# Copyright (C) 2008-2024 Free Software Foundation, Inc. # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see . # This file is part of the GDB testsuite. It tests the mechanism # exposing values to Python. load_lib gdb-python.exp require allow_python_tests standard_testfile set has_argv0 [gdb_has_argv0] # Build inferior to language specification. # LANG is one of "c" or "c++". proc build_inferior {exefile lang} { global srcdir subdir srcfile testfile hex # Use different names for .o files based on the language. # For Fission, the debug info goes in foo.dwo and we don't want, # for example, a C++ compile to clobber the dwo of a C compile. # ref: http://gcc.gnu.org/wiki/DebugFission switch ${lang} { "c" { set filename ${testfile}.o } "c++" { set filename ${testfile}-cxx.o } } set objfile [standard_output_file $filename] if { [gdb_compile "${srcdir}/${subdir}/${srcfile}" "${objfile}" object "debug $lang"] != "" || [gdb_compile "${objfile}" "${exefile}" executable "debug $lang"] != "" } { untested "failed to compile in $lang mode" return -1 } return 0 } proc test_value_creation {} { global gdb_prompt gdb_py_test_silent_cmd "python i = gdb.Value (True)" "create boolean value" 1 gdb_py_test_silent_cmd "python i = gdb.Value (5)" "create integer value" 1 gdb_py_test_silent_cmd "python i = gdb.Value (3,None)" "create integer value, with None type" 1 gdb_py_test_silent_cmd "python l = gdb.Value(0xffffffff12345678)" "create large unsigned 64-bit value" 1 gdb_test "python print (int(l))" "18446744069720004216" "large unsigned 64-bit int conversion to python" gdb_py_test_silent_cmd "python f = gdb.Value (1.25)" "create double value" 1 gdb_py_test_silent_cmd "python a = gdb.Value ('string test')" "create 8-bit string value" 1 gdb_test "python print (a)" "\"string test\"" "print 8-bit string" gdb_test "python print (a.__class__)" "<(type|class) 'gdb.Value'>" "verify type of 8-bit string" # Test address attribute is None in a non-addressable value gdb_test "python print ('result = %s' % i.address)" "= None" "test address attribute in non-addressable value" # Test creating / printing an optimized out value gdb_test "python print(gdb.Value(gdb.Value(5).type.optimized_out()))" \ "" } # Check that we can call gdb.Value.__init__ to change a value. proc test_value_reinit {} { gdb_py_test_silent_cmd "python v = gdb.Value (3)" \ "create initial integer value" 1 gdb_test "python print(v)" "3" \ "check initial value contents" gdb_py_test_silent_cmd "python v.__init__(5)" \ "call gdb.Value.__init__ manually" 1 gdb_test "python print(v)" "5" \ "check new value contents" } proc test_value_numeric_ops {} { global gdb_prompt gdb_py_test_silent_cmd "python i = gdb.Value (5)" "create first integer value" 0 gdb_py_test_silent_cmd "python j = gdb.Value (2)" "create second integer value" 0 gdb_py_test_silent_cmd "python f = gdb.Value (1.25)" "create first double value" 0 gdb_py_test_silent_cmd "python g = gdb.Value (2.5)" "create second double value" 0 gdb_test "python print ('result = ' + str(i+j))" " = 7" "add two integer values" gdb_test "python print ((i+j).__class__)" "<(type|class) 'gdb.Value'>" "verify type of integer add result" gdb_test "python print ('result = ' + str(f+g))" " = 3.75" "add two double values" gdb_test "python print ('result = ' + str(i-j))" " = 3" "subtract two integer values" gdb_test "python print ('result = ' + str(f-g))" " = -1.25" "subtract two double values" gdb_test "python print ('result = ' + str(i*j))" " = 10" "multiply two integer values" gdb_test "python print ('result = ' + str(f*g))" " = 3.125" "multiply two double values" gdb_test "python print ('result = ' + str(i/j))" " = 2" "divide two integer values" gdb_test "python print ('result = ' + str(f/g))" " = 0.5" "divide two double values" gdb_test "python print ('result = ' + str(i%j))" " = 1" "take remainder of two integer values" # Remainder of float is implemented in Python but not in GDB's value system. gdb_test "python print ('result = ' + str(i**j))" " = 25" "integer value raised to the power of another