# Copyright (C) 2008-2024 Free Software Foundation, Inc.
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see .
# This file is part of the GDB testsuite. It tests the mechanism
# exposing values to Python.
load_lib gdb-python.exp
require allow_python_tests
standard_testfile
set has_argv0 [gdb_has_argv0]
# Build inferior to language specification.
# LANG is one of "c" or "c++".
proc build_inferior {exefile lang} {
global srcdir subdir srcfile testfile hex
# Use different names for .o files based on the language.
# For Fission, the debug info goes in foo.dwo and we don't want,
# for example, a C++ compile to clobber the dwo of a C compile.
# ref: http://gcc.gnu.org/wiki/DebugFission
switch ${lang} {
"c" { set filename ${testfile}.o }
"c++" { set filename ${testfile}-cxx.o }
}
set objfile [standard_output_file $filename]
if { [gdb_compile "${srcdir}/${subdir}/${srcfile}" "${objfile}" object "debug $lang"] != ""
|| [gdb_compile "${objfile}" "${exefile}" executable "debug $lang"] != "" } {
untested "failed to compile in $lang mode"
return -1
}
return 0
}
proc test_value_creation {} {
global gdb_prompt
gdb_py_test_silent_cmd "python i = gdb.Value (True)" "create boolean value" 1
gdb_py_test_silent_cmd "python i = gdb.Value (5)" "create integer value" 1
gdb_py_test_silent_cmd "python i = gdb.Value (3,None)" "create integer value, with None type" 1
gdb_py_test_silent_cmd "python l = gdb.Value(0xffffffff12345678)" "create large unsigned 64-bit value" 1
gdb_test "python print (int(l))" "18446744069720004216" "large unsigned 64-bit int conversion to python"
gdb_py_test_silent_cmd "python f = gdb.Value (1.25)" "create double value" 1
gdb_py_test_silent_cmd "python a = gdb.Value ('string test')" "create 8-bit string value" 1
gdb_test "python print (a)" "\"string test\"" "print 8-bit string"
gdb_test "python print (a.__class__)" "<(type|class) 'gdb.Value'>" "verify type of 8-bit string"
# Test address attribute is None in a non-addressable value
gdb_test "python print ('result = %s' % i.address)" "= None" "test address attribute in non-addressable value"
# Test creating / printing an optimized out value
gdb_test "python print(gdb.Value(gdb.Value(5).type.optimized_out()))" \
""
}
# Check that we can call gdb.Value.__init__ to change a value.
proc test_value_reinit {} {
gdb_py_test_silent_cmd "python v = gdb.Value (3)" \
"create initial integer value" 1
gdb_test "python print(v)" "3" \
"check initial value contents"
gdb_py_test_silent_cmd "python v.__init__(5)" \
"call gdb.Value.__init__ manually" 1
gdb_test "python print(v)" "5" \
"check new value contents"
}
proc test_value_numeric_ops {} {
global gdb_prompt
gdb_py_test_silent_cmd "python i = gdb.Value (5)" "create first integer value" 0
gdb_py_test_silent_cmd "python j = gdb.Value (2)" "create second integer value" 0
gdb_py_test_silent_cmd "python f = gdb.Value (1.25)" "create first double value" 0
gdb_py_test_silent_cmd "python g = gdb.Value (2.5)" "create second double value" 0
gdb_test "python print ('result = ' + str(i+j))" " = 7" "add two integer values"
gdb_test "python print ((i+j).__class__)" "<(type|class) 'gdb.Value'>" "verify type of integer add result"
gdb_test "python print ('result = ' + str(f+g))" " = 3.75" "add two double values"
gdb_test "python print ('result = ' + str(i-j))" " = 3" "subtract two integer values"
gdb_test "python print ('result = ' + str(f-g))" " = -1.25" "subtract two double values"
gdb_test "python print ('result = ' + str(i*j))" " = 10" "multiply two integer values"
gdb_test "python print ('result = ' + str(f*g))" " = 3.125" "multiply two double values"
gdb_test "python print ('result = ' + str(i/j))" " = 2" "divide two integer values"
gdb_test "python print ('result = ' + str(f/g))" " = 0.5" "divide two double values"
gdb_test "python print ('result = ' + str(i%j))" " = 1" "take remainder of two integer values"
