Commit Graph

181 Commits

Author SHA1 Message Date
Luis Machado
b93d537fba corefile/bug: Add hook to control the use of target description notes from corefiles
Due to the nature of the AArch64 SVE/SME extensions in GDB, each thread
can potentially have distinct target descriptions/gdbarches.

When loading a gcore-generated core file, at the moment GDB gives priority
to the target description dumped to NT_GDB_TDESC.  Though technically correct
for most targets, it doesn't work correctly for AArch64 with SVE or SME
support.

The correct approach for AArch64/Linux is to either have per-thread target
description notes in the corefiles or to rely on the
gdbarch_core_read_description hook, so it can figure out the proper target
description for a given thread based on the various available register notes.

The former, although more correct, doesn't address the case of existing gdb's
that only output a single target description note.

This patch goes for the latter, and adds a new gdbarch hook to conditionalize
the use of the corefile target description note. The hook is called
use_target_description_from_corefile_notes.

The hook defaults to returning true, meaning targets will use the corefile
target description note.  AArch64 Linux overrides the hook to return false
when it detects any of the SVE or SME register notes in the corefile.

Otherwise it should be fine for AArch64 Linux to use the corefile target
description note.

When we support per-thread target description notes, then we can augment
the AArch64 Linux hook to rely on those notes.

Regression-tested on aarch64-linux Ubuntu 22.04/20.04.

Approved-By: Simon Marchi <simon.marchi@efficios.com>
Reviewed-by: Thiago Jung Bauermann <thiago.bauermann@linaro.org>
2023-10-04 16:23:40 +01:00
Tom de Vries
33b5899fc0 [gdb] Fix typos
Fix a few typos:
- implemention -> implementation
- convertion(s) -> conversion(s)
- backlashes -> backslashes
- signoring -> ignoring
- (un)ambigious -> (un)ambiguous
- occured -> occurred
- hidding -> hiding
- temporarilly -> temporarily
- immediatelly -> immediately
- sillyness -> silliness
- similiar -> similar
- porkuser -> pokeuser
- thats -> that
- alway -> always
- supercede -> supersede
- accomodate -> accommodate
- aquire -> acquire
- priveleged -> privileged
- priviliged -> privileged
- priviledges -> privileges
- privilige -> privilege
- recieve -> receive
- (p)refered -> (p)referred
- succesfully -> successfully
- successfuly -> successfully
- responsability -> responsibility
- wether -> whether
- wich -> which
- disasbleable -> disableable
- descriminant -> discriminant
- construcstor -> constructor
- underlaying -> underlying
- underyling -> underlying
- structureal -> structural
- appearences -> appearances
- terciarily -> tertiarily
- resgisters -> registers
- reacheable -> reachable
- likelyhood -> likelihood
- intepreter -> interpreter
- disassemly -> disassembly
- covnersion -> conversion
- conviently -> conveniently
- atttribute -> attribute
- struction -> struct
- resonable -> reasonable
- popupated -> populated
- namespaxe -> namespace
- intialize -> initialize
- identifer(s) -> identifier(s)
- expection -> exception
- exectuted -> executed
- dungerous -> dangerous
- dissapear -> disappear
- completly -> completely
- (inter)changable -> (inter)changeable
- beakpoint -> breakpoint
- automativ -> automatic
- alocating -> allocating
- agressive -> aggressive
- writting -> writing
- reguires -> requires
- registed -> registered
- recuding -> reducing
- opeartor -> operator
- ommitted -> omitted
- modifing -> modifying
- intances -> instances
- imbedded -> embedded
- gdbaarch -> gdbarch
- exection -> execution
- direcive -> directive
- demanged -> demangled
- decidely -> decidedly
- argments -> arguments
- agrument -> argument
- amespace -> namespace
- targtet -> target
- supress(ed) -> suppress(ed)
- startum -> stratum
- squence -> sequence
- prompty -> prompt
- overlow -> overflow
- memember -> member
- languge -> language
- geneate -> generate
- funcion -> function
- exising -> existing
- dinking -> syncing
- destroh -> destroy
- clenaed -> cleaned
- changep -> changedp (name of variable)
- arround -> around
- aproach -> approach
- whould -> would
- symobl -> symbol
- recuse -> recurse
- outter -> outer
- freeds -> frees
- contex -> context

Tested on x86_64-linux.

Reviewed-By: Tom Tromey <tom@tromey.com>
2023-06-03 22:43:57 +02:00
Carl Love
c1a398a320 PowerPC: fix _Float128 type output string
PowerPC supports two 128-bit floating point formats, the IBM long double
and IEEE 128-bit float.  The issue is the DWARF information does not
distinguish between the two.  There have been proposals of how to extend
the DWARF information as discussed in

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=104194

but has not been fully implemented.

GCC introduced the _Float128 internal type as a work around for the issue.
The workaround is not transparent to GDB.  The internal _Float128 type
name is printed rather then the user specified long double type.  This
patch adds a new gdbarch method to allow PowerPC to detect the GCC
workaround.  The workaround checks for "_Float128" name when reading the
base typedef from the die_info.  If the workaround is detected, the type
and format fields from the _Float128 typedef are copied to the long
double typedef.  The same is done for the complex long double typedef.

This patch fixes 74 regression test failures in
gdb.base/whatis-ptype-typedefs.exp on PowerPC with IEEE float 128 as the
default on GCC.  It fixes one regression test failure in
gdb.base/complex-parts.exp.

The patch has been tested on Power 10 where GCC defaults to IEEE Float
128-bit and on Power 10 where GCC defaults to the IBM 128-bit float.  The
patch as also been tested on X86-64 with no new regression failures.
2023-04-18 11:03:08 -04:00
Tom Tromey
4e1d2f5814 Add new overload of gdbarch_return_value
The gdbarch "return_value" can't correctly handle variably-sized
types.  The problem here is that the TYPE_LENGTH of such a type is 0,
until the type is resolved, which requires reading memory.  However,
gdbarch_return_value only accepts a buffer as an out parameter.

Fixing this requires letting the implementation of the gdbarch method
resolve the type and return a value -- that is, both the contents and
the new type.

After an attempt at this, I realized I wouldn't be able to correctly
update all implementations (there are ~80) of this method.  So,
instead, this patch adds a new method that falls back to the current
method, and it updates gdb to only call the new method.  This way it's
possible to incrementally convert the architectures that I am able to
test.
2023-01-03 08:45:00 -07:00
Joel Brobecker
213516ef31 Update copyright year range in header of all files managed by GDB
This commit is the result of running the gdb/copyright.py script,
which automated the update of the copyright year range for all
source files managed by the GDB project to be updated to include
year 2023.
2023-01-01 17:01:16 +04:00
Luis Machado
d88cb738e6 [aarch64] Fix removal of non-address bits for PAuth
PR gdb/28947

The address_significant gdbarch setting was introduced as a way to remove
non-address bits from pointers, and it is specified by a constant.  This
constant represents the number of address bits in a pointer.

Right now AArch64 is the only architecture that uses it, and 56 was a
correct option so far.

But if we are using Pointer Authentication (PAuth), we might use up to 2 bytes
from the address space to store the required information.  We could also have
cases where we're using both PAuth and MTE.

We could adjust the constant to 48 to cover those cases, but this doesn't
cover the case where GDB needs to sign-extend kernel addresses after removal
of the non-address bits.

This has worked so far because bit 55 is used to select between kernel-space
and user-space addresses.  But trying to clear a range of bits crossing the
bit 55 boundary requires the hook to be smarter.

The following patch renames the gdbarch hook from significant_addr_bit to
remove_non_address_bits and passes a pointer as opposed to the number of
bits.  The hook is now responsible for removing the required non-address bits
and sign-extending the address if needed.

While at it, make GDB and GDBServer share some more code for aarch64 and add a
new arch-specific testcase gdb.arch/aarch64-non-address-bits.exp.

Bug-url: https://sourceware.org/bugzilla/show_bug.cgi?id=28947

Approved-By: Simon Marchi <simon.marchi@efficios.com>
2022-12-16 11:18:32 +00:00
Carl Love
a0eda3df5b PowerPC, fix support for printing the function return value for non-trivial values.
Currently, a non-trivial return value from a function cannot currently be
reliably determined on PowerPC.  This is due to the fact that the PowerPC
ABI uses register r3 to store the address of the buffer containing the
non-trivial return value when the function is called.  The PowerPC ABI
does not guarantee the value in register r3 is not modified in the
function.  Thus the value in r3 cannot be reliably used to obtain the
return addreses on exit from the function.

This patch adds a new gdbarch method to allow PowerPC to access the value
of r3 on entry to a function. On PowerPC, the new gdbarch method attempts
to use the DW_OP_entry_value for the DWARF entries, when exiting the
function, to determine the value of r3 on entry to the function.  This
requires the use of the -fvar-tracking compiler option to compile the
user application thus generating the DW_OP_entry_value in the binary.  The
DW_OP_entry_value entries in the binary file allows GDB to resolve the
DW_TAG_call_site entries.  This new gdbarch method is used to get the
return buffer address, in the case of a function returning a nontrivial
data type, on exit from the function.  The GDB function should_stop checks
to see if RETURN_BUF is non-zero.  By default, RETURN_BUF will be set to
zero by the new gdbarch method call for all architectures except PowerPC.
The get_return_value function will be used to obtain the return value on
all other architectures as is currently being done if RETURN_BUF is zero.
On PowerPC, the new gdbarch method will return a nonzero address in
RETURN_BUF if the value can be determined.  The value_at function uses the
return buffer address to get the return value.

This patch fixes five testcase failures in gdb.cp/non-trivial-retval.exp.
The correct function return values are now reported.

Note this patch is dependent on patch: "PowerPC, function
ppc64_sysv_abi_return_value add missing return value convention".

This patch has been tested on Power 10 and x86-64 with no regressions.
2022-11-14 16:22:37 -05:00
Tom Tromey
bd2b40ac12 Change GDB to use frame_info_ptr
This changes GDB to use frame_info_ptr instead of frame_info *
The substitution was done with multiple sequential `sed` commands:

sed 's/^struct frame_info;/class frame_info_ptr;/'
sed 's/struct frame_info \*/frame_info_ptr /g' - which left some
    issues in a few files, that were manually fixed.
sed 's/\<frame_info \*/frame_info_ptr /g'
sed 's/frame_info_ptr $/frame_info_ptr/g' - used to remove whitespace
    problems.

The changed files were then manually checked and some 'sed' changes
undone, some constructors and some gets were added, according to what
made sense, and what Tromey originally did

Co-Authored-By: Bruno Larsen <blarsen@redhat.com>
Approved-by: Tom Tomey <tom@tromey.com>
2022-10-10 11:57:10 +02:00
Joel Brobecker
4a94e36819 Automatic Copyright Year update after running gdb/copyright.py
This commit brings all the changes made by running gdb/copyright.py
as per GDB's Start of New Year Procedure.

For the avoidance of doubt, all changes in this commits were
performed by the script.
2022-01-01 19:13:23 +04:00
Aaron Merey
aa95b2d438 gdb: Add aliases for read_core_file_mappings callbacks
Add aliases read_core_file_mappings_loop_ftype and
read_core_file_mappings_pre_loop_ftype.  Intended for use with
read_core_file_mappings.

Also add build_id parameter to read_core_file_mappings_loop_ftype.
2021-11-16 22:29:51 -05:00
Simon Marchi
b447dd03c1 gdb: remove gdbarch_info_init
While reviewing another patch, I realized that gdbarch_info_init could
easily be removed in favor of initializing gdbarch_info fields directly
in the struct declaration.  The only odd part is the union.  I don't
know if it's actually important for it to be zero-initialized, but I
presume it is.  I added a constructor to gdbarch_info to take care of
that.  A proper solution would be to use std::variant.  Or, these could
also be separate fields, the little extra space required wouldn't
matter.

gdb/ChangeLog:

	* gdbarch.sh (struct gdbarch_info): Initialize fields, add
	constructor.
	* gdbarch.h: Re-generate.
	* arch-utils.h (gdbarch_info_init): Remove, delete all usages.
	* arch-utils.c (gdbarch_info_init): Remove.

Change-Id: I7502e08fe0f278d84eef1667a072e8a97bda5ab5
2021-06-28 11:49:22 -04:00
Luis Machado
c193949e75 New gdbarch memory tagging hooks
We need some new gdbarch hooks to help us manipulate memory tags without having
to have GDB call the target methods directly.