integer value" gdb_test "python print ('result = ' + str(g**j))" " = 6.25" "double value raised to the power of integer value" gdb_test "python print ('result = ' + str(-i))" " = -5" "negated integer value" gdb_test "python print ('result = ' + str(+i))" " = 5" "positive integer value" gdb_test "python print ('result = ' + str(-f))" " = -1.25" "negated double value" gdb_test "python print ('result = ' + str(+f))" " = 1.25" "positive double value" gdb_test "python print ('result = ' + str(abs(j-i)))" " = 3" "absolute of integer value" gdb_test "python print ('result = ' + str(abs(f-g)))" " = 1.25" "absolute of double value" # Test gdb.Value mixed with Python types. gdb_test "python print ('result = ' + str(i-1))" " = 4" "subtract integer value from python integer" gdb_test "python print ((i-1).__class__)" "<(type|class) 'gdb.Value'>" "verify type of mixed integer subtraction result" gdb_test "python print ('result = ' + str(f+1.5))" " = 2.75" "add double value with python float" gdb_test "python print ('result = ' + str(1-i))" " = -4" "subtract python integer from integer value" gdb_test "python print ('result = ' + str(1.5+f))" " = 2.75" "add python float with double value" # Conversion test. gdb_test "print evalue" " = TWO" gdb_test_no_output "python evalue = gdb.history (0)" gdb_test "python print (int (evalue))" "2" # Test pointer arithmethic # First, obtain the pointers gdb_test "print (void *) 2" ".*" "" gdb_test_no_output "python a = gdb.history (0)" "" gdb_test "print (void *) 5" ".*" "" gdb_test_no_output "python b = gdb.history (0)" "" gdb_test "python print(int(b))" "5" "convert pointer to int" gdb_test "python print ('result = ' + str(a+5))" " = 0x7( <.*>)?" "add pointer value with python integer" gdb_test "python print ('result = ' + str(b-2))" " = 0x3( <.*>)?" "subtract python integer from pointer value" gdb_test "python print ('result = ' + str(b-a))" " = 3" "subtract two pointer values" gdb_test "python print ('result = ' + 'result'\[gdb.Value(0)\])" \ "result = r" "use value as string index" gdb_test "python print ('result = ' + str((1,2,3)\[gdb.Value(0)\]))" \ "result = 1" "use value as tuple index" gdb_test "python print ('result = ' + str(\[1,2,3\]\[gdb.Value(0)\]))" \ "result = 1" "use value as array index" gdb_test "python print('%x' % int(gdb.parse_and_eval('-1ull')))" \ "f+" "int conversion respect type sign" # Test some invalid operations. gdb_test_multiple "python print ('result = ' + str(i+'foo'))" "catch error in python type conversion" { -re "Argument to arithmetic operation not a number or boolean.*$gdb_prompt $" {pass "catch error in python type conversion"} -re "result = .*$gdb_prompt $" {fail "catch error in python type conversion"} -re "$gdb_prompt $" {fail "catch error in python type conversion"} } gdb_test_multiple "python print ('result = ' + str(i+gdb.Value('foo')))" "catch throw of GDB error" { -re "Error occurred in Python.*$gdb_prompt $" {pass "catch throw of GDB error"} -re "result = .*$gdb_prompt $" {fail "catch throw of GDB error"} -re "$gdb_prompt $" {fail "catch throw of GDB error"} } } proc test_value_boolean {} { # First, define a useful function to test booleans. gdb_test_multiline "define function to test booleans" \ "python" "" \ "def test_bool (val):" "" \ " if val:" "" \ " print ('yay')" "" \ " else:" "" \ " print ('nay')" "" \ "end" "" gdb_test "py test_bool (gdb.Value (True))" "yay" "check evaluation of true boolean value in expression" gdb_test "py test_bool (gdb.Value (False))" "nay" "check evaluation of false boolean value in expression" gdb_test "py test_bool (gdb.Value (5))" "yay" "check evaluation of true integer value in expression" gdb_test "py test_bool (gdb.Value (0))" "nay" "check evaluation of false integer value in expression" gdb_test "py test_bool (gdb.Value (5.2))" "yay" "check evaluation of true float value in expression" gdb_test "py test_bool (gdb.Value (0.0))" "nay" "check evaluation of false float value in expression" } proc test_value_compare {} { gdb_test "py print (gdb.Value (1) < gdb.Value (1))" "False" "less than, equal" gdb_test "py print (gdb.Value (1) < gdb.Value (2))" "True" "less than, less" gdb_test "py print (gdb.Value (2) < gdb.Value (1))" "False" "less than, greater" gdb_test "py print (gdb.Value (2) < None)" "False" "less than, None" gdb_test "py print (gdb.Value (1) <= gdb.Value (1))" "True" "less or equal, equal" gdb_test "py print (gdb.Value (1) <= gdb.Value (2))" "True" "less or equal, less" gdb_test "py print (gdb.Value (2) <= gdb.Value (1))" "False" "less or equal, greater" gdb_test "py print (gdb.Value (2) <= None)" "False" "less or equal, None" gdb_test "py print (gdb.Value (1) == gdb.Value (1))" "True" "equality of gdb.Values" gdb_test "py print (gdb.Value (1) == gdb.Value (2))" "False" "inequality of gdb.Values" gdb_test "py print (gdb.Value (1) == 1.0)" "True" "equality of gdb.Value with Python value" gdb_test "py print (gdb.Value (1) == 2)" "False" "inequality of gdb.Value with Python value" gdb_test "py print (gdb.Value (1) == None)" "False" "inequality of gdb.Value with None" gdb_test "py print (gdb.Value (1) != gdb.Value (1))" "False" "inequality, false" gdb_test "py print (gdb.Value (1) != gdb.Value (2))" "True" "inequality, true" gdb_test "py print (gdb.Value (1) != None)" "True" "inequality, None" gdb_test "py print (gdb.Value (1) > gdb.Value (1))" "False" "greater than, equal" gdb_test "py print (gdb.Value (1) > gdb.Value (2))" "False" "greater than, less" gdb_test "py print (gdb.Value (2) > gdb.Value (1))" "True" "greater than, greater" gdb_test "py print (gdb.Value (2) > None)" "True" "greater than, None" gdb_test "py print (gdb.Value (1) >= gdb.Value (1))" "True" "greater or equal, equal" gdb_test "py print (gdb.Value (1) >= gdb.Value (2))" "False" "greater or equal, less" gdb_test "py print (gdb.Value (2) >= gdb.Value (1))" "True" "greater or equal, greater" gdb_test "py print (gdb.Value (2) >= None)" "True" "greater or equal, None" } proc test_value_in_inferior {} { global gdb_prompt global testfile gdb_breakpoint [gdb_get_line_number "break to inspect struct and union"] gdb_continue_to_breakpoint "break to inspect struct and union" # Just get inferior variable s in the value history, available to python. gdb_test "print s" " = {a = 3, b = 5}" "" gdb_py_test_silent_cmd "python s = gdb.history (0)" "get value s from history" 1 gdb_test "python print ('result = ' + str(s\['a'\]))" " = 3" "access element inside struct using 8-bit string name" # Test dereferencing the argv pointer # Just get inferior variable argv the value history, available to python. gdb_test "print argv" " = \\(char \\*\\*\\) 0x.*" "" gdb_py_test_silent_cmd "python argv = gdb.history (0)" "" 0 gdb_py_test_silent_cmd "python arg0 = argv.dereference ()" "dereference value" 1 # Check that the dereferenced value is sane global has_argv0 set test "verify dereferenced value" if { $has_argv0 } { gdb_test_no_output "set print elements unlimited" "" gdb_test_no_output "set print repeats unlimited" "" gdb_test "python print (arg0)" "0x.*$testfile\"" $test } else { unsupported $test } # Smoke-test is_optimized_out attribute gdb_test "python print ('result = %s' % arg0.is_optimized_out)" "= False" "test is_optimized_out attribute" # Test address attribute gdb_test "python print ('result = %s' % arg0.address)" "= 0x\[\[:xdigit:\]\]+" "test address attribute" # Test displaying a variable that is temporarily at a bad address. # But if we can examine what's at memory address 0, then we'll also be # able to display it without error. Don't run the test in that case. set can_read_0 [is_address_zero_readable] # Test memory error. set test "parse_and_eval with memory error" if {$can_read_0} { untested $test } else { gdb_test "python print (gdb.parse_and_eval('*(int*)0'))" "gdb.MemoryError.*: Cannot access memory at address 0x0.*" $test } # Test Python lazy value handling set test "memory error and lazy values" if {$can_read_0} { untested $test } else { gdb_test "python inval = gdb.parse_and_eval('*(int*)0')" gdb_test "python print (inval.is_lazy)" "True" gdb_test "python inval2 = inval+1" \ "gdb.MemoryError.