Zvkg is part of the vector crypto extensions.
This extension adds the following instructions:
- vghsh.vv
- vgmul.vv
bfd/ChangeLog:
* elfxx-riscv.c (riscv_multi_subset_supports): Add instruction
class support for Zvkg.
(riscv_multi_subset_supports_ext): Likewise.
gas/ChangeLog:
* testsuite/gas/riscv/zvkg.d: New test.
* testsuite/gas/riscv/zvkg.s: New test.
include/ChangeLog:
* opcode/riscv-opc.h (MATCH_VGHSH_VV): New.
(MASK_VGHSH_VV): New.
(MATCH_VGMUL_VV): New.
(MASK_VGMUL_VV): New.
(DECLARE_INSN): New.
* opcode/riscv.h (enum riscv_insn_class): Add instruction class
support for Zvkg.
opcodes/ChangeLog:
* riscv-opc.c: Add Zvkg instructions.
Signed-off-by: Nathan Huckleberry <nhuck@google.com>
Signed-off-by: Christoph Müllner <christoph.muellner@vrull.eu>
This patch adds support for the RISC-V Zfa extension,
which introduces additional floating-point instructions:
* fli (load-immediate) with pre-defined immediates
* fminm/fmaxm (like fmin/fmax but with different NaN behaviour)
* fround/froundmx (round to integer)
* fcvtmod.w.d (Modular Convert-to-Integer)
* fmv* to access high bits of FP registers in case XLEN < FLEN
* fleq/fltq (quiet comparison instructions)
Zfa defines its instructions in combination with the following
extensions:
* single-precision floating-point (F)
* double-precision floating-point (D)
* quad-precision floating-point (Q)
* half-precision floating-point (Zfh)
This patch is based on an earlier version from Tsukasa OI:
https://sourceware.org/pipermail/binutils/2022-September/122939.html
Most significant change to that commit is the switch from the rs1-field
value to the actual floating-point value in the last operand of the fli*
instructions. Everything that strtof() can parse is accepted and
the '%a' printf specifier is used to output hex floating-point literals
in the disassembly.
The Zfa specification is frozen (and has passed public review). It is
available as a chapter in "The RISC-V Instruction Set Manual: Volume 1":
https://github.com/riscv/riscv-isa-manual/releases
bfd/ChangeLog:
* elfxx-riscv.c (riscv_multi_subset_supports): Add instruction
class support for 'Zfa' extension.
(riscv_multi_subset_supports_ext): Likewise.
(riscv_implicit_subsets): Add 'Zfa' -> 'F' dependency.
gas/ChangeLog:
* config/tc-riscv.c (flt_lookup): New helper to lookup a float value
in an array.
(validate_riscv_insn): Add 'Wfv' as new format string directive.
(riscv_ip): Likewise.
* doc/c-riscv.texi: Add floating-point chapter and describe
limiations of the Zfa FP literal parsing.
* testsuite/gas/riscv/zfa-32.d: New test.
* testsuite/gas/riscv/zfa-32.s: New test.
* testsuite/gas/riscv/zfa-64.d: New test.
* testsuite/gas/riscv/zfa-64.s: New test.
* testsuite/gas/riscv/zfa-fail.d: New test.
* testsuite/gas/riscv/zfa-fail.l: New test.
* testsuite/gas/riscv/zfa-fail.s: New test.
* testsuite/gas/riscv/zfa.d: New test.
* testsuite/gas/riscv/zfa.s: New test.
* testsuite/gas/riscv/zfa.s: New test.
* opcode/riscv-opc.h (MATCH_FLI_H): New.
(MASK_FLI_H): New.
(MATCH_FMINM_H): New.
(MASK_FMINM_H): New.
(MATCH_FMAXM_H): New.
(MASK_FMAXM_H): New.
(MATCH_FROUND_H): New.
(MASK_FROUND_H): New.
(MATCH_FROUNDNX_H): New.
(MASK_FROUNDNX_H): New.
(MATCH_FLTQ_H): New.
