/* Target-dependent code for Renesas M32R, for GDB. Copyright (C) 1996-2013 Free Software Foundation, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ #include "defs.h" #include "frame.h" #include "frame-unwind.h" #include "frame-base.h" #include "symtab.h" #include "gdbtypes.h" #include "gdbcmd.h" #include "gdbcore.h" #include "gdb_string.h" #include "value.h" #include "inferior.h" #include "symfile.h" #include "objfiles.h" #include "osabi.h" #include "language.h" #include "arch-utils.h" #include "regcache.h" #include "trad-frame.h" #include "dis-asm.h" #include "gdb_assert.h" #include "m32r-tdep.h" /* Local functions */ extern void _initialize_m32r_tdep (void); static CORE_ADDR m32r_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp) { /* Align to the size of an instruction (so that they can safely be pushed onto the stack. */ return sp & ~3; } /* Breakpoints The little endian mode of M32R is unique. In most of architectures, two 16-bit instructions, A and B, are placed as the following: Big endian: A0 A1 B0 B1 Little endian: A1 A0 B1 B0 In M32R, they are placed like this: Big endian: A0 A1 B0 B1 Little endian: B1 B0 A1 A0 This is because M32R always fetches instructions in 32-bit. The following functions take care of this behavior. */ static int m32r_memory_insert_breakpoint (struct gdbarch *gdbarch, struct bp_target_info *bp_tgt) { CORE_ADDR addr = bp_tgt->placed_address; int val; gdb_byte buf[4]; gdb_byte contents_cache[4]; gdb_byte bp_entry[] = { 0x10, 0xf1 }; /* dpt */ /* Save the memory contents. */ val = target_read_memory (addr & 0xfffffffc, contents_cache, 4); if (val != 0) return val; /* return error */ memcpy (bp_tgt->shadow_contents, contents_cache, 4); bp_tgt->placed_size = bp_tgt->shadow_len = 4; /* Determine appropriate breakpoint contents and size for this address. */ if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) { if ((addr & 3) == 0) { buf[0] = bp_entry[0]; buf[1] = bp_entry[1]; buf[2] = contents_cache[2] & 0x7f; buf[3] = contents_cache[3]; } else { buf[0] = contents_cache[0]; buf[1] = contents_cache[1]; buf[2] = bp_entry[0]; buf[3] = bp_entry[1]; } } else /* little-endian */ { if ((addr & 3) == 0) { buf[0] = contents_cache[0]; buf[1] = contents_cache[1] & 0x7f; buf[2] = bp_entry[1]; buf[3] = bp_entry[0]; } else { buf[0] = bp_entry[1]; buf[1] = bp_entry[0]; buf[2] = contents_cache[2]; buf[3] = contents_cache[3]; } } /* Write the breakpoint. */ val = target_write_memory (addr & 0xfffffffc, buf, 4); return val; } static int m32r_memory_remove_breakpoint (struct gdbarch *gdbarch, struct bp_target_info *bp_tgt) { CORE_ADDR addr = bp_tgt->placed_address; int val; gdb_byte buf[4]; gdb_byte *contents_cache = bp_tgt->shadow_contents; buf[0] = contents_cache[0]; buf[1] = contents_cache[1]; buf[2] = contents_cache[2]; buf[3] = contents_cache[3]; /* Remove parallel bit. */ if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) { if ((buf[0] & 0x80) == 0 && (buf[2] & 0x80) != 0) buf[2] &= 0x7f; } else /* little-endian */ { if ((buf[3] & 0x80) == 0 && (buf[1] & 0x80) != 0) buf[1] &= 0x7f; } /* Write contents. */ val = target_write_raw_memory (addr & 0xfffffffc, buf, 4); return val; } static const gdb_byte * m32r_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr) { static gdb_byte be_bp_entry[] = { 0x10, 0xf1, 0x70, 0x00 }; /* dpt -> nop */ static gdb_byte le_bp_entry[] = { 0x00, 0x70, 0xf1, 0x10 }; /* dpt -> nop */ gdb_byte *bp; /* Determine appropriate breakpoint. */ if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) { if ((*pcptr & 3) == 0) { bp = be_bp_entry; *lenptr = 4; } else { bp = be_bp_entry; *lenptr = 2; } } else { if ((*pcptr & 3) == 0) { bp = le_bp_entry; *lenptr = 4; } else { bp = le_bp_entry + 2; *lenptr = 2; } } return bp; } char *m32r_register_names[] = { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "r12", "fp", "lr", "sp", "psw", "cbr", "spi", "spu", "bpc", "pc", "accl", "acch", "evb" }; static