This patch adds the following hooks:

gdbarch_memtag_to_string
--
Returns a printable string corresponding to the tag.

gdbarch_tagged_address_p
--
Checks if a particular address is protected with memory tagging.

gdbarch_memtag_matches_p
--
Checks if the logical tag of a pointer and the allocation tag from the address
the pointer points to matches.

gdbarch_set_memtags:
--
Sets either the allocation tag or the logical tag for a particular value.

gdbarch_get_memtag:
--
Gets either the allocation tag or the logical tag for a particular value.

gdbarch_memtag_granule_size
--
Sets the memory tag granule size, which represents the number of bytes a
particular allocation tag covers. For example, this is 16 bytes for
AArch64's MTE.

I've used struct value as opposed to straight CORE_ADDR so other architectures
can use the infrastructure without having to rely on a particular type for
addresses/pointers.  Some architecture may use pointers of 16 bytes that don't
fit in a CORE_ADDR, for example.

gdb/ChangeLog:

2021-03-24  Luis Machado  <luis.machado@linaro.org>

	* arch-utils.c (default_memtag_to_string, default_tagged_address_p)
	(default_memtag_matches_p, default_set_memtags)
	(default_get_memtag): New functions.
	* arch-utils.h (default_memtag_to_string, default_tagged_address_p)
	(default_memtag_matches_p, default_set_memtags)
	(default_get_memtag): New prototypes.
	* gdbarch.c: Regenerate.
	* gdbarch.h: Regenerate.
	* gdbarch.sh (memtag_to_string, tagged_address_p, memtag_matches_p)
	(set_memtags, get_memtag, memtag_granule_size): New gdbarch hooks.
	(enum memtag_type): New enum.
2021-03-24 14:47:52 -03:00
Joel Brobecker
3666a04883 Update copyright year range in all GDB files
This commits the result of running gdb/copyright.py as per our Start
of New Year procedure...

gdb/ChangeLog

        Update copyright year range in copyright header of all GDB files.
2021-01-01 12:12:21 +04:00
Simon Marchi
70125a45e4 gdb: remove other parameter in read_core_file_mappings parameter
The `void *other` parameter in read_core_file_mappings' loop_cb
parameter is never used, remove it.

gdb/ChangeLog:

	* gdbarch.sh (read_core_file_mappings): Remove `other` parameter
	in `loop_cb` parameter.
	* gdbarch.c: Re-generate.
	* gdbarch.h: Re-generate.
	* arch-utils.c (default_read_core_file_mappings): Remove `other`
	parameter.
	* arch-utils.h (default_read_core_file_mappings): Likewise.
	* corelow.c (core_target::build_file_mappings): Likewise.
	* linux-tdep.c (linux_read_core_file_mappings): Likewise.
	(linux_core_info_proc_mappings): Likewise.

Change-Id: I6f408b4962b61b8a603642a844772b3026625523
2020-11-19 10:34:57 -05:00
Simon Marchi
40a5376690 gdb: remove parameter of gdbarch_displaced_step_hw_singlestep
I noticed that the closure parameter of
gdbarch_displaced_step_hw_singlestep is never used by any
implementation of the method, so this patch removes it.

gdb/ChangeLog:

	* gdbarch.sh (displaced_step_hw_singlestep): Remove closure
	parameter.
	* aarch64-tdep.c (aarch64_displaced_step_hw_singlestep):
	Likewise.
	* aarch64-tdep.h (aarch64_displaced_step_hw_singlestep):
	Likewise.
	* arch-utils.c (default_displaced_step_hw_singlestep):
	Likewise.
	* arch-utils.h (default_displaced_step_hw_singlestep):
	Likewise.
	* rs6000-tdep.c (ppc_displaced_step_hw_singlestep):
	Likewise.
	* s390-tdep.c (s390_displaced_step_hw_singlestep):
	Likewise.
	* gdbarch.c: Re-generate.
	* gdbarch.h: Re-generate.
	* infrun.c (resume_1): Adjust.

Change-Id: I7354f0b22afc2692ebff0cd700a462db8f389fc1
2020-10-29 18:02:13 -04:00
Simon Marchi
07fbbd0138 gdb: make gdbarch_displaced_step_hw_singlestep return bool
Replace the int-used-as-a-bool with a bool.

gdb/ChangeLog:

	* gdbarch.sh (displaced_step_hw_singlestep): Return bool.
	* gdbarch.c: Re-generate.
	* gdbarch.h: Re-generate.
	* aarch64-tdep.c (aarch64_displaced_step_hw_singlestep): Return
	bool.
	* aarch64-tdep.h (aarch64_displaced_step_hw_singlestep):
	Likewise.
	* arch-utils.h (default_displaced_step_hw_singlestep): Likewise.
	* arch-utils.c (default_displaced_step_hw_singlestep): Likewise.
	* rs6000-tdep.c (ppc_displaced_step_hw_singlestep): Likewise.
	* s390-tdep.c (s390_displaced_step_hw_singlestep): Likewise.

Change-Id: I76a78366dc5c0afb03f8f4bddf9f4e8d68fe3114
2020-10-20 17:39:48 -04:00
Kevin Buettner
7e183d2736 Add new gdbarch method, read_core_file_mappings
The new gdbarch method, read_core_file_mappings, will be used for
reading file-backed mappings from a core file.  It'll be used
for two purposes: 1) to construct a table of file-backed mappings
in corelow.c, and 2) for display of core file mappings.

For Linux, I tried a different approach in which knowledge of the note
format was placed directly in corelow.c.  This seemed okay at first;
it was only one note format and the note format was fairly simple.
After looking at FreeBSD's note/mapping reading code, I concluded
that it's best to leave architecture specific details for decoding
the note in (architecture specific) tdep files.

With regard to display of core file mappings, I experimented with
placing the mappings display code in corelow.c.  It has access to the
file-backed mappings which were read in when the core file was loaded.
And, better, still common code could be used for all architectures.
But, again, the FreeBSD mapping code convinced me that this was not
the best approach since it has even more mapping info than Linux.
Display code which would work well for Linux will leave out mappings
as well as protection info for mappings.

So, for these reasons, I'm introducing a new gdbarch method for
reading core file mappings.

gdb/ChangeLog:

	* arch-utils.c (default_read_core_file_mappings): New function.
	* arch-utils.c (default_read_core_file_mappings): Declare.
	* gdbarch.sh (read_core_file_mappings): New gdbarch method.
	* gdbarch.h, gdbarch.c: Regenerate.
2020-07-22 12:44:13 -07:00
Luis Machado
5133a31537 Recognize more program breakpoint patterns
New in v3:

- Code cleanups based on reviews.

New in v2:

- Fixed misc problems based on reviews.
- Switched to using gdbarch_program_breakpoint_here_p as opposed to
gdbarch_insn_is_breakpoint.
- Fixed matching of brk instructions. Previously the mask was incorrect, which
was showing up as a few failures in the testsuite. Now it is clean.
- New testcase (separate patch).
- Moved program_breakpoint_here () to arch-utils.c and made it the default
implementation of gdbarch_program_breakpoint_here_p.

--

It was reported to me that program breakpoints (permanent ones inserted into
the code itself) other than the one GDB uses for AArch64 (0xd4200000) do not
generate visible stops when continuing, and GDB will continue spinning
infinitely.

This happens because GDB, upon hitting one of those program breakpoints, thinks
the SIGTRAP came from a delayed breakpoint hit...

(gdb) x/i $pc
=> 0x4005c0 <problem_function>: brk     #0x90f
(gdb) c
Continuing.
infrun: clear_proceed_status_thread (process 14198)
infrun: proceed (addr=0xffffffffffffffff, signal=GDB_SIGNAL_DEFAULT)
infrun: proceed: resuming process 14198
infrun: resume (step=0, signal=GDB_SIGNAL_0), trap_expected=0, current thread [process 14198] at 0x4005c0
infrun: infrun_async(1)
infrun: prepare_to_wait
infrun: target_wait (-1.0.0, status) =
infrun:   14198.14198.0 [process 14198],
infrun:   status->kind = stopped, signal = GDB_SIGNAL_TRAP
infrun: handle_inferior_event status->kind = stopped, signal = GDB_SIGNAL_TRAP
infrun: stop_pc = 0x4005c0
infrun: delayed software breakpoint trap, ignoring
infrun: no stepping, continue
infrun: resume (step=0, signal=GDB_SIGNAL_0), trap_expected=0, current thread [process 14198] at 0x4005c0
infrun: prepare_to_wait
infrun: target_wait (-1.0.0, status) =
infrun:   14198.14198.0 [process 14198],
infrun:   status->kind = stopped, signal = GDB_SIGNAL_TRAP
infrun: handle_inferior_event status->kind = stopped, signal = GDB_SIGNAL_TRAP
infrun: stop_pc = 0x4005c0
infrun: delayed software breakpoint trap, ignoring
infrun: no stepping, continue
infrun: resume (step=0, signal=GDB_SIGNAL_0), trap_expected=0, current thread [process 14198] at 0x4005c0
infrun: prepare_to_wait
infrun: target_wait (-1.0.0, status) =
infrun:   14198.14198.0 [process 14198],
infrun:   status->kind = stopped, signal = GDB_SIGNAL_TRAP
infrun: handle_inferior_event status->kind = stopped, signal = GDB_SIGNAL_TRAP
infrun: stop_pc = 0x4005c0
infrun: delayed software breakpoint trap, ignoring
infrun: no stepping, continue
infrun: resume (step=0, signal=GDB_SIGNAL_0), trap_expected=0, current thread [process 14198] at 0x4005c0
infrun: prepare_to_wait
infrun: target_wait (-1.0.0, status) =
infrun:   14198.14198.0 [process 14198],
infrun:   status->kind = stopped, signal = GDB_SIGNAL_TRAP
infrun: handle_inferior_event status->kind = stopped, signal = GDB_SIGNAL_TRAP
infrun: stop_pc = 0x4005c0
infrun: delayed software breakpoint trap, ignoring
infrun: no stepping, continue
infrun: resume (step=0, signal=GDB_SIGNAL_0), trap_expected=0, current thread [process 14198] at 0x4005c0
infrun: prepare_to_wait
infrun: target_wait (-1.0.0, status) =
infrun:   14198.14198.0 [process 14198],
infrun:   status->kind = stopped, signal = GDB_SIGNAL_TRAP
...

... which is not the case.

If the program breakpoint is one GDB recognizes, then it will stop when it
hits it.

(gdb) x/i $pc
=> 0x4005c0 <problem_function>: brk     #0x0
(gdb) c
Continuing.
infrun: clear_proceed_status_thread (process 14193)
infrun: proceed (addr=0xffffffffffffffff, signal=GDB_SIGNAL_DEFAULT)
infrun: proceed: resuming process 14193
infrun: resume (step=0, signal=GDB_SIGNAL_0), trap_expected=0, current thread [process 14193] at 0x4005c0
infrun: infrun_async(1)
infrun: prepare_to_wait
infrun: target_wait (-1.0.0, status) =
infrun:   14193.14193.0 [process 14193],
infrun:   status->kind = stopped, signal = GDB_SIGNAL_TRAP
infrun: handle_inferior_event status->kind = stopped, signal = GDB_SIGNAL_TRAP
infrun: stop_pc = 0x4005c0
infrun: random signal (GDB_SIGNAL_TRAP)
infrun: stop_waiting
infrun: stop_all_threads
infrun: stop_all_threads, pass=0, iterations=0
infrun:   process 14193 not executing
infrun: stop_all_threads, pass=1, iterations=1
infrun:   process 14193 not executing
infrun: stop_all_threads done

Program received signal SIGTRAP, Trace/breakpoint trap.
problem_function () at brk_0.c:7
7        asm("brk %0\n\t" ::"n"(0x0));
infrun: infrun_async(0)

Otherwise GDB will keep trying to resume the inferior and will keep
seeing the SIGTRAP's, without stopping.

To the user it appears GDB has gone into an infinite loop, interruptible only
by Ctrl-C.

Also, windbg seems to use a different variation of AArch64 breakpoint compared
to GDB. This causes problems when debugging Windows on ARM binaries, when
program breakpoints are being used.

The proposed patch creates a new gdbarch method (gdbarch_program_breakpoint_here_p)
that tells GDB whether the underlying instruction is a breakpoint instruction
or not.

This is more general than only checking for the instruction GDB uses as
breakpoint.

The existing logic is still preserved for targets that do not implement this
new gdbarch method.

