I was looking at dos_message and wondering why we have H_PUT_32
in _bfd_XXi_only_swap_filehdr_out but no H_GET_32 in pe_bfd_object_p.
On a big-endian machine this would result in scrambling the code and
strings constained in dos_message. Rather than fix the lack of
H_GET_32 in pe_bfd_object_p, I decided it doesn't make sense to store
dos_message internally as an array of ints.
include/
* coff/internal.h (struct internal_extra_pe_filehdr): Make
dos_message a char array.
* coff/msdos.h (struct external_DOS_hdr): Flatten dos_message.
* coff/pe.h (struct external_PEI_filehdr): Likewise.
bfd/
* libcoff-in.h (struct pe_tdata): Make dos_message a char array.
* libcoff.h: Regenerate.
* peXXigen.c (_bfd_XXi_only_swap_filehdr_out): memcpy dos_message
to output.
* peicode.h (pe_mkobject): Don't memset already zeroed pe_opthdr.
Tidy allocation of tdata.pe_obj_data. Set up dos_message from..
(default_dos_message): ..this. New static array.
Historically, flags and variables relating to architectural revisions
for the A-profile architecture omitted the trailing `A' such that, for
example, assembling for `-march=armv8.4-a' set the `AARCH64_ARCH_V8_4'
flag in the assembler.
This leads to some ambiguity, since Binutils also targets the
R-profile Arm architecture. Therefore, it seems prudent to have
everything associated with the A-profile cores end in `A' and likewise
`R' for the R-profile. Referring back to the example above, the flag
set for `-march=armv8.4-a' is better characterized if labeled
`AARCH64_ARCH_V8_4A'.
The only exception to the rule of appending `A' to variables is found
in the handling of the `AARCH64_FEATURE_V8' macro, as it is the
baseline from which ALL processors derive and should therefore be left
unchanged.
In reflecting the `ARM' architectural nomenclature choices, where we
have `ARM_ARCH_V8A' and `ARM_ARCH_V8R', the choice is made to not have
an underscore separating the numerical revision number and the
A/R-profile indicator suffix. This has meant that renaming of
R-profile related flags and variables was warranted, thus going from
`.*_[vV]8_[rR]' to `.*_[vV]8[rR]'.
Finally, this is more in line with conventions within GCC and adds consistency
across the toolchain.
gas/ChangeLog:
* gas/config/tc-aarch64.c:
(aarch64_cpus): Reference to arch feature macros updated.
(aarch64_archs): Likewise.
include/ChangeLog:
* include/opcode/aarch64.h:
(AARCH64_FEATURE_V8A): Updated name: V8_A -> V8A.
(AARCH64_FEATURE_V8_1A): A-suffix added.
(AARCH64_FEATURE_V8_2A): Likewise.
(AARCH64_FEATURE_V8_3A): Likewise.
(AARCH64_FEATURE_V8_4A): Likewise.
(AARCH64_FEATURE_V8_5A): Likewise.
(AARCH64_FEATURE_V8_6A): Likewise.
(AARCH64_FEATURE_V8_7A): Likewise.
(AARCH64_FEATURE_V8_8A):Likewise.
(AARCH64_FEATURE_V9A): Likewise.
(AARCH64_FEATURE_V8R): Updated name: V8_R -> V8R.
(AARCH64_ARCH_V8A_FEATURES): Updated name: V8_A -> V8A.
(AARCH64_ARCH_V8_1A_FEATURES): A-suffix added.
(AARCH64_ARCH_V8_2A_FEATURES): Likewise.
(AARCH64_ARCH_V8_3A_FEATURES): Likewise.
(AARCH64_ARCH_V8_4A_FEATURES): Likewise.
(AARCH64_ARCH_V8_5A_FEATURES): Likewise.
(AARCH64_ARCH_V8_6A_FEATURES): Likewise.
(AARCH64_ARCH_V8_7A_FEATURES): Likewise.
(AARCH64_ARCH_V8_8A_FEATURES): Likewise.
(AARCH64_ARCH_V9A_FEATURES): Likewise.
(AARCH64_ARCH_V9_1A_FEATURES): Likewise.
(AARCH64_ARCH_V9_2A_FEATURES): Likewise.
(AARCH64_ARCH_V9_3A_FEATURES): Likewise.
(AARCH64_ARCH_V8A): Updated name: V8_A -> V8A.
(AARCH64_ARCH_V8_1A): A-suffix added.
(AARCH64_ARCH_V8_2A): Likewise.
(AARCH64_ARCH_V8_3A): Likewise.
(AARCH64_ARCH_V8_4A): Likewise.
(AARCH64_ARCH_V8_5A): Likewise.
(AARCH64_ARCH_V8_6A): Likewise.
(AARCH64_ARCH_V8_7A): Likewise.
(AARCH64_ARCH_V8_8A): Likewise.
(AARCH64_ARCH_V9A): Likewise.
(AARCH64_ARCH_V9_1A): Likewise.
(AARCH64_ARCH_V9_2A): Likewise.
(AARCH64_ARCH_V9_3A): Likewise.
(AARCH64_ARCH_V8_R): Updated name: V8_R -> V8R.
opcodes/ChangeLog:
* opcodes/aarch64-opc.c (SR_V8A): Updated name: V8_A -> V8A.
(SR_V8_1A): A-suffix added.
(SR_V8_2A): Likewise.
(SR_V8_3A): Likewise.
(SR_V8_4A): Likewise.
(SR_V8_6A): Likewise.
(SR_V8_7A): Likewise.
(SR_V8_8A): Likewise.
(aarch64_sys_regs): Reference to arch feature macros updated.
(aarch64_pstatefields): Reference to arch feature macros updated.
(aarch64_sys_ins_reg_supported_p): Reference to arch feature macros
updated.
* opcodes/aarch64-tbl.h:
(aarch64_feature_v8_2a): a-suffix added.
(aarch64_feature_v8_3a): Likewise.
(aarch64_feature_fp_v8_3a): Likewise.
(aarch64_feature_v8_4a): Likewise.
(aarch64_feature_fp_16_v8_2a): Likewise.
(aarch64_feature_v8_5a): Likewise.
(aarch64_feature_v8_6a): Likewise.
(aarch64_feature_v8_7a): Likewise.
(aarch64_feature_v8r): Updated name: v8_r-> v8r.
(ARMV8R): Updated name: V8_R-> V8R.
(ARMV8_2A): A-suffix added.
(ARMV8_3A): Likewise.
(FP_V8_3A): Likewise.
(ARMV8_4A): Likewise.
(FP_F16_V8_2A): Likewise.
(ARMV8_5): Likewise.
(ARMV8_6A): Likewise.
(ARMV8_6A_SVE): Likewise.
(ARMV8_7A): Likewise.
(V8_2A_INSN): `A' added to macro symbol.
(V8_3A_INSN): Likewise.
(V8_4A_INSN): Likewise.