(MASK_FLTQ_H): New.
(MATCH_FLEQ_H): New.
(MASK_FLEQ_H): New.
(MATCH_FLI_S): New.
(MASK_FLI_S): New.
(MATCH_FMINM_S): New.
(MASK_FMINM_S): New.
(MATCH_FMAXM_S): New.
(MASK_FMAXM_S): New.
(MATCH_FROUND_S): New.
(MASK_FROUND_S): New.
(MATCH_FROUNDNX_S): New.
(MASK_FROUNDNX_S): New.
(MATCH_FLTQ_S): New.
(MASK_FLTQ_S): New.
(MATCH_FLEQ_S): New.
(MASK_FLEQ_S): New.
(MATCH_FLI_D): New.
(MASK_FLI_D): New.
(MATCH_FMINM_D): New.
(MASK_FMINM_D): New.
(MATCH_FMAXM_D): New.
(MASK_FMAXM_D): New.
(MATCH_FROUND_D): New.
(MASK_FROUND_D): New.
(MATCH_FROUNDNX_D): New.
(MASK_FROUNDNX_D): New.
(MATCH_FLTQ_D): New.
(MASK_FLTQ_D): New.
(MATCH_FLEQ_D): New.
(MASK_FLEQ_D): New.
(MATCH_FLI_Q): New.
(MASK_FLI_Q): New.
(MATCH_FMINM_Q): New.
(MASK_FMINM_Q): New.
(MATCH_FMAXM_Q): New.
(MASK_FMAXM_Q): New.
(MATCH_FROUND_Q): New.
(MASK_FROUND_Q): New.
(MATCH_FROUNDNX_Q): New.
(MASK_FROUNDNX_Q): New.
(MATCH_FLTQ_Q): New.
(MASK_FLTQ_Q): New.
(MATCH_FLEQ_Q): New.
(MASK_FLEQ_Q): New.
(MATCH_FCVTMOD_W_D): New.
(MASK_FCVTMOD_W_D): New.
(MATCH_FMVH_X_D): New.
(MASK_FMVH_X_D): New.
(MATCH_FMVH_X_Q): New.
(MASK_FMVH_X_Q): New.
(MATCH_FMVP_D_X): New.
(MASK_FMVP_D_X): New.
(MATCH_FMVP_Q_X): New.
(MASK_FMVP_Q_X): New.
(DECLARE_INSN): New.
* opcode/riscv.h (enum riscv_insn_class): Add instruction
classes for the Zfa extension.
opcodes/ChangeLog:
* riscv-dis.c (print_insn_args): Add support for
new format string directive 'Wfv'.
* riscv-opc.c: Add Zfa instructions.
Co-Developed-by: Tsukasa OI <research_trasio@irq.a4lg.com>
Signed-off-by: Christoph Müllner <christoph.muellner@vrull.eu>
Co-Developed-by: Philipp Tomsich <philipp.tomsich@vrull.eu>
Acked-by: Palmer Dabbelt <palmer@rivosinc.com>
As outlined in the LoongArch ELF psABI spec [1], it is actually already
2 versions after the initial LoongArch support, and the $v[01] and
$fv[01] names should really get sunset by now.
In addition, the "$x" name for $r21 was never included in any released
version of the ABI spec, and such usages are all fixed to say just $r21
for every project I could think of that accepted a LoongArch port.
Plus, the upcoming LSX/LASX support makes use of registers named
"$vrNN" and "$xrNN", so having "$vN" and "$x" alongside would almost
certainly create confusion for developers.
Issue warnings for such usages per the deprecation procedure detailed
in the spec, so we can finally remove support in the next release cycle
after this.
[1]: https://loongson.github.io/LoongArch-Documentation/LoongArch-ELF-ABI-EN.html
gas/ChangeLog:
* config/tc-loongarch.c: Init canonical register ABI name
mappings and deprecated register names.
(loongarch_args_parser_can_match_arg_helper): Warn in case of
deprecated register name usage.
* testsuite/gas/loongarch/deprecated_reg_aliases.d: New test.