The end result is like so:

(gdb) x/i $pc
=> 0x4005c0 <problem_function>: brk     #0x90f
(gdb) c
Continuing.
infrun: clear_proceed_status_thread (process 16417)
infrun: proceed (addr=0xffffffffffffffff, signal=GDB_SIGNAL_DEFAULT)
infrun: proceed: resuming process 16417
infrun: resume (step=0, signal=GDB_SIGNAL_0), trap_expected=0, current thread [process 16417] at 0x4005c0
infrun: infrun_async(1)
infrun: prepare_to_wait
infrun: target_wait (-1.0.0, status) =
infrun:   16417.16417.0 [process 16417],
infrun:   status->kind = stopped, signal = GDB_SIGNAL_TRAP
infrun: handle_inferior_event status->kind = stopped, signal = GDB_SIGNAL_TRAP
infrun: stop_pc = 0x4005c0
infrun: random signal (GDB_SIGNAL_TRAP)
infrun: stop_waiting
infrun: stop_all_threads
infrun: stop_all_threads, pass=0, iterations=0
infrun:   process 16417 not executing
infrun: stop_all_threads, pass=1, iterations=1
infrun:   process 16417 not executing
infrun: stop_all_threads done

Program received signal SIGTRAP, Trace/breakpoint trap.
problem_function () at brk.c:7
7        asm("brk %0\n\t" ::"n"(0x900 + 0xf));
infrun: infrun_async(0)

gdb/ChangeLog:

2020-01-29  Luis Machado  <luis.machado@linaro.org>

	* aarch64-tdep.c (BRK_INSN_MASK): Define to 0xffe0001f.
	(BRK_INSN_MASK): Define to 0xd4200000.
	(aarch64_program_breakpoint_here_p): New function.
	(aarch64_gdbarch_init): Set gdbarch_program_breakpoint_here_p hook.
	* arch-utils.c (default_program_breakpoint_here_p): Moved from
	breakpoint.c.
	* arch-utils.h (default_program_breakpoint_here_p): Moved from
	breakpoint.h
	* breakpoint.c (bp_loc_is_permanent): Changed return type to bool and
	call gdbarch_program_breakpoint_here_p.
	(program_breakpoint_here): Moved to arch-utils.c, renamed to
	default_program_breakpoint_here_p, changed return type to bool and
	simplified.
	* breakpoint.h (program_breakpoint_here): Moved prototype to
	arch-utils.h, renamed to default_program_breakpoint_here_p and changed
	return type to bool.
	* gdbarch.c: Regenerate.
	* gdbarch.h: Regenerate.
	* gdbarch.sh (program_breakpoint_here_p): New method.
	* infrun.c (handle_signal_stop): Call
	gdbarch_program_breakpoint_here_p.
2020-01-29 11:25:10 -03:00
Joel Brobecker
b811d2c292 Update copyright year range in all GDB files.
gdb/ChangeLog:

        Update copyright year range in all GDB files.
2020-01-01 10:20:53 +04:00
Tom Tromey
953cff5630 Change gcc_target_options to return std::string
This patch was inspired by a recent review that recommended using
std::string in a new implementation of the gcc_target_options gdbarch
function.  It changes this function to return std::string rather than
an ordinary xmalloc'd string.

I believe this caught a latent memory leak in compile.c:get_args.

Tested on x86-64 Fedora 29.

gdb/ChangeLog
2019-10-15  Tom Tromey  <tromey@adacore.com>

	* gdbarch.h, gdbarch.c: Rebuild.
	* gdbarch.sh (gcc_target_options): Change return type to
	std::string.
	* compile/compile.c (get_args): Update.
	* nios2-tdep.c (nios2_gcc_target_options): Return std::string.
	* arm-linux-tdep.c (arm_linux_gcc_target_options): Return
	std::string.
	* aarch64-linux-tdep.c (aarch64_linux_gcc_target_options): Return
	std::string.
	* arch-utils.c (default_gcc_target_options): Return std::string.
	* arch-utils.h (default_gcc_target_options): Return std::string.
	* s390-tdep.c (s390_gcc_target_options): Return std::string.

Change-Id: I51f61703426a323089e646da8f22320a2cafbc1f
2019-10-15 11:03:57 -06:00
Alan Hayward
aa7ca1bb44 Move [PAC] into a new MI field addr_flags
Add a new print_pc which prints both the PC and a new field addr_flags.
Call this wherever the PC is printed in stack.c.

Add a new gdbarch method get_pc_address_flags to obtain the addr_flag
contents. By default returns an empty string, on AArch64 this returns
PAC if the address has been masked in the frame.

Document this in the manual and NEWS file.

gdb/ChangeLog:

	* NEWS (Other MI changes): New subsection.
	* aarch64-tdep.c (aarch64_get_pc_address_flags): New function.
	(aarch64_gdbarch_init): Add aarch64_get_pc_address_flags.
	* arch-utils.c (default_get_pc_address_flags): New function.
	* arch-utils.h (default_get_pc_address_flags): New declaration.
	* gdbarch.sh: Add get_pc_address_flags.
	* gdbarch.c: Regenerate.
	* gdbarch.h: Likewise.
	* stack.c (print_pc): New function.
	(print_frame_info) (print_frame): Call print_pc.

gdb/doc/ChangeLog:

	* gdb.texinfo (AArch64 Pointer Authentication)
	(GDB/MI Breakpoint Information) (Frame Information): Document
	addr_field.
2019-08-16 10:19:18 +01:00
Tom Tromey
0d12e84cfc Don't include gdbarch.h from defs.h
I touched symtab.h and was surprised to see how many files were
rebuilt.  I looked into it a bit, and found that defs.h includes
gdbarch.h, which in turn includes many things.

gdbarch.h is only needed by a minority ofthe files in gdb, so this
patch removes the include from defs.h and updates the fallout.

I did "wc -l" on the files in build/gdb/.deps; this patch reduces the
line count from 139935 to 137030; so there are definitely future
build-time savings here.

Note that while I configured with --enable-targets=all, it's possible
that some *-nat.c file needs an update.  I could not test all of
these.  The buildbot caught a few problems along these lines.

gdb/ChangeLog
2019-07-10  Tom Tromey  <tom@tromey.com>

	* defs.h: Don't include gdbarch.h.
	* aarch64-ravenscar-thread.c, aarch64-tdep.c, alpha-bsd-tdep.h,
	alpha-linux-tdep.c, alpha-mdebug-tdep.c, arch-utils.h, arm-tdep.h,
	ax-general.c, btrace.c, buildsym-legacy.c, buildsym.h, c-lang.c,
	cli/cli-decode.h, cli/cli-dump.c, cli/cli-script.h,
	cli/cli-style.h, coff-pe-read.h, compile/compile-c-support.c,
	compile/compile-cplus.h, compile/compile-loc2c.c, corefile.c,
	cp-valprint.c, cris-linux-tdep.c, ctf.c, d-lang.c, d-namespace.c,
	dcache.c, dicos-tdep.c, dictionary.c, disasm-selftests.c,
	dummy-frame.c, dummy-frame.h, dwarf2-frame-tailcall.c,
	dwarf2expr.c, expression.h, f-lang.c, frame-base.c,
	frame-unwind.c, frv-linux-tdep.c, gdbarch-selftests.c, gdbtypes.h,
	go-lang.c, hppa-nbsd-tdep.c, hppa-obsd-tdep.c, i386-dicos-tdep.c,
	i386-tdep.h, ia64-vms-tdep.c, interps.h, language.c,
	linux-record.c, location.h, m2-lang.c, m32r-linux-tdep.c,
	mem-break.c, memattr.c, mn10300-linux-tdep.c, nios2-linux-tdep.c,
	objfiles.h, opencl-lang.c, or1k-linux-tdep.c, p-lang.c,
	parser-defs.h, ppc-tdep.h, probe.h, python/py-record-btrace.c,
	record-btrace.c, record.h, regcache-dump.c, regcache.h,
	riscv-fbsd-tdep.c, riscv-linux-tdep.c, rust-exp.y,
	sh-linux-tdep.c, sh-nbsd-tdep.c, source-cache.c,
	sparc-nbsd-tdep.c, sparc-obsd-tdep.c, sparc-ravenscar-thread.c,
	sparc64-fbsd-tdep.c, std-regs.c, target-descriptions.h,
	target-float.c, tic6x-linux-tdep.c, tilegx-linux-tdep.c, top.c,
	tracefile.c, trad-frame.c, type-stack.h, ui-style.c, utils.c,
	utils.h, valarith.c, valprint.c, varobj.c, x86-tdep.c,
	xml-support.h, xtensa-linux-tdep.c, cli/cli-cmds.h: Update.
	* s390-linux-nat.c, procfs.c, inf-ptrace.c: Likewise.
2019-07-10 14:53:53 -06:00
Tom Tromey
1a5c25988e Normalize include guards in gdb
While working on my other scripts to deal with gdb headers, I noticed
that some files were missing include guards.  I wrote a script to add
the missing ones, but found that using the obvious names for the
guards ran into clashes -- for example, gdb/nat/linux-nat.h used
"LINUX_NAT_H", but this was also the script's choice for
gdb/linux-nat.h.

So, I changed the script to normalize all include guards in gdb.  This
patch is the result.

As usual the script is available here:

    https://github.com/tromey/gdb-refactoring-scripts

Tested by rebuilding; I also ran it through "Fedora-x86_64-m64" on the
buildbot.