(FP16_V8_2A_INSN): Likewise.
(V8_5A_INSN): Likewise.
(V8_6A_INSN): Likewise.
(V8_7A_INSN): Likewise.
(V8R_INSN): Updated name: V8_R-> V8R.
The neg/neg32 BPF instructions always use BPF_SRC_K (=0) in their header
source bit, despite operating on registers. If BPF_SRC_X (=1) is set,
the instructions are rejected by the kernel.
Because of this there are also no neg/neg32 instructions which operate
on immediates, so remove them.
bd434cc4d9 was a similar fix in the old
CGEN-based port, but was not carried forward in the new port.
include/
* opcode/bpf.h (enum bpf_insn_id): Remove spurious entries
BPF_INSN_NEGI and BPF_INSN_NEG32I.
opcodes/
* bpf-opc.c (bpf_opcodes): Remove erroneous NEGI and NEG32I
instructions.
gas/
* doc/c-bpf.texi (BPF Instructions): Remove erroneous neg and
neg32 instructions operating on immediates.
* testsuite/gas/bpf/alu.s: Adapt accordingly.
* testsuite/gas/bpf/alu.d: Likewise.
* testsuite/gas/bpf/alu-be.d: Likewise
* testsuite/gas/bpf/alu32.s: Likewise.
* testsuite/gas/bpf/alu32.d: Likewise.
* testsuite/gas/bpf/alu32-be.d: Likewise.
* testsuite/gas/bpf/alu-pseudoc.s: Likewise.
* testsuite/gas/bpf/alu-pseudoc.d: Likewise.
* testsuite/gas/bpf/alu-be-pseudoc.d: Likewise.
* testsuite/gas/bpf/alu32-pseudoc.s: Likewise.
* testsuite/gas/bpf/alu32-pseudoc.d: Likewise.
* testsuite/gas/bpf/alu32-be-pseudoc.d: Likewise.
The Scalable Matrix Extension v2 (SME2) defines a new register, ZT0, that
the Linux Kernel handles through a new NT_ARM_ZT register set.
Teach binutils/BFD about it so that gdb can make use of it for reading
and writing core files. This also enables readelf/objdump to show the
correct identification for the NT_ARM_ZT register set.
Validated under Fast Models.
The documentation of the 'Zfa' extension states that "fli.h" is available
"if the Zfh or Zvfh extension is implemented" (both the latest and the
oldest editions are checked).
This fact was not reflected in Binutils ('Zvfh' implies 'Zfhmin', not full
'Zfh' extension and "fli.h" required 'Zfh' and 'Zfa' extensions).
This commit makes "fli.h" also available when both 'Zfa' and 'Zvfh'
extensions are implemented.
bfd/ChangeLog:
* elfxx-riscv.c (riscv_multi_subset_supports): Add new
instruction class handling.
(riscv_multi_subset_supports_ext): Likewise.
gas/ChangeLog:
* testsuite/gas/riscv/zfa-zvfh.s: New test.
* testsuite/gas/riscv/zfa-zvfh.d: Ditto.
include/ChangeLog:
* opcode/riscv.h (enum riscv_insn_class): Add new instruction
class.
opcodes/ChangeLog:
* riscv-opc.c (riscv_opcodes): Change instruction class of "fli.h"
from INSN_CLASS_ZFH_AND_ZFA to new INSN_CLASS_ZFH_OR_ZVFH_AND_ZFA.
This commit adds 'Zihintntl' extension and its hint instructions.
This is based on:
<0dc91f505e>,
the first ISA Manual noting that the 'Zihintntl' extension is ratified.
Note that compressed 'Zihintntl' hints require either 'C' or
'Zca' extension.
Co-authored-by: Nelson Chu <nelson@rivosinc.com>
bfd/ChangeLog:
* elfxx-riscv.c (riscv_supported_std_z_ext): Add 'Zihintntl'
standard hint 'Z' extension.
(riscv_multi_subset_supports): Support new instruction classes.
(riscv_multi_subset_supports_ext): Likewise.
gas/ChangeLog:
* testsuite/gas/riscv/zihintntl.s: New test for 'Zihintntl'
including auto-compression without C prefix and explicit C prefix.
* testsuite/gas/riscv/zihintntl.d: Likewise.
* testsuite/gas/riscv/zihintntl-na.d: Likewise.
* testsuite/gas/riscv/zihintntl-base.s: New test for correspondence
between 'Zihintntl' and base 'I' or 'C' instructions.
* testsuite/gas/riscv/zihintntl-base.d: Likewise.
include/ChangeLog:
* opcode/riscv.h (enum riscv_insn_class): Add new instruction
classes: INSN_CLASS_ZIHINTNTL and INSN_CLASS_ZIHINTNTL_AND_C.
(MASK_NTL_P1, MATCH_NTL_P1, MASK_NTL_PALL,
MATCH_NTL_PALL, MASK_NTL_S1, MATCH_NTL_S1, MASK_NTL_ALL,
MATCH_NTL_ALL, MASK_C_NTL_P1, MATCH_C_NTL_P1, MASK_C_NTL_PALL,
MATCH_C_NTL_PALL, MASK_C_NTL_S1, MATCH_C_NTL_S1, MASK_C_NTL_ALL,
MATCH_C_NTL_ALL): New.
opcodes/ChangeLog:
* riscv-opc.c (riscv_opcodes): Add instructions from the
'Zihintntl' extension.
The longest register name is 4 characters (plus a nul one), so using a
4- or 8-byte pointer to get at it is neither space nor time efficient.
Embed the names right into the array. For PIE this also reduces the
number of base relocations in the final image.
To avoid old gcc, when generating 32-bit code, bogusly warning about
bounds being exceeded in the code processing Cs/Cw, Ct/Cx, and CD,
an adjustment to EXTRACT_BITS() is needed: This macro shouldn't supply
a 64-bit value, and it also doesn't need to - all operand fields to
date are far more narrow than 32 bits. This in turn allows dropping a
number of casts elsewhere.
LoongArch always support clz and ctz instructions, so we can always use
__builtin_{clz,ctz} for count_{leading,trailing}_zeros. This improves
the code of libgcc, and also benefits Glibc once we merge longlong.h
there.
Bootstrapped and regtested on loongarch64-linux-gnu.
include/
* longlong.h [__loongarch__] (count_leading_zeros): Define.
[__loongarch__] (count_trailing_zeros): Likewise.
[__loongarch__] (COUNT_LEADING_ZEROS_0): Likewise.
The loongarch64 specification permits page sizes of 4KiB, 16KiB and 64KiB,
but only 16KiB pages are supported for now.
Co-Authored-By: qijingwen <qijingwen@loongson.cn>
include/
* vtv-change-permission.h (defined): Determines whether the macro
__loongarch_lp64 is defined
(VTV_PAGE_SIZE): Set VTV_PAGE_SIZE to 16KiB for loongarch64.
