netbsdpe was deprecated in c2ce831330.
Since then, a release has passed (2.37), and it was marked obselete in
5c9cbf07f3. Unless I am mistaken, that
means we can now remove support altogether.
All branches in the "active" code are remove, and the target is
additionally marked as obsolete next to the other removed ones for
libbfd and gdb.
Per [1] from the NetBSD toolchain list, PE/COFF support was removed a
decade ago. Furthermore, the sole mention of this target in the binutils
commit history was in 2002. Together, I'm led to believe this target
hasn't seen much attention in quite a while.
[1]: https://mail-index.netbsd.org/tech-toolchain/2021/06/16/msg003996.html
bfd/
* config.bfd: Remove netbsdpe entry.
binutils/
* configure.ac: Remove netbsdpe entry.
* testsuite/lib/binutils-common.exp (is_pecoff_format): Likewise.
* configure: Regenerate.
gas/
* configure.tgt: Remove netbsdpe entry.
gdb/
* configure.tgt: Add netbsdpe to removed targets.
ld/
* configure.tgt: Remove netbsdpe entry.
* testsuite/ld-bootstrap/bootstrap.exp: Likewise.
When the architecture supports memory tagging, we handle
pointer/reference types in a special way, so we can validate tags and
show mismatches.
Unfortunately, the currently implementation errors out when the user
prints non-address values: composite types, floats, references, member
functions and other things.
Vector registers:
(gdb) p $v0
Value can't be converted to integer.
Non-existent internal variables:
(gdb) p $foo
Value can't be converted to integer.
The same happens for complex types and printing struct/union types.
There are a few problems here.
The first one is that after print_command_1 evaluates the expression
to print, the tag validation code call value_as_address
unconditionally, without making sure we have have a suitable type
where it makes to sense to call it. That results in value_as_address
(if it isn't given a pointer-like type) trying to treat the value as
an integer and convert it to an address, which #1 - doesn't make sense
(i.e., no sense in validating tags after "print 1"), and throws for
non-integer-convertible types. We fix this by making sure we have a
pointer or reference type first, and only if so then proceed to check
if the address-like value has tags.
The second is that we're calling value_as_address even if we have an
optimized out or unavailable value, which throws, because the value's
contents aren't fully accessible/readable. This error currently
escapes out and aborts the print. This case is fixed by checking for
optimized out / unavailable explicitly.
Third, the tag checking process does not gracefully handle exceptions.
If any exception is thrown from the tag validation code, we abort the
print. E.g., the target may fail to access tags via a running thread.
Or the needed /proc files aren't available. Or some other untold
reason. This is a bit too rigid. This commit changes print_command_1
to catch errors, print them, and still continue with the normal
expression printing path instead of erroring out and printing nothing
useful.
With this patch, printing works correctly again:
(gdb) p $v0
$1 = {d = {f = {2.0546950501119882e-81, 2.0546950501119882e-81}, u = {3399988123389603631, 3399988123389603631}, s = {
3399988123389603631, 3399988123389603631}}, s = {f = {1.59329203e-10, 1.59329203e-10, 1.59329203e-10, 1.59329203e-10}, u = {
791621423, 791621423, 791621423, 791621423}, s = {791621423, 791621423, 791621423, 791621423}}, h = {bf = {1.592e-10,
1.592e-10, 1.592e-10, 1.592e-10, 1.592e-10, 1.592e-10, 1.592e-10, 1.592e-10}, f = {0.11224, 0.11224, 0.11224, 0.11224, 0.11224,
0.11224, 0.11224, 0.11224}, u = {12079, 12079, 12079, 12079, 12079, 12079, 12079, 12079}, s = {12079, 12079, 12079, 12079,
12079, 12079, 12079, 12079}}, b = {u = {47 <repeats 16 times>}, s = {47 <repeats 16 times>}}, q = {u = {
62718710765820030520700417840365121327}, s = {62718710765820030520700417840365121327}}}
(gdb) p $foo
$2 = void
(gdb) p 2 + 2i
$3 = 2 + 2i
Bug: https://sourceware.org/bugzilla/show_bug.cgi?id=28110
* Two add subset functions is redundant. Keep the riscv_add_implicit_subset,
and renamed it to riscv_add_subset. Besides, if the subset is added in order,
then we just add it at the tail of the subset list.
* Removed the "-march:" prefix from the error messages. Since not only the
-march= option will use the parser, but also the architecture elf attributes,
the default architecture setting and linker will use the same parser.
* Use a function, riscv_parse_check_conflicts, to check the conflicts
of extensions, including the rv64e and rv32q.
The rv32emc-elf/rv32i-elf/rv32gc-linux/rv64gc-elf/rv64gc-linux regressions
are tested and passed.
bfd/
* elfxx-riscv.c (riscv_lookup_subset): Check the subset tail list
first. If the subset is added in order, then we can just add it to
the tail without searching the whole list.
