/* Support for printing C and C++ types for GDB, the GNU debugger. Copyright (C) 1986-2015 Free Software Foundation, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "defs.h" #include "gdb_obstack.h" #include "bfd.h" /* Binary File Description. */ #include "symtab.h" #include "gdbtypes.h" #include "expression.h" #include "value.h" #include "gdbcore.h" #include "target.h" #include "language.h" #include "demangle.h" #include "c-lang.h" #include "typeprint.h" #include "cp-abi.h" #include "jv-lang.h" #include "cp-support.h" static void c_type_print_varspec_prefix (struct type *, struct ui_file *, int, int, int, const struct type_print_options *); /* Print "const", "volatile", or address space modifiers. */ static void c_type_print_modifier (struct type *, struct ui_file *, int, int); /* A callback function for cp_canonicalize_string_full that uses find_typedef_in_hash. */ static const char * find_typedef_for_canonicalize (struct type *t, void *data) { return find_typedef_in_hash (data, t); } /* Print NAME on STREAM. If the 'raw' field of FLAGS is not set, canonicalize NAME using the local typedefs first. */ static void print_name_maybe_canonical (const char *name, const struct type_print_options *flags, struct ui_file *stream) { char *s = NULL; if (!flags->raw) s = cp_canonicalize_string_full (name, find_typedef_for_canonicalize, (void *) flags); fputs_filtered (s ? s : name, stream); xfree (s); } /* LEVEL is the depth to indent lines by. */ void c_print_type (struct type *type, const char *varstring, struct ui_file *stream, int show, int level, const struct type_print_options *flags) { enum type_code code; int demangled_args; int need_post_space; const char *local_name; if (show > 0) CHECK_TYPEDEF (type); local_name = find_typedef_in_hash (flags, type); if (local_name != NULL) { fputs_filtered (local_name, stream); if (varstring != NULL && *varstring != '\0') fputs_filtered (" ", stream); } else { c_type_print_base (type, stream, show, level, flags); code = TYPE_CODE (type); if ((varstring != NULL && *varstring != '\0') /* Need a space if going to print stars or brackets; but not if we will print just a type name. */ || ((show > 0 || TYPE_NAME (type) == 0) && (code == TYPE_CODE_PTR || code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD || (code == TYPE_CODE_ARRAY && !TYPE_VECTOR (type)) || code == TYPE_CODE_MEMBERPTR || code == TYPE_CODE_METHODPTR || code == TYPE_CODE_REF))) fputs_filtered (" ", stream); need_post_space = (varstring != NULL && strcmp (varstring, "") != 0); c_type_print_varspec_prefix (type, stream, show, 0, need_post_space, flags); } if (varstring != NULL) { fputs_filtered (varstring, stream); /* For demangled function names, we have the arglist as part of the name, so don't print an additional pair of ()'s. */ if (local_name == NULL) { demangled_args = strchr (varstring, '(') != NULL; c_type_print_varspec_suffix (type, stream, show, 0, demangled_args, flags); } } } /* Print a typedef using C syntax. TYPE is the underlying type. NEW_SYMBOL is the symbol naming the type. STREAM is the stream on which to print. */ void c_print_typedef (struct type *type, struct symbol *new_symbol, struct ui_file *stream) { CHECK_TYPEDEF (type); fprintf_filtered (stream, "typedef "); type_print (type, "", stream, 0); if (TYPE_NAME ((SYMBOL_TYPE (new_symbol))) == 0 || strcmp (TYPE_NAME ((SYMBOL_TYPE (new_symbol))), SYMBOL_LINKAGE_NAME (new_symbol)) != 0 || TYPE_CODE (SYMBOL_TYPE (new_symbol)) == TYPE_CODE_TYPEDEF) fprintf_filtered (stream, " %s", SYMBOL_PRINT_NAME (new_symbol)); fprintf_filtered (stream, ";\n"); } /* If TYPE is a derived type, then print out derivation information. Print only the actual base classes of this type, not the base classes of the base classes. I.e. for the derivation hierarchy: class A { int a; }; class B : public A {int b; }; class C : public B {int c; }; Print the type of class C as: class C : public B { int c; } Not as the following (like gdb used to), which is not legal C++ syntax for derived types and may be confused with the multiple inheritance form: class C : public B : public A { int c; } In general, gdb should try to print the types as closely as possible to the form that they appear in the source code. */ static void cp_type_print_derivation_info (struct ui_file *stream, struct type *type, const struct type_print_options *flags) { const char *name; int i; for (i = 0; i < TYPE_N_BASECLASSES (type); i++) { wrap_here (" "); fputs_filtered (i == 0 ? ": " : ", ", stream); fprintf_filtered (stream, "%s%s ", BASETYPE_VIA_PUBLIC (type, i) ? "public" : (TYPE_FIELD_PROTECTED (type, i) ? "protected" : "private"), BASETYPE_VIA_VIRTUAL (type, i) ? " virtual" : ""); name = type_name_no_tag (TYPE_BASECLASS (type, i)); if (name) print_name_maybe_canonical (name, flags, stream); else fprintf_filtered (stream, "(null)"); } if (i > 0) { fputs_filtered (" ", stream); } } /* Print the C++ method arguments ARGS to the file STREAM. */ static void cp_type_print_method_args (struct type *mtype, const char *prefix, const char *varstring, int staticp, struct ui_file *stream, const struct type_print_options *flags) { struct field *args = TYPE_FIELDS (mtype); int nargs = TYPE_NFIELDS (mtype); int varargs = TYPE_VARARGS (mtype); int i; fprintf_symbol_filtered (stream, prefix, language_cplus, DMGL_ANSI); fprintf_symbol_filtered (stream, varstring, language_cplus, DMGL_ANSI); fputs_filtered ("(", stream); /* Skip the class variable. */ i = staticp ? 0 : 1; if (nargs > i) { while (i < nargs) { c_print_type (args[i++].type, "", stream, 0, 0, flags); if (i == nargs && varargs) fprintf_filtered (stream, ", ..."); else if (i < nargs) { fprintf_filtered (stream, ", "); wrap_here (" "); } } } else if (varargs) fprintf_filtered (stream, "..."); else if (current_language->la_language == language_cplus) fprintf_filtered (stream, "void"); fprintf_filtered (stream, ")"); /* For non-static methods, read qualifiers from the type of THIS. */ if (!staticp) { struct type *domain; gdb_assert (nargs > 0); gdb_assert (TYPE_CODE (args[0].type) == TYPE_CODE_PTR); domain = TYPE_TARGET_TYPE (args[0].type); if (TYPE_CONST (domain)) fprintf_filtered (stream, " const"); if (TYPE_VOLATILE (domain)) fprintf_filtered (stream, " volatile"); if (TYPE_RESTRICT (domain)) fprintf_filtered (stream, " restrict"); } } /* Print any asterisks or open-parentheses needed before the variable name (to describe its type). On outermost call, pass 0 for PASSED_A_PTR. On outermost call, SHOW > 0 means should ignore any typename for TYPE and show its details. SHOW is always zero on recursive calls. NEED_POST_SPACE is non-zero when a space will be be needed between a trailing qualifier and a field, variable, or function name. */ static void c_type_print_varspec_prefix (struct type *type, struct ui_file *stream, int show, int passed_a_ptr, int need_post_space, const struct type_print_options *flags) { const char *name; if (type == 0) return; if (TYPE_NAME (type) && show <= 0) return; QUIT; switch (TYPE_CODE (type)) { case TYPE_CODE_PTR: c_type_print_varspec_prefix (TYPE_TARGET_TYPE (type), stream, show, 1, 1, flags); fprintf_filtered (stream, "*"); c_type_print_modifier (type, stream, 1, need_post_space); break; case TYPE_CODE_MEMBERPTR: c_type_print_varspec_prefix (TYPE_TARGET_TYPE (type), stream, show, 0, 0, flags); name = type_name_no_tag (TYPE_SELF_TYPE (type)); if (name) print_name_maybe_canonical (name, flags, stream); else c_type_print_base (TYPE_SELF_TYPE (type), stream, -1, passed_a_ptr, flags); fprintf_filtered (stream, "::*"); break; case TYPE_CODE_METHODPTR: c_type_print_varspec_prefix (TYPE_TARGET_TYPE (type), stream, show, 0, 0, flags); fprintf_filtered (stream, "("); name = type_name_no_tag (TYPE_SELF_TYPE (type)); if (name) print_name_maybe_canonical (name, flags, stream); else c_type_print_base (TYPE_SELF_TYPE (type), stream, -1, passed_a_ptr, flags); fprintf_filtered (stream, "::*"); break; case TYPE_CODE_REF: c_type_print_varspec_prefix (TYPE_TARGET_TYPE (type), stream, show, 1, 0, flags); fprintf_filtered (stream, "&"); c_type_print_modifier (type, stream, 1, need_post_space); break; case TYPE_CODE_METHOD: case TYPE_CODE_FUNC: c_type_print_varspec_prefix (TYPE_TARGET_TYPE (type), stream, show, 0, 0, flags); if (passed_a_ptr) fprintf_filtered (stream, "("); break; case TYPE_CODE_ARRAY: c_type_print_varspec_prefix (TYPE_TARGET_TYPE (type), stream, show, 0, 0, flags); if (passed_a_ptr) fprintf_filtered (stream, "("); break; case TYPE_CODE_TYPEDEF: c_type_print_varspec_prefix (TYPE_TARGET_TYPE (type), stream, show, passed_a_ptr, 0, flags); break; case TYPE_CODE_UNDEF: case TYPE_CODE_STRUCT: case TYPE_CODE_UNION: case TYPE_CODE_ENUM: case TYPE_CODE_INT: case TYPE_CODE_FLT: case TYPE_CODE_VOID: case TYPE_CODE_ERROR: case TYPE_CODE_CHAR: case