I noticed a few files double-included libcoff.h, and digging deeper I
found that the PEI_HEADERS define is a sort of external include guard.
This patch adds include guards to the few files in include/coff that
were missing one, and then removes the PEI_HEADERS workaround and the
redundant includes.
I didn't see anything in these files that indicated that
double-inclusion would be useful, so it seems to me that this approach
is ok.
Tested by rebuilding with --enable-targets=all.
2023-08-02 Tom Tromey <tromey@adacore.com>
* pei-x86_64.c (PEI_HEADERS): Do not define.
* pei-loongarch64.c (PEI_HEADERS): Do not define.
* pei-aarch64.c (PEI_HEADERS): Do not define.
* pe-x86_64.c (PEI_HEADERS): Do not define.
* pe-aarch64.c (PEI_HEADERS): Do not define.
* libpei.h (_LIBPEI_H): Add include guard.
* coff-x86_64.c (PEI_HEADERS): Do not check.
* coff-loongarch64.c (PEI_HEADERS): Do not check.
* coff-aarch64.c (PEI_HEADERS): Do not check.
include/ChangeLog
2023-08-02 Tom Tromey <tromey@adacore.com>
* coff/x86_64.h (COFF_X86_64_H): Add include guard.
* coff/loongarch64.h (COFF_LOONGARCH64_H): Add include guard.
* coff/aarch64.h (COFF_AARCH64_H): Add include guard.
This patch adds support for EF_BPF_CPUVER bits in the ELF
machine-dependent header flags. These bits encode the BPF CPU
version for which the object file has been compiled for.
The BPF assembler is updated so it annotates the object files it
generates with these bits.
The BPF disassembler is updated so it honors EF_BPF_CPUVER to use the
appropriate ISA version if the user didn't specify an explicit ISA
version in the command line. Note that a value of zero in
EF_BPF_CPUVER is interpreted by the disassembler as "use the later
supported version" (the BPF CPU versions start with v1.)
The readelf utility is updated to pretty print EF_BPF_CPUVER when it
prints out the ELF header:
$ readelf -h a.out
ELF Header:
...
Flags: 0x4, CPU Version: 4
Tested in bpf-unknown-none.
include/ChangeLog:
2023-07-30 Jose E. Marchesi <jose.marchesi@oracle.com>
* elf/bpf.h (EF_BPF_CPUVER): Define.
* opcode/bpf.h (BPF_XBPF): Change from 0xf to 0xff so it fits in
EF_BPF_CPUVER.
binutils/ChangeLog:
2023-07-30 Jose E. Marchesi <jose.marchesi@oracle.com>
* readelf.c (get_machine_flags): Recognize and pretty print BPF
machine flags.
opcodes/ChangeLog:
2023-07-30 Jose E. Marchesi <jose.marchesi@oracle.com>
* bpf-dis.c: Initialize asm_bpf_version to -1.
(print_insn_bpf): Set BPF ISA version from the cpu version ELF
header flags if no explicit version set in the command line.
* disassemble.c (disassemble_init_for_target): Remove unused code.
gas/ChangeLog:
2023-07-30 Jose E. Marchesi <jose.marchesi@oracle.com>
* config/tc-bpf.h (elf_tc_final_processing): Define.
* config/tc-bpf.c (bpf_elf_final_processing): New function.
This patch adds support for the BPF V4 ISA byte swap instructions to
opcodes, assembler and disassembler.
Tested in bpf-unknown-none.
include/ChangeLog:
2023-07-24 Jose E. Marchesi <jose.marchesi@oracle.com>
* opcode/bpf.h (BPF_IMM32_BSWAP16): Define.
(BPF_IMM32_BSWAP32): Likewise.
(BPF_IMM32_BSWAP64): Likewise.
(enum bpf_insn_id): New entries BPF_INSN_BSWAP{16,32,64}.
opcodes/ChangeLog:
2023-07-24 Jose E. Marchesi <jose.marchesi@oracle.com>
* bpf-opc.c (bpf_opcodes): Add entries for the BSWAP*
instructions.
gas/ChangeLog:
2023-07-24 Jose E. Marchesi <jose.marchesi@oracle.com>
* doc/c-bpf.texi (BPF Instructions): Document BSWAP* instructions.
* testsuite/gas/bpf/alu.s: Test BSWAP{16,32,64} instructions.
* testsuite/gas/bpf/alu.d: Likewise.
* testsuite/gas/bpf/alu-be.d: Likewise.
* testsuite/gas/bpf/alu-pseudoc.s: Likewise.
* testsuite/gas/bpf/alu-pseudoc.d: Likewise.
* testsuite/gas/bpf/alu-be-pseudoc.d: Likewise.
This patch adds support for the V4 BPF instruction jal/gotol, which is
like ja/goto but it supports a signed 32-bit PC-relative (in number of
64-bit words minus one) target operand instead of the 16-bit signed
operand of the other instruction. This greatly increases the jump
range in BPF programs.
Tested in bpf-unkown-none.
bfd/ChangeLog:
2023-07-24 Jose E. Marchesi <jose.marchesi@oracle.com>
* reloc.c: New reloc BFD_RELOC_BPF_DISPCALL32.
* elf64-bpf.c (bpf_reloc_type_lookup): Handle the new reloc.
* libbfd.h (bfd_reloc_code_real_names): Regenerate.
gas/ChangeLog:
2023-07-24 Jose E. Marchesi <jose.marchesi@oracle.com>
* config/tc-bpf.c (struct bpf_insn): New field `id'.
(md_assemble): Save the ids of successfully parsed instructions
and use the new BFD_RELOC_BPF_DISPCALL32 whenever appropriate.
(md_apply_fix): Adapt to the new BFD reloc.
* testsuite/gas/bpf/jump.s: Test JAL.
* testsuite/gas/bpf/jump.d: Likewise.
* testsuite/gas/bpf/jump-pseudoc.d: Likewise.
* testsuite/gas/bpf/jump-be.d: Likewise.
* testsuite/gas/bpf/jump-be-pseudoc.d: Likewise.
* doc/c-bpf.texi (BPF Instructions): Document new instruction
jal/gotol.
Document new operand type disp32.
include/ChangeLog:
2023-07-24 Jose E. Marchesi <jose.marchesi@oracle.com>
* opcode/bpf.h (enum bpf_insn_id): Add entry BPF_INSN_JAL.
(enum bpf_insn_id): Remove spurious entry BPF_INSN_CALLI.
opcodes/ChangeLog:
2023-07-23 Jose E. Marchesi <jose.marchesi@oracle.com>
* bpf-opc.c (bpf_opcodes): Add entry for jal.
This commit adds the signed load to register (ldxs*) instructions
introduced in the BPF ISA version 4, including opcodes and assembler
tests.
Tested in bpf-unknown-none.
include/ChangeLog:
2023-07-21 Jose E. Marchesi <jose.marchesi@oracle.com>
* opcode/bpf.h (enum bpf_insn_id): Add entries for signed load
instructions.