(riscv_add_subset): Replaced by riscv_add_implicit_subset.
(riscv_add_implicit_subset): Renamed to riscv_add_subset.
(riscv_parse_add_subset): Updated.
(riscv_parsing_subset_version): Removed the "-march:" prefix from
the error message.
(riscv_parse_prefixed_ext): Likewise.
(riscv_parse_std_ext): Likewise. And move the rv<xlen>e check
to riscv_parse_check_conflicts.
(riscv_parse_check_conflicts): New function used to check conflicts.
(riscv_parse_subset): Updated.
gas/
* testsuite/gas/riscv/march-fail-base-02.l: Updated.
* testsuite/gas/riscv/march-fail-unknown-std.l: Likewise.
As documented in bug 28086, test gdb.btrace/enable-new-thread.exp
started failing with commit 0618ae4149 ("gdb: optimize
all_matching_threads_iterator"):
(gdb) record btrace^M
(gdb) PASS: gdb.btrace/enable-new-thread.exp: record btrace
break 24^M
Breakpoint 2 at 0x555555555175: file /home/smarchi/src/binutils-gdb/gdb/testsuite/gdb.btrace/enable-new-thread.c, line 24.^M
(gdb) continue^M
Continuing.^M
/home/smarchi/src/binutils-gdb/gdb/inferior.c:303: internal-error: inferior* find_inferior_pid(process_stratum_target*, int): Assertion `pid != 0' failed.^M
A problem internal to GDB has been detected,^M
further debugging may prove unreliable.^M
Quit this debugging session? (y or n) FAIL: gdb.btrace/enable-new-thread.exp: continue to breakpoint: cont to bp.1 (GDB internal error)
Note that I only see the failure if GDB is compiled without libipt
support. This is because GDB then makes use BTS instead of PT, so
exercises different code paths.
I think that the commit above just exposed an existing problem. The
stack trace of the internal error is:
#8 0x0000561cb81e404e in internal_error (file=0x561cb83aa2f8 "/home/smarchi/src/binutils-gdb/gdb/inferior.c", line=303, fmt=0x561cb83aa099 "%s: Assertion `%s' failed.") at /home/smarchi/src/binutils-gdb/gdbsupport/errors.cc:55
#9 0x0000561cb7b5c031 in find_inferior_pid (targ=0x561cb8aafb60 <the_amd64_linux_nat_target>, pid=0) at /home/smarchi/src/binutils-gdb/gdb/inferior.c:303
#10 0x0000561cb7b5c102 in find_inferior_ptid (targ=0x561cb8aafb60 <the_amd64_linux_nat_target>, ptid=...) at /home/smarchi/src/binutils-gdb/gdb/inferior.c:317
#11 0x0000561cb7f1d1c3 in find_thread_ptid (targ=0x561cb8aafb60 <the_amd64_linux_nat_target>, ptid=...) at /home/smarchi/src/binutils-gdb/gdb/thread.c:487
#12 0x0000561cb7f1b921 in all_matching_threads_iterator::all_matching_threads_iterator (this=0x7ffc4ee34678, filter_target=0x561cb8aafb60 <the_amd64_linux_nat_target>, filter_ptid=...) at /home/smarchi/src/binutils-gdb/gdb/thread-iter.c:125
#13 0x0000561cb77bc462 in filtered_iterator<all_matching_threads_iterator, non_exited_thread_filter>::filtered_iterator<process_stratum_target* const&, ptid_t const&> (this=0x7ffc4ee34670) at /home/smarchi/src/binutils-gdb/gdb/../gdbsupport/filtered-iterator.h:42
#14 0x0000561cb77b97cb in all_non_exited_threads_range::begin (this=0x7ffc4ee34650) at /home/smarchi/src/binutils-gdb/gdb/thread-iter.h:243
#15 0x0000561cb7d8ba30 in record_btrace_target::record_is_replaying (this=0x561cb8aa6250 <record_btrace_ops>, ptid=...) at /home/smarchi/src/binutils-gdb/gdb/record-btrace.c:1411
#16 0x0000561cb7d8bb83 in record_btrace_target::xfer_partial (this=0x561cb8aa6250 <record_btrace_ops>, object=TARGET_OBJECT_MEMORY, annex=0x0, readbuf=0x7ffc4ee34c58 "\260g\343N\374\177", writebuf=0x0, offset=140737352774277, len=1, xfered_len=0x7ffc4ee34ad8) at /home/smarchi/src/binutils-gdb/gdb/record-btrace.c:1437