# Remainder of float is implemented in Python but not in GDB's value system.
gdb_test "python print ('result = ' + str(i**j))" " = 25" "integer value raised to the power of another integer value"
gdb_test "python print ('result = ' + str(g**j))" " = 6.25" "double value raised to the power of integer value"
gdb_test "python print ('result = ' + str(-i))" " = -5" "negated integer value"
gdb_test "python print ('result = ' + str(+i))" " = 5" "positive integer value"
gdb_test "python print ('result = ' + str(-f))" " = -1.25" "negated double value"
gdb_test "python print ('result = ' + str(+f))" " = 1.25" "positive double value"
gdb_test "python print ('result = ' + str(abs(j-i)))" " = 3" "absolute of integer value"
gdb_test "python print ('result = ' + str(abs(f-g)))" " = 1.25" "absolute of double value"
# Test gdb.Value mixed with Python types.
gdb_test "python print ('result = ' + str(i-1))" " = 4" "subtract integer value from python integer"
gdb_test "python print ((i-1).__class__)" "<(type|class) 'gdb.Value'>" "verify type of mixed integer subtraction result"
gdb_test "python print ('result = ' + str(f+1.5))" " = 2.75" "add double value with python float"
gdb_test "python print ('result = ' + str(1-i))" " = -4" "subtract python integer from integer value"
gdb_test "python print ('result = ' + str(1.5+f))" " = 2.75" "add python float with double value"
# Conversion test.
gdb_test "print evalue" " = TWO"
gdb_test_no_output "python evalue = gdb.history (0)"
gdb_test "python print (int (evalue))" "2"
# Test pointer arithmethic
# First, obtain the pointers
gdb_test "print (void *) 2" ".*" ""
gdb_test_no_output "python a = gdb.history (0)" ""
gdb_test "print (void *) 5" ".*" ""
gdb_test_no_output "python b = gdb.history (0)" ""
gdb_test "python print(int(b))" "5" "convert pointer to int"
gdb_test "python print ('result = ' + str(a+5))" " = 0x7( <.*>)?" "add pointer value with python integer"
gdb_test "python print ('result = ' + str(b-2))" " = 0x3( <.*>)?" "subtract python integer from pointer value"
gdb_test "python print ('result = ' + str(b-a))" " = 3" "subtract two pointer values"
gdb_test "python print ('result = ' + 'result'\[gdb.Value(0)\])" \
"result = r" "use value as string index"
gdb_test "python print ('result = ' + str((1,2,3)\[gdb.Value(0)\]))" \
"result = 1" "use value as tuple index"
gdb_test "python print ('result = ' + str(\[1,2,3\]\[gdb.Value(0)\]))" \
"result = 1" "use value as array index"
gdb_test "python print('%x' % int(gdb.parse_and_eval('-1ull')))" \
"f+" "int conversion respect type sign"
# Test some invalid operations.
gdb_test_multiple "python print ('result = ' + str(i+'foo'))" "catch error in python type conversion" {
-re "Argument to arithmetic operation not a number or boolean.*$gdb_prompt $" {pass "catch error in python type conversion"}
-re "result = .*$gdb_prompt $" {fail "catch error in python type conversion"}
-re "$gdb_prompt $" {fail "catch error in python type conversion"}
}
gdb_test_multiple "python print ('result = ' + str(i+gdb.Value('foo')))" "catch throw of GDB error" {