const char * m32r_register_name (struct gdbarch *gdbarch, int reg_nr) { if (reg_nr < 0) return NULL; if (reg_nr >= M32R_NUM_REGS) return NULL; return m32r_register_names[reg_nr]; } /* Return the GDB type object for the "standard" data type of data in register N. */ static struct type * m32r_register_type (struct gdbarch *gdbarch, int reg_nr) { if (reg_nr == M32R_PC_REGNUM) return builtin_type (gdbarch)->builtin_func_ptr; else if (reg_nr == M32R_SP_REGNUM || reg_nr == M32R_FP_REGNUM) return builtin_type (gdbarch)->builtin_data_ptr; else return builtin_type (gdbarch)->builtin_int32; } /* Write into appropriate registers a function return value of type TYPE, given in virtual format. Things always get returned in RET1_REGNUM, RET2_REGNUM. */ static void m32r_store_return_value (struct type *type, struct regcache *regcache, const void *valbuf) { struct gdbarch *gdbarch = get_regcache_arch (regcache); enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); CORE_ADDR regval; int len = TYPE_LENGTH (type); regval = extract_unsigned_integer (valbuf, len > 4 ? 4 : len, byte_order); regcache_cooked_write_unsigned (regcache, RET1_REGNUM, regval); if (len > 4) { regval = extract_unsigned_integer ((gdb_byte *) valbuf + 4, len - 4, byte_order); regcache_cooked_write_unsigned (regcache, RET1_REGNUM + 1, regval); } } /* This is required by skip_prologue. The results of decoding a prologue should be cached because this thrashing is getting nuts. */ static int decode_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc, CORE_ADDR scan_limit, CORE_ADDR *pl_endptr, unsigned long *framelength) { enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); unsigned long framesize; int insn; int op1; CORE_ADDR after_prologue = 0; CORE_ADDR after_push = 0; CORE_ADDR after_stack_adjust = 0; CORE_ADDR current_pc; LONGEST return_value; framesize = 0; after_prologue = 0; for (current_pc = start_pc; current_pc < scan_limit; current_pc += 2) { /* Check if current pc's location is readable. */ if (!safe_read_memory_integer (current_pc, 2, byte_order, &return_value)) return -1; insn = read_memory_unsigned_integer (current_pc, 2, byte_order); if (insn == 0x0000) break; /* If this is a 32 bit instruction, we dont want to examine its immediate data as though it were an instruction. */ if (current_pc & 0x02) { /* Decode this instruction further. */ insn &= 0x7fff; } else { if (insn & 0x8000) { if (current_pc == scan_limit) scan_limit += 2; /* extend the search */ current_pc += 2; /* skip the immediate data */ /* Check if current pc's location is readable. */ if (!safe_read_memory_integer (current_pc, 2, byte_order, &return_value)) return -1; if (insn == 0x8faf) /* add3 sp, sp, xxxx */ /* add 16 bit sign-extended offset */ { framesize += -((short) read_memory_unsigned_integer (current_pc, 2, byte_order)); } else { if (((insn >> 8) == 0xe4) /* ld24 r4, xxxxxx; sub sp, r4 */ && safe_read_memory_integer (current_pc + 2, 2, byte_order, &return_value) && read_memory_unsigned_integer (current_pc + 2, 2, byte_order) == 0x0f24) { /* Subtract 24 bit sign-extended negative-offset. */ insn = read_memory_unsigned_integer (current_pc - 2, 4, byte_order); if (insn & 0x00800000) /* sign extend */ insn |= 0xff000000; /* negative */ else insn &= 0x00ffffff; /* positive */ framesize += insn; } } after_push = current_pc + 2; continue; } } op1 = insn & 0xf000; /* Isolate just the first nibble. */ if ((insn & 0xf0ff) == 0x207f) { /* st reg, @-sp */ int regno; framesize += 4; regno = ((insn >> 8) & 0xf); after_prologue = 0; continue; } if ((insn >> 8) == 0x4f) /* addi sp, xx */ /* Add 8 bit sign-extended offset. */ { int stack_adjust = (signed char) (insn & 0xff); /* there are probably two of these stack adjustments: 1) A negative one in the prologue, and 2) A positive one in the epilogue. We are only interested in the first one. */ if (stack_adjust < 0) { framesize -= stack_adjust; after_prologue = 0; /* A frameless function may have no "mv fp, sp". In that case, this is the end of the prologue. */ after_stack_adjust = current_pc + 2; } continue; } if (insn == 0x1d8f) { /* mv fp, sp */ after_prologue = current_pc + 2; break; /* end of stack adjustments */ } /* Nop looks like a branch, continue explicitly. */ if (insn == 0x7000) { after_prologue = current_pc + 2; continue; /* nop occurs between pushes. */ } /* End of prolog if any of these are trap instructions. */ if ((insn & 0xfff0) == 0x10f0) { after_prologue = current_pc; break; } /* End of prolog if any of these are branch instructions. */ if ((op1 == 0x7000) || (op1 == 0xb000) || (op1 == 0xf000)) { after_prologue = current_pc; continue; } /* Some of the branch instructions are mixed with other types. */ if (op1 == 0x1000) { int subop = insn & 0x0ff0; if ((subop == 0x0ec0) || (subop == 0x0fc0)) { after_prologue = current_pc; continue; /* jmp , jl */ } } } if (framelength) *framelength = framesize; if (current_pc >= scan_limit) { if (pl_endptr) { if (after_stack_adjust != 0) /* We did not find a "mv fp,sp", but we DID find a stack_adjust. Is it safe to use that as the end of the prologue? I just don't know. */ { *pl_endptr = after_stack_adjust; } else if (after_push != 0) /* We did not find a "mv fp,sp", but we DID find a push. Is it safe to use that as the end of the prologue? I just don't know. */ { *pl_endptr = after_push; } else /* We reached the end of the loop without finding the end of the prologue. No way to win -- we should report failure. The way we do that is to return the original start_pc. GDB will set a breakpoint at the start of the function (etc.) */ *pl_endptr = start_pc; } return 0; } if (after_prologue == 0) after_prologue = current_pc; if (pl_endptr) *pl_endptr = after_prologue; return 0; } /* decode_prologue */ /* Function: skip_prologue Find end of function prologue. */ #define DEFAULT_SEARCH_LIMIT 128 static CORE_ADDR m32r_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) { enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); CORE_ADDR func_addr, func_end; struct symtab_and_line sal; LONGEST return_value; /* See what the symbol table says. */ if (find_pc_partial_function (pc, NULL, &func_addr, &func_end)) { sal = find_pc_line (func_addr, 0); if (sal.line != 0 && sal.end <= func_end) { func_end = sal.end; } else /* Either there's no line info, or the line after the prologue is after the end of the function. In this case, there probably isn't a prologue. */ { func_end = min (func_end, func_addr + DEFAULT_SEARCH_LIMIT); } } else func_end = pc + DEFAULT_SEARCH_LIMIT; /* If pc's location is not readable, just quit. */ if (!safe_read_memory_integer (pc, 4, byte_order, &return_value)) return pc; /* Find the end of prologue. */ if (decode_prologue (gdbarch, pc, func_end, &sal.end, NULL) < 0) return pc; return sal.end; } struct m32r_unwind_cache { /* The previous frame's inner most stack address. Used as this frame ID's stack_addr. */ CORE_ADDR prev_sp; /* The frame's base, optionally used by the high-level debug info. */ CORE_ADDR base; int size; /* How far the SP and r13 (FP) have been offset from the start of the stack frame (as defined by the previous frame's stack pointer). */ LONGEST sp_offset; LONGEST r13_offset; int uses_frame; /* Table indicating the location of each and every register. */ struct trad_frame_saved_reg *saved_regs; }; /* Put here the code to store, into fi->saved_regs, the addresses of the saved registers of frame described by FRAME_INFO. This includes special registers such as pc and fp saved in special ways in the stack frame. sp is even more special: the address we return for it IS the sp for the next frame. */ static struct m32r_unwind_cache * m32r_frame_unwind_cache (struct frame_info *this_frame, void **this_prologue_cache) { CORE_ADDR pc, scan_limit; ULONGEST prev_sp; ULONGEST this_base; unsigned