#17 0x0000561cb7ef73a9 in raw_memory_xfer_partial (ops=0x561cb8aa6250 <record_btrace_ops>, readbuf=0x7ffc4ee34c58 "\260g\343N\374\177", writebuf=0x0, memaddr=140737352774277, len=1, xfered_len=0x7ffc4ee34ad8) at /home/smarchi/src/binutils-gdb/gdb/target.c:1504
#18 0x0000561cb7ef77da in memory_xfer_partial_1 (ops=0x561cb8aa6250 <record_btrace_ops>, object=TARGET_OBJECT_CODE_MEMORY, readbuf=0x7ffc4ee34c58 "\260g\343N\374\177", writebuf=0x0, memaddr=140737352774277, len=1, xfered_len=0x7ffc4ee34ad8) at /home/smarchi/src/binutils-gdb/gdb/target.c:1635
#19 0x0000561cb7ef78b5 in memory_xfer_partial (ops=0x561cb8aa6250 <record_btrace_ops>, object=TARGET_OBJECT_CODE_MEMORY, readbuf=0x7ffc4ee34c58 "\260g\343N\374\177", writebuf=0x0, memaddr=140737352774277, len=1, xfered_len=0x7ffc4ee34ad8) at /home/smarchi/src/binutils-gdb/gdb/target.c:1664
#20 0x0000561cb7ef7ba4 in target_xfer_partial (ops=0x561cb8aa6250 <record_btrace_ops>, object=TARGET_OBJECT_CODE_MEMORY, annex=0x0, readbuf=0x7ffc4ee34c58 "\260g\343N\374\177", writebuf=0x0, offset=140737352774277, len=1, xfered_len=0x7ffc4ee34ad8) at /home/smarchi/src/binutils-gdb/gdb/target.c:1721
#21 0x0000561cb7ef8503 in target_read_partial (ops=0x561cb8aa6250 <record_btrace_ops>, object=TARGET_OBJECT_CODE_MEMORY, annex=0x0, buf=0x7ffc4ee34c58 "\260g\343N\374\177", offset=140737352774277, len=1, xfered_len=0x7ffc4ee34ad8) at /home/smarchi/src/binutils-gdb/gdb/target.c:1974
#22 0x0000561cb7ef861f in target_read (ops=0x561cb8aa6250 <record_btrace_ops>, object=TARGET_OBJECT_CODE_MEMORY, annex=0x0, buf=0x7ffc4ee34c58 "\260g\343N\374\177", offset=140737352774277, len=1) at /home/smarchi/src/binutils-gdb/gdb/target.c:2014
#23 0x0000561cb7ef809f in target_read_code (memaddr=140737352774277, myaddr=0x7ffc4ee34c58 "\260g\343N\374\177", len=1) at /home/smarchi/src/binutils-gdb/gdb/target.c:1869
#24 0x0000561cb7937f4d in gdb_disassembler::dis_asm_read_memory (memaddr=140737352774277, myaddr=0x7ffc4ee34c58 "\260g\343N\374\177", len=1, info=0x7ffc4ee34e88) at /home/smarchi/src/binutils-gdb/gdb/disasm.c:139
#25 0x0000561cb80ab66d in fetch_data (info=0x7ffc4ee34e88, addr=0x7ffc4ee34c59 "g\343N\374\177") at /home/smarchi/src/binutils-gdb/opcodes/i386-dis.c:194
#26 0x0000561cb80ab7e2 in ckprefix () at /home/smarchi/src/binutils-gdb/opcodes/i386-dis.c:8628
#27 0x0000561cb80adbd8 in print_insn (pc=140737352774277, info=0x7ffc4ee34e88) at /home/smarchi/src/binutils-gdb/opcodes/i386-dis.c:9587
#28 0x0000561cb80abe4f in print_insn_i386 (pc=140737352774277, info=0x7ffc4ee34e88) at /home/smarchi/src/binutils-gdb/opcodes/i386-dis.c:8894
#29 0x0000561cb7744a19 in default_print_insn (memaddr=140737352774277, info=0x7ffc4ee34e88) at /home/smarchi/src/binutils-gdb/gdb/arch-utils.c:1029
#30 0x0000561cb7b33067 in i386_print_insn (pc=140737352774277, info=0x7ffc4ee34e88) at /home/smarchi/src/binutils-gdb/gdb/i386-tdep.c:4013
#31 0x0000561cb7acd8f4 in gdbarch_print_insn (gdbarch=0x561cbae2fb60, vma=140737352774277, info=0x7ffc4ee34e88) at /home/smarchi/src/binutils-gdb/gdb/gdbarch.c:3478
#32 0x0000561cb793a32d in gdb_disassembler::print_insn (this=0x7ffc4ee34e80, memaddr=140737352774277, branch_delay_insns=0x0) at /home/smarchi/src/binutils-gdb/gdb/disasm.c:795
#33 0x0000561cb793a5b0 in gdb_print_insn (gdbarch=0x561cbae2fb60, memaddr=140737352774277, stream=0x561cb8ac99f8 <null_stream>, branch_delay_insns=0x0) at /home/smarchi/src/binutils-gdb/gdb/disasm.c:850
#34 0x0000561cb793a631 in gdb_insn_length (gdbarch=0x561cbae2fb60, addr=140737352774277) at /home/smarchi/src/binutils-gdb/gdb/disasm.c:859
#35 0x0000561cb77f53f4 in btrace_compute_ftrace_bts (tp=0x561cbba11210, btrace=0x7ffc4ee35188, gaps=...) at /home/smarchi/src/binutils-gdb/gdb/btrace.c:1107