-re "Error occurred in Python.*$gdb_prompt $" {pass "catch throw of GDB error"}
-re "result = .*$gdb_prompt $" {fail "catch throw of GDB error"}
-re "$gdb_prompt $" {fail "catch throw of GDB error"}
}
}
proc test_value_boolean {} {
# First, define a useful function to test booleans.
gdb_test_multiline "define function to test booleans" \
"python" "" \
"def test_bool (val):" "" \
" if val:" "" \
" print ('yay')" "" \
" else:" "" \
" print ('nay')" "" \
"end" ""
gdb_test "py test_bool (gdb.Value (True))" "yay" "check evaluation of true boolean value in expression"
gdb_test "py test_bool (gdb.Value (False))" "nay" "check evaluation of false boolean value in expression"
gdb_test "py test_bool (gdb.Value (5))" "yay" "check evaluation of true integer value in expression"
gdb_test "py test_bool (gdb.Value (0))" "nay" "check evaluation of false integer value in expression"
gdb_test "py test_bool (gdb.Value (5.2))" "yay" "check evaluation of true float value in expression"
gdb_test "py test_bool (gdb.Value (0.0))" "nay" "check evaluation of false float value in expression"
}
proc test_value_compare {} {
gdb_test "py print (gdb.Value (1) < gdb.Value (1))" "False" "less than, equal"
gdb_test "py print (gdb.Value (1) < gdb.Value (2))" "True" "less than, less"
gdb_test "py print (gdb.Value (2) < gdb.Value (1))" "False" "less than, greater"
gdb_test "py print (gdb.Value (2) < None)" "False" "less than, None"
gdb_test "py print (gdb.Value (1) <= gdb.Value (1))" "True" "less or equal, equal"
gdb_test "py print (gdb.Value (1) <= gdb.Value (2))" "True" "less or equal, less"
gdb_test "py print (gdb.Value (2) <= gdb.Value (1))" "False" "less or equal, greater"
gdb_test "py print (gdb.Value (2) <= None)" "False" "less or equal, None"
gdb_test "py print (gdb.Value (1) == gdb.Value (1))" "True" "equality of gdb.Values"
gdb_test "py print (gdb.Value (1) == gdb.Value (2))" "False" "inequality of gdb.Values"
gdb_test "py print (gdb.Value (1) == 1.0)" "True" "equality of gdb.Value with Python value"
gdb_test "py print (gdb.Value (1) == 2)" "False" "inequality of gdb.Value with Python value"
gdb_test "py print (gdb.Value (1) == None)" "False" "inequality of gdb.Value with None"
gdb_test "py print (gdb.Value (1) != gdb.Value (1))" "False" "inequality, false"
gdb_test "py print (gdb.Value (1) != gdb.Value (2))" "True" "inequality, true"
gdb_test "py print (gdb.Value (1) != None)" "True" "inequality, None"
gdb_test "py print (gdb.Value (1) > gdb.Value (1))" "False" "greater than, equal"
gdb_test "py print (gdb.Value (1) > gdb.Value (2))" "False" "greater than, less"
gdb_test "py print (gdb.Value (2) > gdb.Value (1))" "True" "greater than, greater"
gdb_test "py print (gdb.Value (2) > None)" "True" "greater than, None"
gdb_test "py print (gdb.Value (1) >= gdb.Value (1))" "True" "greater or equal, equal"
gdb_test "py print (gdb.Value (1) >= gdb.Value (2))" "False" "greater or equal, less"
gdb_test "py print (gdb.Value (2) >= gdb.Value (1))" "True" "greater or equal, greater"
gdb_test "py print (gdb.Value (2) >= None)" "True" "greater or equal, None"
}
proc test_value_in_inferior {} {
global gdb_prompt
global testfile
gdb_breakpoint [gdb_get_line_number "break to inspect struct and union"]
gdb_continue_to_breakpoint "break to inspect struct and union"
# Just get inferior variable s in the value history, available to python.
gdb_test "print s" " = {a = 3, b = 5}" ""
gdb_py_test_silent_cmd "python s = gdb.history (0)" "get value s from history" 1
gdb_test "python print ('result = ' + str(s\['a'\]))" " = 3" "access element inside struct using 8-bit string name"
# Test dereferencing the argv pointer
# Just get inferior variable argv the value history, available to python.
gdb_test "print argv" " = \\(char \\*\\*\\) 0x.*" ""
gdb_py_test_silent_cmd "python argv = gdb.history (0)" "" 0
gdb_py_test_silent_cmd "python arg0 = argv.dereference ()" "dereference value" 1
# Check that the dereferenced value is sane
global has_argv0
set test "verify dereferenced value"
if { $has_argv0 } {
gdb_test_no_output "set print elements unlimited" ""
gdb_test_no_output "set print repeats unlimited" ""
gdb_test "python print (arg0)" "0x.*$testfile\"" $test
} else {
unsupported $test
}
# Smoke-test is_optimized_out attribute
gdb_test "python print ('result = %s' % arg0.is_optimized_out)" "= False" "test is_optimized_out attribute"
# Test address attribute
gdb_test "python print ('result = %s' % arg0.address)" "= 0x\[\[:xdigit:\]\]+" "test address attribute"
# Test displaying a variable that is temporarily at a bad address.
# But if we can examine what's at memory address 0, then we'll also be
# able to display it without error. Don't run the test in that case.
set can_read_0 [is_address_zero_readable]