long op; int i; struct m32r_unwind_cache *info; if ((*this_prologue_cache)) return (*this_prologue_cache); info = FRAME_OBSTACK_ZALLOC (struct m32r_unwind_cache); (*this_prologue_cache) = info; info->saved_regs = trad_frame_alloc_saved_regs (this_frame); info->size = 0; info->sp_offset = 0; info->uses_frame = 0; scan_limit = get_frame_pc (this_frame); for (pc = get_frame_func (this_frame); pc > 0 && pc < scan_limit; pc += 2) { if ((pc & 2) == 0) { op = get_frame_memory_unsigned (this_frame, pc, 4); if ((op & 0x80000000) == 0x80000000) { /* 32-bit instruction */ if ((op & 0xffff0000) == 0x8faf0000) { /* add3 sp,sp,xxxx */ short n = op & 0xffff; info->sp_offset += n; } else if (((op >> 8) == 0xe4) && get_frame_memory_unsigned (this_frame, pc + 2, 2) == 0x0f24) { /* ld24 r4, xxxxxx; sub sp, r4 */ unsigned long n = op & 0xffffff; info->sp_offset += n; pc += 2; /* skip sub instruction */ } if (pc == scan_limit) scan_limit += 2; /* extend the search */ pc += 2; /* skip the immediate data */ continue; } } /* 16-bit instructions */ op = get_frame_memory_unsigned (this_frame, pc, 2) & 0x7fff; if ((op & 0xf0ff) == 0x207f) { /* st rn, @-sp */ int regno = ((op >> 8) & 0xf); info->sp_offset -= 4; info->saved_regs[regno].addr = info->sp_offset; } else if ((op & 0xff00) == 0x4f00) { /* addi sp, xx */ int n = (signed char) (op & 0xff); info->sp_offset += n; } else if (op == 0x1d8f) { /* mv fp, sp */ info->uses_frame = 1; info->r13_offset = info->sp_offset; break; /* end of stack adjustments */ } else if ((op & 0xfff0) == 0x10f0) { /* End of prologue if this is a trap instruction. */ break; /* End of stack adjustments. */ } } info->size = -info->sp_offset; /* Compute the previous frame's stack pointer (which is also the frame's ID's stack address), and this frame's base pointer. */ if (info->uses_frame) { /* The SP was moved to the FP. This indicates that a new frame was created. Get THIS frame's FP value by unwinding it from the next frame. */ this_base = get_frame_register_unsigned (this_frame, M32R_FP_REGNUM); /* The FP points at the last saved register. Adjust the FP back to before the first saved register giving the SP. */ prev_sp = this_base + info->size; } else { /* Assume that the FP is this frame's SP but with that pushed stack space added back. */ this_base = get_frame_register_unsigned (this_frame, M32R_SP_REGNUM); prev_sp = this_base + info->size; } /* Convert that SP/BASE into real addresses. */ info->prev_sp = prev_sp; info->base = this_base; /* Adjust all the saved registers so that they contain addresses and not offsets. */ for (i = 0; i < gdbarch_num_regs (get_frame_arch (this_frame)) - 1; i++) if (trad_frame_addr_p (info->saved_regs, i)) info->saved_regs[i].addr = (info->prev_sp + info->saved_regs[i].addr); /* The call instruction moves the caller's PC in the callee's LR. Since this is an unwind, do the reverse. Copy the location of LR into PC (the address / regnum) so that a request for PC will be converted into a request for the LR. */ info->saved_regs[M32R_PC_REGNUM] = info->saved_regs[LR_REGNUM]; /* The previous frame's SP needed to be computed. Save the computed value. */ trad_frame_set_value (info->saved_regs, M32R_SP_REGNUM, prev_sp); return info; } static CORE_ADDR m32r_read_pc (struct regcache *regcache) { ULONGEST pc; regcache_cooked_read_unsigned (regcache, M32R_PC_REGNUM, &pc); return pc; } static CORE_ADDR m32r_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame) { return frame_unwind_register_unsigned (next_frame, M32R_SP_REGNUM); } static CORE_ADDR m32r_push_dummy_call (struct gdbarch *gdbarch, struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr) { enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); int stack_offset, stack_alloc; int argreg = ARG1_REGNUM; int argnum; struct type *type; enum type_code typecode; CORE_ADDR regval; gdb_byte *val; gdb_byte valbuf[MAX_REGISTER_SIZE]; int len; /* First force