#36 0x0000561cb77f55f5 in btrace_compute_ftrace_1 (tp=0x561cbba11210, btrace=0x7ffc4ee35180, cpu=0x0, gaps=...) at /home/smarchi/src/binutils-gdb/gdb/btrace.c:1527
#37 0x0000561cb77f5705 in btrace_compute_ftrace (tp=0x561cbba11210, btrace=0x7ffc4ee35180, cpu=0x0) at /home/smarchi/src/binutils-gdb/gdb/btrace.c:1560
#38 0x0000561cb77f583b in btrace_add_pc (tp=0x561cbba11210) at /home/smarchi/src/binutils-gdb/gdb/btrace.c:1589
#39 0x0000561cb77f5a86 in btrace_enable (tp=0x561cbba11210, conf=0x561cb8ac6878 <record_btrace_conf>) at /home/smarchi/src/binutils-gdb/gdb/btrace.c:1629
#40 0x0000561cb7d88d26 in record_btrace_enable_warn (tp=0x561cbba11210) at /home/smarchi/src/binutils-gdb/gdb/record-btrace.c:294
#41 0x0000561cb7c603dc in std::__invoke_impl<void, void (*&)(thread_info*), thread_info*> (__f=@0x561cbb6c4878: 0x561cb7d88cdc <record_btrace_enable_warn(thread_info*)>) at /usr/include/c++/10/bits/invoke.h:60
#42 0x0000561cb7c5e5a6 in std::__invoke_r<void, void (*&)(thread_info*), thread_info*> (__fn=@0x561cbb6c4878: 0x561cb7d88cdc <record_btrace_enable_warn(thread_info*)>) at /usr/include/c++/10/bits/invoke.h:153
#43 0x0000561cb7c5dc92 in std::_Function_handler<void (thread_info*), void (*)(thread_info*)>::_M_invoke(std::_Any_data const&, thread_info*&&) (__functor=..., __args#0=@0x7ffc4ee35310: 0x561cbba11210) at /usr/include/c++/10/bits/std_function.h:291
#44 0x0000561cb7f2600f in std::function<void (thread_info*)>::operator()(thread_info*) const (this=0x561cbb6c4878, __args#0=0x561cbba11210) at /usr/include/c++/10/bits/std_function.h:622
#45 0x0000561cb7f23dc8 in gdb::observers::observable<thread_info*>::notify (this=0x561cb8ac5aa0 <gdb::observers::new_thread>, args#0=0x561cbba11210) at /home/smarchi/src/binutils-gdb/gdb/../gdbsupport/observable.h:150
#46 0x0000561cb7f1c436 in add_thread_silent (targ=0x561cb8aafb60 <the_amd64_linux_nat_target>, ptid=...) at /home/smarchi/src/binutils-gdb/gdb/thread.c:263
#47 0x0000561cb7f1c479 in add_thread_with_info (targ=0x561cb8aafb60 <the_amd64_linux_nat_target>, ptid=..., priv=0x561cbb3f7ab0) at /home/smarchi/src/binutils-gdb/gdb/thread.c:272
#48 0x0000561cb7bfa1d0 in record_thread (info=0x561cbb0413a0, tp=0x0, ptid=..., th_p=0x7ffc4ee35610, ti_p=0x7ffc4ee35620) at /home/smarchi/src/binutils-gdb/gdb/linux-thread-db.c:1380
#49 0x0000561cb7bf7a2a in thread_from_lwp (stopped=0x561cba81db20, ptid=...) at /home/smarchi/src/binutils-gdb/gdb/linux-thread-db.c:429
#50 0x0000561cb7bf7ac5 in thread_db_notice_clone (parent=..., child=...) at /home/smarchi/src/binutils-gdb/gdb/linux-thread-db.c:447
#51 0x0000561cb7bdc9a2 in linux_handle_extended_wait (lp=0x561cbae25720, status=4991) at /home/smarchi/src/binutils-gdb/gdb/linux-nat.c:1981
#52 0x0000561cb7bdf0f3 in linux_nat_filter_event (lwpid=435403, status=198015) at /home/smarchi/src/binutils-gdb/gdb/linux-nat.c:2920
#53 0x0000561cb7bdfed6 in linux_nat_wait_1 (ptid=..., ourstatus=0x7ffc4ee36398, target_options=...) at /home/smarchi/src/binutils-gdb/gdb/linux-nat.c:3202
#54 0x0000561cb7be0b68 in linux_nat_target::wait (this=0x561cb8aafb60 <the_amd64_linux_nat_target>, ptid=..., ourstatus=0x7ffc4ee36398, target_options=...) at /home/smarchi/src/binutils-gdb/gdb/linux-nat.c:3440
#55 0x0000561cb7bfa2fc in thread_db_target::wait (this=0x561cb8a9acd0 <the_thread_db_target>, ptid=..., ourstatus=0x7ffc4ee36398, options=...) at /home/smarchi/src/binutils-gdb/gdb/linux-thread-db.c:1412
#56 0x0000561cb7d8e356 in record_btrace_target::wait (this=0x561cb8aa6250 <record_btrace_ops>, ptid=..., status=0x7ffc4ee36398, options=...) at /home/smarchi/src/binutils-gdb/gdb/record-btrace.c:2547
