/* Simulator for the Texas Instruments PRU processor Copyright 2009-2022 Free Software Foundation, Inc. Inspired by the Microblaze simulator Contributed by Dimitar Dimitrov This file is part of the simulators. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, see . */ /* This must come before any other includes. */ #include "defs.h" #include #include #include #include "bfd.h" #include "sim/callback.h" #include "libiberty.h" #include "sim/sim.h" #include "sim-main.h" #include "sim-assert.h" #include "sim-options.h" #include "sim-signal.h" #include "sim-syscall.h" #include "pru.h" /* DMEM zero address is perfectly valid. But if CRT leaves the first word alone, we can use it as a trap to catch NULL pointer access. */ static bfd_boolean abort_on_dmem_zero_access; enum { OPTION_ERROR_NULL_DEREF = OPTION_START, }; /* Extract (from PRU endianess) and return an integer in HOST's endianness. */ static uint32_t pru_extract_unsigned_integer (const uint8_t *addr, size_t len) { uint32_t retval; const uint8_t *p; const uint8_t *startaddr = addr; const uint8_t *endaddr = startaddr + len; /* Start at the most significant end of the integer, and work towards the least significant. */ retval = 0; for (p = endaddr; p > startaddr;) retval = (retval << 8) | * -- p; return retval; } /* Store "val" (which is in HOST's endianess) into "addr" (using PRU's endianness). */ static void pru_store_unsigned_integer (uint8_t *addr, size_t len, uint32_t val) { uint8_t *p; uint8_t *startaddr = (uint8_t *)addr; uint8_t *endaddr = startaddr + len; for (p = startaddr; p < endaddr;) { *p++ = val & 0xff; val >>= 8; } } /* Extract a field value from CPU register using the given REGSEL selector. Byte number maps directly to first values of RSEL, so we can safely use "regsel" as a register byte number (0..3). */ static inline uint32_t extract_regval (uint32_t val, uint32_t regsel) { ASSERT (RSEL_7_0 == 0); ASSERT (RSEL_15_8 == 1); ASSERT (RSEL_23_16 == 2); ASSERT (RSEL_31_24 == 3); switch (regsel) { case RSEL_7_0: return (val >> 0) & 0xff; case RSEL_15_8: return (val >> 8) & 0xff; case RSEL_23_16: return (val >> 16) & 0xff; case RSEL_31_24: return (val >> 24) & 0xff; case RSEL_15_0: return (val >> 0) & 0xffff; case RSEL_23_8: return (val >> 8) & 0xffff; case RSEL_31_16: return (val >> 16) & 0xffff; case RSEL_31_0: return val; default: sim_io_error (NULL, "invalid regsel"); } } /* Write a value into CPU subregister pointed by reg and regsel. */ static inline void write_regval (uint32_t val, uint32_t *reg, uint32_t regsel) { uint32_t mask, sh; switch (regsel) { case RSEL_7_0: mask = (0xffu << 0); sh = 0; break; case RSEL_15_8: mask = (0xffu << 8); sh = 8; break; case RSEL_23_16: mask = (0xffu << 16); sh = 16; break; case RSEL_31_24: mask = (0xffu << 24); sh = 24; break; case RSEL_15_0: mask = (0xffffu << 0); sh = 0; break; case RSEL_23_8: mask = (0xffffu << 8); sh = 8; break; case RSEL_31_16: mask = (0xffffu << 16); sh = 16; break; case RSEL_31_0: mask = 0xffffffffu; sh = 0; break; default: sim_io_error (NULL, "invalid