gdb/ChangeLog
2019-02-07  Tom Tromey  <tom@tromey.com>

	* yy-remap.h: Add include guard.
	* xtensa-tdep.h: Add include guard.
	* xcoffread.h: Rename include guard.
	* varobj-iter.h: Add include guard.
	* tui/tui.h: Rename include guard.
	* tui/tui-winsource.h: Rename include guard.
	* tui/tui-wingeneral.h: Rename include guard.
	* tui/tui-windata.h: Rename include guard.
	* tui/tui-win.h: Rename include guard.
	* tui/tui-stack.h: Rename include guard.
	* tui/tui-source.h: Rename include guard.
	* tui/tui-regs.h: Rename include guard.
	* tui/tui-out.h: Rename include guard.
	* tui/tui-layout.h: Rename include guard.
	* tui/tui-io.h: Rename include guard.
	* tui/tui-hooks.h: Rename include guard.
	* tui/tui-file.h: Rename include guard.
	* tui/tui-disasm.h: Rename include guard.
	* tui/tui-data.h: Rename include guard.
	* tui/tui-command.h: Rename include guard.
	* tic6x-tdep.h: Add include guard.
	* target/waitstatus.h: Rename include guard.
	* target/wait.h: Rename include guard.
	* target/target.h: Rename include guard.
	* target/resume.h: Rename include guard.
	* target-float.h: Rename include guard.
	* stabsread.h: Add include guard.
	* rs6000-tdep.h: Add include guard.
	* riscv-fbsd-tdep.h: Add include guard.
	* regformats/regdef.h: Rename include guard.
	* record.h: Rename include guard.
	* python/python.h: Rename include guard.
	* python/python-internal.h: Rename include guard.
	* python/py-stopevent.h: Rename include guard.
	* python/py-ref.h: Rename include guard.
	* python/py-record.h: Rename include guard.
	* python/py-record-full.h: Rename include guard.
	* python/py-record-btrace.h: Rename include guard.
	* python/py-instruction.h: Rename include guard.
	* python/py-events.h: Rename include guard.
	* python/py-event.h: Rename include guard.
	* procfs.h: Add include guard.
	* proc-utils.h: Add include guard.
	* p-lang.h: Add include guard.
	* or1k-tdep.h: Rename include guard.
	* observable.h: Rename include guard.
	* nto-tdep.h: Rename include guard.
	* nat/x86-linux.h: Rename include guard.
	* nat/x86-linux-dregs.h: Rename include guard.
	* nat/x86-gcc-cpuid.h: Add include guard.
	* nat/x86-dregs.h: Rename include guard.
	* nat/x86-cpuid.h: Rename include guard.
	* nat/ppc-linux.h: Rename include guard.
	* nat/mips-linux-watch.h: Rename include guard.
	* nat/linux-waitpid.h: Rename include guard.
	* nat/linux-ptrace.h: Rename include guard.
	* nat/linux-procfs.h: Rename include guard.
	* nat/linux-osdata.h: Rename include guard.
	* nat/linux-nat.h: Rename include guard.
	* nat/linux-namespaces.h: Rename include guard.
	* nat/linux-btrace.h: Rename include guard.
	* nat/glibc_thread_db.h: Rename include guard.
	* nat/gdb_thread_db.h: Rename include guard.
	* nat/gdb_ptrace.h: Rename include guard.
	* nat/fork-inferior.h: Rename include guard.
	* nat/amd64-linux-siginfo.h: Rename include guard.
	* nat/aarch64-sve-linux-sigcontext.h: Rename include guard.
	* nat/aarch64-sve-linux-ptrace.h: Rename include guard.
	* nat/aarch64-linux.h: Rename include guard.
	* nat/aarch64-linux-hw-point.h: Rename include guard.
	* mn10300-tdep.h: Add include guard.
	* mips-linux-tdep.h: Add include guard.
	* mi/mi-parse.h: Rename include guard.
	* mi/mi-out.h: Rename include guard.
	* mi/mi-main.h: Rename include guard.
	* mi/mi-interp.h: Rename include guard.
	* mi/mi-getopt.h: Rename include guard.
	* mi/mi-console.h: Rename include guard.
	* mi/mi-common.h: Rename include guard.
	* mi/mi-cmds.h: Rename include guard.
	* mi/mi-cmd-break.h: Rename include guard.
	* m2-lang.h: Add include guard.
	* location.h: Rename include guard.
	* linux-record.h: Rename include guard.
	* linux-nat.h: Add include guard.
	* linux-fork.h: Add include guard.
	* i386-darwin-tdep.h: Rename include guard.
	* hppa-linux-offsets.h: Add include guard.
	* guile/guile.h: Rename include guard.
	* guile/guile-internal.h: Rename include guard.
	* gnu-nat.h: Rename include guard.
	* gdb-stabs.h: Rename include guard.
	* frv-tdep.h: Add include guard.
	* f-lang.h: Add include guard.
	* event-loop.h: Add include guard.
	* darwin-nat.h: Rename include guard.
	* cp-abi.h: Rename include guard.
	* config/sparc/nm-sol2.h: Rename include guard.
	* config/nm-nto.h: Rename include guard.
	* config/nm-linux.h: Add include guard.
	* config/i386/nm-i386gnu.h: Rename include guard.
	* config/djgpp/nl_types.h: Rename include guard.
	* config/djgpp/langinfo.h: Rename include guard.
	* compile/gcc-cp-plugin.h: Add include guard.
	* compile/gcc-c-plugin.h: Add include guard.
	* compile/compile.h: Rename include guard.
	* compile/compile-object-run.h: Rename include guard.
	* compile/compile-object-load.h: Rename include guard.
	* compile/compile-internal.h: Rename include guard.
	* compile/compile-cplus.h: Rename include guard.
	* compile/compile-c.h: Rename include guard.
	* common/xml-utils.h: Rename include guard.
	* common/x86-xstate.h: Rename include guard.
	* common/version.h: Rename include guard.
	* common/vec.h: Rename include guard.
	* common/tdesc.h: Rename include guard.
	* common/selftest.h: Rename include guard.
	* common/scoped_restore.h: Rename include guard.
	* common/scoped_mmap.h: Rename include guard.
	* common/scoped_fd.h: Rename include guard.
	* common/safe-iterator.h: Rename include guard.
	* common/run-time-clock.h: Rename include guard.
	* common/refcounted-object.h: Rename include guard.
	* common/queue.h: Rename include guard.
	* common/ptid.h: Rename include guard.
	* common/print-utils.h: Rename include guard.
	* common/preprocessor.h: Rename include guard.
	* common/pathstuff.h: Rename include guard.
	* common/observable.h: Rename include guard.
	* common/netstuff.h: Rename include guard.
	* common/job-control.h: Rename include guard.
	* common/host-defs.h: Rename include guard.
	* common/gdb_wait.h: Rename include guard.
	* common/gdb_vecs.h: Rename include guard.
	* common/gdb_unlinker.h: Rename include guard.
	* common/gdb_unique_ptr.h: Rename include guard.
	* common/gdb_tilde_expand.h: Rename include guard.
	* common/gdb_sys_time.h: Rename include guard.
	* common/gdb_string_view.h: Rename include guard.
	* common/gdb_splay_tree.h: Rename include guard.
	* common/gdb_setjmp.h: Rename include guard.
	* common/gdb_ref_ptr.h: Rename include guard.
	* common/gdb_optional.h: Rename include guard.
	* common/gdb_locale.h: Rename include guard.
	* common/gdb_assert.h: Rename include guard.
	* common/filtered-iterator.h: Rename include guard.
	* common/filestuff.h: Rename include guard.
	* common/fileio.h: Rename include guard.
	* common/environ.h: Rename include guard.
	* common/common-utils.h: Rename include guard.
	* common/common-types.h: Rename include guard.
	* common/common-regcache.h: Rename include guard.
	* common/common-inferior.h: Rename include guard.
	* common/common-gdbthread.h: Rename include guard.
	* common/common-exceptions.h: Rename include guard.
	* common/common-defs.h: Rename include guard.
	* common/common-debug.h: Rename include guard.
	* common/cleanups.h: Rename include guard.
	* common/buffer.h: Rename include guard.
	* common/btrace-common.h: Rename include guard.
	* common/break-common.h: Rename include guard.
	* cli/cli-utils.h: Rename include guard.
	* cli/cli-style.h: Rename include guard.
	* cli/cli-setshow.h: Rename include guard.
	* cli/cli-script.h: Rename include guard.
	* cli/cli-interp.h: Rename include guard.
	* cli/cli-decode.h: Rename include guard.
	* cli/cli-cmds.h: Rename include guard.
	* charset-list.h: Add include guard.
	* buildsym-legacy.h: Rename include guard.
	* bfin-tdep.h: Add include guard.
	* ax.h: Rename include guard.
	* arm-linux-tdep.h: Add include guard.
	* arm-fbsd-tdep.h: Add include guard.
	* arch/xtensa.h: Rename include guard.
	* arch/tic6x.h: Add include guard.
	* arch/i386.h: Add include guard.
	* arch/arm.h: Rename include guard.
	* arch/arm-linux.h: Rename include guard.
	* arch/arm-get-next-pcs.h: Rename include guard.
	* arch/amd64.h: Add include guard.
	* arch/aarch64-insn.h: Rename include guard.
	* arch-utils.h: Rename include guard.
	* annotate.h: Add include guard.
	* amd64-darwin-tdep.h: Rename include guard.
	* aarch64-linux-tdep.h: Add include guard.
	* aarch64-fbsd-tdep.h: Add include guard.
	* aarch32-linux-nat.h: Add include guard.

gdb/gdbserver/ChangeLog
2019-02-07  Tom Tromey  <tom@tromey.com>

	* x86-tdesc.h: Rename include guard.
	* x86-low.h: Add include guard.
	* wincecompat.h: Rename include guard.
	* win32-low.h: Add include guard.
	* utils.h: Rename include guard.
	* tracepoint.h: Rename include guard.
	* tdesc.h: Rename include guard.
	* target.h: Rename include guard.
	* server.h: Rename include guard.
	* remote-utils.h: Rename include guard.
	* regcache.h: Rename include guard.
	* nto-low.h: Rename include guard.
	* notif.h: Add include guard.
	* mem-break.h: Rename include guard.
	* lynx-low.h: Add include guard.
	* linux-x86-tdesc.h: Add include guard.
	* linux-s390-tdesc.h: Add include guard.
	* linux-ppc-tdesc-init.h: Add include guard.
	* linux-low.h: Add include guard.
	* linux-aarch64-tdesc.h: Add include guard.
	* linux-aarch32-low.h: Add include guard.
	* inferiors.h: Rename include guard.
	* i387-fp.h: Rename include guard.
	* hostio.h: Rename include guard.
	* gdbthread.h: Rename include guard.
	* gdb_proc_service.h: Rename include guard.
	* event-loop.h: Rename include guard.
	* dll.h: Rename include guard.
	* debug.h: Rename include guard.
	* ax.h: Rename include guard.
2019-02-07 03:27:23 -07:00
Joel Brobecker
42a4f53d2b Update copyright year range in all GDB files.
This commit applies all changes made after running the gdb/copyright.py
script.

Note that one file was flagged by the script, due to an invalid
copyright header
(gdb/unittests/basic_string_view/element_access/char/empty.cc).
As the file was copied from GCC's libstdc++-v3 testsuite, this commit
leaves this file untouched for the time being; a patch to fix the header
was sent to gcc-patches first.

gdb/ChangeLog:

	Update copyright year range in all GDB files.
2019-01-01 10:01:51 +04:00
Tom Tromey
2b4424c35b Add initial type alignment support
This adds some basic type alignment support to gdb.  It changes struct
type to store the alignment, and updates dwarf2read.c to handle
DW_AT_alignment.  It also adds a new gdbarch method and updates
i386-tdep.c.

None of this new functionality is used anywhere yet, so tests will
wait until the next patch.

2018-04-30  Tom Tromey  <tom@tromey.com>

	* i386-tdep.c (i386_type_align): New function.
	(i386_gdbarch_init): Update.
	* gdbarch.sh (type_align): New method.
	* gdbarch.c, gdbarch.h: Rebuild.
	* arch-utils.h (default_type_align): Declare.
	* arch-utils.c (default_type_align): New function.
	* gdbtypes.h (TYPE_ALIGN_BITS): New define.
	(struct type) <align_log2>: New field.
	<instance_flags>: Now a bitfield.
	(TYPE_RAW_ALIGN): New macro.
	(type_align, type_raw_align, set_type_align): Declare.
	* gdbtypes.c (type_align, type_raw_align, set_type_align): New
	functions.
	* dwarf2read.c (quirk_rust_enum): Set type alignment.
	(get_alignment, maybe_set_alignment): New functions.
	(read_structure_type, read_enumeration_type, read_array_type)
	(read_set_type, read_tag_pointer_type, read_tag_reference_type)
	(read_subrange_type, read_base_type): Set type alignment.
2018-04-30 11:25:30 -06:00
Markus Metzger
1d509aa625 infrun: step through indirect branch thunks
With version 7.3 GCC supports new options

   -mindirect-branch=<choice>
   -mfunction-return=<choice>

The choices are:

    keep                behaves as before
    thunk               jumps through a thunk
    thunk-external      jumps through an external thunk
    thunk-inline        jumps through an inlined thunk

For thunk and thunk-external, GDB would, on a call to the thunk, step into
the thunk and then resume to its caller assuming that this is an
undebuggable function.  On a return thunk, GDB would stop inside the
thunk.

Make GDB step through such thunks instead.

Before:
    Temporary breakpoint 1, main ()
        at gdb.base/step-indirect-call-thunk.c:37
    37        x = apply (inc, 41);
    (gdb) s
    apply (op=0x80483e6 <inc>, x=41)
        at gdb.base/step-indirect-call-thunk.c:29
    29        return op (x);
    (gdb)
    30      }

After:
    Temporary breakpoint 1, main ()
        at gdb.base/step-indirect-call-thunk.c:37
    37        x = apply (inc, 41);
    (gdb) s
    apply (op=0x80483e6 <inc>, x=41)
        at gdb.base/step-indirect-call-thunk.c:29
    29        return op (x);
    (gdb)
    inc (x=41) at gdb.base/step-indirect-call-thunk.c:23
    23        return x + 1;

This is independent of the step-mode.  In order to step into the thunk,
you would need to use stepi.

When stepping over an indirect call thunk, GDB would first step through
the thunk, then recognize that it stepped into a sub-routine and resume to
the caller (of the thunk).  Not sure whether this is worth optimizing.

Thunk detection is implemented via gdbarch.  I implemented the methods for
IA.  Other architectures may run into unexpected fails.

The tests assume a fixed number of instruction steps to reach a thunk.
This depends on the compiler as well as the architecture.  They may need
adjustments when we add support for more architectures.  Or we can simply
drop those tests that cover being able to step into thunks using
instruction stepping.

When using an older GCC, the tests will fail to build and will be reported
as untested:

    Running .../gdb.base/step-indirect-call-thunk.exp ...
    gdb compile failed, \
    gcc: error: unrecognized command line option '-mindirect-branch=thunk'
    gcc: error: unrecognized command line option '-mfunction-return=thunk'

                    === gdb Summary ===

    # of untested testcases         1

gdb/
	* infrun.c (process_event_stop_test): Call
	gdbarch_in_indirect_branch_thunk.
	* gdbarch.sh (in_indirect_branch_thunk): New.
	* gdbarch.c: Regenerated.
	* gdbarch.h: Regenerated.
	* x86-tdep.h: New.
	* x86-tdep.c: New.
	* Makefile.in (ALL_TARGET_OBS): Add x86-tdep.o.
	(HFILES_NO_SRCDIR): Add x86-tdep.h.
	(ALLDEPFILES): Add x86-tdep.c.
	* arch-utils.h (default_in_indirect_branch_thunk): New.
	* arch-utils.c (default_in_indirect_branch_thunk): New.
	* i386-tdep: Include x86-tdep.h.
	(i386_in_indirect_branch_thunk): New.
	(i386_elf_init_abi): Set in_indirect_branch_thunk gdbarch
	function.
	* amd64-tdep: Include x86-tdep.h.
	(amd64_in_indirect_branch_thunk): New.
	(amd64_init_abi): Set in_indirect_branch_thunk gdbarch function.

testsuite/
	* gdb.base/step-indirect-call-thunk.exp: New.
	* gdb.base/step-indirect-call-thunk.c: New.
	* gdb.reverse/step-indirect-call-thunk.exp: New.
	* gdb.reverse/step-indirect-call-thunk.c: New.
2018-04-13 10:44:47 +02:00
Tom Tromey
281d762b1a Remove cleanups from check_fast_tracepoint_sals
This changes the gdbarch fast_tracepoint_valid_at method to use a
std::string as its out parameter, and then updates all the uses.  This
allows removing a cleanup from breakpoint.c.