#57 0x0000561cb7ef996d in target_wait (ptid=..., status=0x7ffc4ee36398, options=...) at /home/smarchi/src/binutils-gdb/gdb/target.c:2608
#58 0x0000561cb7b6d297 in do_target_wait_1 (inf=0x561cba6d8780, ptid=..., status=0x7ffc4ee36398, options=...) at /home/smarchi/src/binutils-gdb/gdb/infrun.c:3640
#59 0x0000561cb7b6d43e in operator() (__closure=0x7ffc4ee36190, inf=0x561cba6d8780) at /home/smarchi/src/binutils-gdb/gdb/infrun.c:3701
#60 0x0000561cb7b6d7b2 in do_target_wait (ecs=0x7ffc4ee36370, options=...) at /home/smarchi/src/binutils-gdb/gdb/infrun.c:3720
#61 0x0000561cb7b6e67d in fetch_inferior_event () at /home/smarchi/src/binutils-gdb/gdb/infrun.c:4069
#62 0x0000561cb7b4659b in inferior_event_handler (event_type=INF_REG_EVENT) at /home/smarchi/src/binutils-gdb/gdb/inf-loop.c:41
#63 0x0000561cb7be25f7 in handle_target_event (error=0, client_data=0x0) at /home/smarchi/src/binutils-gdb/gdb/linux-nat.c:4227
#64 0x0000561cb81e4ee2 in handle_file_event (file_ptr=0x561cbae24e10, ready_mask=1) at /home/smarchi/src/binutils-gdb/gdbsupport/event-loop.cc:575
#65 0x0000561cb81e5490 in gdb_wait_for_event (block=0) at /home/smarchi/src/binutils-gdb/gdbsupport/event-loop.cc:701
#66 0x0000561cb81e41be in gdb_do_one_event () at /home/smarchi/src/binutils-gdb/gdbsupport/event-loop.cc:212
#67 0x0000561cb7c18096 in start_event_loop () at /home/smarchi/src/binutils-gdb/gdb/main.c:421
#68 0x0000561cb7c181e0 in captured_command_loop () at /home/smarchi/src/binutils-gdb/gdb/main.c:481
#69 0x0000561cb7c19d7e in captured_main (data=0x7ffc4ee366a0) at /home/smarchi/src/binutils-gdb/gdb/main.c:1353
#70 0x0000561cb7c19df0 in gdb_main (args=0x7ffc4ee366a0) at /home/smarchi/src/binutils-gdb/gdb/main.c:1368
#71 0x0000561cb7693186 in main (argc=11, argv=0x7ffc4ee367b8) at /home/smarchi/src/binutils-gdb/gdb/gdb.c:32
At frame 45, the new_thread observable is fired. At this moment, the
new thread isn't the current thread, inferior_ptid is null_ptid. I
think this is ok: the new_thread observable doesn't give any guarantee
on the global context when observers are invoked. Frame 35,
btrace_compute_ftrace_bts, calls gdb_insn_length. gdb_insn_length
doesn't have a thread_info or other parameter what could indicate where
to read memory from, it implicitly uses the global context
(inferior_ptid).
So we reach the all_non_exited_threads_range in
record_btrace_target::record_is_replaying with a null inferior_ptid.
The previous implemention of all_non_exited_threads_range didn't care,
but the new one does. The problem of calling gdb_insn_length and
ultimately trying to read memory with a null inferior_ptid already
existed, but the commit mentioned above made it visible.
Something between frames 40 (record_btrace_enable_warn) and 35
(btrace_compute_ftrace_bts) needs to be switching the global context to
make TP the current thread. Since btrace_compute_ftrace_bts takes the
thread_info to work with as a parameter, that typically means that it
doesn't require its caller to also set the global current context
(current thread) when calling. If it needs to call other functions
that do require the global current thread to be set, then it needs to
temporarily change the current thread while calling these other
functions. Therefore, switch and restore the current thread in
btrace_compute_ftrace_bts.
By inspection, it looks like btrace_compute_ftrace_pt may also call
functions sensitive to the global context: it installs the
btrace_pt_readmem_callback callback in the PT instruction decoder. When
this function gets called, inferior_ptid must be set appropriately. Add
a switch and restore in there too.