regsel"); } *reg = (*reg & ~mask) | ((val << sh) & mask); } /* Convert the given IMEM word address to a regular byte address used by the GNU ELF container. */ static uint32_t imem_wordaddr_to_byteaddr (SIM_CPU *cpu, uint16_t wa) { struct pru_regset *pru_cpu = PRU_SIM_CPU (cpu); return (((uint32_t) wa << 2) & IMEM_ADDR_MASK) | PC_ADDR_SPACE_MARKER; } /* Convert the given ELF text byte address to IMEM word address. */ static uint16_t imem_byteaddr_to_wordaddr (SIM_CPU *cpu, uint32_t ba) { return (ba >> 2) & 0xffff; } /* Store "nbytes" into DMEM "addr" from CPU register file, starting with register "regn", and byte "regb" within it. */ static inline void pru_reg2dmem (SIM_CPU *cpu, uint32_t addr, unsigned int nbytes, int regn, int regb) { struct pru_regset *pru_cpu = PRU_SIM_CPU (cpu); /* GDB assumes unconditional access to all memories, so enable additional checks only in standalone mode. */ bool standalone = (STATE_OPEN_KIND (CPU_STATE (cpu)) == SIM_OPEN_STANDALONE); if (abort_on_dmem_zero_access && addr < 4) { sim_core_signal (CPU_STATE (cpu), cpu, PC_byteaddr, write_map, nbytes, addr, write_transfer, sim_core_unmapped_signal); } else if (standalone && ((addr >= PC_ADDR_SPACE_MARKER) || (addr + nbytes > PC_ADDR_SPACE_MARKER))) { sim_core_signal (CPU_STATE (cpu), cpu, PC_byteaddr, write_map, nbytes, addr, write_transfer, sim_core_unmapped_signal); } else if ((regn * 4 + regb + nbytes) > (32 * 4)) { sim_io_eprintf (CPU_STATE (cpu), "SBBO/SBCO with invalid store data length\n"); RAISE_SIGILL (CPU_STATE (cpu)); } else { TRACE_MEMORY (cpu, "write of %d bytes to %08x", nbytes, addr); while (nbytes--) { sim_core_write_1 (cpu, PC_byteaddr, write_map, addr++, extract_regval (CPU.regs[regn], regb)); if (++regb >= 4) { regb = 0; regn++; } } } } /* Load "nbytes" from DMEM "addr" into CPU register file, starting with register "regn", and byte "regb" within it. */ static inline void pru_dmem2reg (SIM_CPU *cpu, uint32_t addr, unsigned int nbytes, int regn, int regb) { struct pru_regset *pru_cpu = PRU_SIM_CPU (cpu); /* GDB assumes unconditional access to all memories, so enable additional checks only in standalone mode. */ bool standalone = (STATE_OPEN_KIND (CPU_STATE (cpu)) == SIM_OPEN_STANDALONE); if (abort_on_dmem_zero_access && addr < 4) { sim_core_signal (CPU_STATE (cpu), cpu, PC_byteaddr, read_map, nbytes, addr, read_transfer, sim_core_unmapped_signal); } else if (standalone && ((addr >= PC_ADDR_SPACE_MARKER) || (addr + nbytes > PC_ADDR_SPACE_MARKER))) { /* This check is necessary because our IMEM "address space" is not really accessible, yet we have mapped it as a generic memory space. */ sim_core_signal (CPU_STATE (cpu), cpu, PC_byteaddr, read_map, nbytes, addr, read_transfer, sim_core_unmapped_signal); } else if ((regn * 4 + regb + nbytes) > (32 * 4)) { sim_io_eprintf (CPU_STATE (cpu), "LBBO/LBCO with invalid load data length\n"); RAISE_SIGILL (CPU_STATE (cpu)); } else { unsigned int b; TRACE_MEMORY (cpu, "read of %d bytes from %08x", nbytes, addr); while (nbytes--) { b = sim_core_read_1 (cpu, PC_byteaddr, read_map, addr++); /* Reuse the fact the Register Byte Number maps directly to RSEL. */ ASSERT (RSEL_7_0 == 0); write_regval (b, &CPU.regs[regn], regb); if (++regb >= 4) { regb = 0; regn++; } } } } /* Set reset values of general-purpose registers. */ static void set_initial_gprs (SIM_CPU *cpu) { struct pru_regset *pru_cpu = PRU_SIM_CPU (cpu); int i; /* Set up machine just out of reset. */ CPU_PC_SET (cpu, 0); PC_ADDR_SPACE_MARKER = IMEM_ADDR_DEFAULT; /* from default linker script? */ /* Clean out the GPRs. */ for (i = 0; i < ARRAY_SIZE (CPU.regs); i++) CPU.regs[i] = 0; for (i = 0; i < ARRAY_SIZE (CPU.macregs); i++) CPU.macregs[i] = 0; CPU.loop.looptop = CPU.loop.loopend = 0; CPU.loop.loop_in_progress = 0; CPU.loop.loop_counter = 0; CPU.carry = 0; CPU.insts = 0; CPU.cycles = 0; /* AM335x should provide sane defaults. */ CPU.ctable[0] = 0x00020000; CPU.ctable[1] = 0x48040000; CPU.ctable[2] = 0x4802a000; CPU.ctable[3] = 0x00030000; CPU.ctable[4] = 0x00026000; CPU.ctable[5] = 0x48060000; CPU.ctable[6] = 0x48030000; CPU.ctable[7] = 0x00028000; CPU.ctable[8] = 0x46000000; CPU.ctable[9] = 0x4a100000; CPU.ctable[10] = 0x48318000; CPU.ctable[11] = 0x48022000; CPU.ctable[12] = 0x48024000; CPU.ctable[13] = 0x48310000; CPU.ctable[14] = 0x481cc000; CPU.ctable[15] = 0x481d0000; CPU.ctable[16] = 0x481a0000; CPU.ctable[17] = 0x4819c000; CPU.ctable[18] = 0x48300000; CPU.ctable[19] = 0x48302000; CPU.ctable[20] = 0x48304000; CPU.ctable[21] = 0x00032400; CPU.ctable[22] = 0x480c8000; CPU.ctable[23] = 0x480ca000; CPU.ctable[24] = 0x00000000; CPU.ctable[25] = 0x00002000; CPU.ctable[26] = 0x0002e000; CPU.ctable[27] = 0x00032000; CPU.ctable[28] = 0x00000000; CPU.ctable[29] = 0x49000000; CPU.ctable[30] = 0x40000000; CPU.ctable[31] = 0x80000000; } /* Map regsel selector to subregister field width. */ static inline unsigned int regsel_width (uint32_t regsel) { switch (regsel) { case RSEL_7_0: return 8; case RSEL_15_8: return 8; case RSEL_23_16: return 8; case RSEL_31_24: return 8; case RSEL_15_0: return 16; case RSEL_23_8: return 16; case RSEL_31_16: return 16; case RSEL_31_0: return 32; default: sim_io_error (NULL, "invalid regsel"); } } /* Handle XIN instruction addressing the MAC peripheral. */ static void pru_sim_xin_mac (SIM_DESC sd, SIM_CPU *cpu, unsigned int rd_regn, unsigned int rdb, unsigned int length) { struct pru_regset *pru_cpu = PRU_SIM_CPU (cpu); if (rd_regn < 25 || (rd_regn * 4 + rdb + length) > (27 + 1) * 4) sim_io_error (sd, "XIN MAC: invalid transfer regn=%u.%u, length=%u\n", rd_regn, rdb, length); /* Copy from MAC to PRU regs. Ranges have been validated above. */ while (length--) { write_regval (CPU.macregs[rd_regn - 25] >> (rdb * 8), &CPU.regs[rd_regn], rdb); if (++rdb == 4) { rdb = 0; rd_regn++; } } } /* Handle XIN instruction. */ static void pru_sim_xin (SIM_DESC sd, SIM_CPU *cpu, unsigned int wba, unsigned int rd_regn, unsigned int rdb, unsigned int length) { struct pru_regset *pru_cpu = PRU_SIM_CPU (cpu); if (wba == 0) { pru_sim_xin_mac (sd, cpu, rd_regn, rdb, length); } else if (wba == XFRID_SCRATCH_BANK_0 || wba == XFRID_SCRATCH_BANK_1 || wba == XFRID_SCRATCH_BANK_2 || wba == XFRID_SCRATCH_BANK_PEER) { while (length--) { unsigned int val; val = extract_regval (CPU.scratchpads[wba][rd_regn], rdb); write_regval (val, &CPU.regs[rd_regn], rdb); if (++rdb == 4) { rdb = 0; rd_regn++; } } } else if (wba == 254 || wba == 255) { /* FILL/ZERO pseudos implemented via XIN. */ unsigned int fillbyte = (wba == 254) ? 