# Test memory error.
set test "parse_and_eval with memory error"
if {$can_read_0} {
untested $test
} else {
gdb_test "python print (gdb.parse_and_eval('*(int*)0'))" "gdb.MemoryError.*: Cannot access memory at address 0x0.*" $test
}
# Test Python lazy value handling
set test "memory error and lazy values"
if {$can_read_0} {
untested $test
} else {
gdb_test "python inval = gdb.parse_and_eval('*(int*)0')"
gdb_test "python print (inval.is_lazy)" "True"
gdb_test "python inval2 = inval+1" \
"gdb.MemoryError.*: Cannot access memory at address 0x0.*" \
"$test, first test"
gdb_test "python inval.fetch_lazy ()" \
"gdb.MemoryError.*: Cannot access memory at address 0x0.*" \
"$test, second test"
}
set argc_value [get_integer_valueof "argc" 0]
gdb_test "python argc_lazy = gdb.parse_and_eval('argc')"
gdb_test "python argc_notlazy = gdb.parse_and_eval('argc')"
gdb_test "python argc_notlazy.fetch_lazy()"
gdb_test "python print (argc_lazy.is_lazy)" "True" \
"python print (argc_lazy.is_lazy) the first time"
gdb_test "python print (argc_notlazy.is_lazy)" "False"
gdb_test "print argc" " = $argc_value" "sanity check argc"
gdb_test "python print (argc_lazy.is_lazy)" "\r\nTrue" \
"python print (argc_lazy.is_lazy) the second time"
gdb_test_no_output "set argc=[expr $argc_value + 1]" "change argc"
gdb_test "python print (argc_notlazy)" "\r\n$argc_value"
gdb_test "python print (argc_lazy)" "\r\n[expr $argc_value + 1]"
gdb_test "python print (argc_lazy.is_lazy)" "False"
# Test string fetches, both partial and whole.
gdb_test "print st" "\"divide et impera\""
gdb_py_test_silent_cmd "python st = gdb.history (0)" "get value st from history" 1
gdb_test "python print (st.string ())" "divide et impera" "Test string with no length"
gdb_test "python print (st.string (length = -1))" "divide et impera" "test string (length = -1) is all of the string"
gdb_test "python print (st.string (length = 6))" "divide"
gdb_test "python print (\"---\"+st.string (length = 0)+\"---\")" "------" "test string (length = 0) is empty"
gdb_test "python print (len(st.string (length = 0)))" "0" "test length is 0"
# We choose Ada here to test a language where c_style_arrays is
# false.
gdb_test "set lang ada" \
"Warning: the current language does not match this frame."
gdb_test "python print (st.string ())" "divide et impera" \
"Test string with no length in ada"
gdb_test_no_output "set lang auto"
# Fetch a string that has embedded nulls.
gdb_test "print nullst" "\"divide\\\\000et\\\\000impera\".*"
gdb_py_test_silent_cmd "python nullst = gdb.history (0)" "get value nullst from history" 1
gdb_test "python print (nullst.string ())" "divide" "test string to first null"
# Python cannot print strings that contain the null (\0) character.
# For the purposes of this test, use repr()
gdb_py_test_silent_cmd "python nullst = nullst.string (length = 9)" "get string beyond null" 1
gdb_test "python print (repr(nullst))" "u?'divide\\\\x00et'"
# Test fetching a string longer than its declared (in C) size.
# PR 16286
gdb_py_test_silent_cmd "python xstr = gdb.parse_and_eval('xstr')" "get xstr" 1
gdb_test "python print(xstr\['text'\].string (length = xstr\['length'\]))" "x{100}" \
"read string beyond declared size"
# However it shouldn't be possible to fetch past the end of a
# non-memory value.
gdb_py_test_silent_cmd "python str = '\"str\"'" "set up str variable" 1
gdb_test "python print (gdb.parse_and_eval (str).string (length = 10))" \
"gdb.error.*: Attempt to take address of value not located in memory.\r\nError occurred in Python.*"
gdb_test "python print (gdb.parse_and_eval ('shadowed'))" \
97 "shadowed local value"
gdb_test "python print (gdb.parse_and_eval ('shadowed', global_context=True))" \
23 "shadowed global value"
}
proc test_inferior_function_call {} {
global gdb_prompt hex decimal
# Correct inferior call without arguments.
gdb_test "p/x fp1" " = $hex.*"
gdb_py_test_silent_cmd "python fp1 = gdb.history (0)" "get value fp1 from history" 1
gdb_test "python fp1 = fp1.dereference()" ""
gdb_test "python result = fp1()" ""
gdb_test "python print (result)" "void"
# Correct inferior call with arguments.
gdb_test "p/x fp2" " = $hex.*" \
"print fp2 to place it into history"
gdb_py_test_silent_cmd "python fp2 = gdb.history (0)" "get value fp2 from history" 1
gdb_test "python fp2 = fp2.dereference()" ""
gdb_test "python result2 = fp2(10,20)" ""
gdb_test "python print (result2)" "30"
# Incorrect to call an int value.
gdb_test "p i" " = $decimal.*"
gdb_py_test_silent_cmd "python i = gdb.history (0)" "get value i from history" 1
gdb_test "python result3 = i()" ".*Value is not callable.*"
