/* * This file is part of SIS. * * SIS, SPARC instruction simulator V1.6 Copyright (C) 1995 Jiri Gaisler, * European Space Agency * * This program is free software; you can redistribute it and/or modify it under * the terms of the GNU General Public License as published by the Free * Software Foundation; either version 2 of the License, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., 675 * Mass Ave, Cambridge, MA 02139, USA. * */ #include #include #include #include #include "sis.h" #include "bfd.h" #include #include "remote-sim.h" #ifndef fprintf extern fprintf(); #endif #define VAL(x) strtol(x,(char *)NULL,0) extern char **buildargv(char *input); extern struct disassemble_info dinfo; extern struct pstate sregs; extern struct estate ebase; extern int ctrl_c; extern int nfp; extern int ift; extern int rom8; extern int wrp; extern int sis_verbose; extern char *sis_version; extern struct estate ebase; extern struct evcell evbuf[]; extern struct irqcell irqarr[]; extern int irqpend, ext_irl; extern int sparclite; extern int termsave; extern char uart_dev1[], uart_dev2[]; int sis_gdb_break = 1; host_callback *sim_callback; run_sim(sregs, go, icount, dis) struct pstate *sregs; int go; unsigned int icount; int dis; { int mexc, ws; if (sis_verbose) (*sim_callback->printf_filtered) (sim_callback, "resuming at %x\n", sregs->pc); init_stdio(); sregs->starttime = time(NULL); while ((!sregs->err_mode & (go || (icount > 0))) && ((sregs->bptnum == 0) || !(sregs->bphit = check_bpt(sregs)))) { sregs->fhold = 0; sregs->hold = 0; sregs->icnt = 0; check_interrupts(sregs); if (sregs->trap) { sregs->err_mode = execute_trap(sregs); } else { if (sregs->psr & 0x080) sregs->asi = 8; else sregs->asi = 9; mexc = memory_read(sregs->asi, sregs->pc, &sregs->inst, &sregs->hold); if (sregs->annul) { sregs->annul = 0; sregs->icnt = 1; sregs->pc = sregs->npc; sregs->npc = sregs->npc + 4; } else { if (mexc) { sregs->trap = I_ACC_EXC; } else { if (sregs->histlen) { sregs->histbuf[sregs->histind].addr = sregs->pc; sregs->histbuf[sregs->histind].time = ebase.simtime; sregs->histind++; if (sregs->histind >= sregs->histlen) sregs->histind = 0; } if (dis) { printf(" %8d ", ebase.simtime); dis_mem(sregs->pc, 1, &dinfo); } if ((sis_gdb_break) && (sregs->inst == 0x91d02001)) { if (sis_verbose) (*sim_callback->printf_filtered) (sim_callback, "SW BP hit at %x\n", sregs->pc); sim_stop(); restore_stdio(); clearerr(stdin); return (BPT_HIT); } else dispatch_instruction(sregs); } icount--; } if (sregs->trap) { sregs->err_mode = execute_trap(sregs); } } advance_time(sregs); if (ctrl_c) { go = icount = 0; } } sim_stop(); sregs->tottime += time(NULL) - sregs->starttime; restore_stdio(); clearerr(stdin); if (sregs->err_mode) error_mode(sregs->pc); if (sregs->err_mode) return (ERROR); if (sregs->bphit) { if (sis_verbose) (*sim_callback->printf_filtered) (sim_callback, "HW BP hit at %x\n", sregs->pc); return (BPT_HIT); } if (ctrl_c) { ctrl_c = 0; return (CTRL_C); } return (TIME_OUT); } void sim_set_callbacks (sd, ptr) SIM_DESC sd; host_callback *ptr; { sim_callback = ptr; } void sim_size (memsize) int memsize; { } SIM_DESC sim_open(kind, argv) SIM_OPEN_KIND kind; char **argv; { int argc = 0; int cont = 1; int stat = 1; int grdl = 0; int freq = 15; (*sim_callback->printf_filtered) (sim_callback, "\n SIS - SPARC instruction simulator %s\n", sis_version); (*sim_callback->printf_filtered) (sim_callback, " Bug-reports to Jiri Gaisler ESA/ESTEC (jgais@wd.estec.esa.nl)\n"); while (argv[argc]) argc++; while (stat < argc) { if (argv[stat][0] == '-') { if (strcmp(argv[stat], "-v") == 0) { sis_verbose = 1; } else if (strcmp(argv[stat], "-nfp") == 0) { (*sim_callback->printf_filtered) (sim_callback, "no FPU\n"); nfp = 1; } else if (strcmp(argv[stat], "-ift") == 0) { ift = 1; } else if (strcmp(argv[stat], "-sparclite") == 0) { (*sim_callback->printf_filtered) (sim_callback, "simulating Sparclite\n"); sparclite = 1; } else if (strcmp(argv[stat], "-wrp") == 0) { wrp = 1; } else if (strcmp(argv[stat], "-rom8") == 0) { rom8 = 1; } else if (strcmp(argv[stat], "-uart1") == 0) { if ((stat + 1) < argc) strcpy(uart_dev1, argv[++stat]); } else if (strcmp(argv[stat], "-uart2") == 0) { if ((stat + 1) < argc) strcpy(uart_dev2, argv[++stat]); } else if (strcmp(argv[stat], "-nogdb") == 0) { (*sim_callback->printf_filtered) (sim_callback, "disabling GDB trap handling for