0xff : 0x00; while (length--) { write_regval (fillbyte, &CPU.regs[rd_regn], rdb); if (++rdb == 4) { rdb = 0; rd_regn++; } } } else { sim_io_error (sd, "XIN: XFR device %d not supported.\n", wba); } } /* Handle XOUT instruction addressing the MAC peripheral. */ static void pru_sim_xout_mac (SIM_DESC sd, SIM_CPU *cpu, unsigned int rd_regn, unsigned int rdb, unsigned int length) { struct pru_regset *pru_cpu = PRU_SIM_CPU (cpu); const int modereg_accessed = (rd_regn == 25); /* Multiple Accumulate. */ if (rd_regn < 25 || (rd_regn * 4 + rdb + length) > (27 + 1) * 4) sim_io_error (sd, "XOUT MAC: invalid transfer regn=%u.%u, length=%u\n", rd_regn, rdb, length); /* Copy from PRU to MAC regs. Ranges have been validated above. */ while (length--) { write_regval (CPU.regs[rd_regn] >> (rdb * 8), &CPU.macregs[rd_regn - 25], rdb); if (++rdb == 4) { rdb = 0; rd_regn++; } } if (modereg_accessed && (CPU.macregs[PRU_MACREG_MODE] & MAC_R25_MAC_MODE_MASK)) { /* MUL/MAC operands are sampled every XOUT in multiply and accumulate mode. */ uint64_t prod, oldsum, sum; CPU.macregs[PRU_MACREG_OP_0] = CPU.regs[28]; CPU.macregs[PRU_MACREG_OP_1] = CPU.regs[29]; prod = CPU.macregs[PRU_MACREG_OP_0]; prod *= (uint64_t)CPU.macregs[PRU_MACREG_OP_1]; oldsum = CPU.macregs[PRU_MACREG_ACC_L]; oldsum += (uint64_t)CPU.macregs[PRU_MACREG_ACC_H] << 32; sum = oldsum + prod; CPU.macregs[PRU_MACREG_PROD_L] = sum & 0xfffffffful; CPU.macregs[PRU_MACREG_PROD_H] = sum >> 32; CPU.macregs[PRU_MACREG_ACC_L] = CPU.macregs[PRU_MACREG_PROD_L]; CPU.macregs[PRU_MACREG_ACC_H] = CPU.macregs[PRU_MACREG_PROD_H]; if (oldsum > sum) CPU.macregs[PRU_MACREG_MODE] |= MAC_R25_ACC_CARRY_MASK; } if (modereg_accessed && (CPU.macregs[PRU_MACREG_MODE] & MAC_R25_ACC_CARRY_MASK)) { /* store 1 to clear. */ CPU.macregs[PRU_MACREG_MODE] &= ~MAC_R25_ACC_CARRY_MASK; CPU.macregs[PRU_MACREG_ACC_L] = 0; CPU.macregs[PRU_MACREG_ACC_H] = 0; } } /* Handle XOUT instruction. */ static void pru_sim_xout (SIM_DESC sd, SIM_CPU *cpu, unsigned int wba, unsigned int rd_regn, unsigned int rdb, unsigned int length) { struct pru_regset *pru_cpu = PRU_SIM_CPU (cpu); if (wba == 0) { pru_sim_xout_mac (sd, cpu, rd_regn, rdb, length); } else if (wba == XFRID_SCRATCH_BANK_0 || wba == XFRID_SCRATCH_BANK_1 || wba == XFRID_SCRATCH_BANK_2 || wba == XFRID_SCRATCH_BANK_PEER) { while (length--) { unsigned int val; val = extract_regval (CPU.regs[rd_regn], rdb); write_regval (val, &CPU.scratchpads[wba][rd_regn], rdb); if (++rdb == 4) { rdb = 0; rd_regn++; } } } else sim_io_error (sd, "XOUT: XFR device %d not supported.