# Incorrect number of arguments.
gdb_test "p/x fp2" " = $hex.*" \
"print fp2 again to place it into history"
gdb_py_test_silent_cmd "python fp3 = gdb.history (0)" "get value fp3 from history" 1
gdb_test "python fp3 = fp3.dereference()" ""
gdb_test "python result2 = fp3(10)" ".*Too few arguments in function call.*"
}
# A few objfile tests.
proc test_objfiles {} {
gdb_test "python\nok=False\nfor file in gdb.objfiles():\n if 'py-value' in file.filename:\n ok=True\nprint (ok)\nend" "True" \
"py-value in file.filename"
gdb_test "python print (gdb.objfiles()\[0\].pretty_printers)" "\\\[\\\]"
gdb_test "python gdb.objfiles()\[0\].pretty_printers = 0" \
"pretty_printers attribute must be a list.*Error occurred in Python.*"
}
proc test_value_after_death {} {
# Construct a type while the inferior is still running.
gdb_py_test_silent_cmd "python ptrtype = gdb.lookup_type('PTR')" \
"create PTR type" 1
# Kill the inferior and remove the symbols.
gdb_test "kill" "" "kill the inferior" \
"Kill the program being debugged. .y or n. $" \
"y"
gdb_test "file" "" "discard the symbols" \
"Discard symbol table from.*y or n. $" \
"y"
# Now create a value using that type. Relies on arg0, created by
# test_value_in_inferior.
gdb_py_test_silent_cmd "python castval = arg0.cast(ptrtype.pointer())" \
"cast arg0 to PTR" 1
# Make sure the type is deleted.
gdb_py_test_silent_cmd "python ptrtype = None" \
"delete PTR type" 1
# Now see if the value's type is still valid.
gdb_test "python print (castval.type)" "PTR ." \
"print value's type"
}
# Regression test for invalid subscript operations. The bug was that
# the type of the value was not being checked before allowing a
# subscript operation to proceed.
proc test_subscript_regression {exefile lang} {
# Start with a fresh gdb.
clean_restart ${exefile}
if {![runto_main]} {
return
}
if {$lang == "c++"} {
gdb_breakpoint [gdb_get_line_number "break to inspect pointer by reference"]
gdb_continue_to_breakpoint "break to inspect pointer by reference"
gdb_py_test_silent_cmd "print rptr_int" \
"Obtain address" 1
gdb_py_test_silent_cmd "python rptr = gdb.history(0)" \
"Obtains value from GDB" 1
gdb_test "python print (rptr\[0\])" "2" "check pointer passed as reference"
# Just the most basic test of dynamic_cast -- it is checked in
# the C++ tests.
gdb_test "python print (bool(gdb.parse_and_eval('base').dynamic_cast(gdb.lookup_type('Derived').pointer())))" \
True
# Likewise.
gdb_test "python print (gdb.parse_and_eval('base').dynamic_type)" \
"Derived \[*\]"
gdb_test "python print (gdb.parse_and_eval('base_ref').dynamic_type)" \
"Derived \[&\]"
# A static type case.
gdb_test "python print (gdb.parse_and_eval('5').dynamic_type)" \
"int"
}
gdb_breakpoint [gdb_get_line_number "break to inspect struct and union"]
gdb_continue_to_breakpoint \
"break to inspect struct and union for subscript regression test"
gdb_py_test_silent_cmd "python intv = gdb.Value(1)" \
"Create value intv for subscript test" 1
gdb_py_test_silent_cmd "python stringv = gdb.Value(\"foo\")" \
"Create value stringv for subscript test" 1
# Try to access an int with a subscript. This should fail.
gdb_test "python print (intv)" "1" "baseline print of an int Python value"
gdb_test "python print (intv\[0\])" "gdb.error.*: Cannot subscript requested type.*" \
"Attempt to access an integer with a subscript"
# Try to access a string with a subscript. This should pass.
gdb_test "python print (stringv)" "foo." "baseline print of a string Python value"
gdb_test "python print (stringv\[0\])" "f." "attempt to access a string with a subscript"
# Try to access an int array via a pointer with a subscript. This should pass.
gdb_py_test_silent_cmd "print p" "Build pointer to array" 1
gdb_py_test_silent_cmd "python pointer = gdb.history(0)" "fetch pointer" 0
gdb_test "python print (pointer\[0\])" "1" "access array via pointer with int subscript"
gdb_test "python print (pointer\[intv\])" "2" "access array via pointer with value subscript"
# Try to access a single dimension array with a subscript to the
# result. This should fail.
gdb_test "python print (pointer\[intv\]\[0\])" "gdb.error.*: Cannot subscript requested type.*" \
"Attempt to access a single dimension array with a two subscripts"