Regression tested by the buildbot.

ChangeLog
2018-02-24  Tom Tromey  <tom@tromey.com>

	* i386-tdep.c (i386_fast_tracepoint_valid_at): "msg" now a
	std::string.
	* gdbarch.sh (fast_tracepoint_valid_at): Change "msg" to a
	std::string*.
	* gdbarch.c: Rebuild.
	* gdbarch.h: Rebuild.
	* breakpoint.c (check_fast_tracepoint_sals): Use std::string.
	* arch-utils.h (default_fast_tracepoint_valid_at): Update.
	* arch-utils.c (default_fast_tracepoint_valid_at): "msg" now a
	std::string*.
2018-02-24 10:01:11 -07:00
Joel Brobecker
e2882c8578 Update copyright year range in all GDB files
gdb/ChangeLog:

        Update copyright year range in all GDB files
2018-01-02 07:38:06 +04:00
Simon Marchi
c2508e905f Remove simple_displaced_step_copy_insn
Nothing uses this function.  Remove it, and adjust comments referring to
it.

gdb/ChangeLog:

	* arch-utils.h (simple_displaced_step_copy_insn): Remove.
	* arch-utils.c (simple_displaced_step_copy_insn): Remove.
	* gdbarch.sh (displaced_step_copy_insn): Adjust comment.
	* gdbarch.h: Regenerate.
	* i386-linux-tdep.c (i386_linux_displaced_step_copy_insn):
	Adjust comment.
	* i386-tdep.c (i386_displaced_step_copy_insn): Adjust comment.
	(i386_displaced_step_fixup): Adjust comment.
	* rs6000-tdep.c (ppc_displaced_step_copy_insn): Adjust comment.
2017-10-12 21:42:23 -04:00
Yao Qi
46a62268b8 Catch exceptions thrown from gdbarch_skip_prologue
PR 21555 is caused by the exception during the prologue analysis when re-set
a breakpoint.

(gdb) bt
 #0  memory_error_message (err=TARGET_XFER_E_IO, gdbarch=0x153db50, memaddr=93824992233232) at ../../binutils-gdb/gdb/corefile.c:192
 #1  0x00000000005718ed in memory_error (err=TARGET_XFER_E_IO, memaddr=memaddr@entry=93824992233232) at ../../binutils-gdb/gdb/corefile.c:220
 #2  0x00000000005719d6 in read_memory_object (object=object@entry=TARGET_OBJECT_CODE_MEMORY, memaddr=93824992233232, memaddr@entry=1, myaddr=myaddr@entry=0x7fffffffd0a0 "P\333S\001", len=len@entry=1) at ../../binutils-gdb/gdb/corefile.c:259
 #3  0x0000000000571c6e in read_code (len=1, myaddr=0x7fffffffd0a0 "P\333S\001", memaddr=<optimized out>) at ../../binutils-gdb/gdb/corefile.c:287
 #4  read_code_unsigned_integer (memaddr=memaddr@entry=93824992233232, len=len@entry=1, byte_order=byte_order@entry=BFD_ENDIAN_LITTLE)                          at ../../binutils-gdb/gdb/corefile.c:362
 #5  0x000000000041d4a0 in amd64_analyze_prologue (gdbarch=gdbarch@entry=0x153db50, pc=pc@entry=93824992233232, current_pc=current_pc@entry=18446744073709551615, cache=cache@entry=0x7fffffffd1e0) at ../../binutils-gdb/gdb/amd64-tdep.c:2310
 #6  0x000000000041e404 in amd64_skip_prologue (gdbarch=0x153db50, start_pc=93824992233232) at ../../binutils-gdb/gdb/amd64-tdep.c:2459
 #7  0x000000000067bfb0 in skip_prologue_sal (sal=sal@entry=0x7fffffffd4e0) at ../../binutils-gdb/gdb/symtab.c:3628
 #8  0x000000000067c4d8 in find_function_start_sal (sym=sym@entry=0x1549960, funfirstline=1) at ../../binutils-gdb/gdb/symtab.c:3501
 #9  0x000000000060999d in symbol_to_sal (result=result@entry=0x7fffffffd5f0, funfirstline=<optimized out>, sym=sym@entry=0x1549960) at ../../binutils-gdb/gdb/linespec.c:3860
....
 #16 0x000000000054b733 in location_to_sals (b=b@entry=0x15792d0, location=0x157c230, search_pspace=search_pspace@entry=0x1148120, found=found@entry=0x7fffffffdc64) at ../../binutils-gdb/gdb/breakpoint.c:14211
 #17 0x000000000054c1f5 in breakpoint_re_set_default (b=0x15792d0) at ../../binutils-gdb/gdb/breakpoint.c:14301
 #18 0x00000000005412a9 in breakpoint_re_set_one (bint=bint@entry=0x15792d0) at ../../binutils-gdb/gdb/breakpoint.c:14412

This problem can be fixed by

 - either each prologue analyzer doesn't throw exception,
 - or catch the exception thrown from gdbarch_skip_prologue,

I choose the latter because the former needs to fix *every* prologue
analyzer to not throw exception.

This error can be reproduced by changing reread.exp.  The test reread.exp
has already test that breakpoint can be reset correctly after the
executable is re-read.  This patch extends this test by compiling test c
file with and without -fPIE.

(gdb) run ^M
The program being debugged has been started already.^M
Start it from the beginning? (y or n) y^M
x86_64/gdb/testsuite/outputs/gdb.base/reread/reread' has changed; re-reading symbols.
Error in re-setting breakpoint 1: Cannot access memory at address 0x555555554790^M
Error in re-setting breakpoint 2: Cannot access memory at address 0x555555554790^M
Starting program: /scratch/yao/gdb/build-git/x86_64/gdb/testsuite/outputs/gdb.base/reread/reread ^M
This is foo^M
[Inferior 1 (process 27720) exited normally]^M
(gdb) FAIL: gdb.base/reread.exp: opts= "-fPIE" "ldflags=-pie" : run to foo() second time (the program exited)

This patch doesn't re-indent the code, to keep the patch simple.

gdb:

2017-07-25  Yao Qi  <yao.qi@linaro.org>

	PR gdb/21555
	* arch-utils.c (gdbarch_skip_prologue_noexcept): New function.
	* arch-utils.h (gdbarch_skip_prologue_noexcept): Declare.
	* infrun.c: Include arch-utils.h
	(handle_step_into_function): Call gdbarch_skip_prologue_noexcept.
	(handle_step_into_function_backward): Likewise.
	* symtab.c (skip_prologue_sal): Likewise.

gdb/testsuite:

2017-07-25  Yao Qi  <yao.qi@linaro.org>

	PR gdb/21555
	* gdb.base/reread.exp: Wrap the whole test with two kinds of
	compilation flags, with -fPIE and without -fPIE.
2017-07-25 11:38:50 +01:00
Simon Marchi
6d45d4b42b gdbarch: Remove displaced_step_free_closure
The displaced_step_free_closure gdbarch hook allows architectures to
free data they might have allocated to complete a displaced step.
However, all architectures using that hook use the
simple_displaced_step_free_closure provided in arch-utils.{c,h}, which
does a simple xfree.  We can remove it and do an xfree directly instead
of calling the hook.

gdb/ChangeLog:

	* gdbarch.sh (displaced_step_free_closure): Remove.
	* gdbarch.h, gdbarch.c: Re-generate.
	* aarch64-linux-tdep.c (aarch64_linux_init_abi): Don't set
	displaced_step_free_closure.
	* amd64-linux-tdep.c (amd64_linux_init_abi_common): Likewise.
	* arm-linux-tdep.c (arm_linux_init_abi): Likewise.
	* i386-linux-tdep.c (i386_linux_init_abi): Likewise.
	* rs6000-aix-tdep.c (rs6000_aix_init_osabi): Likewise.
	* rs6000-tdep.c (rs6000_gdbarch_init): Likewise.
	* s390-linux-tdep.c (s390_gdbarch_init): Likewise.
	* arch-utils.h (simple_displaced_step_free_closure): Remove.
	* arch-utils.c (simple_displaced_step_free_closure): Remove.
	* infrun.c (displaced_step_clear): Call xfree instead of
	gdbarch_displaced_step_free_closure.
2017-06-10 00:24:50 +02:00
Yao Qi
39503f8242 Delegate opcodes to select disassembler in GDB
This patch changes GDB to use disassembler selected by opcodes in
default, so that we don't have to duplicate the selection logic again
in GDB side.  For example, gdb/score-tdep.c has

static int
score_print_insn (bfd_vma memaddr, struct disassemble_info *info)
{
  if (info->endian == BFD_ENDIAN_BIG)
    return print_insn_big_score (memaddr, info);
  else
    return print_insn_little_score (memaddr, info);
}

and opcodes/disassemble.c has the same logic,

    case bfd_arch_score:
      if (big)
	disassemble = print_insn_big_score;
      else
	disassemble = print_insn_little_score;

This patch removes the logic in GDB and calls
opcodes/disassemble.c:disassembler in default to select disassembler.

gdb:

2017-05-24  Yao Qi  <yao.qi@linaro.org>

	* alpha-tdep.c (alpha_gdbarch_init): Don't call
	set_gdbarch_print_insn.
	* arc-tdep.c (arc_gdbarch_init): Likewise.
	* arch-utils.c: include dis-asm.h.
	(default_print_insn): New function.
	* arch-utils.h (default_print_insn): Declare.
	* avr-tdep.c (avr_gdbarch_init): Don't call set_gdbarch_print_insn.
	* bfin-tdep.c (bfin_gdbarch_init): Likewise.
	* cris-tdep.c (cris_delayed_get_disassembler): Remove.
	(cris_gdbarch_init): Don't call set_gdbarch_print_insn.
	* frv-tdep.c (frv_gdbarch_init): Likewise.
	* ft32-tdep.c (ft32_gdbarch_init): Likewise.
	* gdbarch.sh (print_insn): Use default_print_insn.
	* gdbarch.c: Regenerated.
	* hppa-tdep.c (hppa_gdbarch_init): Likewise.
	* iq2000-tdep.c (iq2000_gdbarch_init): Likewise.
	* lm32-tdep.c (lm32_gdbarch_init): Likewise.
	* m32c-tdep.c (m32c_gdbarch_init): Likewise.
	* m32r-tdep.c (m32r_gdbarch_init): Likewise.
	* m68hc11-tdep.c (gdb_print_insn_m68hc11): Remove.
	(m68hc11_gdbarch_init): Don't call set_gdbarch_print_insn.
	* m68k-tdep.c (m68k_gdbarch_init): Likewise.
	* m88k-tdep.c (m88k_gdbarch_init): Likewise.
	* microblaze-tdep.c (microblaze_gdbarch_init): Likewise.
	* mn10300-tdep.c (mn10300_gdbarch_init): Likewise.
	* moxie-tdep.c (moxie_gdbarch_init): Likewise.
	* msp430-tdep.c (msp430_gdbarch_init): Likewise.
	* mt-tdep.c (mt_gdbarch_init): Likewise.
	* nds32-tdep.c (nds32_gdbarch_init): Likewise.
	* nios2-tdep.c (nios2_print_insn): Remove.
	(nios2_gdbarch_init): Don't call set_gdbarch_print_insn.
	* rx-tdep.c (rx_gdbarch_init): Likewise.
	* s390-linux-tdep.c (s390_gdbarch_init): Likewise.
	* score-tdep.c (score_print_insn): Remove.
	(score_gdbarch_init): Don't call set_gdbarch_print_insn.
	* sh-tdep.c (sh_gdbarch_init): Likewise.
	* sh64-tdep.c (sh64_gdbarch_init): Likewise.
	* sparc-tdep.c (sparc32_gdbarch_init): Likewise.
	* tic6x-tdep.c (tic6x_print_insn): Remove.
	(tic6x_gdbarch_init): Don't call set_gdbarch_print_insn.
	* tilegx-tdep.c (tilegx_gdbarch_init): Likewise.
	* v850-tdep.c (v850_gdbarch_init): Likewise.
	* vax-tdep.c (vax_gdbarch_init): Likewise.
	* xstormy16-tdep.c (xstormy16_gdbarch_init): Likewise.
	* xtensa-tdep.c (xtensa_gdbarch_init): Likewise.
2017-05-24 17:23:52 +01:00
Jiong Wang
b41c5a85a7 [gdbarch] New method "execute_dwarf_cfa_vendor_op" and migrate SPARC to it
Recently a feature called "return address signing" has been added to GCC to
prevent stack smash stack on AArch64.  For details please refer:

  https://gcc.gnu.org/ml/gcc-patches/2017-01/msg00376.html

GDB needs to be aware of this feature so it can restore the original return
address which is critical for unwinding.

