolute_expression ()); demand_empty_rest_of_line (); } void v850_zdata (int ignore) { obj_elf_section_change_hook(); subseg_set (zdata_section, (subsegT) get_absolute_expression ()); demand_empty_rest_of_line (); } void v850_sbss (int ignore) { obj_elf_section_change_hook(); subseg_set (sbss_section, (subsegT) get_absolute_expression ()); demand_empty_rest_of_line (); } void v850_tbss (int ignore) { obj_elf_section_change_hook(); subseg_set (tbss_section, (subsegT) get_absolute_expression ()); demand_empty_rest_of_line (); } void v850_zbss (int ignore) { obj_elf_section_change_hook(); subseg_set (zbss_section, (subsegT) get_absolute_expression ()); demand_empty_rest_of_line (); } void v850_rosdata (int ignore) { obj_elf_section_change_hook(); subseg_set (rosdata_section, (subsegT) get_absolute_expression ()); demand_empty_rest_of_line (); } void v850_rozdata (int ignore) { obj_elf_section_change_hook(); subseg_set (rozdata_section, (subsegT) get_absolute_expression ()); demand_empty_rest_of_line (); } /* start-sanitize-v850e */ void v850_call_table_data (int ignore) { obj_elf_section_change_hook(); subseg_set (call_table_data_section, (subsegT) get_absolute_expression ()); demand_empty_rest_of_line (); } void v850_call_table_text (int ignore) { obj_elf_section_change_hook(); subseg_set (call_table_text_section, (subsegT) get_absolute_expression ()); demand_empty_rest_of_line (); } /* end-sanitize-v850e */ void v850_bss (int ignore) { register int temp = get_absolute_expression (); obj_elf_section_change_hook(); subseg_set (bss_section, (subsegT) temp); demand_empty_rest_of_line (); } void v850_offset (int ignore) { int temp = get_absolute_expression (); temp -= frag_now_fix(); if (temp > 0) (void) frag_more (temp); demand_empty_rest_of_line (); } /* Copied from obj_elf_common() in gas/config/obj-elf.c */ static void v850_comm (area) int area; { char * name; char c; char * p; int temp; int size; symbolS * symbolP; int have_align; name = input_line_pointer; c = get_symbol_end (); /* just after name is now '\0' */ p = input_line_pointer; *p = c; SKIP_WHITESPACE (); if (*input_line_pointer != ',') { as_bad ("Expected comma after symbol-name"); ignore_rest_of_line (); return; } input_line_pointer++; /* skip ',' */ if ((temp = get_absolute_expression ()) < 0) { as_bad (".COMMon length (%d.) <0! Ignored.", temp); ignore_rest_of_line (); return; } size = temp; *p = 0; symbolP = symbol_find_or_make (name); *p = c; if (S_IS_DEFINED (symbolP) && ! S_IS_COMMON (symbolP)) { as_bad ("Ignoring attempt to re-define symbol"); ignore_rest_of_line (); return; } if (S_GET_VALUE (symbolP) != 0) { if (S_GET_VALUE (symbolP) != size) { as_warn ("Length of .comm \"%s\" is already %ld. Not changed to %d.", S_GET_NAME (symbolP), (long) S_GET_VALUE (symbolP), size); } } know (symbolP->sy_frag == &zero_address_frag); if (*input_line_pointer != ',') have_align = 0; else { have_align = 1; input_line_pointer++; SKIP_WHITESPACE (); } if (! have_align || *input_line_pointer != '"') { if (! have_align) temp = 0; else { temp = get_absolute_expression (); if (temp < 0) { temp = 0; as_warn ("Common alignment negative; 0 assumed"); } } if (symbolP->local) { segT old_sec; int old_subsec; char * pfrag; int align; /* allocate_bss: */ old_sec = now_seg; old_subsec = now_subseg; if (temp) { /* convert to a power of 2 alignment */ for (align = 0; (temp & 1) == 0; temp >>= 1, ++align); if (temp != 1) { as_bad ("Common alignment not a power of 2"); ignore_rest_of_line (); return; } } else align = 0; switch (area) { case AREA_SDA: record_alignment (sbss_section, align); obj_elf_section_change_hook(); subseg_set (sbss_section, 0); break; case AREA_ZDA: record_alignment (zbss_section, align); obj_elf_section_change_hook(); subseg_set (zbss_section, 0); break; case AREA_TDA: record_alignment (tbss_section, align); obj_elf_section_change_hook(); subseg_set (tbss_section, 0); break; default: abort(); } if (align) frag_align (align, 0, 0); switch (area) { case AREA_SDA: if (S_GET_SEGMENT (symbolP) == sbss_section) symbolP->sy_frag->fr_symbol = 0; break; case AREA_ZDA: if (S_GET_SEGMENT (symbolP) == zbss_section) symbolP->sy_frag->fr_symbol = 0; break; case AREA_TDA: if (S_GET_SEGMENT (symbolP) == tbss_section) symbolP->sy_frag->fr_symbol = 0; break; default: abort(); } symbolP->sy_frag = frag_now; pfrag = frag_var (rs_org, 1, 1, (relax_substateT) 0, symbolP, (offsetT) size, (char *) 0); *pfrag = 0; S_SET_SIZE (symbolP, size); switch (area) { case AREA_SDA: S_SET_SEGMENT (symbolP, sbss_section); break; case AREA_ZDA: S_SET_SEGMENT (symbolP, zbss_section); break; case AREA_TDA: S_SET_SEGMENT (symbolP, tbss_section); break; default: abort(); } S_CLEAR_EXTERNAL (symbolP); obj_elf_section_change_hook(); subseg_set (old_sec, old_subsec); } else { allocate_common: S_SET_VALUE (symbolP, (valueT) size); S_SET_ALIGN (symbolP, temp); S_SET_EXTERNAL (symbolP); switch (area) { case AREA_SDA: S_SET_SEGMENT (symbolP, scommon_section); break; case AREA_ZDA: S_SET_SEGMENT (symbolP, zcommon_section); break; case AREA_TDA: S_SET_SEGMENT (symbolP, tcommon_section); break; default: abort(); } } } else { input_line_pointer++; /* @@ Some use the dot, some don't. Can we get some consistency?? */ if (*input_line_pointer == '.') input_line_pointer++; /* @@ Some say data, some say bss. */ if (strncmp (input_line_pointer, "bss\"", 4) && strncmp (input_line_pointer, "data\"", 5)) { while (*--input_line_pointer != '"') ; input_line_pointer--; goto bad_common_segment; } while (*input_line_pointer++ != '"') ; goto allocate_common; } symbolP->bsym->flags |= BSF_OBJECT; demand_empty_rest_of_line (); return; { bad_common_segment: p = input_line_pointer; while (*p && *p != '\n') p++; c = *p; *p = '\0'; as_bad ("bad .common segment %s", input_line_pointer + 1); *p = c; input_line_pointer = p; ignore_rest_of_line (); return; } } void set_machine (int number) { machine = number; bfd_set_arch_mach (stdoutput, TARGET_ARCH, machine); switch (machine) { case 0: processor_mask = PROCESSOR_V850; break; /* start-sanitize-v850e */ case bfd_mach_v850e: processor_mask = PROCESSOR_V850E; break; case bfd_mach_v850ea: processor_mask = PROCESSOR_V850EA; break; /* end-sanitize-v850e */ } } /* The target specific pseudo-ops which we support. */ const pseudo_typeS md_pseudo_table[] = { {"sdata", v850_sdata, 0}, {"tdata", v850_tdata, 0}, {"zdata", v850_zdata, 0}, {"sbss", v850_sbss, 0}, {"tbss", v850_tbss, 0}, {"zbss", v850_zbss, 0}, {"rosdata", v850_rosdata, 0}, {"rozdata", v850_rozdata, 0}, {"bss", v850_bss, 0}, {"offset", v850_offset, 0}, {"word", cons, 4}, {"zcomm", v850_comm, AREA_ZDA}, {"scomm", v850_comm, AREA_SDA}, {"tcomm", v850_comm, AREA_TDA}, {"v850", set_machine, 0}, /* start-sanitize-v850e */ {"call_table_data", v850_call_table_data, 0}, {"call_table_text", v850_call_table_text, 0}, {"v850e", set_machine, bfd_mach_v850e}, {"v850ea", set_machine, bfd_mach_v850ea}, /* end-sanitize-v850e */ { NULL, NULL, 0} }; /* Opcode hash table. */ static struct hash_control *v850_hash; /* This table is sorted. Suitable for searching by a binary search. */ static const struct reg_name pre_defined_registers[] = { { "ep", 30 }, /* ep - element ptr */ { "gp", 4 }, /* gp - global ptr */ { "hp", 2 }, /* hp - handler stack ptr */ { "lp", 31 }, /* lp - link ptr */ { "r0", 0 }, { "r1", 1 }, { "r10", 10 }, { "r11", 11 }, { "r12", 12 }, { "r13", 13 }, { "r14", 14 }, { "r15", 15 }, { "r16", 16 }, { "r17", 17 }, { "r18", 18 }, { "r19", 19 }, { "r2", 2 }, { "r20", 20 }, { "r21", 21 }, { "r22", 22 }, { "r23", 23 }, { "r24", 24 }, { "r25", 25 }, { "r26", 26 }, { "r27", 27 }, { "r28", 28 }, { "r29", 29 }, { "r3", 3 }, { "r30", 30 }, { "r31", 31 }, { "r4", 4 }, { "r5", 5 }, { "r6", 6 }, { "r7", 7 }, { "r8", 8 }, { "r9", 9 }, { "sp", 3 }, /* sp - stack ptr */ { "tp", 5 }, /* tp - text ptr */ { "zero", 0 }, }; #define REG_NAME_CNT (sizeof (pre_defined_registers) / sizeof (struct reg_name)) static const struct reg_name system_registers[] = { /* start-sanitize-v850e */ { "ctbp", 20 }, { "ctpc", 16 }, { "ctpsw", 17 }, { "dbpc", 18 }, { "dbpsw", 19 }, /* end-sanitize-v850e */ { "ecr", 4 }, { "eipc", 0 }, { "eipsw", 1 }, { "fepc", 2 }, { "fepsw", 3 }, { "psw", 5 }, }; #define SYSREG_NAME_CNT (sizeof (system_registers) / sizeof (struct reg_name)) /* start-sanitize-v850e */ static const struct reg_name system_list_registers[] = { {"PS", 5 }, {"SR", 0 + 1} }; #define SYSREGLIST_NAME_CNT (sizeof (system_list_registers) / sizeof (struct reg_name)) /* end-sanitize-v850e */ static const struct reg_name cc_names[] = { { "c", 0x1 }, { "e", 0x2 }, { "ge", 0xe }, { "gt", 0xf }, { "h", 0xb }, { "l", 0x1 }, { "le", 0x7 }, { "lt", 0x6 }, { "n", 0x4 }, { "nc", 0x9 }, { "ne", 0xa }, { "nh", 0x3 }, { "nl", 0x9 }, { "ns", 0xc }, { "nv", 0x8 }, { "nz", 0xa }, { "p", 0xc }, { "s", 0x4 }, { "sa", 0xd }, { "t", 0x5 }, { "v", 0x0 }, { "z", 0x2 }, }; #define CC_NAME_CNT (sizeof (cc_names) / sizeof (struct reg_name)) /* reg_name_search does a binary search of the given register table to see if "name" is a valid regiter name. Returns the register number from the array on success, or -1 on failure. */ static int reg_name_search (regs, regcount, name, accept_numbers) const struct reg_name * regs; int regcount; const char * name; boolean accept_numbers; { int middle, low, high; int cmp; symbolS * symbolP; /* If the register name is a symbol, then evaluate it. */ if ((symbolP = symbol_find (name)) != NULL) { /* If the symbol is an alias for another name then use that. If the symbol is an alias for a number, then return the number. */ if (symbolP->sy_value.X_op == O_symbol) { name = S_GET_NAME (symbolP->sy_value.X_add_symbol); } else if (accept_numbers) { int reg = S_GET_VALUE (symbolP); if (reg >= 0 && reg <= 31) return reg; } } low = 0; high = regcount - 1; do { middle = (low + high) / 2; cmp = strcasecmp (name, regs[middle].name); if (cmp < 0) high = middle - 1; else if (cmp > 0) low = middle + 1; else return regs[middle].value; } while (low <= high); return -1; } /* Summary of register_name(). * * in: Input_line_pointer points to 1st char of operand. * * out: A expressionS. * The operand may have been a register: in this case, X_op == O_register, * X_add_number is set to the register number, and truth is returned. * Input_line_pointer->(next non-blank) char after operand, or is in * its original state. */ static boolean register_name (expressionP) expressionS * expressionP; { int reg_number; char * name; char * start; char c; /* Find the spelling of the operand */ start = name = input_line_pointer; c = get_symbol_end (); reg_number = reg_name_search (pre_defined_registers, REG_NAME_CNT, name, FALSE); * input_line_pointer = c; /* put back the delimiting char */ /* look to see if it's in the register table */ if (reg_number >= 0) { expressionP->X_op = O_register; expressionP->X_add_number = reg_number; /* make the rest nice */ expressionP->X_add_symbol = NULL; expressionP->X_op_symbol = NULL; return true; } else { /* reset the line as if we had not done anything */ input_line_pointer = start; return false; } } /* Summary of system_register_name(). * * in: Input_line_pointer points to 1st char of operand. * expressionP points to an expression structure to be filled in. * accept_numbers is true iff numerical register names may be used. * start-sanitize-v850e * accept_list_names is true iff the special names PS and SR may be * accepted. * end-sanitize-v850e * * out: A expressionS structure in expressionP. * The operand may have been a register: in this case, X_op == O_register, * X_add_number is set to the register number, and truth is returned. * Input_line_pointer->(next non-blank) char after operand, or is in * its original state. */ static boolean system_register_name (expressionP, accept_numbers /* start-sanitize-v850e */ , accept_list_names /* end-sanitize-v850e */ ) expressionS * expressionP; boolean accept_numbers; /* start-sanitize-v850e */ boolean accept_list_names; /* end-sanitize-v850e */ { int