Bug: https://sourceware.org/bugzilla/show_bug.cgi?id=28086
Change-Id: I407fbfe41aab990068bd102491aa3709b0a034b3
I'm debugging why GDB crashes on OpenBSD/amd64, turns out it's because
x86_dr_low.get_status is nullptr. It would have been useful to be able
to break on x86_dr_low_get_status, so I thought it would be a good
reason to convert these function-like macros into functions.
Change-Id: Ic200b50ef8455b4697bc518da0fa2bb704cf4721
When run with the gdb-index or debug-names target boards, dup-psym.exp
fails. This came up for me because my new DWARF scanner reuses this
part of the existing index code, and so it registers as a regression.
This is PR symtab/25834.
Looking into this, I found that the DWARF index code here is fairly
different from the psymtab code. I don't think there's a deep reason
for this, and in fact, it seemed to me that the index code could
simply mimic what the psymtab code already does.
That is what this patch implements. The DW_AT_name and DW_AT_comp_dir
are now stored in the quick file names table. This may require
allocating a quick file names table even when DW_AT_stmt_list does not
exist. Then, the functions that work with this data are changed to
use find_source_or_rewrite, just as the psymbol code does. Finally,
line_header::file_full_name is removed, as it is no longer needed.
Currently, the index maintains a hash table of "quick file names".
The hash table uses a deletion function to free the "real name"
components when necessary. There's also a second such function to
implement the forget_cached_source_info method.
This bug fix patch will create a quick file name object even when
there is no DW_AT_stmt_list, meaning that the object won't be entered
in the hash table. So, this patch changes the memory management
approach so that the entries are cleared when the per-BFD object is
destroyed. (A dwarf2_per_cu_data destructor is not introduced,
because we have been avoiding adding a vtable to that class.)
Bug: https://sourceware.org/bugzilla/show_bug.cgi?id=25834
map_symbol_filenames can skip type units -- in fact I think it has to,
due to the assertion at the top of dw2_get_file_names. This may be a
regression due to the TU/CU unification patch, I did not check.
The DWARF index file name caching code only records when a line table
has been read and the reading failed. However, the code would be
simpler if it recorded any attempt, which is what this patch
implements.
The final bug fix in this series would duplicate the logic in
psymtab_to_fullname, so this patch extracts the body of this function
into a new function.
file_and_directory carries a std::string in case the compilation
directory is computed, but a subsequent patch wants to preserve this
string without also having to maintain the storage for it. So, this
patch arranges for the compilation directory string to be stored in
the per-BFD string bcache instead.
This patch removes the redundant "comp_unit" parameter from
compute_include_file_name, and arranges to pass a file_and_directory
object from the readers down to this function. It also changes the
partial symtab reader to use find_file_and_directory, rather than
reimplement this functionality by hand.
In order to fix an index-related regression, I want to use
psymtab_include_file_name in the DWARF index file-handling code. This
patch renames this function and changes it to no longer require a
partial symtab to be passed in. A subsequent patch will further
refactor this code to remove the redundant parameter (which was always
there but is now more obvious).
The test gdb.threads/fork-plus-threads.exp fails since 08bdefb58b
("gdb: make inferior_list use intrusive_list"):
FAIL: gdb.threads/fork-plus-threads.exp: detach-on-fork=off: only inferior 1 left
Looking at the log, we see that we are left with a bunch of inferiors in
the detach-on-fork=off case:
info inferiors^M
Num Description Connection Executable ^M
* 1 <null> <snip>/fork-plus-threads ^M
2 <null> <snip>/fork-plus-threads ^M
3 <null> <snip>/fork-plus-threads ^M
4 <null> <snip>/fork-plus-threads ^M
5 <null> <snip>/fork-plus-threads ^M
6 <null> <snip>/fork-plus-threads ^M
7 <null> <snip>/fork-plus-threads ^M
8 <null> <snip>/fork-plus-threads ^M
9 <null> <snip>/fork-plus-threads ^M
10 <null> <snip>/fork-plus-threads ^M
11 <null> <snip>/fork-plus-threads ^M
(gdb) FAIL: gdb.threads/fork-plus-threads.exp: detach-on-fork=off: only inferior 1 left
when we expect to have just one. The problem is prune_inferiors not
pruning inferiors. And this is caused by all_inferiors_safe not
actually iterating on inferiors. The current implementation:
inline all_inferiors_safe_range
all_inferiors_safe ()
{
return {};
}
default-constructs an all_inferiors_safe_range, which default-constructs
an all_inferiors_safe_iterator as its m_begin field, which
default-constructs a all_inferiors_iterator. A default-constructed
all_inferiors_iterator is an end iterator, which means we have
constructed an (end,end) all_inferiors_safe_range.
