/* Support for printing Ada types for GDB, the GNU debugger. Copyright (C) 1986-2020 Free Software Foundation, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "defs.h" #include "bfd.h" /* Binary File Description */ #include "gdbtypes.h" #include "value.h" #include "c-lang.h" #include "cli/cli-style.h" #include "typeprint.h" #include "target-float.h" #include "ada-lang.h" #include static int print_selected_record_field_types (struct type *, struct type *, int, int, struct ui_file *, int, int, const struct type_print_options *); static int print_record_field_types (struct type *, struct type *, struct ui_file *, int, int, const struct type_print_options *); static char *name_buffer; static int name_buffer_len; /* The (decoded) Ada name of TYPE. This value persists until the next call. */ static char * decoded_type_name (struct type *type) { if (ada_type_name (type) == NULL) return NULL; else { const char *raw_name = ada_type_name (type); char *s, *q; if (name_buffer == NULL || name_buffer_len <= strlen (raw_name)) { name_buffer_len = 16 + 2 * strlen (raw_name); name_buffer = (char *) xrealloc (name_buffer, name_buffer_len); } strcpy (name_buffer, raw_name); s = (char *) strstr (name_buffer, "___"); if (s != NULL) *s = '\0'; s = name_buffer + strlen (name_buffer) - 1; while (s > name_buffer && (s[0] != '_' || s[-1] != '_')) s -= 1; if (s == name_buffer) return name_buffer; if (!islower (s[1])) return NULL; for (s = q = name_buffer; *s != '\0'; q += 1) { if (s[0] == '_' && s[1] == '_') { *q = '.'; s += 2; } else { *q = *s; s += 1; } } *q = '\0'; return name_buffer; } } /* Return nonzero if TYPE is a subrange type, and its bounds are identical to the bounds of its subtype. */ static int type_is_full_subrange_of_target_type (struct type *type) { struct type *subtype; if (type->code () != TYPE_CODE_RANGE) return 0; subtype = TYPE_TARGET_TYPE (type); if (subtype == NULL) return 0; if (is_dynamic_type (type)) return 0; if (ada_discrete_type_low_bound (type) != ada_discrete_type_low_bound (subtype)) return 0; if (ada_discrete_type_high_bound (type) != ada_discrete_type_high_bound (subtype)) return 0; return 1; } /* Print TYPE on STREAM, preferably as a range if BOUNDS_PREFERED_P is nonzero. */ static void print_range (struct type *type, struct ui_file *stream, int bounds_prefered_p) { if (!bounds_prefered_p) { /* Try stripping all TYPE_CODE_RANGE layers whose bounds are identical to the bounds of their subtype. When the bounds of both types match, it can allow us to print a range using the name of its base type, which is easier to read. For instance, we would print... array (character) of ... ... instead of... array ('["00"]' .. '["ff"]') of ... */ while (type_is_full_subrange_of_target_type (type)) type = TYPE_TARGET_TYPE (type); } switch (type->code ()) { case TYPE_CODE_RANGE: case TYPE_CODE_ENUM: { LONGEST lo = 0, hi = 0; /* init for gcc -Wall */ int got_error = 0; try { lo = ada_discrete_type_low_bound (type); hi = ada_discrete_type_high_bound (type); } catch (const gdb_exception_error &e) { /* This can happen when the range is dynamic. Sometimes, resolving dynamic property values requires us to have access to an actual object, which is not available when the user is using the "ptype" command on a type. Print the range as an unbounded range. */ fprintf_filtered (stream, "<>"); got_error = 1; } if (!got_error) { ada_print_scalar (type, lo, stream); fprintf_filtered (stream, " .. "); ada_print_scalar (type, hi, stream); } } break; default: fprintf_filtered (stream, "%.