/* m32rx simulator support code Copyright (C) 1997, 1998, 2007 Free Software Foundation, Inc. Contributed by Cygnus Support. This file is part of GDB, the GNU debugger. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #define WANT_CPU m32rxf #define WANT_CPU_M32RXF #include "sim-main.h" #include "cgen-mem.h" #include "cgen-ops.h" /* The contents of BUF are in target byte order. */ int m32rxf_fetch_register (SIM_CPU *current_cpu, int rn, unsigned char *buf, int len) { return m32rbf_fetch_register (current_cpu, rn, buf, len); } /* The contents of BUF are in target byte order. */ int m32rxf_store_register (SIM_CPU *current_cpu, int rn, unsigned char *buf, int len) { return m32rbf_store_register (current_cpu, rn, buf, len); } /* Cover fns to get/set the control registers. FIXME: Duplicated from m32r.c. The issue is structure offsets. */ USI m32rxf_h_cr_get_handler (SIM_CPU *current_cpu, UINT cr) { switch (cr) { case H_CR_PSW : /* psw */ return (((CPU (h_bpsw) & 0xc1) << 8) | ((CPU (h_psw) & 0xc0) << 0) | GET_H_COND ()); case H_CR_BBPSW : /* backup backup psw */ return CPU (h_bbpsw) & 0xc1; case H_CR_CBR : /* condition bit */ return GET_H_COND (); case H_CR_SPI : /* interrupt stack pointer */ if (! GET_H_SM ()) return CPU (h_gr[H_GR_SP]); else return CPU (h_cr[H_CR_SPI]); case H_CR_SPU : /* user stack pointer */ if (GET_H_SM ()) return CPU (h_gr[H_GR_SP]); else return CPU (h_cr[H_CR_SPU]); case H_CR_BPC : /* backup pc */ return CPU (h_cr[H_CR_BPC]) & 0xfffffffe; case H_CR_BBPC : /* backup backup pc */ return CPU (h_cr[H_CR_BBPC]) & 0xfffffffe; case 4 : /* ??? unspecified, but apparently available */ case 5 : /* ??? unspecified, but apparently available */ return CPU (h_cr[cr]); default : return 0; } } void m32rxf_h_cr_set_handler (SIM_CPU *current_cpu, UINT cr, USI newval) { switch (cr) { case H_CR_PSW : /* psw */ { int old_sm = (CPU (h_psw) & 0x80) != 0; int new_sm = (newval & 0x80) != 0; CPU (h_bpsw) = (newval >> 8) & 0xff; CPU (h_psw) = newval & 0xff; SET_H_COND (newval & 1); /* When switching stack modes, update the registers. */ if (old_sm != new_sm) { if (old_sm) { /* Switching user -> system. */ CPU (h_cr[H_CR_SPU]) = CPU (h_gr[H_GR_SP]); CPU (h_gr[H_GR_SP]) = CPU (h_cr[H_CR_SPI]); } else { /* Switching system -> user. */ CPU (h_cr[H_CR_SPI]) = CPU (h_gr[H_GR_SP]); CPU (h_gr[H_GR_SP]) = CPU (h_cr[H_CR_SPU]); } } break; } case H_CR_BBPSW : /* backup backup psw */ CPU (h_bbpsw) = newval & 0xff; break; case H_CR_CBR : /* condition bit */ SET_H_COND (newval & 1); break; case H_CR_SPI : /* interrupt stack pointer */ if (! GET_H_SM ()) CPU (h_gr[H_GR_SP]) = newval; else CPU (h_cr[H_CR_SPI]) = newval; break; case H_CR_SPU : /* user stack pointer */ if (GET_H_SM ()) CPU (h_gr[H_GR_SP]) = newval; else CPU (h_cr[H_CR_SPU]) = newval; break; case H_CR_BPC : /* backup pc */ CPU (h_cr[H_CR_BPC]) = newval; break; case H_CR_BBPC : /* backup backup pc */ CPU (h_cr[H_CR_BBPC]) = newval; break; case 4 : /* ??? unspecified, but apparently available */ case 5 : /* ??? unspecified, but apparently available */ CPU (h_cr[cr]) = newval; break; default : /* ignore */ break; } } /* Cover fns to access h-psw. */ UQI m32rxf_h_psw_get_handler (SIM_CPU *current_cpu) { return (CPU (h_psw) & 0xfe) | (CPU (h_cond) & 1); } void m32rxf_h_psw_set_handler (SIM_CPU *current_cpu, UQI