We actually need to pass down the list on which we want to iterator
(that is the inferior_list global), so that all_inferiors_iterator's
first constructor is chosen. We also pass nullptr as the proc_target
filter. In this case, we don't do any filtering, but if in the future
all_inferiors_safe needed to allow filtering on process target (like
all_inferiors does), we could pass down a process target pointer.
basic_safe_iterator's constructor needs to be changed to allow
constructing the wrapped iterator with multiple arguments, not just one.
With this, gdb.threads/fork-plus-threads.exp is passing once again for
me.
Change-Id: I650552ede596e3590c4b7606ce403690a0278a01
Currently, gdb cannot step outside of a signal handler on RISC-V
platforms. This causes multiple failures in gdb.base/sigstep.exp:
FAIL: gdb.base/sigstep.exp: continue to handler, nothing in handler, step from handler: leave handler (timeout)
FAIL: gdb.base/sigstep.exp: continue to handler, si+advance in handler, step from handler: leave handler (timeout)
FAIL: gdb.base/sigstep.exp: continue to handler, nothing in handler, next from handler: leave handler (timeout)
FAIL: gdb.base/sigstep.exp: continue to handler, si+advance in handler, next from handler: leave handler (timeout)
FAIL: gdb.base/sigstep.exp: stepi from handleri: leave signal trampoline
FAIL: gdb.base/sigstep.exp: nexti from handleri: leave signal trampoline
=== gdb Summary ===
# of expected passes 587
# of unexpected failures 6
This patch adds support for stepping outside of a signal handler on
riscv*-*-linux*.
Implementation is heavily inspired from mips_linux_syscall_next_pc and
surroundings as advised by Pedro Alves.
After this patch, all tests in gdb.base/sigstep.exp pass.
Build and tested on riscv64-linux-gnu.
Many tests fail in gdb/testsuite/gdb.base/sigstep.exp on
riscv64-linux-gnu. Those tests check that when stepping, if the
debuggee received a signal it should step inside the signal handler.
This feature requires hardware support for single stepping (or at least
kernel support), but none are available on riscv*-linux-gnu hosts, at
the moment at least.
This patch adds RISC-V to the list of configurations that does not
have hardware single step capability, disabling tests relying on such
feature.
Tested on riscv64-linux-gnu.
While working on my series to replace the DWARF psymbol reader, I
noticed that the expand_symtabs_matching has an undocumented
invariant. I think that, if this invariant is not followed, then GDB
will crash. So, this patch documents this in the relevant spots and
introduces some asserts to make it clear.
Regression tested on x86-64 Fedora 32.
Investigation of using the Python API with an Ada program showed that
an array of dynamic types was not being handled properly. I tracked
this down to an oddity of how array strides are handled.
In gdb, an array stride can be attached to the range type, via the
range_bounds object. However, the stride can also be put into the
array's first field. From create_range_type_with_stride:
else if (bit_stride > 0)
TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
It's hard to be sure why this is done, but I would guess a combination
of historical reasons plus a desire (mentioned in a comment somewhere)
to avoid modifying the range type.
This patch fixes the problem by changing type::bit_stride to
understand this convention. It also fixes one spot that reproduces
this logic.
Regression tested on x86-64 Fedora 32.
bfd * elf32-or1k.c (or1k_elf_relocate_section): Use a separate entry
in switch case R_OR1K_INSN_REL_26 where we need to check for
!SYMBOL_CALLS_LOCAL() instead of !SYMBOL_REFERENCES_LOCAL().
PR gdb/28093 points out that gdb crashes when language is set to
"unknown" and expression parsing is attempted. At first I thought
this was a regression due to the expression rewrite, but it turns out
that older versions crash as well.
This patch avoids the crash by changing the default expression parser
to throw an exception. I think this is preferable -- the current
behavior of silently doing nothing does not really make sense.
Bug: https://sourceware.org/bugzilla/show_bug.cgi?id=28093
GDB doesn't handle well the case of an inferior using the JIT interface
to register JIT-ed objfiles and forking. If an inferior registers a
code object using the JIT interface and then forks, the child process
conceptually has the same code object loaded, so GDB should look it up
and learn about it (it currently doesn't).
To achieve this, I think it would make sense to have the
inferior_created observable called when an inferior is created due to a
fork in follow_fork_inferior. The inferior_created observable is
currently called both after starting a new inferior and after attaching
to an inferior, allowing various sub-components to learn about that new
executing inferior. We can see handling a fork child just like
attaching to it, so any work done when attaching should also be done in
the case of a fork child.
Instead of just calling the inferior_created observable, this patch
makes follow_fork_inferior call the whole post_create_inferior function.
This way, the attach and follow-fork code code paths are more alike.
Given that post_create_inferior calls solib_create_inferior_hook,
follow_fork_inferior doesn't need to do it itself, so those calls to
solib_create_inferior_hook are removed.
One question you may have: why not just call post_create_inferior at the
places where solib_create_inferior_hook is currently called, instead of
after target_follow_fork?