*s", ada_name_prefix_len (type->name ()), type->name ()); break; } } /* Print the number or discriminant bound at BOUNDS+*N on STREAM, and set *N past the bound and its delimiter, if any. */ static void print_range_bound (struct type *type, const char *bounds, int *n, struct ui_file *stream) { LONGEST B; if (ada_scan_number (bounds, *n, &B, n)) { /* STABS decodes all range types which bounds are 0 .. -1 as unsigned integers (ie. the type code is TYPE_CODE_INT, not TYPE_CODE_RANGE). Unfortunately, ada_print_scalar() relies on the unsigned flag to determine whether the bound should be printed as a signed or an unsigned value. This causes the upper bound of the 0 .. -1 range types to be printed as a very large unsigned number instead of -1. To workaround this stabs deficiency, we replace the TYPE by NULL to indicate default output when we detect that the bound is negative, and the type is a TYPE_CODE_INT. The bound is negative when 'm' is the last character of the number scanned in BOUNDS. */ if (bounds[*n - 1] == 'm' && type->code () == TYPE_CODE_INT) type = NULL; ada_print_scalar (type, B, stream); if (bounds[*n] == '_') *n += 2; } else { int bound_len; const char *bound = bounds + *n; const char *pend; pend = strstr (bound, "__"); if (pend == NULL) *n += bound_len = strlen (bound); else { bound_len = pend - bound; *n += bound_len + 2; } fprintf_filtered (stream, "%.*s", bound_len, bound); } } /* Assuming NAME[0 .. NAME_LEN-1] is the name of a range type, print the value (if found) of the bound indicated by SUFFIX ("___L" or "___U") according to the ___XD conventions. */ static void print_dynamic_range_bound (struct type *type, const char *name, int name_len, const char *suffix, struct ui_file *stream) { LONGEST B; std::string name_buf (name, name_len); name_buf += suffix; if (get_int_var_value (name_buf.c_str (), B)) ada_print_scalar (type, B, stream); else fprintf_filtered (stream, "?"); } /* Print RAW_TYPE as a range type, using any bound information following the GNAT encoding (if available). If BOUNDS_PREFERED_P is nonzero, force the printing of the range using its bounds. Otherwise, try printing the range without printing the value of the bounds, if possible (this is only considered a hint, not a guaranty). */ static void print_range_type (struct type *raw_type, struct ui_file *stream, int bounds_prefered_p) { const char *name; struct type *base_type; const char *subtype_info; gdb_assert (raw_type != NULL); name = raw_type->name (); gdb_assert (name != NULL); if (raw_type->code () == TYPE_CODE_RANGE) base_type = TYPE_TARGET_TYPE (raw_type); else base_type = raw_type; subtype_info = strstr (name, "___XD"); if (subtype_info == NULL) print_range (raw_type, stream, bounds_prefered_p); else { int prefix_len = subtype_info - name; const char *bounds_str; int n; subtype_info += 5; bounds_str = strchr (subtype_info, '_'); n = 1; if (*subtype_info == 'L') { print_range_bound (base_type, bounds_str, &n, stream); subtype_info += 1; } else print_dynamic_range_bound (base_type, name, prefix_len, "___L", stream); fprintf_filtered (stream, " .. "); if (*subtype_info == 'U') print_range_bound (base_type, bounds_str, &n, stream); else print_dynamic_range_bound (base_type, name, prefix_len, "___U", stream); } } /* Print enumerated type TYPE on STREAM. */ static void print_enum_type (struct type *type, struct ui_file *stream) { int len = type->num_fields (); int i; LONGEST lastval; fprintf_filtered (stream, "("); wrap_here (" "); lastval = 0; for (i = 0; i < len; i++) { QUIT; if (i) fprintf_filtered (stream, ", "); wrap_here (" "); fputs_styled (ada_enum_name (TYPE_FIELD_NAME (type, i)), variable_name_style.style (), stream); if (lastval != TYPE_FIELD_ENUMVAL (type, i)) { fprintf_filtered (stream, " => %s", plongest (TYPE_FIELD_ENUMVAL (type, i))); lastval = TYPE_FIELD_ENUMVAL (type, i); } lastval += 1; } fprintf_filtered (stream, ")"); } /* Print representation of Ada fixed-point type TYPE on STREAM. */ static void print_gnat_encoded_fixed_point_type (struct type *type, struct ui_file *stream) { struct value *delta = gnat_encoded_fixed_point_delta (type); struct value *small = ada_scaling_factor (type); if (delta == nullptr) fprintf_filtered (stream, "delta ??"); else { std::string str; str = target_float_to_string (value_contents (delta), value_type (delta), "%g"); fprintf_filtered (stream, "delta %s", str.c_str()); if (!value_equal (delta, small)) { str = target_float_to_string (value_contents (small), value_type (small), "%g"); fprintf_filtered (stream, " <'small = %s>", str.c_str()); } } } /* Print simple (constrained) array type TYPE on STREAM. LEVEL is the recursion (indentation) level, in case the element type itself has nested structure, and SHOW is the number of levels of internal structure to show (see ada_print_type). */ static void print_array_type (struct type *type, struct ui_file *stream, int show, int level, const struct type_print_options *flags) { int bitsize; int n_indices; struct type *elt_type = NULL; if (ada_is_constrained_packed_array_type (type)) type = ada_coerce_to_simple_array_type (type); bitsize = 0; fprintf_filtered (stream, "array ("); if (type == NULL) { fprintf_styled (stream, metadata_style.style (), _("")); return; } n_indices = -1; if (ada_is_simple_array_type (type)) { struct type *range_desc_type; struct type *arr_type; range_desc_type = ada_find_parallel_type (type, "___XA"); ada_fixup_array_indexes_type (range_desc_type); bitsize = 0; if (range_desc_type == NULL) { for (arr_type = type; arr_type->code () == TYPE_CODE_ARRAY; arr_type = TYPE_TARGET_TYPE (arr_type)) { if (arr_type != type) fprintf_filtered (stream, ", "); print_range (arr_type->index_type (), stream, 0 /* bounds_prefered_p */); if (TYPE_FIELD_BITSIZE (arr_type, 0) > 0) bitsize = TYPE_FIELD_BITSIZE (arr_type, 0); } } else { int k; n_indices = range_desc_type->num_fields (); for (k = 0, arr_type = type; k < n_indices; k += 1, arr_type = TYPE_TARGET_TYPE (arr_type)) { if (k > 0) fprintf_filtered (stream, ", "); print_range_type (range_desc_type->field (k).type (), stream, 0 /* bounds_prefered_p */); if (TYPE_FIELD_BITSIZE (arr_type, 0) > 0) bitsize = TYPE_FIELD_BITSIZE (arr_type, 0); } } } else { int i, i0; for (i = i0 = ada_array_arity (type); i > 0; i -= 1) fprintf_filtered (stream, "%s<>", i == i0 ? "" : ", "); } elt_type = ada_array_element_type (type, n_indices); fprintf_filtered (stream, ") of "); wrap_here (""); ada_print_type (elt_type, "", stream, show == 0 ? 0 : show - 1, level + 1, flags); /* Arrays with variable-length elements are never bit-packed in practice but compilers have to describe their stride so that we can properly fetch individual elements. Do not say the array is packed in this case. */ if (bitsize > 0 && !is_dynamic_type (elt_type)) fprintf_filtered (stream, " ", bitsize); } /* Print the choices encoded by field FIELD_NUM of variant-part TYPE on STREAM, assuming that VAL_TYPE (if non-NULL) is the type of the values. Return non-zero if the field is an encoding of discriminant values, as in a standard variant record, and 0 if the field is not so encoded (as happens with single-component variants in types annotated with pragma Unchecked_Union). */ static int print_choices (struct type *type, int field_num, struct ui_file *stream, struct type *val_type) { int have_output; int p; const char *name = TYPE_FIELD_NAME (type, field_num); have_output = 0; /* Skip over leading 'V': NOTE soon to be obsolete. */ if (name[0] == 'V') { if (!ada_scan_number (name, 1, NULL, &p)) goto Huh; } else p = 0; while (1) { switch (name[p]) { default: goto Huh; case '_': case '\0': fprintf_filtered (stream, " =>"); return 1; case 'S': case 'R': case 'O': if (have_output) fprintf_filtered (stream, " | "); have_output = 1; break; } switch (name[p]) { case 'S': { LONGEST W; if (!ada_scan_number (name, p + 1, &W, &p)) goto Huh; ada_print_scalar (val_type, W, stream); break; } case 'R': { LONGEST L, U; if (!ada_scan_number (name, p + 1, &L, &p) || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p)) goto Huh; ada_print_scalar (val_type, L, stream); fprintf_filtered (stream, " .. "); ada_print_scalar (val_type, U, stream); break; } case 'O': fprintf_filtered (stream, "others"); p += 1; break; } } Huh: fprintf_filtered (stream, "? =>"); return 0; } /* Assuming that field FIELD_NUM of TYPE represents variants whose discriminant is contained in OUTER_TYPE, print its components on STREAM. LEVEL is the recursion (indentation) level, in case any of the fields themselves have nested structure, and SHOW is the number of levels of internal structure to show (see ada_print_type). For this purpose, fields nested in a variant part are taken to be at the same level as the fields immediately outside the variant part. */ static void print_variant_clauses (struct type *type, int field_num, struct type *outer_type, struct ui_file *stream, int show, int level, const struct type_print_options *flags) { int i; struct type *var_type, *par_type; struct type *discr_type; var_type = type->field (field_num).type (); discr_type = ada_variant_discrim_type (var_type, outer_type); if (var_type->code () == TYPE_CODE_PTR) { var_type = TYPE_TARGET_TYPE (var_type); if (var_type == NULL || var_type->code () != TYPE_CODE_UNION) return; } par_type = ada_find_parallel_type (var_type, "___XVU"); if (par_type != NULL) var_type = par_type; for (i = 0; i < var_type->num_fields (); i += 1) { fprintf_filtered (stream, "\n%*swhen ", level + 4, ""); if (print_choices (var_type, i, stream, discr_type)) { if (print_record_field_types (var_type->field (i).type (), outer_type, stream, show, level + 4, flags) <= 0) fprintf_filtered (stream, " null;"); } else print_selected_record_field_types (var_type, outer_type, i, i, stream, show, level + 4, flags); } } /* Assuming that field FIELD_NUM of TYPE is a variant part whose discriminants are contained in OUTER_TYPE, print a description of it on STREAM. LEVEL is the recursion (indentation) level, in case any of the fields themselves have nested structure, and SHOW is the number of levels of internal structure to show (see ada_print_type). For this purpose, fields nested in a variant part are taken to be at the same level as the fields immediately outside the variant part. */ static void print_variant_part (struct type *type, int field_num, struct type *outer_type, struct ui_file *stream, int show, int level, const struct type_print_options *flags) { const char *variant = ada_variant_discrim_name (type->field (field_num).type ()); if (*variant == '\0') variant = "?"; fprintf_filtered (stream, "\n%*scase %s is", level + 4, "", variant); print_variant_clauses (type, field_num, outer_type, stream, show, level + 4, flags); fprintf_filtered (stream, "\n%*send case;", level + 4, ""); } /* Print a description on STREAM of the fields FLD0 through FLD1 in record or union type TYPE, whose discriminants are in OUTER_TYPE. LEVEL is the recursion (indentation) level, in case any of the fields themselves have nested structure, and SHOW is the number of levels of internal structure to show (see ada_print_type). Does not print parent type information of TYPE. Returns 0 if no fields printed, -1 for an incomplete type, else > 0. Prints each field beginning on a new line, but does not put a new line at end. */ static int print_selected_record_field_types (struct type *type, struct type *outer_type, int fld0, int fld1, struct ui_file *stream, int show, int level, const struct type_print_options *flags) { int i, flds; flds = 0; if (fld0 > fld1 && type->is_stub ()) return -1; for (i = fld0; i <= fld1; i += 1) { QUIT; if (ada_is_parent_field (type, i) || ada_is_ignored_field (type, i)) ; else if (ada_is_wrapper_field (type, i)) flds += print_record_field_types (type->field (i).type (), type, stream, show, level, flags); else if (ada_is_variant_part (type, i)) { print_variant_part (type, i, outer_type, stream, show, level, flags); flds = 1; } else { flds += 1; fprintf_filtered (stream, "\n%*s", level + 4, ""); ada_print_type (type->field (i).type (), TYPE_FIELD_NAME (type, i), stream, show - 1, level + 4, flags); fprintf_filtered (stream, ";"); } } return flds; } static void print_record_field_types_dynamic (const gdb::array_view &parts, int from, int to, struct type *type, struct ui_file *stream, int show, int level, const struct type_print_options *flags); /* Print the choices encoded by VARIANT on STREAM. LEVEL is the indentation level. The type of the discriminant for VARIANT is given by DISR_TYPE. */ static void print_choices (struct type *discr_type, const variant &variant, struct ui_file *stream, int level) { fprintf_filtered (stream, "\n%*swhen ", level, ""); if (variant.is_default ()) fprintf_filtered (stream, "others"); else { bool first = true; for (const discriminant_range &range : variant.discriminants) { if (!first) fprintf_filtered (stream, " | "); first = false; ada_print_scalar (discr_type, range.low, stream); if (range.low != range.high) ada_print_scalar (discr_type, range.high, stream); } } fprintf_filtered (stream, " =>"); } /* Print a single variant part, PART, on STREAM. TYPE is the enclosing type. SHOW, LEVEL, and FLAGS are the usual type-printing settings. This prints information about PART and the fields it controls. It returns the index of the next field that should be shown -- that is, one after the last field printed by this call. */ static int print_variant_part (const variant_part &part, struct type *type, struct ui_file *stream, int show, int level, const struct type_print_options *flags) { struct type *discr_type = nullptr; const char *name; if (part.discriminant_index == -1) name = "?"; else { name = TYPE_FIELD_NAME (type, part.discriminant_index); discr_type = type->field (part.discriminant_index).type (); } fprintf_filtered (stream, "\n%*scase %s is", level + 4, "", name); int last_field = -1; for (const variant &variant : part.variants) { print_choices (discr_type, variant, stream, level + 8); if (variant.first_field == variant.last_field) fprintf_filtered (stream, " null;"); else { print_record_field_types_dynamic (variant.parts, variant.first_field, variant.last_field, type, stream, show, level + 8, flags); last_field = variant.last_field; } } fprintf_filtered (stream, "\n%*send case;", level + 4, ""); return last_field; } /* Print some fields of TYPE to STREAM. SHOW, LEVEL, and FLAGS are the usual type-printing settings. PARTS is the array of variant parts that correspond to the range of fields to be printed. FROM and TO are the range of fields to print. */ static void print_record_field_types_dynamic (const gdb::array_view &parts, int from, int to, struct type *type, struct ui_file *stream, int show, int level, const struct type_print_options *flags) { int field = from; for (const variant_part &part : parts) { if (part.variants.empty ()) continue; /* Print any non-varying fields. */ int first_varying = part.variants[0].first_field; print_selected_record_field_types (type, type, field, first_varying - 1, stream, show, level, flags); field = print_variant_part (part, type, stream, show, level, flags); } /* Print any trailing fields that we were asked to print. */ print_selected_record_field_types (type, type, field, to - 1, stream, show, level, flags); } /* Print a description on STREAM of all fields of record or union type TYPE, as for print_selected_record_field_types, above. */ static int print_record_field_types (struct type *type, struct type *outer_type, struct ui_file *stream, int show, int level, const struct type_print_options *flags) { struct dynamic_prop *prop = type->dyn_prop (DYN_PROP_VARIANT_PARTS); if (prop != nullptr) { if (prop->kind () == PROP_TYPE) { type = prop->original_type (); prop = type->dyn_prop (DYN_PROP_VARIANT_PARTS); } gdb_assert (prop->kind () == PROP_VARIANT_PARTS); print_record_field_types_dynamic (*prop->variant_parts (), 0, type->num_fields (), type, stream, show, level, flags); return type->num_fields (); } return print_selected_record_field_types (type, outer_type, 0, type->num_fields () - 