*: Cannot access memory at address 0x0.*" \ "$test, first test" gdb_test "python inval.fetch_lazy ()" \ "gdb.MemoryError.*: Cannot access memory at address 0x0.*" \ "$test, second test" } set argc_value [get_integer_valueof "argc" 0] gdb_test "python argc_lazy = gdb.parse_and_eval('argc')" gdb_test "python argc_notlazy = gdb.parse_and_eval('argc')" gdb_test "python argc_notlazy.fetch_lazy()" gdb_test "python print (argc_lazy.is_lazy)" "True" \ "python print (argc_lazy.is_lazy) the first time" gdb_test "python print (argc_notlazy.is_lazy)" "False" gdb_test "print argc" " = $argc_value" "sanity check argc" gdb_test "python print (argc_lazy.is_lazy)" "\r\nTrue" \ "python print (argc_lazy.is_lazy) the second time" gdb_test_no_output "set argc=[expr $argc_value + 1]" "change argc" gdb_test "python print (argc_notlazy)" "\r\n$argc_value" gdb_test "python print (argc_lazy)" "\r\n[expr $argc_value + 1]" gdb_test "python print (argc_lazy.is_lazy)" "False" # Test string fetches, both partial and whole. gdb_test "print st" "\"divide et impera\"" gdb_py_test_silent_cmd "python st = gdb.history (0)" "get value st from history" 1 gdb_test "python print (st.string ())" "divide et impera" "Test string with no length" gdb_test "python print (st.string (length = -1))" "divide et impera" "test string (length = -1) is all of the string" gdb_test "python print (st.string (length = 6))" "divide" gdb_test "python print (\"---\"+st.string (length = 0)+\"---\")" "------" "test string (length = 0) is empty" gdb_test "python print (len(st.string (length = 0)))" "0" "test length is 0" # We choose Ada here to test a language where c_style_arrays is # false. gdb_test "set lang ada" \ "Warning: the current language does not match this frame." gdb_test "python print (st.string ())" "divide et impera" \ "Test string with no length in ada" gdb_test_no_output "set lang auto" # Fetch a string that has embedded nulls. gdb_test "print nullst" "\"divide\\\\000et\\\\000impera\".*" gdb_py_test_silent_cmd "python nullst = gdb.history (0)" "get value nullst from history" 1 gdb_test "python print (nullst.string ())" "divide" "test string to first null" # Python cannot print strings that contain the null (\0) character. # For the purposes of this test, use repr() gdb_py_test_silent_cmd "python nullst = nullst.string (length = 9)" "get string beyond null" 1 gdb_test "python print (repr(nullst))" "u?'divide\\\\x00et'" # Test fetching a string longer than its declared (in C) size. # PR 16286 gdb_py_test_silent_cmd "python xstr = gdb.parse_and_eval('xstr')" "get xstr" 1 gdb_test "python print(xstr\['text'\].string (length = xstr\['length'\]))" "x{100}" \ "read string beyond declared size" # However it shouldn't be possible to fetch past the end of a # non-memory value. gdb_py_test_silent_cmd "python str = '\"str\"'" "set up str variable" 1 gdb_test "python print (gdb.parse_and_eval (str).string (length = 10))" \ "gdb.error.*: Attempt to take address of value not located in memory.\r\nError occurred in Python.*" gdb_test "python print (gdb.parse_and_eval ('shadowed'))" \ 97 "shadowed local value" gdb_test "python print (gdb.parse_and_eval ('shadowed', global_context=True))" \ 23 "shadowed global value" } proc test_inferior_function_call {} { global gdb_prompt hex decimal # Correct inferior call without arguments. gdb_test "p/x fp1" " = $hex.*" gdb_py_test_silent_cmd "python fp1 = gdb.history (0)" "get value fp1 from history" 1 gdb_test "python fp1 = fp1.dereference()" "" gdb_test "python result = fp1()" "" gdb_test "python print (result)" "void" # Correct inferior call with arguments. gdb_test "p/x fp2" " = $hex.*" \ "print fp2 to place it into history" gdb_py_test_silent_cmd "python fp2 = gdb.history (0)" "get value fp2 from history" 1 gdb_test "python fp2 = fp2.dereference()" "" gdb_test "python result2 = fp2(10,20)" "" gdb_test "python print (result2)" "30" # Incorrect to call an int value. gdb_test "p i" " = $decimal.