* testsuite/gas/loongarch/deprecated_reg_aliases.l: Likewise.
* testsuite/gas/loongarch/deprecated_reg_aliases.s: Likewise.
include/ChangeLog:
* opcode/loongarch.h: Rename global variables.
opcodes/ChangeLog:
* loongarch-opc.c: Rename the alternate/deprecated register name
mappings, and move $x to the deprecated name map.
Signed-off-by: WANG Xuerui <git@xen0n.name>
For better round-trip fidelity and readability in general.
gas/ChangeLog:
* testsuite/gas/loongarch/uleb128.d: Update test case.
* testsuite/gas/loongarch/raw-insn.d: New test.
* testsuite/gas/loongarch/raw-insn.s: Likewise.
opcodes/ChangeLog:
* loongarch-dis.c (disassemble_one): Print ".word" if !opc.
Signed-off-by: WANG Xuerui <git@xen0n.name>
The additional hex notation was minimally useful when one had to
inspect code with heavy bit manipulation, or of unclear signedness, but
it clutters the output, and the style is not regular assembly language
syntax either.
Precisely how one approaches the original use case is not taken care of
in this patch (maybe we want a disassembler option forcing a certain
style for immediates, like for example printing every immediate in
decimal or hexadecimal notation), but at least let's stop the current
practice.
ChangeLog:
* testsuite/gas/loongarch/imm_ins.d: Update test case.
* testsuite/gas/loongarch/imm_ins_32.d: Likewise.
* testsuite/gas/loongarch/imm_op.d: Likewise.
* testsuite/gas/loongarch/jmp_op.d: Likewise.
* testsuite/gas/loongarch/load_store_op.d: Likewise.
* testsuite/gas/loongarch/macro_op.d: Likewise.
* testsuite/gas/loongarch/macro_op_32.d: Likewise.
* testsuite/gas/loongarch/privilege_op.d: Likewise.
* testsuite/gas/loongarch/uleb128.d: Likewise.
* testsuite/gas/loongarch/vector.d: Likewise.
ld/ChangeLog:
* testsuite/ld-loongarch-elf/jmp_op.d: Update test case.
* testsuite/ld-loongarch-elf/macro_op.d: Likewise.
* testsuite/ld-loongarch-elf/macro_op_32.d: Likewise.
opcodes/ChangeLog:
* loongarch-dis.c (dis_one_arg): Remove the "(0x%x)" part from
disassembly output of signed immediate operands.
Signed-off-by: WANG Xuerui <git@xen0n.name>
Add a modifier char 'o' telling the disassembler to print the immediate
using the address offset style, and mark the memory access instructions'
offset operands as such.
opcodes/ChangeLog:
* loongarch-dis.c (dis_one_arg): Style disassembled address
offsets as such when the operand has a modifier char 'o'.
* loongarch-opc.c: Add 'o' to operands that represent address
offsets.
Signed-off-by: WANG Xuerui <git@xen0n.name>
Update the LoongArch disassembler to supply style information to the
disassembler output. The output formatting remains unchanged.
opcodes/ChangeLog:
* disassemble.c: Mark LoongArch as created_styled_output=true.
* loongarch-dis.c (dis_one_arg): Use fprintf_styled_func
throughout with proper styles.
Signed-off-by: WANG Xuerui <git@xen0n.name>
Add a flag in the pinfo field for being able to mark certain specialized
matchers as disassembler-only, so some degree of isolation between
assembler-side and disassembler-side can be achieved.
This isolation is necessary, firstly because some pseudo-instructions
cannot be fully described in the opcode table, like `li.[wd]`, so the
corresponding opcode entry cannot have meaningful match/mask values.
Secondly, some of these pseudo-instructions can be realized in more than
one plausible ways; e.g. `li.w rd, <something between 0 and 0x7ff>` can
be realized on LA64 with any of `addi.w`, `addi.d` or `ori`. If we tie
disassembly of such aliases with the corresponding GAS support, only one
canonical form among the above would be recognized as `li.w`, and it
would mildly impact the readability of disassembly output.