1, stream, show, level, flags); } /* Print record type TYPE on STREAM. LEVEL is the recursion (indentation) level, in case the element type itself has nested structure, and SHOW is the number of levels of internal structure to show (see ada_print_type). */ static void print_record_type (struct type *type0, struct ui_file *stream, int show, int level, const struct type_print_options *flags) { struct type *parent_type; struct type *type; type = ada_find_parallel_type (type0, "___XVE"); if (type == NULL) type = type0; parent_type = ada_parent_type (type); if (ada_type_name (parent_type) != NULL) { const char *parent_name = decoded_type_name (parent_type); /* If we fail to decode the parent type name, then use the parent type name as is. Not pretty, but should never happen except when the debugging info is incomplete or incorrect. This prevents a crash trying to print a NULL pointer. */ if (parent_name == NULL) parent_name = ada_type_name (parent_type); fprintf_filtered (stream, "new %s with record", parent_name); } else if (parent_type == NULL && ada_is_tagged_type (type, 0)) fprintf_filtered (stream, "tagged record"); else fprintf_filtered (stream, "record"); if (show < 0) fprintf_filtered (stream, " ... end record"); else { int flds; flds = 0; if (parent_type != NULL && ada_type_name (parent_type) == NULL) flds += print_record_field_types (parent_type, parent_type, stream, show, level, flags); flds += print_record_field_types (type, type, stream, show, level, flags); if (flds > 0) fprintf_filtered (stream, "\n%*send record", level, ""); else if (flds < 0) fprintf_filtered (stream, _(" end record")); else fprintf_filtered (stream, " null; end record"); } } /* Print the unchecked union type TYPE in something resembling Ada format on STREAM. LEVEL is the recursion (indentation) level in case the element type itself has nested structure, and SHOW is the number of levels of internal structure to show (see ada_print_type). */ static void print_unchecked_union_type (struct type *type, struct ui_file *stream, int show, int level, const struct type_print_options *flags) { if (show < 0) fprintf_filtered (stream, "record (?) is ... end record"); else if (type->num_fields () == 0) fprintf_filtered (stream, "record (?) is null; end record"); else { int i; fprintf_filtered (stream, "record (?) is\n%*scase ? is", level + 4, ""); for (i = 0; i < type->num_fields (); i += 1) { fprintf_filtered (stream, "\n%*swhen ? =>\n%*s", level + 8, "", level + 12, ""); ada_print_type (type->field (i).type (), TYPE_FIELD_NAME (type, i), stream, show - 1, level + 12, flags); fprintf_filtered (stream, ";"); } fprintf_filtered (stream, "\n%*send case;\n%*send record", level + 4, "", level, ""); } } /* Print function or procedure type TYPE on STREAM. Make it a header for function or procedure NAME if NAME is not null. */ static void print_func_type (struct type *type, struct ui_file *stream, const char *name, const struct type_print_options *flags) { int i, len = type->num_fields (); if (TYPE_TARGET_TYPE (type) != NULL && TYPE_TARGET_TYPE (type)->code () == TYPE_CODE_VOID) fprintf_filtered (stream, "procedure"); else fprintf_filtered (stream, "function"); if (name != NULL && name[0] != '\0') { fputs_filtered (" ", stream); fputs_styled (name, function_name_style.style (), stream); } if (len > 0) { fprintf_filtered (stream, " ("); for (i = 0; i < len; i += 1) { if (i > 0) { fputs_filtered ("; ", stream); wrap_here (" "); } fprintf_filtered (stream, "a%d: ", i + 1); ada_print_type (type->field (i).type (), "", stream, -1, 0, flags); } fprintf_filtered (stream, ")"); } if (TYPE_TARGET_TYPE (type) == NULL) fprintf_filtered (stream, " return "); else if (TYPE_TARGET_TYPE (type)->code () != TYPE_CODE_VOID) { fprintf_filtered (stream, " return "); ada_print_type (TYPE_TARGET_TYPE (type), "", stream, 0, 0, flags); } } /* Print a description of a type TYPE0. Output goes to STREAM (via