reg_number; char * name; char * start; char c; /* Find the spelling of the operand */ start = name = input_line_pointer; c = get_symbol_end (); reg_number = reg_name_search (system_registers, SYSREG_NAME_CNT, name, accept_numbers); * input_line_pointer = c; /* put back the delimiting char */ if (reg_number < 0 && accept_numbers) { input_line_pointer = start; /* reset input_line pointer */ if (isdigit (* input_line_pointer)) { reg_number = strtol (input_line_pointer, & input_line_pointer, 10); /* Make sure that the register number is allowable. */ if ( reg_number < 0 || reg_number > 5 /* start-sanitize-v850e */ && reg_number < 16 || reg_number > 20 /* end-sanitize-v850e */ ) { reg_number = -1; } } /* start-sanitize-v850e */ else if (accept_list_names) { c = get_symbol_end (); reg_number = reg_name_search (system_list_registers, SYSREGLIST_NAME_CNT, name, FALSE); * input_line_pointer = c; /* put back the delimiting char */ } /* end-sanitize-v850e */ } /* look to see if it's in the register table */ if (reg_number >= 0) { expressionP->X_op = O_register; expressionP->X_add_number = reg_number; /* make the rest nice */ expressionP->X_add_symbol = NULL; expressionP->X_op_symbol = NULL; return true; } else { /* reset the line as if we had not done anything */ input_line_pointer = start; return false; } } /* Summary of cc_name(). * * in: Input_line_pointer points to 1st char of operand. * * out: A expressionS. * The operand may have been a register: in this case, X_op == O_register, * X_add_number is set to the register number, and truth is returned. * Input_line_pointer->(next non-blank) char after operand, or is in * its original state. */ static boolean cc_name (expressionP) expressionS * expressionP; { int reg_number; char * name; char * start; char c; /* Find the spelling of the operand */ start = name = input_line_pointer; c = get_symbol_end (); reg_number = reg_name_search (cc_names, CC_NAME_CNT, name, FALSE); * input_line_pointer = c; /* put back the delimiting char */ /* look to see if it's in the register table */ if (reg_number >= 0) { expressionP->X_op = O_constant; expressionP->X_add_number = reg_number; /* make the rest nice */ expressionP->X_add_symbol = NULL; expressionP->X_op_symbol = NULL; return true; } else { /* reset the line as if we had not done anything */ input_line_pointer = start; return false; } } static void skip_white_space (void) { while ( * input_line_pointer == ' ' || * input_line_pointer == '\t') ++ input_line_pointer; } /* start-sanitize-v850e */ /* Summary of parse_register_list (). * * in: Input_line_pointer points to 1st char of a list of registers. * insn is the partially constructed instruction. * operand is the operand being inserted. * * out: NULL if the parse completed successfully, otherwise a * pointer to an error message is returned. If the parse * completes the correct bit fields in the instruction * will be filled in. * * Parses register lists with the syntax: * * { rX } * { rX, rY } * { rX - rY } * { rX - rY, rZ } * etc * * and also parses constant epxressions whoes bits indicate the * registers in the lists. The LSB in the expression refers to * the lowest numbered permissable register in the register list, * and so on upwards. System registers are considered to be very * high numbers. * */ static char * parse_register_list ( unsigned long * insn, const struct v850_operand * operand ) { static int type1_regs[ 32 ] = { 30, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 31, 29, 28, 23, 22, 21, 20, 27, 26, 25, 24 }; static int type2_regs[ 32 ] = { 19, 18, 17, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 30, 31, 29, 28, 23, 22, 21, 20, 27, 26, 25, 24 }; static int type3_regs[ 32 ] = { 3, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 15, 13, 12, 7, 6, 5, 4, 11, 10, 9, 8 }; int * regs; expressionS exp; /* Select a register array to parse. */ switch (operand->shift) { case 0xffe00001: regs = type1_regs; break; case 0xfff8000f: regs = type2_regs; break; case 0xfff8001f: regs = type3_regs; break; default: as_bad ("unknown operand shift: %x\n", operand->shift ); return "internal failure in parse_register_list"; } skip_white_space(); /* If the expression starts with a curly brace it is a register list. Otherwise it is a constant expression, whoes bits indicate which registers are to be included in the list. */ if (* input_line_pointer != '{') { int bits; int reg; int i; expression (& exp); if (exp.X_op != O_constant) return "constant expression or register list expected"; if (regs == type1_regs) { if (exp.X_add_number & 0xFFFFF000) return "high bits set in register list expression"; for (reg = 20; reg < 32; reg ++) if (exp.X_add_number & (1 << (reg - 20))) { for (i = 0; i < 32; i++) if (regs[i] == reg) * insn |= (1 << i); } } else if (regs == type2_regs) { if (exp.X_add_number & 0xFFFE0000) return "high bits set in register list expression"; for (reg = 1; reg < 16; reg ++) if (exp.X_add_number & (1 << (reg - 1))) { for (i = 0; i < 32; i++) if (regs[i] == reg) * insn |= (1 << i); } if (exp.X_add_number & (1 << 15)) * insn |= (1 << 3); if (exp.X_add_number & (1 << 16)) * insn |= (1 << 19); } else /* regs == type3_regs */ { if (exp.X_add_number & 0xFFFE0000) return "high bits set in register list expression"; for (reg = 16; reg < 32; reg ++) if (exp.X_add_number & (1 << (reg - 16))) { for (i = 0; i < 32; i++) if (regs[i] == reg) * insn |= (1 << i); } if (exp.X_add_number & (1 << 16)) * insn |= (1 << 19); } return NULL; } input_line_pointer ++; /* Parse the register list until a terminator (closing curly brace or new-line) is found. */ for (;;) { if (register_name (& exp)) { int i; /* Locate the given register in the list, and if it is there, insert the corresponding bit into the instruction. */ for (i = 0; i < 32; i++) { if (regs[ i ] == exp.X_add_number) { * insn |= (1 << i); break; } } if (i == 32) { return "illegal register included in list"; } } else if (system_register_name (& exp, true, true)) { if (regs == type1_regs) { return "system registers cannot be included in list"; } else if (exp.X_add_number == 5) { if (regs == type2_regs) return "PSW cannot be included in list"; else * insn |= 0x8; } else if (exp.X_add_number < 4) * insn |= 0x80000; else return "High value system registers cannot be included in list"; } else if (* input_line_pointer == '}') { input_line_pointer ++; break; } else if (* input_line_pointer == ',') { input_line_pointer ++; continue; } else if (* input_line_pointer == '-') { /* We have encountered a range of registers: rX - rY */ int j; expressionS exp2; /* Skip the dash. */ ++ input_line_pointer; /* Get the second register in the range. */ if (! register_name (& exp2)) { return "second register should follow dash in register list"; exp2.X_add_number = exp.X_add_number; } /* Add the rest of the registers in the range. */ for (j = exp.X_add_number + 1; j <= exp2.X_add_number; j++) { int i; /* Locate the given register in the list, and if it is there, insert the corresponding bit into the instruction. */ for (i = 0; i < 32; i++) { if (regs[ i ] == j) { * insn |= (1 << i); break; } } if (i == 32) { return "illegal register included in list"; } } } else { break; } skip_white_space (); } return NULL; } /* end-sanitize-v850e */ CONST char * md_shortopts = "m:"; struct option md_longopts[] = { {NULL, no_argument, NULL, 0} }; size_t md_longopts_size = sizeof md_longopts; void md_show_usage (stream) FILE * stream; { fprintf (stream, "V850 options:\n"); fprintf (stream, "\t-mwarn-signed-overflow Warn if signed immediate values overflow\n"); fprintf (stream, "\t-mwarn-unsigned-overflow Warn if unsigned immediate values overflow\n"); fprintf (stream, "\t-mv850 The code is targeted at the v850\n"); /* start-sanitize-v850e */ fprintf (stream, "\t-mv850e The code is targeted at the v850e\n"); fprintf (stream, "\t-mv850ea The code is targeted at the v850ea\n"); /* end-sanitize-v850e */ } int md_parse_option (c, arg) int c; char * arg; { if (c != 'm') { fprintf (stderr, "unknown command line option: -%c%s\n", c, arg); return 0; } if (strcmp (arg, "warn-signed-overflow") == 0) { warn_signed_overflows = TRUE; } else if (strcmp (arg, "warn-unsigned-overflow") == 0) { warn_unsigned_overflows = TRUE; } else if (strcmp (arg, "v850") == 0) { machine = 0; processor_mask = PROCESSOR_V850; } /* start-sanitize-v850e */ else if (strcmp (arg, "v850e") == 0) { machine = bfd_mach_v850e; processor_mask = PROCESSOR_V850E; } else if (strcmp (arg, "v850ea") == 0) { machine = bfd_mach_v850ea; processor_mask = PROCESSOR_V850EA; } /* end-sanitize-v850e */ else { fprintf (stderr, "unknown command line option: -%c%s\n", c, arg); return 0; } return 1; } symbolS * md_undefined_symbol (name) char * name; { return 0; } char * md_atof (type, litp, sizep) int type; char * litp; int * sizep; { int prec; LITTLENUM_TYPE words[4]; char * t; int i; switch (type) { case 'f': prec = 2; break; case 'd': prec = 4; break; default: *sizep = 0; return "bad call to md_atof"; } t = atof_ieee (input_line_pointer, type, words); if (t) input_line_pointer = t; *sizep = prec * 2; for (i = prec - 1; i >= 0; i--) { md_number_to_chars (litp, (valueT) words[i], 2); litp += 2; } return NULL; } /* Very gross. */ void md_convert_frag (abfd, sec, fragP) bfd * abfd; asection * sec; fragS * fragP; { subseg_change (sec, 0); /* In range conditional or unconditional branch. */ if (fragP->fr_subtype == 0 || fragP->fr_subtype == 2) { fix_new (fragP, fragP->fr_fix, 2, fragP->fr_symbol, fragP->fr_offset, 1, BFD_RELOC_UNUSED + (int)fragP->fr_opcode); fragP->fr_var = 0; fragP->fr_fix += 2; } /* Out of range conditional branch. Emit a branch around a jump. */ else if (fragP->fr_subtype == 1) { unsigned char *buffer = (unsigned char *) (fragP->fr_fix + fragP->fr_literal); /* Reverse the condition of the first branch. */ buffer[0] ^= 0x08; /* Mask off all the displacement bits. */ buffer[0] &= 0x8f; buffer[1] &= 0x07; /* Now set the displacement bits so that we branch around the unconditional branch. */ buffer[0] |= 0x30; /* Now create the unconditional branch + fixup to the final target. */ md_number_to_chars (buffer + 2, 0x00000780, 4); fix_new (fragP, fragP->fr_fix + 2, 4, fragP->fr_symbol, fragP->fr_offset, 1, BFD_RELOC_UNUSED + (int) fragP->fr_opcode + 1); fragP->fr_var = 0; fragP->fr_fix += 6; } /* Out of range unconditional branch. Emit a jump. */ else if (fragP->fr_subtype == 3) { md_number_to_chars (fragP->fr_fix + fragP->fr_literal, 0x00000780, 4); fix_new (fragP, fragP->fr_fix, 4, fragP->fr_symbol, fragP->fr_offset, 1, BFD_RELOC_UNUSED + (int) fragP->fr_opcode + 1); fragP->fr_var = 0; fragP->fr_fix += 4; } else abort (); } valueT md_section_align (seg, addr) asection * seg; valueT addr; { int align = bfd_get_section_alignment (stdoutput, seg); return ((addr + (1 << align) - 1) & (-1 << align)); } void md_begin () { char * prev_name = ""; register const struct v850_opcode * op; flagword applicable; /* start-sanitize-v850e */ if (strncmp (TARGET_CPU, "v850ea", 6) == 0) { if (machine == -1) machine = bfd_mach_v850ea; if (processor_mask == -1) processor_mask = PROCESSOR_V850EA; } else if (strncmp (TARGET_CPU, "v850e", 5) == 0) { if (machine == -1) machine = bfd_mach_v850e; if (processor_mask == -1) processor_mask = PROCESSOR_V850E; } else /* end-sanitize-v850e */ if (strncmp (TARGET_CPU, "v850", 4) == 0) { if (machine == -1) machine = 0; if (processor_mask == -1) processor_mask = PROCESSOR_V850; } else as_bad ("Unable to determine default target processor from string: %s", TARGET_CPU); v850_hash = hash_new(); /* Insert unique names into hash table. The V850 instruction set has many identical opcode names that have different opcodes based on the operands. This hash table then provides a quick index to the first opcode with a particular name in the opcode table. */ op = v850_opcodes; while (op->name) { if (strcmp (prev_name, op->name)) { prev_name = (char *) op->name; hash_insert (v850_hash, op->name, (char *) op); } op++; } bfd_set_arch_mach (stdoutput, TARGET_ARCH, machine); applicable = bfd_applicable_section_flags (stdoutput); sdata_section = subseg_new (".sdata", 0); bfd_set_section_flags (stdoutput, sdata_section, applicable & (SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA | SEC_HAS_CONTENTS)); tdata_section = subseg_new (".tdata", 0); bfd_set_section_flags (stdoutput, tdata_section, applicable & (SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA | SEC_HAS_CONTENTS)); zdata_section = subseg_new (".zdata", 0); bfd_set_section_flags (stdoutput, zdata_section, applicable & (SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA | SEC_HAS_CONTENTS)); sbss_section = subseg_new (".sbss", 0); bfd_set_section_flags (stdoutput, sbss_section, applicable & SEC_ALLOC); seg_info (sbss_section)->bss = 1; tbss_section = subseg_new (".tbss", 0); bfd_set_section_flags (stdoutput, tbss_section, applicable & SEC_ALLOC); seg_info (tbss_section)->bss = 1; zbss_section = subseg_new (".zbss", 0); bfd_set_section_flags (stdoutput, zbss_section, applicable & SEC_ALLOC); seg_info (zbss_section)->bss = 1; rosdata_section = subseg_new (".rosdata", 0); bfd_set_section_flags (stdoutput, rosdata_section, applicable & (SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_READONLY)); rozdata_section = subseg_new (".rozdata", 0); bfd_set_section_flags (stdoutput, rozdata_section, applicable & (SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_READONLY)); scommon_section = subseg_new (".scommon", 0); bfd_set_section_flags (stdoutput, scommon_section, applicable & (SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA | SEC_HAS_CONTENTS | SEC_IS_COMMON)); zcommon_section = subseg_new (".zcommon", 0); bfd_set_section_flags (stdoutput, zcommon_section, applicable & (SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA | SEC_HAS_CONTENTS | SEC_IS_COMMON)); tcommon_section = subseg_new (".tcommon", 0); bfd_set_section_flags (stdoutput, tcommon_section, applicable & (SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA | SEC_HAS_CONTENTS | SEC_IS_COMMON)); /* start-sanitize-v850e */ call_table_data_section = subseg_new (".call_table_data", 0); bfd_set_section_flags (stdoutput, call_table_data_section, applicable & (SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA | SEC_HAS_CONTENTS)); call_table_text_section = subseg_new (".call_table_text", 0); bfd_set_section_flags (stdoutput, call_table_text_section, applicable & (SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_CODE)); /* end-sanitize-v850e */ } /* start-sanitize-v850e */ static bfd_reloc_code_real_type handle_ctoff (const struct v850_operand * operand) { if (operand == NULL) return BFD_RELOC_V850_CALLT_16_16_OFFSET; if ( operand->bits != 6 || operand->shift != 0) { as_bad ("ctoff() relocation used on an instruction which does not support it"); return BFD_RELOC_64; /* Used to indicate an error condition. */ } return BFD_RELOC_V850_CALLT_6_7_OFFSET; } /* end-sanitize-v850e */ static bfd_reloc_code_real_type handle_sdaoff (const struct v850_operand * operand) { if (operand == NULL) return BFD_RELOC_V850_SDA_16_16_OFFSET; if (operand->bits == 15 && operand->shift == 17) return BFD_RELOC_V850_SDA_15_16_OFFSET; /* start-sanitize-v850e */ if (operand->bits == -1) return BFD_RELOC_V850_SDA_16_16_SPLIT_OFFSET; /* end-sanitize-v850e */ if ( operand->bits != 16 || operand->shift != 16) { as_bad ("sdaoff() relocation used on an instruction which does not support it"); return BFD_RELOC_64; /* Used to indicate an error condition. */ } return BFD_RELOC_V850_SDA_16_16_OFFSET; } static bfd_reloc_code_real_type handle_zdaoff (const struct v850_operand * operand) { if (operand == NULL) return BFD_RELOC_V850_ZDA_16_16_OFFSET; if (operand->bits == 15 && operand->shift == 17) return BFD_RELOC_V850_ZDA_15_16_OFFSET; /* start-sanitize-v850e */ if (operand->bits == -1) return BFD_RELOC_V850_ZDA_16_16_SPLIT_OFFSET; /* end-sanitize-v850e */ if ( operand->bits != 16 || operand->shift != 16) { as_bad ("zdaoff() relocation used on an instruction which does not support it"); return BFD_RELOC_64; /* Used to indicate an error condition. */ } return BFD_RELOC_V850_ZDA_16_16_OFFSET; } static bfd_reloc_code_real_type handle_tdaoff (const struct v850_operand * operand) { if (operand == NULL) return BFD_RELOC_V850_TDA_7_7_OFFSET; /* data item, not an instruction. */ if (operand->bits == 6 && operand->shift == 1) return BFD_RELOC_V850_TDA_6_8_OFFSET; /* sld.w/sst.w, operand: D8_6 */ /* start-sanitize-v850e */ if (operand->bits == 4 && operand->insert != NULL) return BFD_RELOC_V850_TDA_4_5_OFFSET; /* sld.hu, operand: D5-4 */ if (operand->bits == 4 && operand->insert == NULL) return BFD_RELOC_V850_TDA_4_4_OFFSET; /* sld.bu, operand: D4 */ /* end-sanitize-v850e */ if (operand->bits == 16 && operand->shift == 16) return BFD_RELOC_V850_TDA_16_16_OFFSET; /* set1 & chums, operands: D16 */ if (operand->bits != 7) { as_bad ("tdaoff() relocation used on an instruction which does not support it"); return BFD_RELOC_64; /* Used to indicate an error condition. */ } return operand->insert != NULL ? BFD_RELOC_V850_TDA_7_8_OFFSET /* sld.h/sst.h, operand: D8_7 */ : BFD_RELOC_V850_TDA_7_7_OFFSET; /* sld.b/sst.b, opreand: D7 */ } /* Warning: The code in this function relies upon the definitions in the v850_operands[] array (defined in opcodes/v850-opc.c) matching the hard coded values contained herein. */ static bfd_reloc_code_real_type v850_reloc_prefix (const struct v850_operand * operand) { boolean paren_skipped = false; /* Skip leading opening parenthesis. */ if (* input_line_pointer == '(') { ++ input_line_pointer; paren_skipped = true; } #define CHECK_(name, reloc) \ if (strncmp (input_line_pointer, name##"(", strlen (name) + 1) == 0) \ { \ input_line_pointer += strlen (name); \ return reloc; \ } CHECK_ ("hi0", BFD_RELOC_HI16); CHECK_ ("hi", BFD_RELOC_HI16_S); CHECK_ ("lo", BFD_RELOC_LO16); CHECK_ ("sdaoff", handle_sdaoff (operand)); CHECK_ ("zdaoff", handle_zdaoff (operand)); CHECK_ ("tdaoff", handle_tdaoff (operand)); /* start-sanitize-v850e */ CHECK_ ("hilo", BFD_RELOC_32); CHECK_ ("ctoff", handle_ctoff (operand)); /* end-sanitize-v850e */ /* Restore skipped parenthesis. */ if (paren_skipped) -- input_line_pointer; return BFD_RELOC_UNUSED; } /* Insert an operand value into an instruction. */ static unsigned long v850_insert_operand (insn, operand, val, file, line, str) unsigned long insn; const struct v850_operand * operand; offsetT val; char * file; unsigned int line; char * str; { if (operand->insert) { const char * message = NULL; insn = operand->insert (insn, val, & message); if (message != NULL) { if ((operand->flags & V850_OPERAND_SIGNED) && ! warn_signed_overflows && strstr (message, "out of range") != NULL) { /* skip warning... */ } else if ((operand->flags & V850_OPERAND_SIGNED) == 0 && ! warn_unsigned_overflows && strstr (message, "out of range") != NULL) { /* skip warning... */ } else if (str) { if (file == (char *) NULL) as_warn ("%s: %s", str, message); else as_warn_where (file, line, "%s: %s", str, message); } else { if (file == (char *) NULL) as_warn (message); else as_warn_where (file, line, message); } } } else { if (operand->bits != 32) { long min, max; offsetT test; if ((operand->flags & V850_OPERAND_SIGNED) != 0) { if (! warn_signed_overflows) max = (1 << operand->bits) - 1; else max = (1 << (operand->bits - 1)) - 1; min = - (1 << (operand->bits - 1)); } else { max = (1 << operand->bits) - 1; if (! warn_unsigned_overflows) min = - (1 << (operand->bits - 1)); else min = 0; } if (val < (offsetT) min || val > (offsetT) max) { const char * err = "operand out of range (%s not between %ld and %ld)"; char buf[100]; /* Restore min and mix to expected values for decimal ranges. */ if ((operand->flags & V850_OPERAND_SIGNED) && ! warn_signed_overflows) max = (1 << (operand->bits - 1)) - 1; if (! (operand->flags & V850_OPERAND_SIGNED) && ! warn_unsigned_overflows) min = 0; if (str) { sprintf (buf, "%s: ", str); sprint_value (buf + strlen (buf), val); } else sprint_value (buf, val); if (file == (char *) NULL) as_warn (err, buf, min, max); else as_warn_where (file, line, err, buf, min, max); } } insn |= (((long) val & ((1 << operand->bits) - 1)) << operand->shift); } return insn; } static char copy_of_instruction [128]; void md_assemble (str) char * str; { char * s; char * start_of_operands; struct v850_opcode * opcode; struct v850_opcode * next_opcode; const unsigned char * opindex_ptr; int next_opindex; int relaxable; unsigned long insn; unsigned long insn_size; char * f; int i; int match; boolean extra_data_after_insn = false; unsigned extra_data_len; unsigned long extra_data; char * saved_input_line_pointer; strncpy (copy_of_instruction, str, sizeof (copy_of_instruction) - 1); /* Get the opcode. */ for (s = str; *s != '\0' && ! isspace (*s); s++) continue; if (*s != '\0') *s++ = '\0'; /* find the first opcode with the proper name */ opcode = (struct v850_opcode *) hash_find (v850_hash, str); if (opcode == NULL) { as_bad ("Unrecognized opcode: `%s'", str); ignore_rest_of_line (); return; } str = s; while (isspace (* str)) ++ str; start_of_operands = str; saved_input_line_pointer = input_line_pointer; for (;;) { const char * errmsg = NULL; match = 0; if ((opcode->processors & processor_mask) == 0) { errmsg = "Target processor does not support this instruction."; goto error; } relaxable = 0; fc = 0; next_opindex = 0; insn = opcode->opcode; extra_data_after_insn = false; input_line_pointer = str = start_of_operands; for (opindex_ptr = opcode->operands; *opindex_ptr != 0; opindex_ptr ++) { const struct v850_operand * operand; char * hold; expressionS ex; bfd_reloc_code_real_type reloc; if (next_opindex == 0) { operand = & v850_operands[ * opindex_ptr ]; } else { operand = & v850_operands[ next_opindex ]; next_opindex = 0; } errmsg = NULL; while (*str == ' ' || *str == ',' || *str == '[' || *str == ']') ++ str; if (operand->flags & V850_OPERAND_RELAX) relaxable = 1; /* Gather the operand. */ hold = input_line_pointer; input_line_pointer = str; /* lo(), hi(), hi0(), etc... */ if ((reloc = v850_reloc_prefix (operand)) != BFD_RELOC_UNUSED) { /* This is a fake reloc, used to indicate an error condition. */ if (reloc == BFD_RELOC_64) { match = 1; goto error; } expression (& ex); if (ex.X_op == O_constant) { switch (reloc) { case BFD_RELOC_V850_ZDA_16_16_OFFSET: /* To cope with "not1 7, zdaoff(0xfffff006)[r0]" and the like. */ /* Fall through. */ case BFD_RELOC_LO16: { /* Truncate, then sign extend the value. */ ex.X_add_number = SEXT16 (ex.X_add_number); break; } case BFD_RELOC_HI16: { /* Truncate, then sign extend the value. */ ex.X_add_number = SEXT16 (ex.X_add_number >> 16); break; } case BFD_RELOC_HI16_S: { /* Truncate, then sign extend the value. */ int temp = (ex.X_add_number >> 16) & 0xffff; temp += (ex.X_add_number >> 15) & 1; ex.X_add_number = SEXT16 (temp); break; } /* start-sanitize-v850e */ case BFD_RELOC_32: if ((operand->flags & V850E_IMMEDIATE32) == 0) { errmsg = "immediate operand is too large"; goto error; } extra_data_after_insn = true; extra_data_len = 4; extra_data = ex.X_add_number; ex.X_add_number = 0; break; /* end-sanitize-v850e */ default: fprintf (stderr, "reloc: %d\n", reloc); as_bad ("AAARG -> unhandled constant reloc"); break; } insn = v850_insert_operand (insn, operand, ex.X_add_number, (char *) NULL, 0, copy_of_instruction); } else { /* start-sanitize-v850e */ if (reloc == BFD_RELOC_32) { if ((operand->flags & V850E_IMMEDIATE32) == 0) { errmsg = "immediate operand is too large"; goto error; } extra_data_after_insn = true; extra_data_len = 4; extra_data = ex.X_add_number; } /* end-sanitize-v850e */ if (fc > MAX_INSN_FIXUPS) as_fatal ("too many fixups"); fixups[ fc ].exp = ex; fixups[ fc ].opindex = * opindex_ptr; fixups[ fc ].reloc = reloc; fc++; } } else { errmsg = NULL; if ((operand->flags & V850_OPERAND_REG) != 0) { if (!register_name (& ex)) { errmsg = "invalid register name"; } else if ((operand->flags & V850_NOT_R0) && ex.X_add_number == 