People wanting the exact disassembly can always set `-M no-aliases` to
get the original behavior back.
In addition, in certain cases, information is irreversibly lost after
assembling, so perfect round-trip would not be possible in such cases.
For example, `li.w` and `li.d` of immediates within int32_t range
produce the same code; in this patch, `addi.d rd, $zero, imm` is treated
as `li.d`, while `addi.w` and `ori` immediate loads are shown as `li.w`,
due to the expressible value range well within 32 bits.
gas/ChangeLog:
* config/tc-loongarch.c (get_loongarch_opcode): Ignore
disassembler-only aliases.
* testsuite/gas/loongarch/64_pcrel.d: Update test case.
* testsuite/gas/loongarch/imm_ins.d: Likewise.
* testsuite/gas/loongarch/imm_ins_32.d: Likewise.
* testsuite/gas/loongarch/jmp_op.d: Likewise.
* testsuite/gas/loongarch/li.d: Likewise.
* testsuite/gas/loongarch/macro_op.d: Likewise.
* testsuite/gas/loongarch/macro_op_32.d: Likewise.
* testsuite/gas/loongarch/macro_op_large_abs.d: Likewise.
* testsuite/gas/loongarch/macro_op_large_pc.d: Likewise.
* testsuite/gas/loongarch/nop.d: Likewise.
* testsuite/gas/loongarch/relax_align.d: Likewise.
* testsuite/gas/loongarch/reloc.d: Likewise.
include/ChangeLog:
* opcode/loongarch.h (INSN_DIS_ALIAS): Add.
ld/ChangeLog:
* testsuite/ld-loongarch-elf/jmp_op.d: Update test case.
* testsuite/ld-loongarch-elf/macro_op.d: Likewise.
* testsuite/ld-loongarch-elf/macro_op_32.d: Likewise.
* testsuite/ld-loongarch-elf/relax-align.dd: Likewise.
opcodes/ChangeLog:
* loongarch-dis.c: Move register name map declarations to top.
(get_loongarch_opcode_by_binfmt): Consider aliases when
disassembling without the no-aliases option.
(parse_loongarch_dis_option): Support the no-aliases option.
* loongarch-opc.c: Collect pseudo instructions into a new
dedicated table.
Signed-off-by: WANG Xuerui <git@xen0n.name>
Many instructions were enabled only when both a feature flag and a minimum
architecture version are specified. This behaviour differs from GCC, which (in
most cases) allows features to be enabled at any architecture version.
There is no need for the toolchain to restrict combinations of unrelated
features in this way, so this patch removes the unnecessary dependencies.
Previously, FCSRs were referred to as $rX, which seemed strange.
We refer to FCSRs as $fcsrX, which ensures compatibility with LLVM
IAS as well.
gas/ChangeLog:
* config/tc-loongarch.c:
(loongarch_fc_normal_name): New definition.
(loongarch_fc_numeric_name): New definition.
(loongarch_single_float_opcodes): Modify `movgr2fcsr` and
`movfcsr2gr`.
testsuite/gas/loongarch/float_op.d: Likewise.
testsuite/gas/loongarch/float_op.s: Likewise.
include/ChangeLog:
* opcode/loongarch.h:
(loongarch_fc_normal_name): New extern.
(loongarch_fc_numeric_name): New extern.
opcodes/ChangeLog:
* opcodes/loongarch-dis.c (loongarch_after_parse_args): Support
referring to FCSRs as $fcsrX.
* opcodes/loongarch-opc.c (loongarch_args_parser_can_match_arg_helper):
Likewise.
Signed-off-by: Feiyang Chen <chenfeiyang@loongson.cn>
The logic can actually be expressed with less code that way, utilizing
that there are common patterns of when which form of masking is
permitted. This then also eliminates the large set of open-codings of
BOTH_MASKING in the opcode table.
Allegrex supports some MIPS32 and MIPS32r2 instructions (albeit with
some encoding differences) such as bit manipulation (ins/ext) and MLA
(madd/msub). It also features some new instructions like wsbw and
min/max or device-specific ones such as mfic.