(BPF_MODE_SMEM): Define.
opcodes/ChangeLog:
2023-07-21 Jose E. Marchesi <jose.marchesi@oracle.com>
* bpf-opc.c (bpf_opcodes): Add entries for LDXS{B,W,H,DW}
instructions.
gas/ChangeLog:
2023-07-21 Jose E. Marchesi <jose.marchesi@oracle.com>
* testsuite/gas/bpf/mem.s: Add signed load instructions.
* testsuite/gas/bpf/mem-pseudoc.s: Likewise.
* testsuite/gas/bpf/mem.d: Likewise.
* testsuite/gas/bpf/mem-pseudoc.d: Likewise.
* testsuite/gas/bpf/mem-be.d: Likewise.
* doc/c-bpf.texi (BPF Instructions): Document the signed load
instructions.
This commit adds the signed register move (movs) instructions
introduced in the BPF ISA version 4, including opcodes and assembler
tests.
Tested in bpf-unknown-none.
include/ChangeLog:
2023-07-21 Jose E. Marchesi <jose.marchesi@oracle.com>
* opcode/bpf.h (BPF_OFFSET16_MOVS8): Define.
(BPF_OFFSET16_MOVS16): Likewise.
(BPF_OFFSET16_MOVS32): Likewise.
(enum bpf_insn_id): Add entries for MOVS{8,16,32}R and
MOVS32{8,16,32}R.
opcodes/ChangeLog:
2023-07-21 Jose E. Marchesi <jose.marchesi@oracle.com>
* bpf-opc.c (bpf_opcodes): Add entries for MOVS{8,16,32}R and
MOVS32{8,16,32}R instructions. and MOVS32I instructions.
gas/ChangeLog:
2023-07-21 Jose E. Marchesi <jose.marchesi@oracle.com>
* testsuite/gas/bpf/alu.s: Test movs instructions.
* testsuite/gas/bpf/alu-pseudoc.s: Likewise.
* testsuite/gas/bpf/alu32.s: Likewise for movs32 instruction.
* testsuite/gas/bpf/alu32-pseudoc.s: Likewise.
* testsuite/gas/bpf/alu.d: Add expected results.
* testsuite/gas/bpf/alu32.d: Likewise.
* testsuite/gas/bpf/alu-be.d: Likewise.
* testsuite/gas/bpf/alu32-be.d: Likewise.
* testsuite/gas/bpf/alu-pseudoc.d: Likewise.
* testsuite/gas/bpf/alu32-pseudoc.d: Likewise.
* testsuite/gas/bpf/alu-be-pseudoc.d: Likewise.
* testsuite/gas/bpf/alu32-be-pseudoc.d: Likewise.
CGEN is cool, but the BPF architecture is simply too bizarre for it.
The weird way of BPF to handle endianness in instruction encoding, the
weird C-like alternative assembly syntax, the weird abuse of
multi-byte (or infra-byte) instruction fields as opcodes, the unusual
presence of opcodes beyond the first 32-bits of some instructions, are
all examples of what makes it a PITA to continue using CGEN for this
port. The bpf.cpu file is becoming so complex and so nested with
p-macros that it is very difficult to read, and quite challenging to
update. Also, every time we are forced to change something in CGEN to
accommodate BPF requirements (which is often) we have to do extensive
testing to make sure we do not break any other target using CGEN.
This is getting un-maintenable.
So I have decided to bite the bullet and revamp/rewrite the port so it
no longer uses CGEN. Overall, this involved:
* To remove the cpu/bpf.{cpu,opc} descriptions.
* To remove the CGEN generated files.
* To replace the CGEN generated opcodes table with a new hand-written
opcodes table for BPF.
* To replace the CGEN generated disassembler wih a new disassembler
that uses the new opcodes.
* To replace the CGEN generated assembler with a new assembler that uses the
new opcodes.
* To replace the CGEN generated simulator with a new simulator that uses the
new opcodes. [This is pushed in GDB in another patch.]
* To adapt the build systems to the new situation.
Additionally, this patch introduces some extensions and improvements:
* A new BPF relocation BPF_RELOC_BPF_DISP16 plus corresponding ELF
relocation R_BPF_GNU_64_16 are added to the BPF BFD port. These
relocations are used for section-relative 16-bit offsets used in
load/store instructions.
* The disassembler now has support for the "pseudo-c" assembly syntax of
BPF. What dialect to use when disassembling is controlled by a command
line option.
* The disassembler now has support for dumping instruction immediates in
either octal, hexadecimal or decimal. The used output base is controlled
by a new command-line option.
* The GAS BPF test suite has been re-structured and expanded in order to
test the disassembler pseudoc syntax support. Minor bugs have been also
fixed there. The assembler generic tests that were disabled for bpf-*-*
targets due to the previous implementation of pseudoc syntax are now
re-enabled. Additional tests have been added to test the new features of
the assembler. .dump files are no longer used.
* The linker BPF test suite has been adapted to the command line options
used by the new disassembler.
The result is very satisfactory. This patchs adds 3448 lines of code
and removes 10542 lines of code.
Tested in:
* Target bpf-unknown-none with 64-bit little-endian host and 32-bit
little-endian host.
* Target x86-64-linux-gnu with --enable-targets=all
Note that I have not tested in a big-endian host yet. I will do so
once this lands upstream so I can use the GCC compiler farm.
I have not included ChangeLog entries in this patch: these would be
massive and not very useful, considering this is pretty much a rewrite
of the port. I beg the indulgence of the global maintainers.
This patch support Zcb extension, contains new compressed instructions,
some instructions depend on other existed extension, like 'zba', 'zbb'
and 'zmmul'. Zcb also imply Zca extension to enable the compressing
features.
Co-Authored by: Charlie Keaney <charlie.keaney@embecosm.com>
Co-Authored by: Mary Bennett <mary.bennett@embecosm.com>
Co-Authored by: Nandni Jamnadas <nandni.jamnadas@embecosm.com>
Co-Authored by: Sinan Lin <sinan.lin@linux.alibaba.com>
Co-Authored by: Simon Cook <simon.cook@embecosm.com>
Co-Authored by: Shihua Liao <shihua@iscas.ac.cn>
Co-Authored by: Yulong Shi <yulong@iscas.ac.cn>
bfd/ChangeLog:
* elfxx-riscv.c (riscv_multi_subset_supports): New extension.
(riscv_multi_subset_supports_ext): Ditto.
gas/ChangeLog:
* config/tc-riscv.c (validate_riscv_insn): New operators.
(riscv_ip): Ditto.
* testsuite/gas/riscv/zcb.d: New test.
* testsuite/gas/riscv/zcb.s: New test.
include/ChangeLog:
* opcode/riscv-opc.h (MATCH_C_LBU): New opcode.
(MASK_C_LBU): New mask.