# Lastly, test subscript access to an array with multiple
# dimensions. This should pass.
gdb_py_test_silent_cmd "print {\"fu \",\"foo\",\"bar\"}" "Build array" 1
gdb_py_test_silent_cmd "python marray = gdb.history(0)" "fetch marray" 0
gdb_test "python print (marray\[1\]\[2\])" "o." "test multiple subscript"
}
# A few tests of gdb.parse_and_eval.
proc test_parse_and_eval {} {
gdb_test "python print (gdb.parse_and_eval ('23'))" "23" \
"parse_and_eval constant test"
gdb_test "python print (gdb.parse_and_eval ('5 + 7'))" "12" \
"parse_and_eval simple expression test"
gdb_test "python print (type(gdb.parse_and_eval ('5 + 7')))" \
".(type|class) 'gdb.Value'."\
"parse_and_eval type test"
}
# Test that values are hashable.
proc test_value_hash {} {
gdb_test_multiline "Simple Python value dictionary" \
"python" "" \
"one = gdb.Value(1)" "" \
"two = gdb.Value(2)" "" \
"three = gdb.Value(3)" "" \
"vdict = {one:\"one str\",two:\"two str\",three:\"three str\"}" "" \
"end"
gdb_test "python print (vdict\[one\])" "one str" "test dictionary hash for one"
gdb_test "python print (vdict\[two\])" "two str" "test dictionary hash for two"
gdb_test "python print (vdict\[three\])" "three str" "test dictionary hash for three"
gdb_test "python print (one.__hash__() == hash(one))" "True" "test inbuilt hash"
}
proc test_float_conversion {} {
gdb_test "python print(int(gdb.Value(0)))" "0"
gdb_test "python print(int(gdb.Value(2.5)))" "2"
gdb_test "python print(float(gdb.Value(2.5)))" "2\\.5"
gdb_test "python print(float(gdb.Value(0)))" "0\\.0"
}
# Setup some Python variables:
# tp : a gdb.Type for 'int',
# size_a : the size of array 'a' from the inferior,
# size_a0 : the size of array element 'a[0] from the inferior,
# addr : the address of 'a[0]' from the inferior,
# b : a buffer containing the full contents of array 'a' from the
# inferior.
proc prepare_type_and_buffer {} {
gdb_py_test_silent_cmd "python tp=gdb.lookup_type('int')" "look up int type" 0
gdb_py_test_silent_cmd "python size_a=gdb.parse_and_eval('sizeof(a)')" \
"find size of a" 0
gdb_py_test_silent_cmd "python size_a0=gdb.parse_and_eval('sizeof(a\[0\])')" \
"find size of element of a" 0
gdb_py_test_silent_cmd "python addr=gdb.parse_and_eval('&a')" \
"find address of a" 0
gdb_py_test_silent_cmd "python b=gdb.selected_inferior().read_memory(addr,size_a)" \
"read buffer from memory" 0
}
proc test_value_from_buffer {} {
global gdb_prompt
# A Python helper function. Create a bytes object from inferior
# memory LEN bytes starting at ADDR, and compare this to the bytes
# obtained from VAL.bytes. Assert that the two bytes object match.
gdb_test_multiline "Create another function to check Value.bytes" \
"python" "" \
"def compare_value_bytes_to_mem(val, addr, len):" "" \
" mem = gdb.selected_inferior().read_memory(addr, len)" "" \
" mem_bytes = mem.tobytes()" "" \
" val_bytes = val.bytes" "" \
" assert mem_bytes == val_bytes" "" \
"end" ""
prepare_type_and_buffer
gdb_test "python v=gdb.Value(b,tp); print(v)" "1" \
"construct value from buffer"
gdb_test_no_output { python compare_value_bytes_to_mem(v, addr, size_a0) }
gdb_test "python v=gdb.Value(b\[size_a0:\],tp); print(v)" "2" \
"convert 2nd elem of buffer to value"
gdb_test_no_output \
{ python compare_value_bytes_to_mem(v, (int(addr) + size_a0), size_a0) }
gdb_test "python v=gdb.Value(b\[2*size_a0:\],tp); print(v)" "3" \
"convert 3rd elem of buffer to value"
gdb_test_no_output \
{ python compare_value_bytes_to_mem(v, (int(addr) + (2 * size_a0)), size_a0) }
gdb_test "python v=gdb.Value(b\[2*size_a0+1:\],tp); print(v)" \
"ValueError.*: Size of type is larger than that of buffer object\..*" \
"attempt to convert smaller buffer than size of type"
gdb_py_test_silent_cmd "python atp=tp.array(2) ; print(atp)" \
"make array type" 0
gdb_py_test_silent_cmd "python va=gdb.Value(b,atp)" \
"construct array value from buffer" 0
gdb_test_no_output \
{ python compare_value_bytes_to_mem(va, addr, size_a0 * 3) }
gdb_test "python print(va)" "\\{1, 2, 3\\}" "print array value"
gdb_test "python print(va\[0\])" "1" "print first array element"
gdb_test "python print(va\[1\])" "2" "print second array element"
gdb_test "python print(va\[2\])" "3" "print third array element"
gdb_test "python print(va\[3\])" "gdb\.error.*: no such vector element.*" \
"print out of bounds array element"
gdb_py_test_silent_cmd "python atpbig=tp.array(3)" "make bigger array type" 0
gdb_test "python vabig=gdb.Value(b,atpbig)" \
"ValueError.*: Size of type is larger than that of buffer object\..*" \
"attempt to construct large value with small buffer"
gdb_test "python v=gdb.Value(2048,tp)" \
"TypeError.*: Object must support the python buffer protocol\..*" \
"attempt to construct value from buffer with non-buffer object"
gdb_test "python v=gdb.Value(b,'int'); print(v)" \
"TypeError.*: type argument must be a gdb\.Type\..*" \
"attempt to construct value with string as type"