TYPE_CODE_BOOL: case TYPE_CODE_SET: case TYPE_CODE_RANGE: case TYPE_CODE_STRING: case TYPE_CODE_COMPLEX: case TYPE_CODE_NAMESPACE: case TYPE_CODE_DECFLOAT: /* These types need no prefix. They are listed here so that gcc -Wall will reveal any types that haven't been handled. */ break; default: error (_("type not handled in c_type_print_varspec_prefix()")); break; } } /* Print out "const" and "volatile" attributes, and address space id if present. TYPE is a pointer to the type being printed out. STREAM is the output destination. NEED_PRE_SPACE = 1 indicates an initial white space is needed. NEED_POST_SPACE = 1 indicates a final white space is needed. */ static void c_type_print_modifier (struct type *type, struct ui_file *stream, int need_pre_space, int need_post_space) { int did_print_modifier = 0; const char *address_space_id; /* We don't print `const' qualifiers for references --- since all operators affect the thing referenced, not the reference itself, every reference is `const'. */ if (TYPE_CONST (type) && TYPE_CODE (type) != TYPE_CODE_REF) { if (need_pre_space) fprintf_filtered (stream, " "); fprintf_filtered (stream, "const"); did_print_modifier = 1; } if (TYPE_VOLATILE (type)) { if (did_print_modifier || need_pre_space) fprintf_filtered (stream, " "); fprintf_filtered (stream, "volatile"); did_print_modifier = 1; } if (TYPE_RESTRICT (type)) { if (did_print_modifier || need_pre_space) fprintf_filtered (stream, " "); fprintf_filtered (stream, "restrict"); did_print_modifier = 1; } address_space_id = address_space_int_to_name (get_type_arch (type), TYPE_INSTANCE_FLAGS (type)); if (address_space_id) { if (did_print_modifier || need_pre_space) fprintf_filtered (stream, " "); fprintf_filtered (stream, "@%s", address_space_id); did_print_modifier = 1; } if (did_print_modifier && need_post_space) fprintf_filtered (stream, " "); } /* Print out the arguments of TYPE, which should have TYPE_CODE_METHOD or TYPE_CODE_FUNC, to STREAM. Artificial arguments, such as "this" in non-static methods, are displayed if LINKAGE_NAME is zero. If LINKAGE_NAME is non-zero and LANGUAGE is language_cplus the topmost parameter types get removed their possible const and volatile qualifiers to match demangled linkage name parameters part of such function type. LANGUAGE is the language in which TYPE was defined. This is a necessary evil since this code is used by the C, C++, and Java backends. */ void c_type_print_args (struct type *type, struct ui_file *stream, int linkage_name, enum language language, const struct type_print_options *flags) { int i; int printed_any = 0; fprintf_filtered (stream, "("); for (i = 0; i < TYPE_NFIELDS (type); i++) { struct type *param_type; if (TYPE_FIELD_ARTIFICIAL (type, i) && linkage_name) continue; if (printed_any) { fprintf_filtered (stream, ", "); wrap_here (" "); } param_type = TYPE_FIELD_TYPE (type, i); if (language == language_cplus && linkage_name) { /* C++ standard, 13.1 Overloadable declarations, point 3, item: - Parameter declarations that differ only in the presence or absence of const and/or volatile are equivalent. And the const/volatile qualifiers are not present in the mangled names as produced by GCC. */ param_type = make_cv_type (0, 0, param_type, NULL); } if (language == language_java) java_print_type (param_type, "", stream, -1, 0, flags); else c_print_type (param_type, "", stream, -1, 0, flags); printed_any = 1; } if (printed_any && TYPE_VARARGS (type)) { /* Print out a trailing ellipsis for varargs functions. Ignore TYPE_VARARGS if the function has no named arguments; that represents unprototyped (K&R style) C functions. */ if (printed_any && TYPE_VARARGS (type)) { fprintf_filtered (stream, ", "); wrap_here (" "); fprintf_filtered (stream, "..."); } } else if (!printed_any && ((TYPE_PROTOTYPED (type) && language != language_java) || language == language_cplus)) fprintf_filtered (stream, "void"); fprintf_filtered (stream, ")"); } /* Return true iff the j'th overloading of the i'th method of TYPE is a type conversion operator, like `operator int () { ... }'. When listing a class's methods, we don't print the return type of such operators. */ static int is_type_conversion_operator (struct type *type, int i, int j) { /* I think the whole idea of recognizing type conversion operators by their name is pretty terrible. But I don't think our present data structure gives us any other way to tell. If you know of some other way, feel free to rewrite this function. */ const char *name = TYPE_FN_FIELDLIST_NAME (type, i); if (strncmp (name, "operator", 8) != 0) return 0; name += 8; if (! strchr (" \t\f\n\r", *name)) return 0; while (strchr (" \t\f\n\r", *name)) name++; if (!