sp to a 4-byte alignment. */ sp = sp & ~3; /* Set the return address. For the m32r, the return breakpoint is always at BP_ADDR. */ regcache_cooked_write_unsigned (regcache, LR_REGNUM, bp_addr); /* If STRUCT_RETURN is true, then the struct return address (in STRUCT_ADDR) will consume the first argument-passing register. Both adjust the register count and store that value. */ if (struct_return) { regcache_cooked_write_unsigned (regcache, argreg, struct_addr); argreg++; } /* Now make sure there's space on the stack. */ for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++) stack_alloc += ((TYPE_LENGTH (value_type (args[argnum])) + 3) & ~3); sp -= stack_alloc; /* Make room on stack for args. */ for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++) { type = value_type (args[argnum]); typecode = TYPE_CODE (type); len = TYPE_LENGTH (type); memset (valbuf, 0, sizeof (valbuf)); /* Passes structures that do not fit in 2 registers by reference. */ if (len > 8 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)) { store_unsigned_integer (valbuf, 4, byte_order, value_address (args[argnum])); typecode = TYPE_CODE_PTR; len = 4; val = valbuf; } else if (len < 4) { /* Value gets right-justified in the register or stack word. */ memcpy (valbuf + (register_size (gdbarch, argreg) - len), (gdb_byte *) value_contents (args[argnum]), len); val = valbuf; } else val = (gdb_byte *) value_contents (args[argnum]); while (len > 0) { if (argreg > ARGN_REGNUM) { /* Must go on the stack. */ write_memory (sp + stack_offset, val, 4); stack_offset += 4; } else if (argreg <= ARGN_REGNUM) { /* There's room in a register. */ regval = extract_unsigned_integer (val, register_size (gdbarch, argreg), byte_order); regcache_cooked_write_unsigned (regcache, argreg++, regval); } /* Store the value 4 bytes at a time. This means that things larger than 4 bytes may go partly in registers and partly on the stack. */ len -= register_size (gdbarch, argreg); val += register_size (gdbarch, argreg); } } /* Finally, update the SP register. */ regcache_cooked_write_unsigned (regcache, M32R_SP_REGNUM, sp); return sp; } /* Given a return value in `regbuf' with a type `valtype', extract and copy its value into `valbuf'. */ static void m32r_extract_return_value (struct type *type, struct regcache *regcache, void *dst) { struct gdbarch *gdbarch = get_regcache_arch (regcache); enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); bfd_byte *valbuf = dst; int len = TYPE_LENGTH (type); ULONGEST tmp; /* By using store_unsigned_integer we avoid having to do anything special for small big-endian values. */ regcache_cooked_read_unsigned (regcache, RET1_REGNUM, &tmp); store_unsigned_integer (valbuf, (len > 4 ? len - 4 : len), byte_order, tmp); /* Ignore return values more than 8 bytes in size because the m32r returns anything more than 8 bytes in the stack. */ if (len > 4) { regcache_cooked_read_unsigned (regcache, RET1_REGNUM + 1, &tmp); store_unsigned_integer (valbuf + len - 4, 4, byte_order, tmp); } } static enum return_value_convention m32r_return_value (struct gdbarch *gdbarch, struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf) { if (TYPE_LENGTH (valtype) > 8) return RETURN_VALUE_STRUCT_CONVENTION; else { if (readbuf != NULL) m32r_extract_return_value (valtype, regcache, readbuf); if (writebuf != NULL) m32r_store_return_value (valtype, regcache, writebuf); return RETURN_VALUE_REGISTER_CONVENTION; } } static CORE_ADDR m32r_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) { return frame_unwind_register_unsigned (next_frame, M32R_PC_REGNUM); } /* Given a GDB frame, determine the address of the calling function's frame. This will be used to create a new GDB frame struct. */ static void m32r_frame_this_id (struct frame_info *this_frame, void **this_prologue_cache, struct frame_id *this_id) { struct m32r_unwind_cache *info = m32r_frame_unwind_cache (this_frame, this_prologue_cache); CORE_ADDR