On compiler side, whenever return address, i.e. LR register, is mangled or
restored by hardware instruction, compiler is expected to generate a
DW_CFA_AARCH64_negate_ra_state to toggle return address signing status.

DW_CFA_AARCH64_negate_ra_state is using the same CFI number and
therefore need to be multiplexed with DW_CFA_GNU_window_save which was designed
for SPARC.

A new gdbarch method "execute_dwarf_cfa_vendor_op" is introduced by this patch.
It's parameters has been restricted to those only needed by SPARC and AArch64
for multiplexing DW_CFA_GNU_window_save which is a CFI operation takes none
operand.  Should any further DWARF CFI operation want to be multiplexed in the
future,  the parameter list can be extended.  Below is the current function
prototype.

   typedef int (gdbarch_execute_dwarf_cfa_vendor_op_ftype)
     (struct gdbarch *gdbarch, gdb_byte op, struct dwarf2_frame_state *fs);

DW_CFA_GNU_window_save support for SPARC is migrated to this new gdbarch
method by this patch.

gdb/
	* gdbarch.sh: New gdbarch method execute_dwarf_cfa_vendor_op.
	* gdbarch.c: Regenerated.
	* gdbarch.h: Regenerated.
	* dwarf2-frame.c (dwarf2_frame_state_alloc_regs): Made the
	visibility external.
	(execute_cfa_program): Call execute_dwarf_cfa_vendor_op for CFI
	between DW_CFA_lo_user and DW_CFA_high_user inclusive.
	(enum cfa_how_kind): Move to ...
	(struct dwarf2_frame_state_reg_info): Likewise.
	(struct dwarf2_frame_state): Likewise.
	* dwarf2-frame.h: ... here.
	(dwarf2_frame_state_alloc_regs): New declaration.
	* sparc-tdep.c (sparc_execute_dwarf_cfa_vendor_op): New function.
	(sparc32_gdbarch_init): Register execute_dwarf_cfa_vendor_op hook.
2017-04-26 14:05:03 +01:00
Joel Brobecker
61baf725ec update copyright year range in GDB files
This applies the second part of GDB's End of Year Procedure, which
updates the copyright year range in all of GDB's files.

gdb/ChangeLog:

        Update copyright year range in all GDB files.
2017-01-01 10:52:34 +04:00
Yao Qi
04180708ef Remove GDBARCH_BREAKPOINT_MANIPULATION and SET_GDBARCH_BREAKPOINT_MANIPULATION
Both of them are used in conversion.  We can remove them since the
conversion is done.

There are many architectures only have one breakpoint instruction,
so their gdbarch methods breakpoint_kind_from_pc and
sw_breakpoint_from_kind look very similar.  Instead of macro, we
use template "template <size_t, const gdb_byte *> struct bp_manipulation"
for these architectures.  In order to use template, I also change
breakpoint instruction of type "static const gdb_byte[]" to
"constexpr gdb_byte[]", and rename them to ARCH_break_insn.

gdb:

2016-11-03  Yao Qi  <yao.qi@linaro.org>
	    Pedro Alves <palves@redhat.com>

	* aarch64-tdep.c (aarch64_default_breakpoint): Change it to
	constexpr.  Don't use GDBARCH_BREAKPOINT_MANIPULATION.
	(aarch64_gdbarch_init): Don't use
	SET_GDBARCH_BREAKPOINT_MANIPULATION.
	* alpha-tdep.c (break_insn): Rename to alpha_break_insn.
	Don't use GDBARCH_BREAKPOINT_MANIPULATION.
	(alpha_gdbarch_init): Don't use
	SET_GDBARCH_BREAKPOINT_MANIPULATION.
	* arc-tdep.c (arc_gdbarch_init): Don't use
	SET_GDBARCH_BREAKPOINT_MANIPULATION.
	* arch-utils.h (GDBARCH_BREAKPOINT_MANIPULATION): Remove.
	(struct bp_manipulation): New.
	(SET_GDBARCH_BREAKPOINT_MANIPULATION): Remove.
	(struct bp_manipulation_endian): New.
	(BP_MANIPULATION): New.
	(BP_MANIPULATION_ENDIAN): New.
	* arm-tdep.c (arm_gdbarch_init): Don't use
	SET_GDBARCH_BREAKPOINT_MANIPULATION.
	* avr-tdep.c (avr_break_insn): Change it constexpr.
	(avr_gdbarch_init): Don't use
	SET_GDBARCH_BREAKPOINT_MANIPULATION.
	* bfin-tdep.c (bfin_gdbarch_init): Likewise.
	* cris-tdep.c (cris_gdbarch_init): Likewise.
	* frv-tdep.c (breakpoint): Rename it to frv_break_insn, and
	change its type to constexpr.  Don't use
	GDBARCH_BREAKPOINT_MANIPULATION.
	(frv_gdbarch_init): Don't use
	SET_GDBARCH_BREAKPOINT_MANIPULATION.
	* ft32-tdep.c (breakpoint): Rename it to ft32_break_insn and
	change its type to constexpr.  Don't use
	GDBARCH_BREAKPOINT_MANIPULATION.
	(ft32_gdbarch_init): Don't use
	SET_GDBARCH_BREAKPOINT_MANIPULATION.
	* h8300-tdep.c (breakpoint): Rename it to h8300_break_insn.
	Don't use GDBARCH_BREAKPOINT_MANIPULATION.
	(h8300_gdbarch_init): Don't use
	SET_GDBARCH_BREAKPOINT_MANIPULATION.
	* hppa-tdep.c (breakpoint): Rename it to h8300_break_insn.
	Don't use GDBARCH_BREAKPOINT_MANIPULATION.
	(hppa_gdbarch_init): Don't use
	SET_GDBARCH_BREAKPOINT_MANIPULATION.
	* i386-tdep.c (break_insn): Rename it to i386_break_insn.
	Don't use GDBARCH_BREAKPOINT_MANIPULATION.
	(i386_gdbarch_init): Don't use
	SET_GDBARCH_BREAKPOINT_MANIPULATION.
	* iq2000-tdep.c (iq2000_gdbarch_init): Don't use
	SET_GDBARCH_BREAKPOINT_MANIPULATION.
	* lm32-tdep.c (breakpoint): Rename it to lm32_break_insn and
	change its type to constexpr.  Don't use
	GDBARCH_BREAKPOINT_MANIPULATION.
	(lm32_gdbarch_init): Don't use
	SET_GDBARCH_BREAKPOINT_MANIPULATION.
	* m32c-tdep.c (break_insn): Rename it to m32c_break_insn and change
	its type to constexpr.  Don't use GDBARCH_BREAKPOINT_MANIPULATION.
	(m32c_gdbarch_init): Don't use
	SET_GDBARCH_BREAKPOINT_MANIPULATION.
	* m32r-tdep.c (m32r_gdbarch_init): Likewise.
	* m68hc11-tdep.c (breakpoint): Rename it to m68hc11_break_insn and
	change its type to constexpr.  Don't use GDBARCH_BREAKPOINT_MANIPULATION.
	(m68hc11_gdbarch_init): Don't use SET_GDBARCH_BREAKPOINT_MANIPULATION.
	* m68k-tdep.c (break_insn): Rename it to m68k_break_insn and change
	its type to constexpr.  Don't use GDBARCH_BREAKPOINT_MANIPULATION.
	(m68k_gdbarch_init):  Don't use
	SET_GDBARCH_BREAKPOINT_MANIPULATION.
	* m88k-tdep.c (break_insn): Rename it to m88k_break_insn and change
	its type to constexpr.  Don't use GDBARCH_BREAKPOINT_MANIPULATION.
	(m88k_gdbarch_init): Don't use
	SET_GDBARCH_BREAKPOINT_MANIPULATION.
	* mep-tdep.c (breakpoint): Rename it to mep_break_insn and change
	its type to constexpr.  Don't use GDBARCH_BREAKPOINT_MANIPULATION.
	(mep_gdbarch_init): Don't use
	SET_GDBARCH_BREAKPOINT_MANIPULATION.
	* microblaze-tdep.c (break_insn): Rename it to
	microblaze_break_insn and change its type to constexpr.  Don't use
	GDBARCH_BREAKPOINT_MANIPULATION.
	(microblaze_gdbarch_init): Don't use
	SET_GDBARCH_BREAKPOINT_MANIPULATION.
	* mips-tdep.c (mips_gdbarch_init): Likewise.
	* mn10300-tdep.c (breakpoint): Rename it to mn10300_break_insn and
	change its type to constexpr.  Don't use
	GDBARCH_BREAKPOINT_MANIPULATION.
	(mn10300_gdbarch_init): Don't use
	SET_GDBARCH_BREAKPOINT_MANIPULATION.
	* moxie-tdep.c (breakpoint): Rename it to moxie_break_insn and
	change its type to constexpr.  Don't use
	GDBARCH_BREAKPOINT_MANIPULATION.
	(moxie_gdbarch_init): Don't use
	SET_GDBARCH_BREAKPOINT_MANIPULATION.
	* msp430-tdep.c (breakpoint): Rename it to msp430_break_insn
	and change its type to constexpr.  Don't use
	GDBARCH_BREAKPOINT_MANIPULATION.
	(msp430_gdbarch_init): Don't use
	SET_GDBARCH_BREAKPOINT_MANIPULATION.
	* mt-tdep.c (mt_gdbarch_init): Likewise.
	* nds32-tdep.c (break_insn): Rename it to nds32_break_insn
	and change its type to constexpr.  Don't use
	GDBARCH_BREAKPOINT_MANIPULATION.
	(nds32_gdbarch_init): Don't use
	SET_GDBARCH_BREAKPOINT_MANIPULATION.
	* nios2-tdep.c (nios2_gdbarch_init): Likewise.
	* rl78-tdep.c (breakpoint): Rename it to rl78_break_ins
	and change its type to rl78_break_insn.  Don't use
	GDBARCH_BREAKPOINT_MANIPULATION.
	(rl78_gdbarch_init): Don't use
	SET_GDBARCH_BREAKPOINT_MANIPULATION.
	* rs6000-tdep.c (big_breakpoint): Change its type to
	constexpr.
	(little_breakpoint): Likewise.
	Don't use GDBARCH_BREAKPOINT_MANIPULATION_ENDIAN.
	(rs6000_gdbarch_init): Don't use
	SET_GDBARCH_BREAKPOINT_MANIPULATION.
	* rx-tdep.c (breakpoint): Rename it to rx_break_insn and
	change its type to constexpr.  Don't use
	GDBARCH_BREAKPOINT_MANIPULATION.
	(rx_gdbarch_init): Don't use
	SET_GDBARCH_BREAKPOINT_MANIPULATION.
	* s390-linux-tdep.c (breakpoint): Rename it to s390_break_insn
	and change its type to constexpr.  Don't use
	GDBARCH_BREAKPOINT_MANIPULATION
	(s390_gdbarch_init): Don't use
	SET_GDBARCH_BREAKPOINT_MANIPULATION.
	* score-tdep.c (score_gdbarch_init): Likewise.
	* sh-tdep.c (sh_gdbarch_init): Likewise.
	* sh64-tdep.c (sh64_gdbarch_init): Likewise.
	* sparc-tdep.c (break_insn): Rename it to sparc_break_insn
	and change its type to constexpr.  Don't use
	GDBARCH_BREAKPOINT_MANIPULATION.
	(sparc32_gdbarch_init): Don't use
	SET_GDBARCH_BREAKPOINT_MANIPULATION.
	* spu-tdep.c (breakpoint): Rename it to spu_break_insn and change
	its type to constexpr.  Don't use
	GDBARCH_BREAKPOINT_MANIPULATION.
	(spu_gdbarch_init): Don't use
	SET_GDBARCH_BREAKPOINT_MANIPULATION.
	* tic6x-tdep.c (tic6x_gdbarch_init): Likewise.
	* tilegx-tdep.c (breakpoint): Rename it to tilegx_break_insn
	and change its type to constexpr.  Don't use
	GDBARCH_BREAKPOINT_MANIPULATION.
	(tilegx_gdbarch_init): Don't use
	SET_GDBARCH_BREAKPOINT_MANIPULATION.
	* v850-tdep.c (v850_gdbarch_init): Likewise.
	* vax-tdep.c (break_insn): Rename it to vax_break_insn and
	change its type to constexpr.
	Don't use GDBARCH_BREAKPOINT_MANIPULATION.
	(vax_gdbarch_init): Don't use
	SET_GDBARCH_BREAKPOINT_MANIPULATION.
	* xstormy16-tdep.c (breakpoint): Rename it to
	xstormy16_break_insn and change its type to constexpr.
	Don't use GDBARCH_BREAKPOINT_MANIPULATION.
	(xstormy16_gdbarch_init): Don't use
	SET_GDBARCH_BREAKPOINT_MANIPULATION.
	* xtensa-tdep.c (xtensa_gdbarch_init): Likewise.
2016-11-03 14:35:14 +00:00
Yao Qi
833b7ab500 Determine the kind of single step breakpoint
This patch adds a new gdbarch method breakpoint_kind_from_current_state
for single step breakpoint, and uses it in breakpoint_kind.