('a' <= *name && *name <= 'z') && !('A' <= *name && *name <= 'Z') && *name != '_') /* If this doesn't look like the start of an identifier, then it isn't a type conversion operator. */ return 0; else if (strncmp (name, "new", 3) == 0) name += 3; else if (strncmp (name, "delete", 6) == 0) name += 6; else /* If it doesn't look like new or delete, it's a type conversion operator. */ return 1; /* Is that really the end of the name? */ if (('a' <= *name && *name <= 'z') || ('A' <= *name && *name <= 'Z') || ('0' <= *name && *name <= '9') || *name == '_') /* No, so the identifier following "operator" must be a type name, and this is a type conversion operator. */ return 1; /* That was indeed the end of the name, so it was `operator new' or `operator delete', neither of which are type conversion operators. */ return 0; } /* Given a C++ qualified identifier QID, strip off the qualifiers, yielding the unqualified name. The return value is a pointer into the original string. It's a pity we don't have this information in some more structured form. Even the author of this function feels that writing little parsers like this everywhere is stupid. */ static char * remove_qualifiers (char *qid) { int quoted = 0; /* Zero if we're not in quotes; '"' if we're in a double-quoted string; '\'' if we're in a single-quoted string. */ int depth = 0; /* Number of unclosed parens we've seen. */ char *parenstack = (char *) alloca (strlen (qid)); char *scan; char *last = 0; /* The character after the rightmost `::' token we've seen so far. */ for (scan = qid; *scan; scan++) { if (quoted) { if (*scan == quoted) quoted = 0; else if (*scan == '\\' && *(scan + 1)) scan++; } else if (scan[0] == ':' && scan[1] == ':') { /* If we're inside parenthesis (i.e., an argument list) or angle brackets (i.e., a list of template arguments), then we don't record the position of this :: token, since it's not relevant to the top-level structure we're trying to operate on. */ if (depth == 0) { last = scan + 2; scan++; } } else if (*scan == '"' || *scan == '\'') quoted = *scan; else if (*scan == '(') parenstack[depth++] = ')'; else if (*scan == '[') parenstack[depth++] = ']'; /* We're going to treat <> as a pair of matching characters, since we're more likely to see those in template id's than real less-than characters. What a crock. */ else if (*scan == '<') parenstack[depth++] = '>'; else if (*scan == ')' || *scan == ']' || *scan == '>') { if (depth > 0 && parenstack[depth - 1] == *scan) depth--; else { /* We're going to do a little error recovery here. If we don't find a match for *scan on the paren stack, but there is something lower on the stack that does match, we pop the stack to that point. */ int i; for (i = depth - 1; i >= 0; i--) if (parenstack[i] == *scan) { depth = i; break; } } } } if (last) return last; else /* We didn't find any :: tokens at the top level, so declare the whole thing an unqualified identifier. */ return qid; } /* Print any array sizes, function arguments or close parentheses needed after the variable name (to describe its type). Args work like c_type_print_varspec_prefix. */ void c_type_print_varspec_suffix (struct type *type, struct ui_file *stream, int show, int passed_a_ptr, int demangled_args, const struct type_print_options *flags) { if (type == 0) return; if (TYPE_NAME (type) && show <= 0) return; QUIT; switch (TYPE_CODE (type)) { case TYPE_CODE_ARRAY: { LONGEST low_bound, high_bound; int is_vector = TYPE_VECTOR (type); if (passed_a_ptr) fprintf_filtered (stream, ")"); fprintf_filtered (stream, (is_vector ? " __attribute__ ((vector_size(" : "[")); /* Bounds are not yet resolved, print a bounds placeholder instead. */ if (TYPE_HIGH_BOUND_KIND (TYPE_INDEX_TYPE (type)) == PROP_LOCEXPR || TYPE_HIGH_BOUND_KIND (TYPE_INDEX_TYPE (type)) == PROP_LOCLIST) fprintf_filtered (stream, "variable length"); else if (get_array_bounds (type, &low_bound, &high_bound)) fprintf_filtered (stream, "%s", plongest (high_bound - low_bound + 1)); fprintf_filtered (stream, (is_vector ? ")))" : "]")); c_type_print_varspec_suffix (TYPE_TARGET_TYPE (type), stream, show, 0, 0, flags); } break; case