*" gdb_py_test_silent_cmd "python i = gdb.history (0)" "get value i from history" 1 gdb_test "python result3 = i()" ".*Value is not callable.*" # Incorrect number of arguments. gdb_test "p/x fp2" " = $hex.*" \ "print fp2 again to place it into history" gdb_py_test_silent_cmd "python fp3 = gdb.history (0)" "get value fp3 from history" 1 gdb_test "python fp3 = fp3.dereference()" "" gdb_test "python result2 = fp3(10)" ".*Too few arguments in function call.*" } # A few objfile tests. proc test_objfiles {} { gdb_test "python\nok=False\nfor file in gdb.objfiles():\n if 'py-value' in file.filename:\n ok=True\nprint (ok)\nend" "True" \ "py-value in file.filename" gdb_test "python print (gdb.objfiles()\[0\].pretty_printers)" "\\\[\\\]" gdb_test "python gdb.objfiles()\[0\].pretty_printers = 0" \ "pretty_printers attribute must be a list.*Error occurred in Python.*" } proc test_value_after_death {} { # Construct a type while the inferior is still running. gdb_py_test_silent_cmd "python ptrtype = gdb.lookup_type('PTR')" \ "create PTR type" 1 # Kill the inferior and remove the symbols. gdb_test "kill" "" "kill the inferior" \ "Kill the program being debugged. .y or n. $" \ "y" gdb_test "file" "" "discard the symbols" \ "Discard symbol table from.*y or n. $" \ "y" # Now create a value using that type. Relies on arg0, created by # test_value_in_inferior. gdb_py_test_silent_cmd "python castval = arg0.cast(ptrtype.pointer())" \ "cast arg0 to PTR" 1 # Make sure the type is deleted. gdb_py_test_silent_cmd "python ptrtype = None" \ "delete PTR type" 1 # Now see if the value's type is still valid. gdb_test "python print (castval.type)" "PTR ." \ "print value's type" } # Regression test for invalid subscript operations. The bug was that # the type of the value was not being checked before allowing a # subscript operation to proceed. proc test_subscript_regression {exefile lang} { # Start with a fresh gdb. clean_restart ${exefile} if {![runto_main]} { return } if {$lang == "c++"} { gdb_breakpoint [gdb_get_line_number "break to inspect pointer by reference"] gdb_continue_to_breakpoint "break to inspect pointer by reference" gdb_py_test_silent_cmd "print rptr_int" \ "Obtain address" 1 gdb_py_test_silent_cmd "python rptr = gdb.history(0)" \ "Obtains value from GDB" 1 gdb_test "python print (rptr\[0\])" "2" "check pointer passed as reference" # Just the most basic test of dynamic_cast -- it is checked in # the C++ tests. gdb_test "python print (bool(gdb.parse_and_eval('base').dynamic_cast(gdb.lookup_type('Derived').pointer())))" \ True # Likewise. gdb_test "python print (gdb.parse_and_eval('base').dynamic_type)" \ "Derived \[*\]" gdb_test "python print (gdb.parse_and_eval('base_ref').dynamic_type)" \ "Derived \[&\]" # A static type case. gdb_test "python print (gdb.parse_and_eval('5').dynamic_type)" \ "int" } gdb_breakpoint [gdb_get_line_number "break to inspect struct and union"] gdb_continue_to_breakpoint \ "break to inspect struct and union for subscript regression test" gdb_py_test_silent_cmd "python intv = gdb.Value(1)" \ "Create value intv for subscript test" 1 gdb_py_test_silent_cmd "python stringv = gdb.Value(\"foo\")" \ "Create value stringv for subscript test" 1 # Try to access an int with a subscript. This should fail. gdb_test "python print (intv)" "1" "baseline print of an int Python value" gdb_test "python print (intv\[0\])" "gdb.error.*: Cannot subscript requested type.*" \ "Attempt to access an integer with a subscript" # Try to access a string with a subscript. This should pass. gdb_test "python print (stringv)" "foo." "baseline print of a string Python value" gdb_test "python print (stringv\[0\])" "f." "attempt to access a string with a subscript" # Try to access an int array via a pointer with a subscript. This should pass. gdb_py_test_silent_cmd "print p" "Build pointer to array" 1 gdb_py_test_silent_cmd "python pointer = gdb.history(0)" "fetch pointer" 0 gdb_test "python print (pointer\[0\])" "1" "access array via pointer with int subscript" gdb_test "python print (pointer\[intv\])" "2" "access array via pointer with value subscript" # Try to access a single dimension array with a subscript to the # result. This should fail. gdb_test "python print (pointer\[intv\]\[0\])" "gdb.error.