\n", wba); } /* Handle XCHG instruction. */ static void pru_sim_xchg (SIM_DESC sd, SIM_CPU *cpu, unsigned int wba, unsigned int rd_regn, unsigned int rdb, unsigned int length) { struct pru_regset *pru_cpu = PRU_SIM_CPU (cpu); if (wba == XFRID_SCRATCH_BANK_0 || wba == XFRID_SCRATCH_BANK_1 || wba == XFRID_SCRATCH_BANK_2 || wba == XFRID_SCRATCH_BANK_PEER) { while (length--) { unsigned int valr, vals; valr = extract_regval (CPU.regs[rd_regn], rdb); vals = extract_regval (CPU.scratchpads[wba][rd_regn], rdb); write_regval (valr, &CPU.scratchpads[wba][rd_regn], rdb); write_regval (vals, &CPU.regs[rd_regn], rdb); if (++rdb == 4) { rdb = 0; rd_regn++; } } } else sim_io_error (sd, "XOUT: XFR device %d not supported.\n", wba); } /* Handle syscall simulation. Its ABI is specific to the GNU simulator. */ static void pru_sim_syscall (SIM_DESC sd, SIM_CPU *cpu) { struct pru_regset *pru_cpu = PRU_SIM_CPU (cpu); /* If someday TI confirms that the "reserved" HALT opcode fields can be used for extra arguments, then maybe we can embed the syscall number there. Until then, let's use R1. */ const uint32_t syscall_num = CPU.regs[1]; long ret; ret = sim_syscall (cpu, syscall_num, CPU.regs[14], CPU.regs[15], CPU.regs[16], CPU.regs[17]); CPU.regs[14] = ret; } /* Simulate one instruction. */ static void sim_step_once (SIM_DESC sd) { SIM_CPU *cpu = STATE_CPU (sd, 0); struct pru_regset *pru_cpu = PRU_SIM_CPU (cpu); const struct pru_opcode *op; uint32_t inst; uint32_t _RDVAL, OP2; /* intermediate values. */ int rd_is_modified = 0; /* RD modified and must be stored back. */ /* Fetch the initial instruction that we'll decode. */ inst = sim_core_read_4 (cpu, PC_byteaddr, exec_map, PC_byteaddr); TRACE_MEMORY (cpu, "read of insn 0x%08x from %08x", inst, PC_byteaddr); op = pru_find_opcode (inst); if (!op) { sim_io_eprintf (sd, "Unknown instruction 0x%04x\n", inst); RAISE_SIGILL (sd); } else { TRACE_DISASM (cpu, PC_byteaddr); /* In multiply-only mode, R28/R29 operands are sampled on every clock cycle. */ if ((CPU.macregs[PRU_MACREG_MODE] & MAC_R25_MAC_MODE_MASK) == 0) { CPU.macregs[PRU_MACREG_OP_0] = CPU.regs[28]; CPU.macregs[PRU_MACREG_OP_1] = CPU.regs[29]; } switch (op->type) { /* Helper macro to improve clarity of pru.isa. The empty while is a guard against using RD as a left-hand side value. */ #define RD do { } while (0); rd_is_modified = 1; _RDVAL #define INSTRUCTION(NAME, ACTION) \ case prui_ ## NAME: \ ACTION; \ break; #include "pru.isa" #undef INSTRUCTION #undef RD default: RAISE_SIGILL (sd); } if (rd_is_modified) write_regval (_RDVAL, &CPU.regs[RD_REGN], RDSEL); /* Don't treat r30 and r31 as regular registers, they are I/O! */ CPU.regs[30] = 0; CPU.regs[31] = 0; /* Handle PC match of loop end. */ if (LOOP_IN_PROGRESS && (PC == LOOPEND)) { SIM_ASSERT (LOOPCNT > 0); if (--LOOPCNT == 0) LOOP_IN_PROGRESS = 0; else PC = LOOPTOP; } /* In multiply-only mode, MAC does multiplication every cycle. */ if ((CPU.macregs[PRU_MACREG_MODE] & MAC_R25_MAC_MODE_MASK) == 0) { uint64_t prod; prod = CPU.macregs[PRU_MACREG_OP_0]; prod *= (uint64_t)CPU.macregs[PRU_MACREG_OP_1]; CPU.macregs[PRU_MACREG_PROD_L] = prod & 0xfffffffful; CPU.macregs[PRU_MACREG_PROD_H] = prod >> 32; /* Clear the MAC accumulator when in normal mode. */ CPU.macregs[PRU_MACREG_ACC_L] = 0; CPU.macregs[PRU_MACREG_ACC_H] = 0; } /* Update cycle counts. */ CPU.insts += 1; /* One instruction completed ... */ CPU.cycles += 1; /* ... and it takes a single cycle. */ /* Account for memory access latency with a reasonable estimate. No distinction is currently made between SRAM, DRAM and generic L3 slaves. */ if (op->type == prui_lbbo || op->type == prui_sbbo || op->type == prui_lbco || op->type == prui_sbco) CPU.cycles += 2; } } /* Implement standard sim_engine_run function. */ void sim_engine_run (SIM_DESC sd, int next_cpu_nr, /* ignore */ int nr_cpus, /* ignore */ int siggnal) /* ignore */ { while (1) { sim_step_once (sd); if (sim_events_tick (sd)) sim_events_process (sd); } } /* Implement callback for standard CPU_PC_FETCH routine. */ static sim_cia pru_pc_get (sim_cpu *cpu) { struct pru_regset *pru_cpu = PRU_SIM_CPU (cpu); /* Present PC as byte address. */ return imem_wordaddr_to_byteaddr (cpu, pru_cpu->pc); } /* Implement callback for standard CPU_PC_STORE routine. */ static void pru_pc_set (sim_cpu *cpu, sim_cia pc) { struct pru_regset *pru_cpu = PRU_SIM_CPU (cpu); /* PC given as byte address. */ pru_cpu->pc = imem_byteaddr_to_wordaddr (cpu, pc); } /* Implement callback for standard CPU_REG_STORE routine. */ static int pru_store_register (SIM_CPU *cpu, int rn, const void *memory, int length) { struct pru_regset *pru_cpu = PRU_SIM_CPU (cpu); if (rn < NUM_REGS && rn >= 0) { if (length == 4) { /* Misalignment safe. */ long ival = pru_extract_unsigned_integer (memory, 4); if (rn < 32) CPU.regs[rn] = ival; else pru_pc_set (cpu, ival); return 4; } else return 0; } else return 0; } /* Implement callback for standard CPU_REG_FETCH routine. */ static int pru_fetch_register (SIM_CPU *cpu, int rn, void *memory, int length) { struct pru_regset *pru_cpu = PRU_SIM_CPU (cpu); long ival; if (rn < NUM_REGS && rn >= 0) { if (length == 4) { if (rn < 32) ival = CPU.regs[rn]; else ival = pru_pc_get (cpu); /* Misalignment-safe. */ pru_store_unsigned_integer (memory, 4, ival); return 4; } else return 0; } else return 0; } static void free_state (SIM_DESC sd) { if (STATE_MODULES (sd) != NULL) sim_module_uninstall (sd); sim_cpu_free_all (sd); sim_state_free (sd); } /* Declare the PRU option handler. */ static DECLARE_OPTION_HANDLER (pru_option_handler); /* Implement the PRU option handler. */ static SIM_RC pru_option_handler (SIM_DESC sd, sim_cpu *cpu, int opt, char *arg, int is_command) { switch (opt) { case OPTION_ERROR_NULL_DEREF: abort_on_dmem_zero_access = TRUE; return SIM_RC_OK; default: sim_io_eprintf (sd, "Unknown PRU option %d\n", opt); return SIM_RC_FAIL; } } /* List of PRU-specific options. */ static const OPTION pru_options[] = { { {"error-null-deref", no_argument, NULL, OPTION_ERROR_NULL_DEREF}, '\0', NULL, "Trap any access to DMEM address zero", pru_option_handler, NULL }, { {NULL, no_argument, NULL, 