(MATCH_C_LHU): New opcode.
(MASK_C_LHU): New mask.
(MATCH_C_LH): New opcode.
(MASK_C_LH): New mask.
(MATCH_C_SB): New opcode.
(MASK_C_SB): New mask.
(MATCH_C_SH): New opcode.
(MASK_C_SH): New mask.
(MATCH_C_ZEXT_B): New opcode.
(MASK_C_ZEXT_B): New mask.
(MATCH_C_SEXT_B): New opcode.
(MASK_C_SEXT_B): New mask.
(MATCH_C_ZEXT_H): New opcode.
(MASK_C_ZEXT_H): New mask.
(MATCH_C_SEXT_H): New opcode.
(MASK_C_SEXT_H): New mask.
(MATCH_C_ZEXT_W): New opcode.
(MASK_C_ZEXT_W): New mask.
(MATCH_C_NOT): New opcode.
(MASK_C_NOT): New mask.
(MATCH_C_MUL): New opcode.
(MASK_C_MUL): New mask.
(DECLARE_INSN): New opcode.
* opcode/riscv.h (EXTRACT_ZCB_BYTE_UIMM): New inline func.
(EXTRACT_ZCB_HALFWORD_UIMM): Ditto.
(ENCODE_ZCB_BYTE_UIMM): Ditto.
(ENCODE_ZCB_HALFWORD_UIMM): Ditto.
(VALID_ZCB_BYTE_UIMM): Ditto.
(VALID_ZCB_HALFWORD_UIMM): Ditto.
(enum riscv_insn_class): New extension class.
opcodes/ChangeLog:
* riscv-dis.c (print_insn_args): New operators.
* riscv-opc.c: New instructions.
Making target code depend on a host define like _AIX52 is never
correct, so out it goes. Also, sort some config.bfd entries a little
to make it more obvious there is a config difference between aix5.1
and aix5.2. These two changes should make no difference to anything
in binutils. The gas define of AIX_WEAK_SUPPORT on the other hand was
wrong, so fix that. Finally, fix some testsuite fails on aix < 5.2 by
simply not running the tests.
include/
* coff/internal.h (C_WEAKEXT): Don't depend on _AIX52.
bfd/
* coffcode.h (coff_slurp_symbol_table): Don't depend on _AIX52.
(coff_classify_symbol): Likewise.
* config.bfd: Sort some entries.
gas/
* configure.ac (AIX_WEAK_SUPPORT): Don't set for aix5.[01].
* configure: Regenerate.
* testsuite/gas/ppc/aix.exp (xcoff-visibility-1*) Don't run
for aix < 5.2.
Currently we have three instruction classes defined for Zvkh[a,b]:
- INSN_CLASS_ZVKNHA
- INSN_CLASS_ZVKNHB
- INSN_CLASS_ZVKNHA_OR_ZVKNHB
The encodings of all instructions in Zvknh[a,b] are identical.
Therefore, we don't need the individual instruction classes
and can remove them.
This patch also adds the missing support of the combined instruction
class in riscv_multi_subset_supports_ext().
Fixes: 62edb233ef ("RISC-V: Add support for the Zvknh[a,b] ISA extensions")
Reported-By: Nelson Chu <nelson@rivosinc.com>
Signed-off-by: Christoph Müllner <christoph.muellner@vrull.eu>
Zvksh is part of the vector crypto extensions.
This extension adds the following instructions:
- vsm3me.vv
- vsm3c.vi
bfd/ChangeLog:
* elfxx-riscv.c (riscv_multi_subset_supports): Add instruction
class support for Zvksh.
(riscv_multi_subset_supports_ext): Likewise.
gas/ChangeLog:
* testsuite/gas/riscv/zvksh.d: New test.
* testsuite/gas/riscv/zvksh.s: New test.
include/ChangeLog:
* opcode/riscv-opc.h (MATCH_VSM3C_VI): New.
(MASK_VSM3C_VI): New.
(MATCH_VSM3ME_VV): New.
(MASK_VSM3ME_VV): New.
(DECLARE_INSN): New.
* opcode/riscv.h (enum riscv_insn_class): Add instruction class
support for Zvksh.
opcodes/ChangeLog:
* riscv-opc.c: Add Zvksh instructions.
Signed-off-by: Nathan Huckleberry <nhuck@google.com>
Signed-off-by: Christoph Müllner <christoph.muellner@vrull.eu>
Zvksed is part of the vector crypto extensions.
This extension adds the following instructions:
- vsm4k.vi
- vsm4r.[vv,vs]
bfd/ChangeLog:
* elfxx-riscv.c (riscv_multi_subset_supports): Add instruction
class support for Zvksed.
(riscv_multi_subset_supports_ext): Likewise.
gas/ChangeLog:
* testsuite/gas/riscv/zvksed.d: New test.
* testsuite/gas/riscv/zvksed.s: New test.
include/ChangeLog:
* opcode/riscv-opc.h (MATCH_VSM4K_VI): New.
(MASK_VSM4K_VI): New.
(MATCH_VSM4R_VS): New.
(MASK_VSM4R_VS): New.
(MATCH_VSM4R_VV): New.
(MASK_VSM4R_VV): New.
(DECLARE_INSN): New.
* opcode/riscv.h (enum riscv_insn_class): Add instruction class
support for Zvksed.
opcodes/ChangeLog:
* riscv-opc.c: Add Zvksed instructions.
Signed-off-by: Nathan Huckleberry <nhuck@google.com>
Signed-off-by: Christoph Müllner <christoph.muellner@vrull.eu>
Zvknh[a,b] are parts of the vector crypto extensions.
This extension adds the following instructions:
- vsha2ms.vv
- vsha2c[hl].vv
bfd/ChangeLog:
* elfxx-riscv.c (riscv_multi_subset_supports): Add instruction
class support for Zvknh[a,b].
(riscv_multi_subset_supports_ext): Likewise.
gas/ChangeLog:
* testsuite/gas/riscv/zvknha.d: New test.
* testsuite/gas/riscv/zvknha_zvknhb.s: New test.
* testsuite/gas/riscv/zvknhb.d: New test.
include/ChangeLog:
* opcode/riscv-opc.h (MATCH_VSHA2CH_VV): New.
(MASK_VSHA2CH_VV): New.
(MATCH_VSHA2CL_VV): New.
(MASK_VSHA2CL_VV): New.
(MATCH_VSHA2MS_VV): New.
(MASK_VSHA2MS_VV): New.
(DECLARE_INSN): New.
* opcode/riscv.h (enum riscv_insn_class): Add instruction class
support for Zvknh[a,b].
opcodes/ChangeLog:
* riscv-opc.c: Add Zvknh[a,b] instructions.
Signed-off-by: Nathan Huckleberry <nhuck@google.com>
Signed-off-by: Christoph Müllner <christoph.muellner@vrull.eu>
Zvkg is part of the vector crypto extensions.