Signed-off-by: David Guillen Fandos <david@davidgf.net>
The Allegrex CPU supports bit rotation instructions as described in the
MIPS32 release 2 CPU (even though it is a MIPS-2 based CPU).
Signed-off-by: David Guillen Fandos <david@davidgf.net>
The Allegrex CPU was created by Sony Interactive Entertainment to power
their portable console, the PlayStation Portable.
The pspdev organization maintains all sorts of tools to create software
for said device including documentation.
Signed-off-by: David Guillen Fandos <david@davidgf.net>
We should try our best to make mips32 using the same
oprand char with micromips. So for mips32, we use:
^ is added for 5bit sa oprand for some new DSPr2 instructions:
APPEND, PREPEND, PRECR_SRA[_R].PH.W
the LSB bit is 11, like RD.
+t is removed for coprocessor 0 destination register.
'E' does the samething.
+t is now used for RX oprand for MFTR/MTTR (MT ASE)
? is added for sel oprand for MFTR/MTTR (MT ASE)
For mips32, the position of sel in MFTR/MTTR is same with mfc0 etc,
while for micromips, they are different.
We also add an extesion format of cftc2/cttc2/mftc2/mfthc2/mttc2/mtthc2:
concatenating rs with rx as the index of control or data.
In commit 1a3b4f90bc ("x86: convert two pointers to (indexing)
integers") I neglected the fact that compilers may warn about comparing
ptrdiff_t (signed long) with size_t (unsigned long) values. Since just
before we've checked that the value is positive, simply add a cast
(despite my dislike for casts).
This in particular reduces the number of pointers to non-const that we
have (and that could potentially be used for undue modification of
state). As a result, fetch_code()'s 2nd parameter can then also become
pointer-to-const.
The present way of dealing with them - misusing MAX_MNEM_SIZE, which has
nothing to do with insn length - leads to inconsistent results. Since we
allow for up to MAX_CODE_LENGTH - 1 prefix bytes (which then could be
followed by another MAX_CODE_LENGTH "normal" insn bytes until we're done
decoding), size the_buffer[] accordingly.
Move struct dis_private down to be able to use MAX_CODE_LENGTH without
moving its #define. While doing this also alter the order to have the
potentially large array last.
This first of all removes a dependency on bfd_byte and unsigned char
being the same types. It further eliminates the need to mask by 0xff
when fetching values (which wasn't done fully consistently anyway),
improving code legibility.
While there, where possible add const.
* Extract all private_data initializations into riscv_init_disasm_info, which
called from print_insn_riscv rather than riscv_disassemble_insn.
* The disassemble_free_target seems like the right place to release all target
private_data, also including the internal data structures, like riscv_subsets.
Therefore, add a new function, disassemble_free_riscv, to release them for safe.
opcodes/
* disassemble.c (disassemble_free_target): Called disassemble_free_riscv
for riscv to release private_data and internal data structures.
* disassemble.h: Added extern disassemble_free_riscv.
* riscv-dis.c (riscv_init_disasm_info): New function, used to init
riscv_private_data.
(riscv_disassemble_insn): Moved riscv_private_data initializations
into riscv_init_disasm_info.
(print_insn_riscv): Called riscv_init_disasm_info to init
riscv_private_data once time.
(disassemble_free_riscv): New function, used to free the internal data
structures, like riscv_subsets.
Trying to build binutils with an older gcc currently fails. Working
around these gcc bugs is not onerous so let's fix them.
bfd/
* elf32-csky.c (csky_elf_size_dynamic_sections): Don't type-pun
pointer.
* elf32-rl78.c (rl78_compute_complex_reloc): Rename "stat"
variable to "status".
gas/
* compress-debug.c (compress_finish): Supply all fields in
ZSTD_inBuffer initialisation.
include/
* xtensa-dynconfig.h (xtensa_isa_internal): Delete unnecessary
forward declaration.
opcodes/
* loongarch-opc.c: Supply all fields of zero struct initialisation
in various opcode tables.