gdb:

2016-11-03  Yao Qi  <yao.qi@linaro.org>

	* arch-utils.c (default_breakpoint_kind_from_current_state):
	New function.
	* arch-utils.h (default_breakpoint_kind_from_current_state):
	Declare.
	* arm-tdep.c (arm_breakpoint_kind_from_current_state): New
	function.
	(arm_gdbarch_init): Call
	set_gdbarch_breakpoint_kind_from_current_state.
	* breakpoint.c (breakpoint_kind): Call
	gdbarch_breakpoint_kind_from_current_state for single step
	breakpoint.  Update comments.
	* gdbarch.sh (breakpoint_kind_from_current_state): New.
	* gdbarch.c, gdbarch.h: Regenerate.
2016-11-03 14:35:14 +00:00
Yao Qi
22f13eb869 Add default_breakpoint_from_pc
This patch adds the default implementation of gdbarch breakpoint_from_pc,
which is,

const gdb_byte *
default_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
                           int *lenptr)
{
  int kind = gdbarch_breakpoint_kind_from_pc (gdbarch, pcptr);

  return gdbarch_sw_breakpoint_from_kind (gdbarch, kind, lenptr);
}

so gdbarch can only defines sw_breakpoint_from_kind and
breakpoint_kind_from_pc.

gdb:

2016-11-03  Yao Qi  <yao.qi@linaro.org>

	* arch-utils.c (default_breakpoint_from_pc): New function.
	* arch-utils.h (GDBARCH_BREAKPOINT_FROM_PC): Remove.
	(GDBARCH_BREAKPOINT_MANIPULATION): Don't use
	GDBARCH_BREAKPOINT_FROM_PC.
	(SET_GDBARCH_BREAKPOINT_MANIPULATION): Don't call
	set_gdbarch_breakpoint_from_pc.
	(default_breakpoint_from_pc): Remove declaration.
	* gdbarch.sh (breakpoint_from_pc): Add its default implementation.
	* gdbarch.c, gdbarch.h: Regenerate.
	* arm-tdep.c: Don't use GDBARCH_BREAKPOINT_FROM_PC.
	* arc-tdep.c, bfin-tdep.c, cris-tdep.c, iq2000-tdep.c: Likewise.
	* m32r-tdep.c, mips-tdep.c, mt-tdep.c: Likewise.
	* nios2-tdep.c, score-tdep.c, sh-tdep.c: Likewise.
	* sh64-tdep.c, tic6x-tdep.c, v850-tdep.c, xtensa-tdep.c: Likewise.
2016-11-03 14:35:14 +00:00
Yao Qi
c0f4a997c2 Remove gdbarch_remote_breakpoint_from_pc
This patch removes gdbarch method remote_breakpoint_from_pc, as it
is no longer used.

gdb:

2016-11-03  Yao Qi  <yao.qi@linaro.org>

	* arch-utils.c (default_remote_breakpoint_from_pc): Remove.
	* arch-utils.h (default_remote_breakpoint_from_pc): Remove.
	* arm-tdep.c (arm_remote_breakpoint_from_pc): Remove.
	(arm_gdbarch_init): Don't call
	set_gdbarch_remote_breakpoint_from_pc.
	* gdbarch.sh (remote_breakpoint_from_pc): Remove.
	* gdbarch.c, gdbarch.h: Regenerate.
	* mips-tdep.c (mips_remote_breakpoint_from_pc): Remove.
	(mips_gdbarch_init): Don't call
	set_gdbarch_remote_breakpoint_from_pc.
2016-11-03 14:35:14 +00:00
Yao Qi
cd6c3b4ffc New gdbarch methods breakpoint_kind_from_pc and sw_breakpoint_from_kind
This patch adds two gdbarch methods breakpoint_kind_from_pc and
sw_breakpoint_from_kind, and uses target_info.placed_size as "kind"
of the breakpoint.  This patch updates the usages of
target_info.placed_size.

The "kind" of a breakpoint is determined by gdbarch rather than
target, so we have gdbarch method breakpoint_kind_from_pc, and we
should set target_info.placed_size out of each implementation of
target to_insert_breakpoint.  In this way, each target doesn't have
to set target_info.placed_size any more.

This patch also sets target_info.placed_address before
target_insert_breakpoint too, so that target to_insert_breakpoint
can use it, see record_full_insert_breakpoint.

Before we call target_insert_breakpoint, we set
target_info.placed_address and target_info.placed_size like this,

      CORE_ADDR addr = bl->target_info.reqstd_address;

      bl->target_info.placed_size = gdbarch_breakpoint_kind_from_pc (bl->gdbarch, &addr);
      bl->target_info.placed_address = addr;

      return target_insert_breakpoint (bl->gdbarch, &bl->target_info);

target_insert_breakpoint may fail, but it doesn't matter to the "kind"
and "placed_address" of a breakpoint.  They should be determined by
gdbarch.

gdb:

2016-11-03  Yao Qi  <yao.qi@linaro.org>

	* arch-utils.h (GDBARCH_BREAKPOINT_MANIPULATION): Define
	breakpoint_kind_from_pc and sw_breakpoint_from_kind.
	(GDBARCH_BREAKPOINT_MANIPULATION_ENDIAN): Likewise.
	(SET_GDBARCH_BREAKPOINT_MANIPULATION): Call
	set_gdbarch_breakpoint_kind_from_pc and
	set_gdbarch_sw_breakpoint_from_kind.
	* arm-tdep.c: Add comments.
	* bfin-tdep.c: Likewise.
	* breakpoint.c (breakpoint_kind): New function.
	(insert_bp_location): Set target_info.placed_size and
	target_info.placed_address.
	(bkpt_insert_location): Likewise.
	* cris-tdep.c: Add comments.
	* gdbarch.sh (breakpoint_kind_from_pc): New.
	(sw_breakpoint_from_kind): New.
	* gdbarch.c, gdbarch.h: Regenerated.
	* ia64-tdep.c (ia64_memory_insert_breakpoint): Don't set
	bp_tgt->placed_size.
	(ia64_memory_remove_breakpoint): Don't assert
	bp_tgt->placed_size.
	(ia64_breakpoint_kind_from_pc): New function.
	(ia64_gdbarch_init): Install ia64_breakpoint_kind_from_pc.
	* m32r-tdep.c (m32r_memory_insert_breakpoint): Don't set
	bp_tgt->placed_size.
	* mem-break.c (default_memory_insert_breakpoint): Don't set
	bp_tgt->placed_size.  Call gdbarch_sw_breakpoint_from_kind.
	(default_memory_remove_breakpoint): Call
	gdbarch_sw_breakpoint_from_kind.
	(memory_validate_breakpoint): Don't check bp_tgt->placed_size.
	* mips-tdep.c: Add comments.
	* mt-tdep.c: Likewise.
	* nios2-tdep.c: Likewise.
	* record-full.c (record_full_insert_breakpoint): Don't call
	gdbarch_breakpoint_from_pc.  Don't set bp_tgt->placed_address
	and bp_tgt->placed_size.
	* remote.c (remote_insert_breakpoint): Don't call
	gdbarch_remote_breakpoint_from_pc.  Use bp_tgt->placed_size.
	Don't set bp_tgt->placed_address and bp_tgt->placed_size.
	(remote_insert_hw_breakpoint): Likewise.
	* score-tdep.c: Likewise.
	* sh-tdep.c: Likewise.
	* tic6x-tdep.c: Likewise.
	* v850-tdep.c: Likewise.
	* xtensa-tdep.c: Likewise.
2016-11-03 14:35:13 +00:00
Yao Qi
d19280adb5 Split breakpoint_from_pc to breakpoint_kind_from_pc and sw_breakpoint_from_kind
We convert each ARCH_breakpoint_from_pc to ARCH_breakpoint_kind_from_pc
and ARCH_sw_breakpoint_from_kind.  Note that gdbarch doesn't have methods
breakpoint_kind_from_pc and sw_breakpoint_from_kind so far.

gdb:

2016-11-03  Yao Qi  <yao.qi@linaro.org>

	* arch-utils.h (GDBARCH_BREAKPOINT_FROM_PC): New macro.
	(GDBARCH_BREAKPOINT_MANIPULATION_ENDIAN): New macro.
	* arm-tdep.c (arm_breakpoint_from_pc): Remove.
	(arm_breakpoint_kind_from_pc): New function.
	(arm_sw_breakpoint_from_kind): New function.
	(arm_breakpoint_from_pc): Call arm_breakpoint_kind_from_pc
	and arm_sw_breakpoint_from_kind.
	Use GDBARCH_BREAKPOINT_FROM_PC.
	(arm_remote_breakpoint_from_pc): Call
	arm_breakpoint_kind_from_pc.
	(arm_gdbarch_init): Replace set_gdbarch_breakpoint_from_pc
	with SET_GDBARCH_BREAKPOINT_MANIPULATION.
	* arc-tdep.c: Likewise.
	* bfin-tdep.c: Likewise.
	* cris-tdep.c: Likewise.
	* iq2000-tdep.c: Likewise.
	* m32r-tdep.c: Likewise.
	* mips-tdep.c: Likewise.
	* mt-tdep.c: Likewise.
	* nios2-tdep.c: Likewise.
	* rs6000-tdep.c: Likewise.
	* score-tdep.c: Likewise.
	* sh-tdep.c: Likewise.
	* sh64-tdep.c: Likewise.
	* tic6x-tdep.c: Likewise.
	* v850-tdep.c: Likewise.
	* xtensa-tdep.c: Likewise.
2016-11-03 14:35:13 +00:00
Yao Qi
598cc9dc84 GDBARCH_BREAKPOINT_MANIPULATION and SET_GDBARCH_BREAKPOINT_MANIPULATION
Many archs have only one kind of breakpoint, so their breakpoint_from_pc
implementations are quite similar.  This patch uses macro
GDBARCH_BREAKPOINT_MANIPULATION and SET_GDBARCH_BREAKPOINT_MANIPULATION
for breakpoint_from_pc, so that we can easily switch from
breakpoint_from_pc to breakpoint_kind_from_pc and sw_breakpoint_from_kind
later.

gdb:

2016-11-03  Yao Qi  <yao.qi@linaro.org>

	* arch-utils.h (GDBARCH_BREAKPOINT_MANIPULATION): New macro.
	(SET_GDBARCH_BREAKPOINT_MANIPULATION): New macro.
	aarch64-tdep.c (aarch64_breakpoint_from_pc): Remove.  Use
	GDBARCH_BREAKPOINT_MANIPULATION.
	(aarch64_gdbarch_init): Replace set_gdbarch_breakpoint_from_pc
	with SET_GDBARCH_BREAKPOINT_MANIPULATION.
	* alpha-tdep.c: Likewise.
	* avr-tdep.c: Likewise.
	* frv-tdep.c: Likewise.
	* ft32-tdep.c: Likewise.
	* h8300-tdep.c: Likewise.
	* hppa-tdep.c: Likewise.
	* i386-tdep.c: Likewise.
	* lm32-tdep.c: Likewise.
	* m32c-tdep.c: Likewise.
	* m68hc11-tdep.c: Likewise.
	* m68k-tdep.c: Likewise.
	* m88k-tdep.c: Likewise.
	* mep-tdep.c: Likewise.
	* microblaze-tdep.c: Likewise.
	* mn10300-tdep.c: Likewise.
	* moxie-tdep.c: Likewise.
	* msp430-tdep.c: Likewise.
	* rl78-tdep.c: Likewise.
	* rx-tdep.c: Likewise.
	* s390-linux-tdep.c: Likewise.
	* sparc-tdep.c: Likewise.
	* spu-tdep.c: Likewise.
	* tilegx-tdep.c: Likewise.
	* vax-tdep.c: Likewise.
	* xstormy16-tdep.c: Likewise.
2016-11-03 14:35:13 +00:00
Ulrich Weigand
9b790ce722 Add gdbarch callback to provide formats for debug info float types
At this point, all TYPE_CODE_FLT types carry their floating-point format,
except for those creating from reading DWARF or stabs debug info.  Those
will be addressed by this commit.