This extension adds the following instructions:
- vghsh.vv
- vgmul.vv
bfd/ChangeLog:
* elfxx-riscv.c (riscv_multi_subset_supports): Add instruction
class support for Zvkg.
(riscv_multi_subset_supports_ext): Likewise.
gas/ChangeLog:
* testsuite/gas/riscv/zvkg.d: New test.
* testsuite/gas/riscv/zvkg.s: New test.
include/ChangeLog:
* opcode/riscv-opc.h (MATCH_VGHSH_VV): New.
(MASK_VGHSH_VV): New.
(MATCH_VGMUL_VV): New.
(MASK_VGMUL_VV): New.
(DECLARE_INSN): New.
* opcode/riscv.h (enum riscv_insn_class): Add instruction class
support for Zvkg.
opcodes/ChangeLog:
* riscv-opc.c: Add Zvkg instructions.
Signed-off-by: Nathan Huckleberry <nhuck@google.com>
Signed-off-by: Christoph Müllner <christoph.muellner@vrull.eu>
This patch adds support for the RISC-V Zfa extension,
which introduces additional floating-point instructions:
* fli (load-immediate) with pre-defined immediates
* fminm/fmaxm (like fmin/fmax but with different NaN behaviour)
* fround/froundmx (round to integer)
* fcvtmod.w.d (Modular Convert-to-Integer)
* fmv* to access high bits of FP registers in case XLEN < FLEN
* fleq/fltq (quiet comparison instructions)
Zfa defines its instructions in combination with the following
extensions:
* single-precision floating-point (F)
* double-precision floating-point (D)
* quad-precision floating-point (Q)
* half-precision floating-point (Zfh)
This patch is based on an earlier version from Tsukasa OI:
https://sourceware.org/pipermail/binutils/2022-September/122939.html
Most significant change to that commit is the switch from the rs1-field
value to the actual floating-point value in the last operand of the fli*
instructions. Everything that strtof() can parse is accepted and
the '%a' printf specifier is used to output hex floating-point literals
in the disassembly.
The Zfa specification is frozen (and has passed public review). It is
available as a chapter in "The RISC-V Instruction Set Manual: Volume 1":
https://github.com/riscv/riscv-isa-manual/releases
bfd/ChangeLog:
* elfxx-riscv.c (riscv_multi_subset_supports): Add instruction
class support for 'Zfa' extension.
(riscv_multi_subset_supports_ext): Likewise.
(riscv_implicit_subsets): Add 'Zfa' -> 'F' dependency.
gas/ChangeLog:
* config/tc-riscv.c (flt_lookup): New helper to lookup a float value
in an array.
(validate_riscv_insn): Add 'Wfv' as new format string directive.
(riscv_ip): Likewise.
* doc/c-riscv.texi: Add floating-point chapter and describe
limiations of the Zfa FP literal parsing.
* testsuite/gas/riscv/zfa-32.d: New test.
* testsuite/gas/riscv/zfa-32.s: New test.
* testsuite/gas/riscv/zfa-64.d: New test.
* testsuite/gas/riscv/zfa-64.s: New test.
* testsuite/gas/riscv/zfa-fail.d: New test.
* testsuite/gas/riscv/zfa-fail.l: New test.
* testsuite/gas/riscv/zfa-fail.s: New test.
* testsuite/gas/riscv/zfa.d: New test.
* testsuite/gas/riscv/zfa.s: New test.
* testsuite/gas/riscv/zfa.s: New test.
* opcode/riscv-opc.h (MATCH_FLI_H): New.
(MASK_FLI_H): New.
(MATCH_FMINM_H): New.
(MASK_FMINM_H): New.
(MATCH_FMAXM_H): New.
(MASK_FMAXM_H): New.
(MATCH_FROUND_H): New.
(MASK_FROUND_H): New.
(MATCH_FROUNDNX_H): New.
(MASK_FROUNDNX_H): New.
(MATCH_FLTQ_H): New.
(MASK_FLTQ_H): New.
(MATCH_FLEQ_H): New.
(MASK_FLEQ_H): New.
(MATCH_FLI_S): New.
(MASK_FLI_S): New.
(MATCH_FMINM_S): New.
(MASK_FMINM_S): New.
(MATCH_FMAXM_S): New.
(MASK_FMAXM_S): New.
(MATCH_FROUND_S): New.
(MASK_FROUND_S): New.
(MATCH_FROUNDNX_S): New.
(MASK_FROUNDNX_S): New.
(MATCH_FLTQ_S): New.
(MASK_FLTQ_S): New.
(MATCH_FLEQ_S): New.
(MASK_FLEQ_S): New.
(MATCH_FLI_D): New.
(MASK_FLI_D): New.
(MATCH_FMINM_D): New.
(MASK_FMINM_D): New.
(MATCH_FMAXM_D): New.
(MASK_FMAXM_D): New.
(MATCH_FROUND_D): New.
(MASK_FROUND_D): New.
(MATCH_FROUNDNX_D): New.
(MASK_FROUNDNX_D): New.
(MATCH_FLTQ_D): New.
(MASK_FLTQ_D): New.
(MATCH_FLEQ_D): New.
(MASK_FLEQ_D): New.
(MATCH_FLI_Q): New.
(MASK_FLI_Q): New.
(MATCH_FMINM_Q): New.
(MASK_FMINM_Q): New.
(MATCH_FMAXM_Q): New.
(MASK_FMAXM_Q): New.
(MATCH_FROUND_Q): New.
(MASK_FROUND_Q): New.
(MATCH_FROUNDNX_Q): New.
(MASK_FROUNDNX_Q): New.
(MATCH_FLTQ_Q): New.
(MASK_FLTQ_Q): New.
(MATCH_FLEQ_Q): New.
(MASK_FLEQ_Q): New.
(MATCH_FCVTMOD_W_D): New.
(MASK_FCVTMOD_W_D): New.
(MATCH_FMVH_X_D): New.
(MASK_FMVH_X_D): New.
(MATCH_FMVH_X_Q): New.
(MASK_FMVH_X_Q): New.
(MATCH_FMVP_D_X): New.
(MASK_FMVP_D_X): New.
(MATCH_FMVP_Q_X): New.
(MASK_FMVP_Q_X): New.
(DECLARE_INSN): New.
* opcode/riscv.h (enum riscv_insn_class): Add instruction
classes for the Zfa extension.
opcodes/ChangeLog:
* riscv-dis.c (print_insn_args): Add support for
new format string directive 'Wfv'.
* riscv-opc.c: Add Zfa instructions.
Co-Developed-by: Tsukasa OI <research_trasio@irq.a4lg.com>
Signed-off-by: Christoph Müllner <christoph.muellner@vrull.eu>
Co-Developed-by: Philipp Tomsich <philipp.tomsich@vrull.eu>
Acked-by: Palmer Dabbelt <palmer@rivosinc.com>
As outlined in the LoongArch ELF psABI spec [1], it is actually already
2 versions after the initial LoongArch support, and the $v[01] and
$fv[01] names should really get sunset by now.