}
# Test the gdb.add_history API.
proc test_add_to_history {} {
# Add a gdb.Value to the value history list.
gdb_test_no_output "python idx = gdb.add_history(gdb.Value(42))" \
"add value 42 to the history list"
gdb_test "python print (\"$%d = %s\" % (idx, gdb.history (idx)))" \
" = 42" "print value 42 from the history list"
set idx [get_python_valueof "idx" "**DEFAULT**" "get idx for value 42"]
gdb_test "print \$${idx}" " = 42"
# Add something to the history list that can be converted into a
# gdb.Value.
gdb_test_no_output "python idx = gdb.add_history(84)" \
"add value to 84 to the history list"
gdb_test "python print (\"$%d = %s\" % (idx, gdb.history (idx)))" \
" = 84" "print value 84 from the history list"
set idx [get_python_valueof "idx" "**DEFAULT**" "get idx for value 84"]
gdb_test "print \$${idx}" " = 84"
# Try adding something that can't be converted to a gdb.Value,
# this should give an error.
gdb_test "python idx = gdb.add_history(gdb.GdbError(\"an error\"))" \
"TypeError.*: Could not convert Python object: .*"
}
# Check we can create sub-classes of gdb.Value.
proc test_value_sub_classes {} {
prepare_type_and_buffer
gdb_test_multiline "Create sub-class of gdb.Value" \
"python" "" \
"class MyValue(gdb.Value):" "" \
" def __init__(self,val,type=None):" "" \
" gdb.Value.__init__(self,val,type)" "" \
" print(\"In MyValue.__init__\")" "" \
"end"
gdb_test "python obj = MyValue (123)" "In MyValue.__init__" \
"create instance of MyValue"
gdb_test "python print(obj)" "123" \
"check printing of MyValue"
gdb_test "python obj = MyValue(b\[size_a0:\],tp)" "In MyValue.__init__" \
"convert 2nd elem of buffer to a MyValue"
gdb_test "python print(obj)" "2" \
"check printing of MyValue when initiaized with a type"
}
# Test the history count. This must be the first thing called after
# starting GDB as it depends on there being nothing in the value
# history.
proc test_history_count {} {
for { set i 0 } { $i < 5 } { incr i } {
gdb_test "python print('history count is %d' % gdb.history_count())" \
"history count is $i" "history count is $i"
gdb_test "print $i" " = $i"
}
}
# Test the gdb.Value.bytes API.
proc_with_prefix test_value_bytes { } {
# Test accessing the bytes of an optimised out value.
gdb_test "python print(gdb.Value(gdb.Value(5).type.optimized_out()).bytes)" \
[multi_line \
"gdb\\.error.*: value has been optimized out" \
"Error occurred in Python.*"]