base; CORE_ADDR func; struct minimal_symbol *msym_stack; struct frame_id id; /* The FUNC is easy. */ func = get_frame_func (this_frame); /* Check if the stack is empty. */ msym_stack = lookup_minimal_symbol ("_stack", NULL, NULL); if (msym_stack && info->base == SYMBOL_VALUE_ADDRESS (msym_stack)) return; /* Hopefully the prologue analysis either correctly determined the frame's base (which is the SP from the previous frame), or set that base to "NULL". */ base = info->prev_sp; if (base == 0) return; id = frame_id_build (base, func); (*this_id) = id; } static struct value * m32r_frame_prev_register (struct frame_info *this_frame, void **this_prologue_cache, int regnum) { struct m32r_unwind_cache *info = m32r_frame_unwind_cache (this_frame, this_prologue_cache); return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum); } static const struct frame_unwind m32r_frame_unwind = { NORMAL_FRAME, default_frame_unwind_stop_reason, m32r_frame_this_id, m32r_frame_prev_register, NULL, default_frame_sniffer }; static CORE_ADDR m32r_frame_base_address (struct frame_info *this_frame, void **this_cache) { struct m32r_unwind_cache *info = m32r_frame_unwind_cache (this_frame, this_cache); return info->base; } static const struct frame_base m32r_frame_base = { &m32r_frame_unwind, m32r_frame_base_address, m32r_frame_base_address, m32r_frame_base_address }; /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy frame. The frame ID's base needs to match the TOS value saved by save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */ static struct frame_id m32r_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame) { CORE_ADDR sp = get_frame_register_unsigned (this_frame, M32R_SP_REGNUM); return frame_id_build (sp, get_frame_pc (this_frame)); } static gdbarch_init_ftype m32r_gdbarch_init; static struct gdbarch * m32r_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) { struct gdbarch *gdbarch; struct gdbarch_tdep *tdep; /* If there is already a candidate, use it. */ arches = gdbarch_list_lookup_by_info (arches, &info); if (arches != NULL) return arches->gdbarch; /* Allocate space for the new architecture. */ tdep = XMALLOC (struct gdbarch_tdep); gdbarch = gdbarch_alloc (&info, tdep); set_gdbarch_read_pc (gdbarch, m32r_read_pc); set_gdbarch_unwind_sp (gdbarch, m32r_unwind_sp); set_gdbarch_num_regs (gdbarch, M32R_NUM_REGS); set_gdbarch_pc_regnum (gdbarch, M32R_PC_REGNUM); set_gdbarch_sp_regnum (gdbarch, M32R_SP_REGNUM); set_gdbarch_register_name (gdbarch, m32r_register_name); set_gdbarch_register_type (gdbarch, m32r_register_type); set_gdbarch_push_dummy_call (gdbarch, m32r_push_dummy_call); set_gdbarch_return_value (gdbarch, m32r_return_value); set_gdbarch_skip_prologue (gdbarch, m32r_skip_prologue); set_gdbarch_inner_than (gdbarch, core_addr_lessthan); set_gdbarch_breakpoint_from_pc (gdbarch, m32r_breakpoint_from_pc); set_gdbarch_memory_insert_breakpoint (gdbarch, m32r_memory_insert_breakpoint); set_gdbarch_memory_remove_breakpoint (gdbarch, m32r_memory_remove_breakpoint); set_gdbarch_frame_align (gdbarch, m32r_frame_align); frame_base_set_default (gdbarch, &m32r_frame_base); /* Methods for saving / extracting a dummy frame's ID. The ID's stack address must match the SP value returned by PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */ set_gdbarch_dummy_id (gdbarch, m32r_dummy_id); /* Return the unwound PC value. */ set_gdbarch_unwind_pc (gdbarch, m32r_unwind_pc); set_gdbarch_print_insn (gdbarch, print_insn_m32r); /* Hook in ABI-specific overrides, if they have been registered. */ gdbarch_init_osabi (info, gdbarch); /* Hook in the default unwinders. */ frame_unwind_append_unwinder (gdbarch, &m32r_frame_unwind); /* Support simple overlay manager. */ set_gdbarch_overlay_update (gdbarch, simple_overlay_update); return gdbarch; } void _initialize_m32r_tdep (void) { register_gdbarch_init (bfd_arch_m32r, m32r_gdbarch_init); }