In addition, the "$x" name for $r21 was never included in any released
version of the ABI spec, and such usages are all fixed to say just $r21
for every project I could think of that accepted a LoongArch port.
Plus, the upcoming LSX/LASX support makes use of registers named
"$vrNN" and "$xrNN", so having "$vN" and "$x" alongside would almost
certainly create confusion for developers.
Issue warnings for such usages per the deprecation procedure detailed
in the spec, so we can finally remove support in the next release cycle
after this.
[1]: https://loongson.github.io/LoongArch-Documentation/LoongArch-ELF-ABI-EN.html
gas/ChangeLog:
* config/tc-loongarch.c: Init canonical register ABI name
mappings and deprecated register names.
(loongarch_args_parser_can_match_arg_helper): Warn in case of
deprecated register name usage.
* testsuite/gas/loongarch/deprecated_reg_aliases.d: New test.
* testsuite/gas/loongarch/deprecated_reg_aliases.l: Likewise.
* testsuite/gas/loongarch/deprecated_reg_aliases.s: Likewise.
include/ChangeLog:
* opcode/loongarch.h: Rename global variables.
opcodes/ChangeLog:
* loongarch-opc.c: Rename the alternate/deprecated register name
mappings, and move $x to the deprecated name map.
Signed-off-by: WANG Xuerui <git@xen0n.name>
Add a flag in the pinfo field for being able to mark certain specialized
matchers as disassembler-only, so some degree of isolation between
assembler-side and disassembler-side can be achieved.
This isolation is necessary, firstly because some pseudo-instructions
cannot be fully described in the opcode table, like `li.[wd]`, so the
corresponding opcode entry cannot have meaningful match/mask values.
Secondly, some of these pseudo-instructions can be realized in more than
one plausible ways; e.g. `li.w rd, <something between 0 and 0x7ff>` can
be realized on LA64 with any of `addi.w`, `addi.d` or `ori`. If we tie
disassembly of such aliases with the corresponding GAS support, only one
canonical form among the above would be recognized as `li.w`, and it
would mildly impact the readability of disassembly output.
People wanting the exact disassembly can always set `-M no-aliases` to
get the original behavior back.
In addition, in certain cases, information is irreversibly lost after
assembling, so perfect round-trip would not be possible in such cases.
For example, `li.w` and `li.d` of immediates within int32_t range
produce the same code; in this patch, `addi.d rd, $zero, imm` is treated
as `li.d`, while `addi.w` and `ori` immediate loads are shown as `li.w`,
due to the expressible value range well within 32 bits.
gas/ChangeLog:
* config/tc-loongarch.c (get_loongarch_opcode): Ignore
disassembler-only aliases.
* testsuite/gas/loongarch/64_pcrel.d: Update test case.
* testsuite/gas/loongarch/imm_ins.d: Likewise.
* testsuite/gas/loongarch/imm_ins_32.d: Likewise.
* testsuite/gas/loongarch/jmp_op.d: Likewise.
* testsuite/gas/loongarch/li.d: Likewise.
* testsuite/gas/loongarch/macro_op.d: Likewise.
* testsuite/gas/loongarch/macro_op_32.d: Likewise.
* testsuite/gas/loongarch/macro_op_large_abs.d: Likewise.
* testsuite/gas/loongarch/macro_op_large_pc.d: Likewise.
* testsuite/gas/loongarch/nop.d: Likewise.
* testsuite/gas/loongarch/relax_align.d: Likewise.
* testsuite/gas/loongarch/reloc.d: Likewise.
include/ChangeLog:
* opcode/loongarch.h (INSN_DIS_ALIAS): Add.
ld/ChangeLog:
* testsuite/ld-loongarch-elf/jmp_op.d: Update test case.
* testsuite/ld-loongarch-elf/macro_op.d: Likewise.
* testsuite/ld-loongarch-elf/macro_op_32.d: Likewise.
* testsuite/ld-loongarch-elf/relax-align.dd: Likewise.
opcodes/ChangeLog:
* loongarch-dis.c: Move register name map declarations to top.
(get_loongarch_opcode_by_binfmt): Consider aliases when
disassembling without the no-aliases option.
(parse_loongarch_dis_option): Support the no-aliases option.
* loongarch-opc.c: Collect pseudo instructions into a new
dedicated table.
Signed-off-by: WANG Xuerui <git@xen0n.name>
SFrame version 2 encodes the size of repetitive insn block explicitly
in the format. Add information in the SFrame FDE to convey the size
of the block of repeating instructions. This information is used only
for SFrame FDEs of type SFRAME_FDE_TYPE_PCMASK.
Introduce two extra bytes for padding: this ensures that the memory
accesses to the members of the SFrame Frame Descriptor Entry (FDE) are
naturally aligned.
gas generates SFrame section with version SFRAME_VERSION_2 by default.
libsframe provides two new APIs to:
- get an SFrame FDE data from the decoder context, and
- add an SFrame FDE to the encoder context.
The additional argument (for rep_block_size) is useful for SFrame FDEs
where FDE type is SFRAME_FDE_TYPE_PCMASK.
The linker will generate the output SFrame sections in the
SFRAME_VERSION_2 format. If the input sections offered to the linker
are not all in the SFRAME_VERSION_2 format, the linker issues an error
to the user.
objdump/readelf will show the following message to the user if .sframe
section in SFRAME_VERSION_1 format is seen:
"No further information can be displayed. SFrame version not
supported."
In other words, like the rest of the binutils, only the current SFrame
format version, i.e., SFRAME_VERSION_2 is supported by the textual dump
facilities.
bfd/
* elf-sframe.c (_bfd_elf_merge_section_sframe): Generate an
output SFrame section with version SFRAME_VERSION_2. Also,
error out if the SFrame sections do not all have
SFRAME_VERSION_2.
* elfxx-x86.c (_bfd_x86_elf_create_sframe_plt): Generate SFrame
section for plt entries with version SFRAME_VERSION_2.
gas/
* gen-sframe.c (sframe_set_version): Update to SFRAME_VERSION_2.
(output_sframe): Likewise.
gas/testsuite/
* gas/cfi-sframe/cfi-sframe-aarch64-1.d: Use SFRAME_VERSION_2.
* gas/cfi-sframe/cfi-sframe-aarch64-2.d: Likewise.
* gas/cfi-sframe/cfi-sframe-aarch64-pac-ab-key-1.d: Likewise.
* gas/cfi-sframe/cfi-sframe-common-1.d: Likewise.
* gas/cfi-sframe/cfi-sframe-common-2.d: Likewise.
* gas/cfi-sframe/cfi-sframe-common-3.d: Likewise.
* gas/cfi-sframe/cfi-sframe-common-4.d: Likewise.