*: Cannot subscript requested type.*" \ "Attempt to access a single dimension array with a two subscripts" # Lastly, test subscript access to an array with multiple # dimensions. This should pass. gdb_py_test_silent_cmd "print {\"fu \",\"foo\",\"bar\"}" "Build array" 1 gdb_py_test_silent_cmd "python marray = gdb.history(0)" "fetch marray" 0 gdb_test "python print (marray\[1\]\[2\])" "o." "test multiple subscript" } # A few tests of gdb.parse_and_eval. proc test_parse_and_eval {} { gdb_test "python print (gdb.parse_and_eval ('23'))" "23" \ "parse_and_eval constant test" gdb_test "python print (gdb.parse_and_eval ('5 + 7'))" "12" \ "parse_and_eval simple expression test" gdb_test "python print (type(gdb.parse_and_eval ('5 + 7')))" \ ".(type|class) 'gdb.Value'."\ "parse_and_eval type test" } # Test that values are hashable. proc test_value_hash {} { gdb_test_multiline "Simple Python value dictionary" \ "python" "" \ "one = gdb.Value(1)" "" \ "two = gdb.Value(2)" "" \ "three = gdb.Value(3)" "" \ "vdict = {one:\"one str\",two:\"two str\",three:\"three str\"}" "" \ "end" gdb_test "python print (vdict\[one\])" "one str" "test dictionary hash for one" gdb_test "python print (vdict\[two\])" "two str" "test dictionary hash for two" gdb_test "python print (vdict\[three\])" "three str" "test dictionary hash for three" gdb_test "python print (one.__hash__() == hash(one))" "True" "test inbuilt hash" } proc test_float_conversion {} { gdb_test "python print(int(gdb.Value(0)))" "0" gdb_test "python print(int(gdb.Value(2.5)))" "2" gdb_test "python print(float(gdb.Value(2.5)))" "2\\.5" gdb_test "python print(float(gdb.Value(0)))" "0\\.0" } # Setup some Python variables: # tp : a gdb.Type for 'int', # size_a : the size of array 'a' from the inferior, # size_a0 : the size of array element 'a[0] from the inferior, # addr : the address of 'a[0]' from the inferior, # b : a buffer containing the full contents of array 'a' from the # inferior. proc prepare_type_and_buffer {} { gdb_py_test_silent_cmd "python tp=gdb.lookup_type('int')" "look up int type" 0 gdb_py_test_silent_cmd "python size_a=gdb.parse_and_eval('sizeof(a)')" \ "find size of a" 0 gdb_py_test_silent_cmd "python size_a0=gdb.parse_and_eval('sizeof(a\[0\])')" \ "find size of element of a" 0 gdb_py_test_silent_cmd "python addr=gdb.parse_and_eval('&a')" \ "find address of a" 0 gdb_py_test_silent_cmd "python b=gdb.selected_inferior().read_memory(addr,size_a)" \ "read buffer from memory" 0 } proc test_value_from_buffer {} { global gdb_prompt # A Python helper function. Create a bytes object from inferior # memory LEN bytes starting at ADDR, and compare this to the bytes # obtained from VAL.bytes. Assert that the two bytes object match. gdb_test_multiline "Create another function to check Value.bytes" \ "python" "" \ "def compare_value_bytes_to_mem(val, addr, len):" "" \ " mem = gdb.selected_inferior().read_memory(addr, len)" "" \ " mem_bytes = mem.tobytes()" "" \ " val_bytes = val.bytes" "" \ " assert mem_bytes == val_bytes" "" \ "end" "" prepare_type_and_buffer gdb_test "python v=gdb.Value(b,tp); print(v)" "1" \ "construct value from buffer" gdb_test_no_output { python compare_value_bytes_to_mem(v, addr, size_a0) } gdb_test "python v=gdb.Value(b\[size_a0:\],tp); print(v)" "2" \ "convert 2nd elem of buffer to value" gdb_test_no_output \ { python compare_value_bytes_to_mem(v, (int(addr) + size_a0), size_a0) } gdb_test "python v=gdb.Value(b\[2*size_a0:\],tp); print(v)" "3" \ "convert 3rd elem of buffer to value" gdb_test_no_output \ { python compare_value_bytes_to_mem(v, (int(addr) + (2 * size_a0)), size_a0) } gdb_test "python v=gdb.Value(b\[2*size_a0+1:\],tp); print(v)" \ "ValueError.*: Size of type is larger than that of buffer object\..