0) { errmsg = "register r0 cannot be used here"; /* Force an error message to be generated by skipping over any following potential matches for this opcode. */ opcode += 3; } } else if ((operand->flags & V850_OPERAND_SRG) != 0) { if (!system_register_name (& ex, true /* start-sanitize-v850e */ , false /* end-sanitize-v850e */ )) { errmsg = "invalid system register name"; } } else if ((operand->flags & V850_OPERAND_EP) != 0) { char * start = input_line_pointer; char c = get_symbol_end (); if (strcmp (start, "ep") != 0 && strcmp (start, "r30") != 0) { /* Put things back the way we found them. */ *input_line_pointer = c; input_line_pointer = start; errmsg = "expected EP register"; goto error; } *input_line_pointer = c; str = input_line_pointer; input_line_pointer = hold; while ( *str == ' ' || *str == ',' || *str == '[' || *str == ']') ++ str; continue; } else if ((operand->flags & V850_OPERAND_CC) != 0) { if (!cc_name (& ex)) { errmsg = "invalid condition code name"; } } /* start-sanitize-v850e */ else if (operand->flags & V850E_PUSH_POP) { errmsg = parse_register_list (& insn, operand); /* The parse_register_list() function has already done everything, so fake a dummy expression. */ ex.X_op = O_constant; ex.X_add_number = 0; } else if (operand->flags & V850E_IMMEDIATE16) { expression (& ex); if (ex.X_op != O_constant) errmsg = "constant expression expected"; else if (ex.X_add_number & 0xffff0000) { if (ex.X_add_number & 0xffff) errmsg = "constant too big to fit into instruction"; else if ((insn & 0x001fffc0) == 0x00130780) ex.X_add_number >>= 16; else errmsg = "constant too big to fit into instruction"; } extra_data_after_insn = true; extra_data_len = 2; extra_data = ex.X_add_number; ex.X_add_number = 0; } else if (operand->flags & V850E_IMMEDIATE32) { expression (& ex); if (ex.X_op != O_constant) errmsg = "constant expression expected"; extra_data_after_insn = true; extra_data_len = 4; extra_data = ex.X_add_number; ex.X_add_number = 0; } /* end-sanitize-v850e */ else if (register_name (& ex) && (operand->flags & V850_OPERAND_REG) == 0) { /* It is possible that an alias has been defined that matches a register name. For example the code may include a ".set ZERO, 0" directive, which matches the register name "zero". Attempt to reparse the field as an expression, and only complain if we cannot generate a constant. */ input_line_pointer = str; expression (& ex); if (ex.X_op != O_constant) { /* If this register is actually occuring too early on the parsing of the instruction, (because another field is missing) then report this. */ if (opindex_ptr[1] != 0 && (v850_operands [opindex_ptr [1]].flags & V850_OPERAND_REG)) errmsg = "syntax error: value is missing before the register name"; else errmsg = "syntax error: register not expected"; } } else if (system_register_name (& ex, false /* start-sanitize-v850e */ , false /* end-sanitize-v850e */ ) && (operand->flags & V850_OPERAND_SRG) == 0) { errmsg = "syntax error: system register not expected"; } else if (cc_name (&ex) && (operand->flags & V850_OPERAND_CC) == 0) { errmsg = "syntax error: condition code not expected"; } else { expression (& ex); /* start-sanitize-v850e */ /* Special case: If we are assembling a MOV instruction (or a CALLT.... :-) and the immediate value does not fit into the bits available then create a fake error so that the next MOV instruction will be selected. This one has a 32 bit immediate field. */ if (((insn & 0x07e0) == 0x0200) && ex.X_op == O_constant && (ex.X_add_number < (- (1 << (operand->bits - 1))) || ex.X_add_number > ((1 << operand->bits) - 1))) errmsg = "immediate operand is too large"; /* end-sanitize-v850e */ } if (errmsg) goto error; /* fprintf (stderr, " insn: %x, operand %d, op: %d, add_number: %d\n", insn, opindex_ptr - opcode->operands, ex.X_op, ex.X_add_number); */ switch (ex.X_op) { case O_illegal: errmsg = "illegal operand"; goto error; case O_absent: errmsg = "missing operand"; goto error; case O_register: if ((operand->flags & (V850_OPERAND_REG | V850_OPERAND_SRG)) == 0) { errmsg = "invalid operand"; goto error; } insn = v850_insert_operand (insn, operand, ex.X_add_number, (char *) NULL, 0, copy_of_instruction); break; case O_constant: insn = v850_insert_operand (insn, operand, ex.X_add_number, (char *) NULL, 0, copy_of_instruction); break; default: /* We need to generate a fixup for this expression. */ if (fc >= MAX_INSN_FIXUPS) as_fatal ("too many fixups"); fixups[ fc ].exp = ex; fixups[ fc ].opindex = * opindex_ptr; fixups[ fc ].reloc = BFD_RELOC_UNUSED; ++fc; break; } } str = input_line_pointer; input_line_pointer = hold; while (*str == ' ' || *str == ',' || *str == '[' || *str == ']' || *str == ')') ++str; } match = 1; error: if (match == 0) { next_opcode = opcode + 1; if (next_opcode->name != NULL && strcmp (next_opcode->name, opcode->name) == 0) { opcode = next_opcode; /* Skip versions that are not supported by the target processor. */ if ((opcode->processors & processor_mask) == 0) goto error; continue; } as_bad ("%s: %s", copy_of_instruction, errmsg); if (* input_line_pointer == ']') ++ input_line_pointer; ignore_rest_of_line (); input_line_pointer = saved_input_line_pointer; return; } break; } while (isspace (*str)) ++str; if (*str != '\0') as_bad ("junk at end of line: `%s'", str); input_line_pointer = str; /* Write out the instruction. */ if (relaxable && fc > 0) { insn_size = 2; fc = 0; if (!strcmp (opcode->name, "br")) { f = frag_var (rs_machine_dependent, 4, 2, 2, fixups[0].exp.X_add_symbol, fixups[0].exp.X_add_number, (char *)fixups[0].opindex); md_number_to_chars (f, insn, insn_size); md_number_to_chars (f + 2, 0, 2); } else { f = frag_var (rs_machine_dependent, 6, 4, 0, fixups[0].exp.X_add_symbol, fixups[0].exp.X_add_number, (char *)fixups[0].opindex); md_number_to_chars (f, insn, insn_size); md_number_to_chars (f + 2, 0, 4); } } else { /* Four byte insns have an opcode with the two high bits on. */ if ((insn & 0x0600) == 0x0600) insn_size = 4; else insn_size = 