* gas/cfi-sframe/cfi-sframe-common-5.d: Likewise.
* gas/cfi-sframe/cfi-sframe-common-6.d: Likewise.
* gas/cfi-sframe/cfi-sframe-common-7.d: Likewise.
* gas/cfi-sframe/cfi-sframe-common-8.d: Likewise.
* gas/cfi-sframe/cfi-sframe-x86_64-1.d: Likewise.
* gas/cfi-sframe/common-empty-1.d: Likewise.
* gas/cfi-sframe/common-empty-2.d: Likewise.
* gas/cfi-sframe/common-empty-3.d: Likewise.
ld/testsuite/
* ld-aarch64/sframe-simple-1.d: Adjust for SFRAME_VERSION_2.
* ld-x86-64/sframe-plt-1.d: Likewise.
* ld-x86-64/sframe-simple-1.d: Likewise.
libsframe/
* libsframe.ver: Add the new APIs.
* sframe.c (sframe_decoder_get_funcdesc_v2): New definition.
(sframe_encoder_add_funcdesc_v2): Likewise.
(sframe_header_sanity_check_p): Include SFRAME_VERSION_2.
(sframe_fre_check_range_p): Get rep_block_size info from SFrame
FDE.
* sframe-dump.c (dump_sframe_header): Add support for
SFRAME_VERSION_2.
(dump_sframe): Inform user if SFrame section in SFRAME_VERSION_1
format is seen.
libsframe/testsuite/
* libsframe.decode/DATA-BE: Regenerated data file.
* libsframe.decode/DATA1: Likewise.
* libsframe.decode/DATA2: Likewise.
* libsframe.find/plt-findfre-1.c: Use new API in the testcase.
include/
* sframe.h: Add member to encode size of the code block of
repeating instructions. Add 2 bytes of padding.
* sframe-api.h (sframe_decoder_get_funcdesc_v2): New
declaration.
(sframe_encoder_add_funcdesc_v2): Likewise.
While the SFrame preamble is guaranteed to not change between versions,
providing these access APIs from the SFrame decoder and encoder APIs is
for convenience only. The linker may want to use these APIs as the
format evolves.
include/
* sframe-api.h (sframe_decoder_get_version): New declaration.
(sframe_encoder_get_version): Likewise.
libsframe/
* libsframe/libsframe.ver: Add new APIs.
* libsframe/sframe.c (sframe_decoder_get_version): New
definition.
(sframe_encoder_get_version): Likewise.
For a toy application on x86_64, for example, following is the SFrame
stack trace information for the 3 pltN entries of 16 bytes each:
func idx [1]: pc = 0x401030, size = 48 bytes
STARTPC[m] CFA FP RA
0000000000000000 sp+8 u u
000000000000000b sp+16 u u
The data in first column is the start_ip_offset. Also note that the FDE
is of type SFRAME_FDE_TYPE_PCMASK (denoted by the [m] on LHS).
Where each pltN (note: excluding plt0 entry) entry looks like:
401030: jmp *0x2fca(%rip)
401036: push $0x0
40103b: jmp 401020<_init+0x20>
401040: jmp *0x2fc2(%rip)
401046: push $0x1
40104b: jmp 401020<_init+0x20>
401050: jmp *0x2fba(%rip)
401056: push $0x2
40105b: jmp 401020<_init+0x20>
Now, to find SFrame stack trace information from an FDE of type
SFRAME_FDE_TYPE_PCMASK, sframe_find_fre () was doing an operation
like,
(start_ip_offset & 0xf) >= (pc & 0xf)
This works for pltN entry of size, say, less than 16 bytes. But if the
pltN entries or similar code stubs (for which SFrame FDE of type
SFRAME_FDE_TYPE_PCMASK may be used), evolve to be of size > 16 bytes,
this will cease to work.
To match the range covered by the SFrame FRE, one should instead perform
a modulo operation. The constant for the modulo operation must be the
size of the pltN entry. Further, this constant should ideally be
encoded in the format, as it may be different for each ABI.
In SFrame Version 2 of the format, we will move towards encoding it
explicitly in the SFrame FDE. For now, fix up the logic to at least
move towards modulo operation.
libsframe/
* sframe.c (sframe_fre_check_range_p): New definition.
(sframe_find_fre): Refactor a bit and use the new definition
above.
include/
* sframe.h (SFRAME_FDE_TYPE_PCMASK): Update comment.
libsframe/doc/
* sframe-spec.texi: Fix the text for SFRAME_FDE_TYPE_PCMASK FDE
type.
Use a more appropriate data type.
include/
* sframe-api.h (sframe_fre_get_base_reg_id): Use uint8_t as
return type.
libsframe/
* sframe-dump.c (dump_sframe_func_with_fres): Use uint8_t type
for base reg id.
* sframe.c (sframe_fre_get_base_reg_id): Use uin8_t as return
type.
Use uint8_t consistently for identifying ABI/arch in SFrame format.
bfd/
* elf-sframe.c (_bfd_elf_merge_section_sframe):
libsframe/
* sframe-dump.c (is_sframe_abi_arch_aarch64): Use uint8_t for
local variable.
* sframe.c (sframe_decoder_get_abi_arch): Update return type to
uint8_t.
(sframe_encoder_get_abi_arch): Likewise.
include/
* sframe-api.h (sframe_decoder_get_abi_arch): Likewise.
(sframe_encoder_get_abi_arch): Likewise.
Use uint32_t type alias consistently for all APIs in libsframe.
bfd/
* elfxx-x86.c (_bfd_x86_elf_create_sframe_plt): Adjust for the
changed return type.
libsframe/
* sframe.c (sframe_calc_fre_type): Use uint32_t for return type.
include/
* sframe-api.h (sframe_calc_fre_type): Likewise.
The API sframe_fde_create_func_info is provided by libsframe. Current
users are the bfd linker. Adjust the argument type for the variables
carrying the SFrame FRE type and SFrame FDE type to consistenly use
uint32_t type alias.
include/
* sframe-api.h (sframe_fde_create_func_info): Use uint32_t
instead of unsigned int.
libsframe/
* sframe.c (sframe_get_fre_type): Likewise.
(sframe_get_fde_type): Likewise.
(flip_fre_start_address): Likewise.
(sframe_fre_start_addr_size): Likewise.
(sframe_fre_entry_size): Likewise.
(flip_fre): Likewise.
(flip_sframe): Likewise.
(sframe_fde_create_func_info): Likewise.
(sframe_calc_fre_type): Likewise.
(sframe_decode_fre_start_address): Likewise.
(sframe_decode_fre): Likewise.
(sframe_find_fre): Likewise.
(sframe_decoder_get_fre): Likewise.
(sframe_encoder_add_fre): Likewise.
(sframe_encoder_write_fre_start_addr): Likewise.
(sframe_encoder_write_fre): Likewise.
(sframe_encoder_write_sframe): Likewise.