breakpoints\n"); sis_gdb_break = 0; } else if (strcmp(argv[stat], "-freq") == 0) if ((stat + 1) < argc) { freq = VAL(argv[++stat]); (*sim_callback->printf_filtered) (sim_callback, " ERC32 freq %d Mhz\n", freq); } } else bfd_load(argv[stat]); stat++; } sregs.freq = freq; termsave = fcntl(0, F_GETFL, 0); INIT_DISASSEMBLE_INFO(dinfo, stdout,(fprintf_ftype)fprintf); dinfo.endian = BFD_ENDIAN_BIG; init_signals(); reset_all(); ebase.simtime = 0; init_sim(); init_bpt(&sregs); reset_stat(&sregs); /* Fudge our descriptor for now. */ return (SIM_DESC) 1; } void sim_close(sd, quitting) SIM_DESC sd; int quitting; { exit_sim(); fcntl(0, F_SETFL, termsave); }; /* For communication from sim_load to sim_create_inferior. */ static bfd_vma start_address; SIM_RC sim_load(sd, prog, abfd, from_tty) SIM_DESC sd; char *prog; bfd *abfd; int from_tty; { start_address = bfd_load (prog); return (0); } SIM_RC sim_create_inferior(sd, argv, env) SIM_DESC sd; char **argv; char **env; { ebase.simtime = 0; reset_all(); reset_stat(&sregs); sregs.pc = start_address & ~3; sregs.npc = sregs.pc + 4; return SIM_RC_OK; } void sim_store_register(sd, regno, value) SIM_DESC sd; int regno; unsigned char *value; { /* FIXME: Review the computation of regval. */ int regval = (value[0] << 24) | (value[1] << 16) | (value[2] << 8) | value[3]; set_regi(&sregs, regno, regval); } void sim_fetch_register(sd, regno, buf) SIM_DESC sd; int regno; unsigned char *buf; { get_regi(&sregs, regno, buf); } int sim_write(sd, mem, buf, length) SIM_DESC sd; SIM_ADDR mem; unsigned char *buf; int length; { return (sis_memory_write(mem, buf, length)); } int sim_read(sd, mem, buf, length) SIM_DESC sd; SIM_ADDR mem; unsigned char *buf; int length; { return (sis_memory_read(mem, buf, length)); } void sim_info(sd, verbose) SIM_DESC sd; int verbose; { show_stat(&sregs); } int simstat = OK; void sim_stop_reason(sd, reason, sigrc) SIM_DESC sd; enum sim_stop * reason; int *sigrc; { switch (simstat) { case CTRL_C: *reason = sim_stopped; *sigrc = SIGINT; break; case OK: case TIME_OUT: case BPT_HIT: *reason = sim_stopped; #ifdef _WIN32 #define SIGTRAP 5 #endif *sigrc = SIGTRAP; break; case ERROR: *sigrc = 0; *reason = sim_exited; } ctrl_c = 0; simstat = OK; } /* Flush all register windows out to the stack. Starting after the invalid window, flush all windows up to, and including the current window. This allows GDB to do backtraces and look at local variables for frames that are still in the register windows. Note that strictly speaking, this behavior is *wrong* for several reasons. First, it doesn't use the window overflow handlers. It therefore assumes standard frame layouts and window handling policies. Second, it changes system state behind the back of the target program. I expect this to mainly pose problems when debugging trap handlers. */ #define PSR_CWP 0x7 static void flush_windows () { int invwin; int cwp; int win; int ws; /* Keep current window handy */ cwp = sregs.psr & PSR_CWP; /* Calculate the invalid window from the wim. */ for (invwin = 0; invwin <= PSR_CWP; invwin++) if ((sregs.wim >> invwin) & 1) break; /* Start saving with the window after the invalid window. */ invwin = (invwin - 1) & PSR_CWP; for (win = invwin; ; win = (win - 1) & PSR_CWP) { uint32 sp; int i; sp = sregs.r[(win * 16 + 14) & 0x7f]; for (i = 0; i < 16; i++) memory_write (11, sp + 4 * i, &sregs.r[(win * 16 + 16 + i) & 0x7f], 2, &ws); if (win == cwp) break; } } void sim_resume(SIM_DESC sd, int step, int siggnal) { simstat = run_sim(&sregs, 1, 0, 0); if (sis_gdb_break) flush_windows (); } int sim_trace (sd) SIM_DESC sd; { /* FIXME: unfinished */ sim_resume (sd, 0, 0); return 1; } void sim_kill(SIM_DESC sd) { } void sim_do_command(sd, cmd) SIM_DESC sd; char *cmd; { exec_cmd(&sregs, cmd); } #if 0 /* FIXME: These shouldn't exist. */ int sim_insert_breakpoint(int addr) { if (sregs.bptnum < BPT_MAX) { sregs.bpts[sregs.bptnum] = addr & ~0x3; sregs.bptnum++; if (sis_verbose) (*sim_callback->printf_filtered) (sim_callback, "inserted HW BP at %x\n", addr); return 0; } else return 1; } int sim_remove_breakpoint(int addr) { int i = 0; while ((i < sregs.bptnum) && (sregs.bpts[i] != addr)) i++; if (addr == sregs.bpts[i]) { for (; i < sregs.bptnum - 1; i++) sregs.bpts[i] = sregs.bpts[i + 1]; sregs.bptnum -= 1; if (sis_verbose) (*sim_callback->printf_filtered) (sim_callback, "removed HW BP at %x\n", addr); return 0; } return 1; } #endif