2; /* start-sanitize-v850e */ /* Special case: 32 bit MOV */ if ((insn & 0xffe0) == 0x0620) insn_size = 2; /* end-sanitize-v850e */ f = frag_more (insn_size); md_number_to_chars (f, insn, insn_size); if (extra_data_after_insn) { f = frag_more (extra_data_len); md_number_to_chars (f, extra_data, extra_data_len); extra_data_after_insn = false; } } /* Create any fixups. At this point we do not use a bfd_reloc_code_real_type, but instead just use the BFD_RELOC_UNUSED plus the operand index. This lets us easily handle fixups for any operand type, although that is admittedly not a very exciting feature. We pick a BFD reloc type in md_apply_fix. */ for (i = 0; i < fc; i++) { const struct v850_operand * operand; bfd_reloc_code_real_type reloc; operand = & v850_operands[ fixups[i].opindex ]; reloc = fixups[i].reloc; if (reloc != BFD_RELOC_UNUSED) { reloc_howto_type * reloc_howto = bfd_reloc_type_lookup (stdoutput, reloc); int size; int address; fixS * fixP; if (!reloc_howto) abort(); size = bfd_get_reloc_size (reloc_howto); /* XXX This will abort on an R_V850_8 reloc - is this reloc actually used ? */ if (size != 2 && size != 4) abort(); address = (f - frag_now->fr_literal) + insn_size - size; if (reloc == BFD_RELOC_32) { address += 2; } fixP = fix_new_exp (frag_now, address, size, & fixups[i].exp, reloc_howto->pc_relative, reloc); switch (reloc) { case BFD_RELOC_LO16: case BFD_RELOC_HI16: case BFD_RELOC_HI16_S: fixP->fx_no_overflow = 1; break; } } else { fix_new_exp ( frag_now, f - frag_now->fr_literal, 4, & fixups[i].exp, 1 /* FIXME: V850_OPERAND_RELATIVE ??? */, (bfd_reloc_code_real_type) (fixups[i].opindex + (int) BFD_RELOC_UNUSED) ); } } input_line_pointer = saved_input_line_pointer; } /* If while processing a fixup, a reloc really needs to be created */ /* then it is done here. */ arelent * tc_gen_reloc (seg, fixp) asection * seg; fixS * fixp; { arelent * reloc; reloc = (arelent *) xmalloc (sizeof (arelent)); reloc->sym_ptr_ptr = & fixp->fx_addsy->bsym; reloc->address = fixp->fx_frag->fr_address + fixp->fx_where; reloc->howto = bfd_reloc_type_lookup (stdoutput, fixp->fx_r_type); if (reloc->howto == (reloc_howto_type *) NULL) { as_bad_where (fixp->fx_file, fixp->fx_line, "reloc %d not supported by object file format", (int)fixp->fx_r_type); xfree (reloc); return NULL; } reloc->addend = fixp->fx_addnumber; return reloc; } /* Assume everything will fit in two bytes, then expand as necessary. */ int md_estimate_size_before_relax (fragp, seg) fragS * fragp; asection * seg; { if (fragp->fr_subtype == 0) fragp->fr_var = 4; else if (fragp->fr_subtype == 2) fragp->fr_var = 2; else abort (); return 2; } long md_pcrel_from (fixp) fixS * fixp; { /* If the symbol is undefined, or in a section other than our own, then let the linker figure it out. */ if (fixp->fx_addsy != (symbolS *) NULL && ! S_IS_DEFINED (fixp->fx_addsy)) { /* The symbol is undefined. Let the linker figure it out. */ return 0; } return fixp->fx_frag->fr_address + fixp->fx_where; } int md_apply_fix3 (fixp, valuep, seg) fixS * fixp; valueT * valuep; segT seg; { valueT value; char * where; if (fixp->fx_addsy == (symbolS *) NULL) { value = * valuep; fixp->fx_done = 1; } else if (fixp->fx_pcrel) value = * valuep; else { value = fixp->fx_offset; if (fixp->fx_subsy != (symbolS *) NULL) { if (S_GET_SEGMENT (fixp->fx_subsy) == absolute_section) value -= S_GET_VALUE (fixp->fx_subsy); else { /* We don't actually support subtracting a symbol. */ as_bad_where (fixp->fx_file, fixp->fx_line, "expression too complex"); } } } if ((int) fixp->fx_r_type >= (int) BFD_RELOC_UNUSED) { int opindex; const struct v850_operand * operand; unsigned long insn; opindex = (int) fixp->fx_r_type - (int) BFD_RELOC_UNUSED; operand = & v850_operands[ opindex ]; /* Fetch the instruction, insert the fully resolved operand value, and stuff the instruction back again. Note the instruction has been stored in little endian format! */ where = fixp->fx_frag->fr_literal + fixp->fx_where; insn = bfd_getl32 ((unsigned char *) where); insn = v850_insert_operand (insn, operand, (offsetT) value, fixp->fx_file, fixp->fx_line, NULL); bfd_putl32 ((bfd_vma) insn, (unsigned char *) where); if (fixp->fx_done) { /* Nothing else to do here. */ return 1; } /* Determine a BFD reloc value based on the operand information. We are only prepared to turn a few of the operands into relocs. */ if (operand->bits == 22) fixp->fx_r_type = BFD_RELOC_V850_22_PCREL; else if (operand->bits == 9) fixp->fx_r_type = BFD_RELOC_V850_9_PCREL; else { /* fprintf (stderr, "bits: %d, insn: %x\n", operand->bits, insn); */ as_bad_where(fixp->fx_file, fixp->fx_line, "unresolved expression that must be resolved"); fixp->fx_done = 1; return 1; } } else if (fixp->fx_done) { /* We still have to insert the value into memory! */ where = fixp->fx_frag->fr_literal + fixp->fx_where; if (fixp->fx_size == 1) *where = value & 0xff; else if (fixp->fx_size == 2) bfd_putl16 (value & 0xffff, (unsigned char *) where); else if (fixp->fx_size == 4) bfd_putl32 (value, (unsigned char *) where); } fixp->fx_addnumber = value; return 1; } /* Parse a cons expression. We have to handle hi(), lo(), etc on the v850. */ void parse_cons_expression_v850 (exp) expressionS *exp; { /* See if there's a reloc prefix like hi() we have to handle. */ hold_cons_reloc = v850_reloc_prefix (NULL); /* Do normal expression parsing. */ expression (exp); } /* Create a fixup for a cons expression. If parse_cons_expression_v850 found a reloc prefix, then we use that reloc, else we choose an appropriate one based on the size of the expression. */ void cons_fix_new_v850 (frag, where, size, exp) fragS *frag; int where; int size; expressionS *exp; { if (hold_cons_reloc == BFD_RELOC_UNUSED) { if (size == 4) hold_cons_reloc = BFD_RELOC_32; if (size == 2) hold_cons_reloc = BFD_RELOC_16; if (size == 1) hold_cons_reloc = BFD_RELOC_8; } if (exp != NULL) fix_new_exp (frag, where, size, exp, 0, hold_cons_reloc); else fix_new (frag, where, size, NULL, 0, 0, hold_cons_reloc); }