stdio). If VARSTRING is a non-empty string, print as an Ada variable/field declaration. SHOW+1 is the maximum number of levels of internal type structure to show (this applies to record types, enumerated types, and array types). SHOW is the number of levels of internal type structure to show when there is a type name for the SHOWth deepest level (0th is outer level). When SHOW<0, no inner structure is shown. LEVEL indicates level of recursion (for nested definitions). */ void ada_print_type (struct type *type0, const char *varstring, struct ui_file *stream, int show, int level, const struct type_print_options *flags) { struct type *type = ada_check_typedef (ada_get_base_type (type0)); char *type_name = decoded_type_name (type0); int is_var_decl = (varstring != NULL && varstring[0] != '\0'); if (type == NULL) { if (is_var_decl) fprintf_filtered (stream, "%.*s: ", ada_name_prefix_len (varstring), varstring); fprintf_styled (stream, metadata_style.style (), ""); return; } if (show > 0) type = ada_check_typedef (type); if (is_var_decl && type->code () != TYPE_CODE_FUNC) fprintf_filtered (stream, "%.*s: ", ada_name_prefix_len (varstring), varstring); if (type_name != NULL && show <= 0 && !ada_is_aligner_type (type)) { fprintf_filtered (stream, "%.*s", ada_name_prefix_len (type_name), type_name); return; } if (ada_is_aligner_type (type)) ada_print_type (ada_aligned_type (type), "", stream, show, level, flags); else if (ada_is_constrained_packed_array_type (type) && type->code () != TYPE_CODE_PTR) print_array_type (type, stream, show, level, flags); else switch (type->code ()) { default: fprintf_filtered (stream, "<"); c_print_type (type, "", stream, show, level, flags); fprintf_filtered (stream, ">"); break; case TYPE_CODE_PTR: case TYPE_CODE_TYPEDEF: fprintf_filtered (stream, "access "); ada_print_type (TYPE_TARGET_TYPE (type), "", stream, show, level, flags); break; case TYPE_CODE_REF: fprintf_filtered (stream, " "); ada_print_type (TYPE_TARGET_TYPE (type), "", stream, show, level, flags); break; case TYPE_CODE_ARRAY: print_array_type (type, stream, show, level, flags); break; case TYPE_CODE_BOOL: fprintf_filtered (stream, "(false, true)"); break; case TYPE_CODE_INT: if (ada_is_gnat_encoded_fixed_point_type (type)) print_gnat_encoded_fixed_point_type (type, stream); else { const char *name = ada_type_name (type); if (!ada_is_range_type_name (name)) fprintf_styled (stream, metadata_style.style (), _("<%s-byte integer>"), pulongest (TYPE_LENGTH (type))); else { fprintf_filtered (stream, "range "); print_range_type (type, stream, 1 /* bounds_prefered_p */); } } break; case TYPE_CODE_RANGE: if (ada_is_gnat_encoded_fixed_point_type (type)) print_gnat_encoded_fixed_point_type (type, stream); else if (ada_is_modular_type (type)) fprintf_filtered (stream, "mod %s", int_string (ada_modulus (type), 10, 0, 0, 1)); else { fprintf_filtered (stream, "range "); print_range (type, stream, 1 /* bounds_prefered_p */); } break; case TYPE_CODE_FLT: fprintf_styled (stream, metadata_style.style (), _("<%s-byte float>"), pulongest (TYPE_LENGTH (type))); break; case TYPE_CODE_ENUM: if (show < 0) fprintf_filtered (stream, "(...)"); else print_enum_type (type, stream); break; case TYPE_CODE_STRUCT: if (ada_is_array_descriptor_type (type)) print_array_type (type, stream, show, level, flags); else if (ada_is_bogus_array_descriptor (type)) fprintf_filtered (stream, _("array (?) of ? ()")); else print_record_type (type, stream, show, level, flags); break; case TYPE_CODE_UNION: print_unchecked_union_type (type, stream, show, level, flags); break; case TYPE_CODE_FUNC: print_func_type (type, stream, varstring, flags); break; } } /* Implement the la_print_typedef language method for Ada. */ void ada_print_typedef (struct type *type, struct symbol *new_symbol, struct ui_file *stream) { type = ada_check_typedef (type); ada_print_type (type, "", stream, 0, 0, &type_print_raw_options); }