*" \ "attempt to convert smaller buffer than size of type" gdb_py_test_silent_cmd "python atp=tp.array(2) ; print(atp)" \ "make array type" 0 gdb_py_test_silent_cmd "python va=gdb.Value(b,atp)" \ "construct array value from buffer" 0 gdb_test_no_output \ { python compare_value_bytes_to_mem(va, addr, size_a0 * 3) } gdb_test "python print(va)" "\\{1, 2, 3\\}" "print array value" gdb_test "python print(va\[0\])" "1" "print first array element" gdb_test "python print(va\[1\])" "2" "print second array element" gdb_test "python print(va\[2\])" "3" "print third array element" gdb_test "python print(va\[3\])" "gdb\.error.*: no such vector element.*" \ "print out of bounds array element" gdb_py_test_silent_cmd "python atpbig=tp.array(3)" "make bigger array type" 0 gdb_test "python vabig=gdb.Value(b,atpbig)" \ "ValueError.*: Size of type is larger than that of buffer object\..*" \ "attempt to construct large value with small buffer" gdb_test "python v=gdb.Value(2048,tp)" \ "TypeError.*: Object must support the python buffer protocol\..*" \ "attempt to construct value from buffer with non-buffer object" gdb_test "python v=gdb.Value(b,'int'); print(v)" \ "TypeError.*: type argument must be a gdb\.Type\..*" \ "attempt to construct value with string as type" } # Test the gdb.add_history API. proc test_add_to_history {} { # Add a gdb.Value to the value history list. gdb_test_no_output "python idx = gdb.add_history(gdb.Value(42))" \ "add value 42 to the history list" gdb_test "python print (\"$%d = %s\" % (idx, gdb.history (idx)))" \ " = 42" "print value 42 from the history list" set idx [get_python_valueof "idx" "**DEFAULT**" "get idx for value 42"] gdb_test "print \$${idx}" " = 42" # Add something to the history list that can be converted into a # gdb.Value. gdb_test_no_output "python idx = gdb.add_history(84)" \ "add value to 84 to the history list" gdb_test "python print (\"$%d = %s\" % (idx, gdb.history (idx)))" \ " = 84" "print value 84 from the history list" set idx [get_python_valueof "idx" "**DEFAULT**" "get idx for value 84"] gdb_test "print \$${idx}" " = 84" # Try adding something that can't be converted to a gdb.Value, # this should give an error. gdb_test "python idx = gdb.add_history(gdb.GdbError(\"an error\"))" \ "TypeError.*: Could not convert Python object: .*" } # Check we can create sub-classes of gdb.Value. proc test_value_sub_classes {} { prepare_type_and_buffer gdb_test_multiline "Create sub-class of gdb.Value" \ "python" "" \ "class MyValue(gdb.Value):" "" \ " def __init__(self,val,type=None):" "" \ " gdb.Value.__init__(self,val,type)" "" \ " print(\"In MyValue.__init__\")" "" \ "end" gdb_test "python obj = MyValue (123)" "In MyValue.__init__" \ "create instance of MyValue" gdb_test "python print(obj)" "123" \ "check printing of MyValue" gdb_test "python obj = MyValue(b\[size_a0:\],tp)" "In MyValue.__init__" \ "convert 2nd elem of buffer to a MyValue" gdb_test "python print(obj)" "2" \ "check printing of MyValue when initiaized with a type" } # Test the history count. This must be the first thing called after # starting GDB as it depends on there being nothing in the value # history. proc test_history_count {} { for { set i 0 } { $i < 5 } { incr i } { gdb_test "python print('history count is %d' % gdb.history_count())" \ "history count is $i" "history count is $i" gdb_test "print $i" " = $i" } } # Test the gdb.Value.bytes API. proc_with_prefix test_value_bytes { } { # Test accessing the bytes of an optimised out value. gdb_test "python print(gdb.Value(gdb.Value(5).type.optimized_out()).bytes)" \ [multi_line \ "gdb\\.error.*: value has been optimized out" \ "Error occurred in Python.