# A Python helper function. Fetch VAR_NAME from the inferior as a
# gdb.Value. Read the bytes of the value based on its address, and
# the size of its type. The compare these bytes to the value
# obtained from gdb.Value.bytes. Assert that the two bytes objects
# match.
gdb_test_multiline "Create a function to check Value.bytes" \
"python" "" \
"def check_value_bytes(var_name):" "" \
" val = gdb.parse_and_eval(var_name)" "" \
" addr = val.address" "" \
" len = val.type.sizeof" "" \
" mem = gdb.selected_inferior().read_memory(addr, len)" "" \
" mem_bytes = mem.tobytes()" "" \
" val_bytes = val.bytes" "" \
" assert mem_bytes == val_bytes" "" \
"end" ""
gdb_test_no_output { python check_value_bytes("a") }
gdb_test_no_output { python check_value_bytes("p") }
gdb_test_no_output { python check_value_bytes("i") }
gdb_test_no_output { python check_value_bytes("ptr_i") }
gdb_test_no_output { python check_value_bytes("embed") }
gdb_test_no_output { python check_value_bytes("fp1") }
gdb_test_no_output { python check_value_bytes("nullst") }
gdb_test_no_output { python check_value_bytes("st") }
gdb_test_no_output { python check_value_bytes("s") }
gdb_test_no_output { python check_value_bytes("u") }
# Check that gdb.Value.bytes changes after calling
# gdb.Value.assign(). The bytes value is cached within the Value
# object, so calling assign should clear the cache.
with_test_prefix "assign clears bytes cache" {
gdb_test_no_output "python v = gdb.parse_and_eval(\"i\")"
gdb_test_no_output "python bytes_before = v.bytes"
gdb_test_no_output "python v.assign(9)"
gdb_test_no_output "python bytes_after = v.bytes"
gdb_test_no_output "python assert(bytes_after != bytes_before)"
}
# Check that if we re-init a gdb.Value object the cached bytes for
# the Value are cleared.
with_test_prefix "re-init clears bytes cache" {
gdb_test_no_output "python w = gdb.Value(1)"
gdb_test_no_output "python bytes_before = w.bytes"
gdb_test_no_output "python w.__init__(3)"
gdb_test_no_output "python bytes_after = w.bytes"
gdb_test_no_output "python assert(bytes_after != bytes_before)"
}
# Check that we can assign to the Value.bytes field.
gdb_test_no_output "python i_value = gdb.parse_and_eval('i')" \
"evaluate i"
gdb_test_no_output "python i_bytes = i_value.bytes"
gdb_test_no_output "python i_bytes = bytes(\[b if b != 9 else 5 for b in i_bytes\])"
gdb_test_no_output "python i_value.bytes = i_bytes"
gdb_test "print i" " = 5"
# Check we get an exception if attempting to assign a buffer that is
# too big, or too small.
gdb_test_no_output "python bytes_as_int = \[x for x in i_bytes\]"
gdb_test_no_output "python bytes_as_int.append(0)"
gdb_test_no_output "python too_many_bytes = bytes(bytes_as_int)"
gdb_test "python i_value.bytes = too_many_bytes" \
"ValueError.*: Size of type is not equal to that of buffer object\\..*"
gdb_test_no_output "python bytes_as_int = bytes_as_int\[0:-2\]"
gdb_test_no_output "python too_few_bytes = bytes(bytes_as_int)"
gdb_test "python i_value.bytes = too_few_bytes" \
"ValueError.*: Size of type is not equal to that of buffer object\\..*"
# Check we get an exception writing to a not_lval.
gdb_test_no_output "python i_value = gdb.Value(9)" \
"reset i_value"
gdb_test_no_output "python i_bytes = i_value.bytes" \
"grab new value bytes"
gdb_test "python i_value.bytes = i_bytes" "not an lvalue.*" \
"cannot assign to not_lval value"
}
# Test Value.assign.
proc test_assign {} {
gdb_test_no_output "python i_value = gdb.parse_and_eval('i')" \
"evaluate i"
gdb_test_no_output "python i_value.assign(27)" \
"set i to 27"
gdb_test "print i" " = 27"
gdb_test_no_output "python i_value = gdb.Value(27)" \
"reset i_value"
gdb_test "python i_value.assign(89)" "not an lvalue.*" \
"cannot assign to integer"
}
# Build C version of executable. C++ is built later.
if { [build_inferior "${binfile}" "c"] < 0 } {
return -1
}
# Start with a fresh gdb.
clean_restart ${binfile}
test_history_count
test_value_creation
test_value_reinit
test_value_numeric_ops
test_value_boolean
test_value_compare
test_objfiles
test_parse_and_eval
test_value_hash
test_float_conversion
test_add_to_history
# The following tests require execution.
if {![runto_main]} {
return 0
}
test_value_in_inferior
test_value_from_buffer
test_value_sub_classes
test_inferior_function_call
test_assign
test_value_bytes
test_value_after_death
# Test either C or C++ values.
test_subscript_regression "${binfile}" "c"
if {[allow_cplus_tests]} {
if { [build_inferior "${binfile}-cxx" "c++"] < 0 } {
return -1
}
with_test_prefix "c++" {
test_subscript_regression "${binfile}-cxx" "c++"
}
}