Consistently do 64-bit first, VEX.L second, VEX.W third, ModR/M fourth,
and only then prefix, resulting in fewer table entries. Note that in the
course of the re-work
- TILEZERO has a previously missing decode step through rm_table[]
added,
- a wrong M_0 suffix for TILEZERO is also corrected to be M_1 (now an
infix).
Consistently do 64-bit first, ModR/M second, VEX.L third, VEX.W fourth,
and prefix last, resulting in fewer table entries. Note that in the
course of the re-work wrong M_0 suffixes are also corrected to be M_1
(partly infixes now).
Since it ended up confusing while testing the change, also adjust the
test name in x86-64-amx-bad.d (to be distinct from x86-64-amx.d's).
Ventana Micro has published the specification for their
XVentanaCondOps ("conditional ops") extension at
https://github.com/ventanamicro/ventana-custom-extensions/releases/download/v1.0.0/ventana-custom-extensions-v1.0.0.pdf
which contains two new instructions
- vt.maskc
- vt.maskcn
that can be used in constructing branchless sequences for
various conditional-arithmetic, conditional-logical, and
conditional-select operations.
To support such vendor-defined instructions in the mainline binutils,
this change also adds a riscv_supported_vendor_x_ext secondary
dispatch table (but also keeps the behaviour of allowing any unknow
X-extension to be specified in addition to the known ones from this
table).
As discussed, this change already includes the planned/agreed future
requirements for X-extensions (which are likely to be captured in the
riscv-toolchain-conventions repository):
- a public specification document is available (see above) and is
referenced from the gas-documentation
- the naming follows chapter 27 of the RISC-V ISA specification
- instructions are prefixed by a vendor-prefix (vt for Ventana)
to ensure that they neither conflict with future standard
extensions nor clash with other vendors
bfd/ChangeLog:
* elfxx-riscv.c (riscv_get_default_ext_version): Add riscv_supported_vendor_x_ext.
(riscv_multi_subset_supports): Recognize INSN_CLASS_XVENTANACONDOPS.
gas/ChangeLog:
* doc/c-riscv.texi: Add section to list custom extensions and
their documentation URLs.
* testsuite/gas/riscv/x-ventana-condops.d: New test.
* testsuite/gas/riscv/x-ventana-condops.s: New test.
include/ChangeLog:
* opcode/riscv-opc.h Add vt.maskc and vt.maskcn.
* opcode/riscv.h (enum riscv_insn_class): Add INSN_CLASS_XVENTANACONDOPS.
opcodes/ChangeLog:
* riscv-opc.c: Add vt.maskc and vt.maskcn.
Series-version: 1
Series-to: binutils@sourceware.org
Series-cc: Kito Cheng <kito.cheng@sifive.com>
Series-cc: Nelson Chu <nelson.chu@sifive.com>
Series-cc: Greg Favor <gfavor@ventanamicro.com>
Series-cc: Christoph Muellner <cmuellner@gcc.gnu.org>
1) i386-dis.c:12055:11: runtime error: left shift of negative value -1
Bit twiddling is best done unsigned, due to UB on overflow of signed
expressions. Fix this by using bfd_vma rather than bfd_signed_vma
everywhere in i386-dis.c except print_displacement.
2) Return get32s and get16 value in a bfd_vma, reducing the need for
temp variables.
3) Introduce get16s and get8s functions to simplify the code.
4) With some optimisation options gcc-13 legitimately complains about
a fall-through in OP_I. Fix that. OP_I also doesn't need to use
"mask" which was wrong for w_mode anyway.
5) Masking with & 0xffffffff is better than casting to unsigned. We
don't know for sure that unsigned int is 32-bit.
6) We also don't know that unsigned char is 8 bits. Mask codep
accesses everywhere. I don't expect binutils will work on anything
other than an 8-bit char host, but if we are masking codep accesses in
some places we might as well be consistent. (Better would be to use
stdint.h types more in binutils.)