0}, '\0', NULL, NULL, NULL, NULL } }; /* Implement standard sim_open function. */ SIM_DESC sim_open (SIM_OPEN_KIND kind, host_callback *cb, struct bfd *abfd, char * const *argv) { int i; char c; SIM_DESC sd = sim_state_alloc (kind, cb); SIM_ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER); /* Set default options before parsing user options. */ current_alignment = STRICT_ALIGNMENT; current_target_byte_order = BFD_ENDIAN_LITTLE; /* The cpu data is kept in a separately allocated chunk of memory. */ if (sim_cpu_alloc_all_extra (sd, 0, sizeof (struct pru_regset)) != SIM_RC_OK) { free_state (sd); return 0; } if (sim_pre_argv_init (sd, argv[0]) != SIM_RC_OK) { free_state (sd); return 0; } sim_add_option_table (sd, NULL, pru_options); /* The parser will print an error message for us, so we silently return. */ if (sim_parse_args (sd, argv) != SIM_RC_OK) { free_state (sd); return 0; } /* Check for/establish a reference program image. */ if (sim_analyze_program (sd, STATE_PROG_FILE (sd), abfd) != SIM_RC_OK) { free_state (sd); return 0; } /* Configure/verify the target byte order and other runtime configuration options. */ if (sim_config (sd) != SIM_RC_OK) { sim_module_uninstall (sd); return 0; } if (sim_post_argv_init (sd) != SIM_RC_OK) { /* Uninstall the modules to avoid memory leaks, file descriptor leaks, etc. */ sim_module_uninstall (sd); return 0; } /* CPU specific initialization. */ for (i = 0; i < MAX_NR_PROCESSORS; ++i) { SIM_CPU *cpu = STATE_CPU (sd, i); CPU_REG_STORE (cpu) = pru_store_register; CPU_REG_FETCH (cpu) = pru_fetch_register; CPU_PC_FETCH (cpu) = pru_pc_get; CPU_PC_STORE (cpu) = pru_pc_set; set_initial_gprs (cpu); } /* Allocate external memory if none specified by user. Use address 4 here in case the user wanted address 0 unmapped. */ if (sim_core_read_buffer (sd, NULL, read_map, &c, 4, 1) == 0) { sim_do_commandf (sd, "memory-region 0x%x,0x%x", 0, DMEM_DEFAULT_SIZE); } if (sim_core_read_buffer (sd, NULL, read_map, &c, IMEM_ADDR_DEFAULT, 1) == 0) { sim_do_commandf (sd, "memory-region 0x%x,0x%x", IMEM_ADDR_DEFAULT, IMEM_DEFAULT_SIZE); } return sd; } /* Implement standard sim_create_inferior function. */ SIM_RC sim_create_inferior (SIM_DESC sd, struct bfd *prog_bfd, char * const *argv, char * const *env) { SIM_CPU *cpu = STATE_CPU (sd, 0); struct pru_regset *pru_cpu = PRU_SIM_CPU (cpu); host_callback *cb = STATE_CALLBACK (sd); bfd_vma addr; addr = bfd_get_start_address (prog_bfd); sim_pc_set (cpu, addr); PC_ADDR_SPACE_MARKER = addr & ~IMEM_ADDR_MASK; /* Standalone mode (i.e. `run`) will take care of the argv for us in sim_open () -> sim_parse_args (). But in debug mode (i.e. 'target sim' with `gdb`), we need to handle it because the user can change the argv on the fly via gdb's 'run'. */ if (STATE_PROG_ARGV (sd) != argv) { freeargv (STATE_PROG_ARGV (sd)); STATE_PROG_ARGV (sd) = dupargv (argv); } if (STATE_PROG_ENVP (sd) != env) { freeargv (STATE_PROG_ENVP (sd)); STATE_PROG_ENVP (sd) = dupargv (env); } cb->argv = STATE_PROG_ARGV (sd); cb->envp = STATE_PROG_ENVP (sd); return SIM_RC_OK; }