*"] # A Python helper function. Fetch VAR_NAME from the inferior as a # gdb.Value. Read the bytes of the value based on its address, and # the size of its type. The compare these bytes to the value # obtained from gdb.Value.bytes. Assert that the two bytes objects # match. gdb_test_multiline "Create a function to check Value.bytes" \ "python" "" \ "def check_value_bytes(var_name):" "" \ " val = gdb.parse_and_eval(var_name)" "" \ " addr = val.address" "" \ " len = val.type.sizeof" "" \ " mem = gdb.selected_inferior().read_memory(addr, len)" "" \ " mem_bytes = mem.tobytes()" "" \ " val_bytes = val.bytes" "" \ " assert mem_bytes == val_bytes" "" \ "end" "" gdb_test_no_output { python check_value_bytes("a") } gdb_test_no_output { python check_value_bytes("p") } gdb_test_no_output { python check_value_bytes("i") } gdb_test_no_output { python check_value_bytes("ptr_i") } gdb_test_no_output { python check_value_bytes("embed") } gdb_test_no_output { python check_value_bytes("fp1") } gdb_test_no_output { python check_value_bytes("nullst") } gdb_test_no_output { python check_value_bytes("st") } gdb_test_no_output { python check_value_bytes("s") } gdb_test_no_output { python check_value_bytes("u") } # Check that gdb.Value.bytes changes after calling # gdb.Value.assign(). The bytes value is cached within the Value # object, so calling assign should clear the cache. with_test_prefix "assign clears bytes cache" { gdb_test_no_output "python v = gdb.parse_and_eval(\"i\")" gdb_test_no_output "python bytes_before = v.bytes" gdb_test_no_output "python v.assign(9)" gdb_test_no_output "python bytes_after = v.bytes" gdb_test_no_output "python assert(bytes_after != bytes_before)" } # Check that if we re-init a gdb.Value object the cached bytes for # the Value are cleared. with_test_prefix "re-init clears bytes cache" { gdb_test_no_output "python w = gdb.Value(1)" gdb_test_no_output "python bytes_before = w.bytes" gdb_test_no_output "python w.__init__(3)" gdb_test_no_output "python bytes_after = w.bytes" gdb_test_no_output "python assert(bytes_after != bytes_before)" } # Check that we can assign to the Value.bytes field. gdb_test_no_output "python i_value = gdb.parse_and_eval('i')" \ "evaluate i" gdb_test_no_output "python i_bytes = i_value.bytes" gdb_test_no_output "python i_bytes = bytes(\[b if b != 9 else 5 for b in i_bytes\])" gdb_test_no_output "python i_value.bytes = i_bytes" gdb_test "print i" " = 5" # Check we get an exception if attempting to assign a buffer that is # too big, or too small. gdb_test_no_output "python bytes_as_int = \[x for x in i_bytes\]" gdb_test_no_output "python bytes_as_int.append(0)" gdb_test_no_output "python too_many_bytes = bytes(bytes_as_int)" gdb_test "python i_value.bytes = too_many_bytes" \ "ValueError.*: Size of type is not equal to that of buffer object\\..*" gdb_test_no_output "python bytes_as_int = bytes_as_int\[0:-2\]" gdb_test_no_output "python too_few_bytes = bytes(bytes_as_int)" gdb_test "python i_value.bytes = too_few_bytes" \ "ValueError.*: Size of type is not equal to that of buffer object\\..*" # Check we get an exception writing to a not_lval. gdb_test_no_output "python i_value = gdb.Value(9)" \ "reset i_value" gdb_test_no_output "python i_bytes = i_value.bytes" \ "grab new value bytes" gdb_test "python i_value.bytes = i_bytes" "not an lvalue.*" \ "cannot assign to not_lval value" } # Test Value.assign. proc test_assign {} { gdb_test_no_output "python i_value = gdb.parse_and_eval('i')" \ "evaluate i" gdb_test_no_output "python i_value.assign(27)" \ "set i to 27" gdb_test "print i" " = 27" gdb_test_no_output "python i_value = gdb.Value(27)" \ "reset i_value" gdb_test "python i_value.assign(89)" "not an lvalue.*" \ "cannot assign to integer" } # Build C version of executable. C++ is built later. if { [build_inferior "${binfile}" "c"] < 0 } { return -1 } # Start with a fresh gdb. clean_restart ${binfile} test_history_count test_value_creation test_value_reinit test_value_numeric_ops test_value_boolean test_value_compare test_objfiles test_parse_and_eval test_value_hash test_float_conversion test_add_to_history # The following tests require execution. if {![runto_main]} { return 0 } test_value_in_inferior test_value_from_buffer test_value_sub_classes test_inferior_function_call test_assign test_value_bytes test_value_after_death # Test either C or C++ values. test_subscript_regression "${binfile}" "c" if {[allow_cplus_tests]} { if { [build_inferior "${binfile}-cxx" "c++"] < 0 } { return -1 } with_test_prefix "c++" { test_subscript_regression "${binfile}-cxx" "c++" } }