The main issue here is that we actually have to determine which floating-
point format to use.  Currently, we only have the type length as input
to this decision.  In the future, we may hopefully get --at least in
DWARF-- additional information to help disambiguate multiple different
formats of the same length.  For now, we can still look at the type name
as a hint.

This decision logic is encapsulated in a gdbarch callback to allow
platform-specific overrides.  The default implementation use the same
logic (compare type length against the various gdbarch_..._bit sizes)
that is currently implemented in floatformat_from_length.

With this commit, all platforms still use the default logic, so there
should be no actual change in behavior.  A follow-on commit will add
support for __float128 on Intel and Power.

Once dwarf2read.c and stabsread.c make use of the new callback to
determine floating-point formats, we're now sure every TYPE_CODE_FLT
type will always carry its format.  The commit therefore adds asserts
to verify_floatformat to ensure new code will continue to always
provide formats, and removes the code in floatformat_from_type that
used to handle types with a NULL TYPE_FLOATFORMAT.

gdb/ChangeLog:

	* gdbarch.sh (floatformat_for_type): New gdbarch callback.
	* gdbarch.h, gdbarch.c: Re-generate.
	* arch-utils.h (default_floatformat_for_type): New prototype.
	* arch-utils.c (default_floatformat_for_type): New function.

	* doublest.c (floatformat_from_length): Remove.
	(floatformat_from_type): Assume TYPE_FLOATFORMAT is non-NULL.
	* gdbtypes.c (verify_floatformat): Require non-NULL format.

	* dwarf2read.c (dwarf2_init_float_type): New function.
	(read_base_type): Use it.
	* stabsread.c (dbx_init_float_type): New function.
	(read_sun_floating_type): Use it.
	(read_range_type): Likewise.

Signed-off-by: Ulrich Weigand <ulrich.weigand@de.ibm.com>
2016-09-06 17:31:53 +02:00
Yao Qi
7eb895307f Skip unwritable frames in command "finish"
Nowadays, GDB can't insert breakpoint on the return address of the
exception handler on ARM M-profile, because the address is a magic
one 0xfffffff9,

 (gdb) bt
 #0  CT32B1_IRQHandler () at ../src/timer.c:67
 #1  <signal handler called>
 #2  main () at ../src/timer.c:127

(gdb) info frame
Stack level 0, frame at 0x200ffa8:
 pc = 0x4ec in CT32B1_IRQHandler (../src/timer.c:67); saved pc = 0xfffffff9
 called by frame at 0x200ffc8
 source language c.
 Arglist at 0x200ffa0, args:
 Locals at 0x200ffa0, Previous frame's sp is 0x200ffa8
 Saved registers:
  r7 at 0x200ffa0, lr at 0x200ffa4

(gdb) x/x 0xfffffff9
0xfffffff9:     Cannot access memory at address 0xfffffff9

(gdb) finish
Run till exit from #0  CT32B1_IRQHandler () at ../src/timer.c:67
Ed:15: Target error from Set break/watch: Et:96: Pseudo-address (0xFFFFFFxx) for EXC_RETURN is invalid (GDB error?)

Warning:
Cannot insert hardware breakpoint 0.
Could not insert hardware breakpoints:
You may have requested too many hardware breakpoints/watchpoints.

Command aborted.

even some debug probe can't set hardware breakpoint on the magic
address too,

(gdb) hbreak *0xfffffff9
Hardware assisted breakpoint 2 at 0xfffffff9
(gdb) c
Continuing.
Ed:15: Target error from Set break/watch: Et:96: Pseudo-address (0xFFFFFFxx) for EXC_RETURN is invalid (GDB error?)

Warning:
Cannot insert hardware breakpoint 2.
Could not insert hardware breakpoints:
You may have requested too many hardware breakpoints/watchpoints.

Command aborted.

The problem described above is quite similar to PR 8841, in which GDB
can't set breakpoint on signal trampoline, which is mapped to a read-only
page by kernel.  The rationale of this patch is to skip "unwritable"
frames when looking for caller frames in command "finish", and a new
gdbarch method code_of_frame_writable is added.  This patch fixes
the problem on ARM cortex-m target, but it can be used to fix
PR 8841 too.

gdb:

2016-05-10  Yao Qi  <yao.qi@arm.com>

	* arch-utils.c (default_code_of_frame_writable): New function.
	* arch-utils.h (default_code_of_frame_writable): Declare.
	* arm-tdep.c (arm_code_of_frame_writable): New function.
	(arm_gdbarch_init): Install gdbarch method
	code_of_frame_writable if the target is M-profile.
	* frame.c (skip_unwritable_frames): New function.
	* frame.h (skip_unwritable_frames): Declare.
	* gdbarch.sh (code_of_frame_writable): New.
	* gdbarch.c, gdbarch.h: Re-generated.
	* infcmd.c (finish_command): Call skip_unwritable_frames.
2016-05-23 17:32:56 +01:00
Marcin Kościelnicki
5f034a78b9 gdb: Add guess_tracepoint_registers hook to gdbarch.
When we're looking at a tracefile trace frame where registers are not
available, and the tracepoint has only one location, we supply
the location's address as the PC register.  However, this only works
if PC is not a pseudo register, and individual architectures may want
to guess more registers.  Add a gdbarch hook that will handle that.

gdb/ChangeLog:

	* arch-utils.c (default_guess_tracepoint_registers): New function.
	* arch-utils.h (default_guess_tracepoint_registers): New prototype.
	* gdbarch.c: Regenerate.
	* gdbarch.h: Regenerate.
	* gdbarch.sh: Add guess_tracepoint_registers hook.
	* tracefile.c (tracefile_fetch_registers): Use the new gdbarch hook.
2016-02-18 17:21:22 +01:00
Joel Brobecker
618f726fcb GDB copyright headers update after running GDB's copyright.py script.
gdb/ChangeLog:

        Update year range in copyright notice of all files.
2016-01-01 08:43:22 +04:00
Pierre Langlois
6b940e6a06 Remove isize output argument from fast_tracepoint_valid_at
This patch removes the isize output argument from the
fast_tracepoint_valid_at gdbarch hook.  It was used to return the size
of the instruction that needs to be replaced when installing a fast
tracepoint.  Instead of getting this value from the
fast_tracepoint_valid_at hook, we can call the gdb_insn_length function.

If we do not do this, then architectures which do not have a restriction
on where to install the fast tracepoint will send uninitialized memory
off to GDBserver.  See remote_download_tracepoint:

~~~
int isize;

if (gdbarch_fast_tracepoint_valid_at (target_gdbarch (),
				      tpaddr, &isize, NULL))
  xsnprintf (buf + strlen (buf), BUF_SIZE - strlen (buf), ":F%x",
	     isize);
~~~

The default implementation of fast_tracepoint_valid_at will not set
isize resulting in uninitialized memory being sent.  Later on, GDBserver
could use this information to compute a jump offset.

gdb/ChangeLog:

	* arch-utils.c (default_fast_tracepoint_valid_at): Remove unused
	isize argument.
	* arch-utils.h (default_fast_tracepoint_valid_at): Likewise.
	* breakpoint.c (check_fast_tracepoint_sals): Adjust call to
	gdbarch_fast_tracepoint_valid_at.
	* gdbarch.sh (fast_tracepoint_valid_at): Remove isize argument.
	* gdbarch.h: Regenerate.
	* gdbarch.c: Regenerate.
	* i386-tdep.c (i386_fast_tracepoint_valid_at): Remove isize
	argument.  Do not set it.
	* remote.c (remote_download_tracepoint): Adjust call to
	gdbarch_fast_tracepoint_valid_at.  Call gdb_insn_length to get
	the instruction length.
2015-07-30 18:05:00 +01:00
Simon Marchi
3374165f51 gdbarch: add addressable_memory_unit_size method
Add a new gdbarch method to get the length of an addressable memory unit
for a given architecture. The default implementation returns 1.

gdb/ChangeLog:

	* arch-utils.h (default_addressable_memory_unit_size): New.
	* arch-utils.c (default_addressable_memory_unit_size): New.
	* gdbarch.sh (addressable_memory_unit_size): New.
	* gdbarch.h: Re-generate.
	* gdbarch.c: Re-generate.
2015-06-12 16:51:51 -04:00
Jan Kratochvil
7f36105668 compile: Use also inferior munmap
Currently inferior memory is allocated by inferior mmap() but it is never
deallocated; despite the injected objfile incl. its symbols is freed.  This was
intentional so that one can do for example:
inferior:
	char *str = "foo";
GDB:
	(gdb) compile code str = "bar";

I believe later patches will be needed to introduce full control over keeping
vs. discarding the injected module as being discussed in:
	compile: objfiles lifetime UI
	https://sourceware.org/ml/gdb/2015-04/msg00051.html
	Message-ID: <20150429135735.GA16974@host1.jankratochvil.net>
	https://sourceware.org/ml/gdb/2015-05/msg00007.html

As decided by Phil it is better not to leak inferior pages as users can
workaround the issue above for example by:
	(gdb) compile code str = strdup ("bar");

I have checked that in fact gdb/doc/ (written by Phil) already expects the
injected code will be unmapped so that does not need to be changed:
	compile code int ff = 5; p = &ff;
	In this example, @code{p} would point to @code{ff} when the
	@code{compile} command is executing the source code provided to it.
	However, as variables in the (example) program persist with their
	assigned values, the variable @code{p} would point to an invalid
	location when the command exists.

gdb/ChangeLog
2015-04-28  Jan Kratochvil  <jan.kratochvil@redhat.com>

	* arch-utils.c (default_infcall_munmap): New.
	* arch-utils.h (default_infcall_munmap): New declaration.
	* compile/compile-object-load.c (struct munmap_list, munmap_list_add)
	(munmap_list_free, munmap_listp_free_cleanup): New.
	(struct setup_sections_data): Add field munmap_list_headp.
	(setup_sections): Call munmap_list_add.
	(compile_object_load): New variable munmap_list_head, initialize
	setup_sections_data.munmap_list_headp, return munmap_list_head.
	* compile/compile-object-load.h (struct munmap_list): New declaration.
	(struct compile_module): Add field munmap_list_head.
	(munmap_list_free): New declaration.
	* compile/compile-object-run.c (struct do_module_cleanup): Add field
	munmap_list_head.
	(do_module_cleanup): Call munmap_list_free.
	(compile_object_run): Pass munmap_list_head to do_module_cleanup.
	* gdbarch.c: Regenerate.
	* gdbarch.h: Regenerate.
	* gdbarch.sh (infcall_munmap): New.
	* linux-tdep.c (linux_infcall_munmap): New.
	(linux_init_abi): Install it.

gdb/testsuite/ChangeLog
2015-04-28  Jan Kratochvil  <jan.kratochvil@redhat.com>

	* gdb.compile/compile.exp (keep jit in memory): Rename to ...
	(do not keep jit in memory): ... this.
	(expect 5): Change it to ...
	(expect no 5): ... this.
2015-06-03 21:26:04 +02:00
Martin Galvan
c9cf6e20c6 Rename in_function_epilogue_p to stack_frame_destroyed_p
We concluded that gdbarch_in_function_epilogue_p is misnamed, since it
returns true if the given PC is one instruction after the one that
destroyed the stack (which isn't necessarily inside an epilogue),
therefore it should be renamed to stack_frame_destroyed_p.

I also took the liberty of renaming the arch-specific implementations to
*_stack_frame_destroyed_p as well for consistency.

gdb:

2015-05-26  Martin Galvan  <martin.galvan@tallertechnologies.com>

	* amd64-tdep.c: Replace in_function_epilogue_p with
	stack_frame_destroyed_p throughout.
	* arch-utils.c: Ditto.
	* arch-utils.h: Ditto.
	* arm-tdep.c: Ditto.
	* breakpoint.c: Ditto.
	* gdbarch.sh: Ditto.
	* hppa-tdep.c: Ditto.
	* i386-tdep.c: Ditto.
	* mips-tdep.c: Ditto.
	* nios2-tdep.c: Ditto.
	* rs6000-tdep.c: Ditto.
	* s390-linux-tdep.c: Ditto.
	* score-tdep.c: Ditto.
	* sh-tdep.c: Ditto.
	* sparc-tdep.c: Ditto.
	* sparc-tdep.h: Ditto.
	* sparc64-tdep.c: Ditto.
	* spu-tdep.c: Ditto.
	* tic6x-tdep.c: Ditto.
	* tilegx-tdep.c: Ditto.
	* xstormy16-tdep.c: Ditto.
	* gdbarch.c, gdbarch.h: Re-generated.
2015-05-26 12:07:59 +01:00
Joel Brobecker
32d0add0a6 Update year range in copyright notice of all files owned by the GDB project.
gdb/ChangeLog:

        Update year range in copyright notice of all files.
2015-01-01 13:32:14 +04:00