newval) { CPU (h_psw) = newval; CPU (h_cond) = newval & 1; } /* Cover fns to access h-accum. */ DI m32rxf_h_accum_get_handler (SIM_CPU *current_cpu) { /* Sign extend the top 8 bits. */ DI r; r = ANDDI (CPU (h_accum), MAKEDI (0xffffff, 0xffffffff)); r = XORDI (r, MAKEDI (0x800000, 0)); r = SUBDI (r, MAKEDI (0x800000, 0)); return r; } void m32rxf_h_accum_set_handler (SIM_CPU *current_cpu, DI newval) { CPU (h_accum) = newval; } /* Cover fns to access h-accums. */ DI m32rxf_h_accums_get_handler (SIM_CPU *current_cpu, UINT regno) { /* FIXME: Yes, this is just a quick hack. */ DI r; if (regno == 0) r = CPU (h_accum); else r = CPU (h_accums[1]); /* Sign extend the top 8 bits. */ r = ANDDI (r, MAKEDI (0xffffff, 0xffffffff)); r = XORDI (r, MAKEDI (0x800000, 0)); r = SUBDI (r, MAKEDI (0x800000, 0)); return r; } void m32rxf_h_accums_set_handler (SIM_CPU *current_cpu, UINT regno, DI newval) { /* FIXME: Yes, this is just a quick hack. */ if (regno == 0) CPU (h_accum) = newval; else CPU (h_accums[1]) = newval; } #if WITH_PROFILE_MODEL_P /* Initialize cycle counting for an insn. FIRST_P is non-zero if this is the first insn in a set of parallel insns. */ void m32rxf_model_insn_before (SIM_CPU *cpu, int first_p) { m32rbf_model_insn_before (cpu, first_p); } /* Record the cycles computed for an insn. LAST_P is non-zero if this is the last insn in a set of parallel insns, and we update the total cycle count. CYCLES is the cycle count of the insn. */ void m32rxf_model_insn_after (SIM_CPU *cpu, int last_p, int cycles) { m32rbf_model_insn_after (cpu, last_p, cycles); } static INLINE void check_load_stall (SIM_CPU *cpu, int regno) { UINT h_gr = CPU_M32R_MISC_PROFILE (cpu)->load_regs; if (regno != -1 && (h_gr & (1 << regno)) != 0) { CPU_M32R_MISC_PROFILE (cpu)->load_stall += 2; if (TRACE_INSN_P (cpu)) cgen_trace_printf (cpu, " ; Load stall of 2 cycles."); } } int m32rxf_model_m32rx_u_exec (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT sr, INT sr2, INT dr) { check_load_stall (cpu, sr); check_load_stall (cpu, sr2); return idesc->timing->units[unit_num].done; } int m32rxf_model_m32rx_u_cmp (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT src1, INT src2) { check_load_stall (cpu, src1); check_load_stall (cpu, src2); return idesc->timing->units[unit_num].done; } int m32rxf_model_m32rx_u_mac (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT src1, INT src2) { check_load_stall (cpu, src1); check_load_stall (cpu, src2); return idesc->timing->units[unit_num].done; } int m32rxf_model_m32rx_u_cti (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT sr) { PROFILE_DATA *profile = CPU_PROFILE_DATA (cpu); int taken_p = (referenced & (1 << 1)) != 0; check_load_stall (cpu, sr); if (taken_p) { CPU_M32R_MISC_PROFILE (cpu)->cti_stall += 2; PROFILE_MODEL_TAKEN_COUNT (profile) += 1; } else PROFILE_MODEL_UNTAKEN_COUNT (profile) += 1; return idesc->timing->units[unit_num].done; } int m32rxf_model_m32rx_u_load (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT sr, INT dr) { CPU_M32R_MISC_PROFILE (cpu)->load_regs_pending |= (1 << dr); return idesc->timing->units[unit_num].done; } int m32rxf_model_m32rx_u_store (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT src1, INT src2) { return idesc->timing->units[unit_num].done; } #endif /* WITH_PROFILE_MODEL_P */