TYPE_CODE_MEMBERPTR: c_type_print_varspec_suffix (TYPE_TARGET_TYPE (type), stream, show, 0, 0, flags); break; case TYPE_CODE_METHODPTR: fprintf_filtered (stream, ")"); c_type_print_varspec_suffix (TYPE_TARGET_TYPE (type), stream, show, 0, 0, flags); break; case TYPE_CODE_PTR: case TYPE_CODE_REF: c_type_print_varspec_suffix (TYPE_TARGET_TYPE (type), stream, show, 1, 0, flags); break; case TYPE_CODE_METHOD: case TYPE_CODE_FUNC: if (passed_a_ptr) fprintf_filtered (stream, ")"); if (!demangled_args) c_type_print_args (type, stream, 0, current_language->la_language, flags); c_type_print_varspec_suffix (TYPE_TARGET_TYPE (type), stream, show, passed_a_ptr, 0, flags); break; case TYPE_CODE_TYPEDEF: c_type_print_varspec_suffix (TYPE_TARGET_TYPE (type), stream, show, passed_a_ptr, 0, flags); break; case TYPE_CODE_UNDEF: case TYPE_CODE_STRUCT: case TYPE_CODE_UNION: case TYPE_CODE_ENUM: case TYPE_CODE_INT: case TYPE_CODE_FLT: case TYPE_CODE_VOID: case TYPE_CODE_ERROR: case TYPE_CODE_CHAR: case TYPE_CODE_BOOL: case TYPE_CODE_SET: case TYPE_CODE_RANGE: case TYPE_CODE_STRING: case TYPE_CODE_COMPLEX: case TYPE_CODE_NAMESPACE: case TYPE_CODE_DECFLOAT: /* These types do not need a suffix. They are listed so that gcc -Wall will report types that may not have been considered. */ break; default: error (_("type not handled in c_type_print_varspec_suffix()")); break; } } /* A helper for c_type_print_base that displays template parameters and their bindings, if needed. TABLE is the local bindings table to use. If NULL, no printing is done. Note that, at this point, TABLE won't have any useful information in it -- but it is also used as a flag to print_name_maybe_canonical to activate searching the global typedef table. TYPE is the type whose template arguments are being displayed. STREAM is the stream on which to print. */ static void c_type_print_template_args (const struct type_print_options *flags, struct type *type, struct ui_file *stream) { int first = 1, i; if (flags->raw) return; for (i = 0; i < TYPE_N_TEMPLATE_ARGUMENTS (type); ++i) { struct symbol *sym = TYPE_TEMPLATE_ARGUMENT (type, i); if (SYMBOL_CLASS (sym) != LOC_TYPEDEF) continue; if (first) { wrap_here (" "); fprintf_filtered (stream, _("[with %s = "), SYMBOL_LINKAGE_NAME (sym)); first = 0; } else { fputs_filtered (", ", stream); wrap_here (" "); fprintf_filtered (stream, "%s = ", SYMBOL_LINKAGE_NAME (sym)); } c_print_type (SYMBOL_TYPE (sym), "", stream, -1, 0, flags); } if (!first) fputs_filtered (_("] "), stream); } /* Print the name of the type (or the ultimate pointer target, function value or array element), or the description of a structure or union. SHOW positive means print details about the type (e.g. enum values), and print structure elements passing SHOW - 1 for show. SHOW negative means just print the type name or struct tag if there is one. If there is no name, print something sensible but concise like "struct {...}". SHOW zero means just print the type name or struct tag if there is one. If there is no name, print something sensible but not as concise like "struct {int x; int y;}". LEVEL is the number of spaces to indent by. We increase it for some recursive calls. */ void c_type_print_base (struct type *type, struct ui_file *stream, int show, int level, const struct type_print_options *flags) { int i; int len, real_len; enum { s_none, s_public, s_private, s_protected } section_type; int need_access_label = 0; int j, len2; QUIT; if (type == NULL) { fputs_filtered (_(""), stream); return; } /* When SHOW is zero or less, and there is a valid type name, then always just print the type name directly from the type. */ /* If we have "typedef struct foo {. . .} bar;" do we want to print it as "struct foo" or as "bar"? Pick the latter, because C++ folk tend to expect things like "class5 *foo" rather than "struct class5 *foo". */ if (show <= 0 && TYPE_NAME (type) != NULL) { c_type_print_modifier (type, stream, 0, 1); print_name_maybe_canonical (TYPE_NAME (type), flags, stream); return; } CHECK_TYPEDEF (type); switch (TYPE_CODE (type)) { case TYPE_CODE_TYPEDEF: /* If we get here, the typedef doesn't have a name, and we couldn't resolve TYPE_TARGET_TYPE. Not much we can do. */ gdb_assert (TYPE_NAME (type) == NULL); gdb_assert (TYPE_TARGET_TYPE (type) == NULL); fprintf_filtered (stream, _("")); break; case TYPE_CODE_ARRAY: case TYPE_CODE_PTR: case TYPE_CODE_MEMBERPTR: case TYPE_CODE_REF: case TYPE_CODE_FUNC: case TYPE_CODE_METHOD: case TYPE_CODE_METHODPTR: c_type_print_base (TYPE_TARGET_TYPE (type), stream, show, level, flags); break; case TYPE_CODE_STRUCT: case TYPE_CODE_UNION: { struct type_print_options local_flags = *flags; struct type_print_options semi_local_flags = *flags; struct cleanup *local_cleanups = make_cleanup (null_cleanup, NULL); local_flags.local_typedefs = NULL; semi_local_flags.local_typedefs = NULL; if (!flags->raw) { if (flags->local_typedefs) local_flags.local_typedefs = copy_typedef_hash (flags->local_typedefs); else local_flags.local_typedefs = create_typedef_hash (); make_cleanup_free_typedef_hash (local_flags.local_typedefs); } c_type_print_modifier (type, stream, 0, 1); if (TYPE_CODE (type) == TYPE_CODE_UNION) fprintf_filtered (stream, "union "); else if (TYPE_DECLARED_CLASS (type)) fprintf_filtered (stream, "class "); else fprintf_filtered (stream, "struct "); /* Print the tag if it exists. The HP aCC compiler emits a spurious "{unnamed struct}"/"{unnamed union}"/"{unnamed enum}" tag for unnamed struct/union/enum's, which we don't want to print. */ if (TYPE_TAG_NAME (type) != NULL && strncmp (TYPE_TAG_NAME (type), "{unnamed", 8)) { /* When printing the tag name, we are still effectively printing in the outer context, hence the use of FLAGS here. */ print_name_maybe_canonical (TYPE_TAG_NAME (type), flags, stream); if (show > 0) fputs_filtered (" ", stream); } if (show < 0) { /* If we just printed a tag name, no need to print anything else. */ if (TYPE_TAG_NAME (type) == NULL) fprintf_filtered (stream, "{...}"); } else if (show > 0 || TYPE_TAG_NAME (type) == NULL) { struct type *basetype; int vptr_fieldno; c_type_print_template_args (&local_flags, type, stream); /* Add in template parameters when printing derivation info. */ add_template_parameters (local_flags.local_typedefs, type); cp_type_print_derivation_info (stream, type, &local_flags); /* This holds just the global typedefs and the template parameters. */ semi_local_flags.local_typedefs = copy_typedef_hash (local_flags.local_typedefs); if (semi_local_flags.local_typedefs) make_cleanup_free_typedef_hash (semi_local_flags.local_typedefs); /* Now add in the local typedefs. */ recursively_update_typedef_hash (local_flags.local_typedefs, type); fprintf_filtered (stream, "{\n"); if (TYPE_NFIELDS (type) == 0 && TYPE_NFN_FIELDS (type) == 0 && TYPE_TYPEDEF_FIELD_COUNT (type) == 0) { if (TYPE_STUB (type)) fprintfi_filtered (level + 4, stream, _("\n")); else fprintfi_filtered (level + 4, stream, _("\n")); } /* Start off with no specific section type, so we can print one for the first field we find, and use that section type thereafter until we find another type. */ section_type = s_none; /* For a class, if all members are private, there's no need for a "private:" label; similarly, for a struct or union masquerading as a class, if all members are public, there's no need for a "public:" label. */ if (TYPE_DECLARED_CLASS (type)) { QUIT; len = TYPE_NFIELDS (type); for (i = TYPE_N_BASECLASSES (type); i < len; i++) if (!TYPE_FIELD_PRIVATE (type, i)) { need_access_label = 1; break; } QUIT; if (!need_access_label) { len2 = TYPE_NFN_FIELDS (type); for (j = 0; j < len2; j++) { len = TYPE_FN_FIELDLIST_LENGTH (type, j); for (i = 0; i < len; i++) if (!TYPE_FN_FIELD_PRIVATE (TYPE_FN_FIELDLIST1 (type, j), i)) { need_access_label = 1; break; } if (need_access_label) break; } } } else { QUIT; len = TYPE_NFIELDS (type); for (i = TYPE_N_BASECLASSES (type); i < len; i++) if (TYPE_FIELD_PRIVATE (type, i) || TYPE_FIELD_PROTECTED (type, i)) { need_access_label = 1; break; } QUIT; if (!need_access_label) { len2 = TYPE_NFN_FIELDS (type); for (j = 0; j < len2; j++) { QUIT; len = TYPE_FN_FIELDLIST_LENGTH (type, j); for (i = 0; i < len; i++) if (TYPE_FN_FIELD_PROTECTED (TYPE_FN_FIELDLIST1 (type, j), i) || TYPE_FN_FIELD_PRIVATE (TYPE_FN_FIELDLIST1 (type, j), i)) { need_access_label = 1; break; } if (need_access_label) break; } } } /* If there is a base class for this type, do not print the field that it occupies. */ len = TYPE_NFIELDS (type); vptr_fieldno = get_vptr_fieldno (type, &basetype); for (i = TYPE_N_BASECLASSES (type); i < len; i++) { QUIT; /* If we have a virtual table pointer, omit it. Even if virtual table pointers are not specifically marked in the debug info, they should be artificial. */ if ((i == vptr_fieldno && type == basetype) || TYPE_FIELD_ARTIFICIAL (type, i)) continue; if (need_access_label) { if (TYPE_FIELD_PROTECTED (type, i)) { if (section_type != s_protected) { section_type = s_protected; fprintfi_filtered (level + 2, stream, "protected:\n"); } } else if (TYPE_FIELD_PRIVATE (type, i)) { if (section_type != s_private) { section_type = s_private; fprintfi_filtered (level + 2, stream, "private:\n"); } } else { if (section_type != s_public) { section_type = s_public; fprintfi_filtered (level + 2, stream, "public:\n"); } } } print_spaces_filtered (level + 4, stream); if (field_is_static (&TYPE_FIELD (type, i))) fprintf_filtered (stream, "static "); c_print_type (TYPE_FIELD_TYPE (type, i), TYPE_FIELD_NAME (type, i), stream, show - 1, level + 4, &local_flags); if (!field_is_static (&TYPE_FIELD (type, i)) && TYPE_FIELD_PACKED (type, i)) { /* It is a bitfield. This code does not attempt to look at the bitpos and reconstruct filler, unnamed fields. This would lead to misleading results if the compiler does not put out fields for such things (I don't know what it does). */ fprintf_filtered (stream, " : %d", TYPE_FIELD_BITSIZE (type, i)); } fprintf_filtered (stream, ";\n"); } /* If there are both fields and methods, put a blank line between them. Make sure to count only method that we will display; artificial methods will be hidden. */ len = TYPE_NFN_FIELDS (type); if (!flags->print_methods) len = 0; real_len = 0; for (i = 0; i < len; i++) { struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i); int len2 = TYPE_FN_FIELDLIST_LENGTH (type, i); int j; for (j = 0; j < len2; j++) if (!TYPE_FN_FIELD_ARTIFICIAL (f, j)) real_len++; } if (real_len > 0 && section_type != s_none) fprintf_filtered (stream, "\n"); /* C++: print out the methods. */ for (i = 0; i < len; i++) { struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i); int j, len2 = TYPE_FN_FIELDLIST_LENGTH (type, i); const char *method_name = TYPE_FN_FIELDLIST_NAME (type, i); const char *name = type_name_no_tag (type); int is_constructor = name && strcmp (method_name, name) == 0; for (j = 0; j < len2; j++) { const char *mangled_name; char *demangled_name; struct cleanup *inner_cleanup; const char *physname = TYPE_FN_FIELD_PHYSNAME (f, j); int is_full_physname_constructor = TYPE_FN_FIELD_CONSTRUCTOR (f, j) || is_constructor_name (physname) || is_destructor_name (physname) || method_name[0] == '~'; /* Do not print out artificial methods. */ if (TYPE_FN_FIELD_ARTIFICIAL (f, j)) continue; inner_cleanup = make_cleanup (null_cleanup, NULL); QUIT; if (TYPE_FN_FIELD_PROTECTED (f, j)) { if (section_type != s_protected) { section_type = s_protected; fprintfi_filtered (level + 2, stream, "protected:\n"); } } else if (TYPE_FN_FIELD_PRIVATE (f, j)) { if (section_type != s_private) { section_type = s_private; fprintfi_filtered (level + 2, stream, "private:\n"); } } else { if (section_type != s_public) { section_type = s_public; fprintfi_filtered (level + 2, stream, "public:\n"); } } print_spaces_filtered (level + 4, stream); if (TYPE_FN_FIELD_VIRTUAL_P (f, j)) fprintf_filtered (stream, "virtual "); else if (TYPE_FN_FIELD_STATIC_P (f, j)) fprintf_filtered (stream, "static "); if (TYPE_TARGET_TYPE (TYPE_FN_FIELD_TYPE (f, j)) == 0) { /* Keep GDB from crashing here. */ fprintf_filtered (stream, _(" %s;\n"), TYPE_FN_FIELD_PHYSNAME (f, j)); break; } else if (!is_constructor /* Constructors don't have declared types. */ && !is_full_physname_constructor /* " " */ && !is_type_conversion_operator (type, i, j)) { c_print_type (TYPE_TARGET_TYPE (TYPE_FN_FIELD_TYPE (f, j)), "", stream, -1, 0, &local_flags); fputs_filtered (" ", stream); } if (TYPE_FN_FIELD_STUB (f, j)) { char *tem; /* Build something we can demangle. */ tem = gdb_mangle_name (type, i, j); make_cleanup (xfree, tem); mangled_name = tem; } else mangled_name = TYPE_FN_FIELD_PHYSNAME (f, j); demangled_name = gdb_demangle (mangled_name, DMGL_ANSI | DMGL_PARAMS); if (demangled_name == NULL) { /* In some cases (for instance with the HP demangling), if a function has more than 10 arguments, the demangling will fail. Let's try to reconstruct the function signature from the symbol information. */ if (!TYPE_FN_FIELD_STUB (f, j)) { int staticp = TYPE_FN_FIELD_STATIC_P (f, j); struct type *mtype = TYPE_FN_FIELD_TYPE (f, j); cp_type_print_method_args (mtype, "", method_name, staticp, stream, &local_flags); } else fprintf_filtered (stream, _(""), mangled_name); } else { char *p; char *demangled_no_class = remove_qualifiers (demangled_name); /* Get rid of the `static' appended by the demangler. */ p = strstr (demangled_no_class, " static"); if (p != NULL) { int length = p - demangled_no_class; char *demangled_no_static; demangled_no_static = (char *) xmalloc (length + 1); strncpy (demangled_no_static, demangled_no_class, length); *(demangled_no_static + length) = '\0'; fputs_filtered (demangled_no_static, stream); xfree (demangled_no_static); } else fputs_filtered (demangled_no_class, stream); xfree (demangled_name); } do_cleanups (inner_cleanup); fprintf_filtered (stream, ";\n"); } } /* Print typedefs defined in this class. */ if (TYPE_TYPEDEF_FIELD_COUNT (type) != 0 && flags->print_typedefs) { if (TYPE_NFIELDS (type) != 0 || TYPE_NFN_FIELDS (type) != 0) fprintf_filtered (stream, "\n"); for (i = 0; i < TYPE_TYPEDEF_FIELD_COUNT (type); i++) { struct type *target = TYPE_TYPEDEF_FIELD_TYPE (type, i); /* Dereference the typedef declaration itself. */ gdb_assert (TYPE_CODE (target) == TYPE_CODE_TYPEDEF); target = TYPE_TARGET_TYPE (target); print_spaces_filtered (level + 4, stream); fprintf_filtered (stream, "typedef "); /* We want to print typedefs with substitutions from the template parameters or globally-known typedefs but not local typedefs. */ c_print_type (target, TYPE_TYPEDEF_FIELD_NAME (type, i), stream, show - 1, level + 4, &semi_local_flags); fprintf_filtered (stream, ";\n"); } } fprintfi_filtered (level, stream, "}"); } do_cleanups (local_cleanups); } break; case TYPE_CODE_ENUM: c_type_print_modifier (type, stream, 0, 1); fprintf_filtered (stream, "enum "); if (TYPE_DECLARED_CLASS (type)) fprintf_filtered (stream, "class "); /* Print the tag name if it exists. The aCC compiler emits a spurious "{unnamed struct}"/"{unnamed union}"/"{unnamed enum}" tag for unnamed struct/union/enum's, which we don't want to print. */ if (TYPE_TAG_NAME (type) != NULL && strncmp (TYPE_TAG_NAME (type), "{unnamed", 8)) { print_name_maybe_canonical (TYPE_TAG_NAME (type), flags, stream); if (show > 0) fputs_filtered (" ", stream); } wrap_here (" "); if (show < 0) { /* If we just printed a tag name, no need to print anything else. */ if (TYPE_TAG_NAME (type) == NULL) fprintf_filtered (stream, "{...}"); } else if (show > 0 || TYPE_TAG_NAME (type) == NULL) { LONGEST lastval = 0; /* We can't handle this case perfectly, as DWARF does not tell us whether or not the underlying type was specified in the source (and other debug formats don't provide this at all). We choose to print the underlying type, if it has a name, when in C++ on the theory that it's better to print too much than too little; but conversely not to print something egregiously outside the current language's syntax. */ if (current_language->la_language == language_cplus && TYPE_TARGET_TYPE (type) != NULL) { struct type *underlying = check_typedef (TYPE_TARGET_TYPE (type)); if (TYPE_NAME (underlying) != NULL) fprintf_filtered (stream, ": %s ", TYPE_NAME (underlying)); } fprintf_filtered (stream, "{"); len = TYPE_NFIELDS (type); for (i = 0; i < len; i++) { QUIT; if (i) fprintf_filtered (stream, ", "); wrap_here (" "); fputs_filtered (TYPE_FIELD_NAME (type, i), stream); if (lastval != TYPE_FIELD_ENUMVAL (type, i)) { fprintf_filtered (stream, " = %s", plongest (TYPE_FIELD_ENUMVAL (type, i))); lastval = TYPE_FIELD_ENUMVAL (type, i); } lastval++; } fprintf_filtered (stream, "}"); } break; case TYPE_CODE_VOID: fprintf_filtered (stream, "void"); break; case TYPE_CODE_UNDEF: fprintf_filtered (stream, _("struct ")); break; case TYPE_CODE_ERROR: fprintf_filtered (stream, "%s", TYPE_ERROR_NAME (type)); break; case TYPE_CODE_RANGE: /* This should not occur. */ fprintf_filtered (stream, _("")); break; case TYPE_CODE_NAMESPACE: fputs_filtered ("namespace ", stream); fputs_filtered (TYPE_TAG_NAME (type), stream); break; default: /* Handle types not explicitly handled by the other cases, such as fundamental types. For these, just print whatever the type name is, as recorded in the type itself. If there is no type name, then complain. */ if (TYPE_NAME (type) != NULL) { c_type_print_modifier (type, stream, 0, 1); print_name_maybe_canonical (TYPE_NAME (type), flags, stream); } else { /* At least for dump_symtab, it is important that this not be an error (). */ fprintf_filtered (stream, _(""), TYPE_CODE (type)); } break; } }