- there's something fishy for the second solib_create_inferior_hook
call site: at this point we have switched the current program space
to the child's, but not the current inferior nor the current thread.
So solib_create_inferior_hook (and everything under, including
check_for_thread_db, for example) is called with inferior 1 as the
current inferior and inferior 2's program space as the current
program space. I think that's wrong, because at this point we are
setting up inferior 2, and all that code relies on the current
inferior. We could just add a switch_to_thread call before it to
make inferior 2 the current one, but there are other problems (see
below).
- solib_create_inferior_hook is currently not called on the
`follow_child && detach_fork` path. I think we need to call it,
because we still get a new inferior in that case (even though we
detach the parent). If we only call post_create_inferior where
solib_create_inferior_hook used to be called, then the JIT
subcomponent doesn't get informed about the new inferior, and that
introduces a failure in the new gdb.base/jit-elf-fork.exp test.
- if we try to put the post_create_inferior just after the
switch_to_thread that was originally at line 662, or just before the
call to target_follow_fork, we introduce a subtle failure in
gdb.threads/fork-thread-pending.exp. What happens then is that
libthread_db gets loaded (somewhere under post_create_inferior)
before the linux-nat target learns about the LWPs (which happens in
linux_nat_target::follow_fork). As a result, the ALL_LWPS loop in
try_thread_db_load_1 doesn't see the child LWP, and the thread-db
target doesn't have the chance to fill in thread_info::priv. A bit
later, when the test does "info threads", and
thread_db_target::pid_to_str is called, the thread-db target doesn't
recognize the thread as one of its own, and delegates the request to
the target below. Because the pid_to_str output is not the expected
one, the test fails.
This tells me that we need to call the process target's follow_fork
first, to make the process target create the necessary LWP and thread
structures. Then, we can call post_create_inferior to let the other
components of GDB do their thing.
But then you may ask: check_for_thread_db is already called today,
somewhere under solib_create_inferior_hook, and that is before
target_follow_fork, why don't we see this ordering problem!? Well,
because of the first bullet point: when check_for_thread_db /
thread_db_load are called, the current inferior is (erroneously)
inferior 1, the parent. Because libthread_db is already loaded for
the parent, thread_db_load early returns. check_for_thread_db later
gets called by linux_nat_target::follow_fork. At this point, the
current inferior is the correct one and the child's LWP exists, so
all is well.
Since we now call post_create_inferior after target_follow_fork, which
calls the inferior_created observable, which calls check_for_thread_db,
I don't think linux_nat_target needs to explicitly call
check_for_thread_db itself, so that is removed.
In terms of testing, this patch adds a new gdb.base/jit-elf-fork.exp
test. It makes an inferior register a JIT code object and then fork.
It then verifies that whatever the detach-on-fork and follow-fork-child
parameters are, GDB knows about the JIT code object in all the inferiors
that survive the fork. It verifies that the inferiors can unload that
code object.
There isn't currently a way to get visibility into GDB's idea of the JIT
code objects for each inferior. For the purpose of this test, add the
"maintenance info jit" command. There isn't much we can print about the
JIT code objects except their load address. So the output looks a bit
bare, but it's good enough for the test.
gdb/ChangeLog:
* NEWS: Mention "maint info jit" command.
* infrun.c (follow_fork_inferior): Don't call
solib_create_inferior_hook, call post_create_inferior if a new
inferior was created.
* jit.c (maint_info_jit_cmd): New.
(_initialize_jit): Register new command.
* linux-nat.c (linux_nat_target::follow_fork): Don't call
check_for_thread_db.
* linux-nat.h (check_for_thread_db): Remove declaration.
* linux-thread-db.c (check_thread_signals): Make static.
gdb/doc/ChangeLog:
* gdb.texinfo (Maintenance Commands): Mention "maint info jit".
gdb/testsuite/ChangeLog:
* gdb.base/jit-elf-fork-main.c: New test.
* gdb.base/jit-elf-fork-solib.c: New test.
* gdb.base/jit-elf-fork.exp: New test.
Change-Id: I9a192e55b8a451c00e88100669283fc9ca60de5c
It fixes a regression caused by commit
1edb66d856 where thread_info::suspend was
made private.
The public thread_info API has to be used to get stop signal and avoid
build failures.
gdb/ChangeLog:
2021-07-14 Libor Bukata <libor.bukata@oracle.com>
* gdb/procfs.c (find_stop_signal): Use thread_info API.
Change-Id: I53bc57a05cd0eca5f28ef0726d6faeeb306e7904
gas/write.c provides a fallback TC_VALIDATE_FIX_SUB define that can be
a problem for some targets, the problem being that a non-zero
definition of TC_VALIDATE_FIX_SUB says that some uses of fx_subsy are
OK, in effect that the target will handle fx_subsy in md_apply_fix
and/or tc_gen_reloc. A lot of targets don't have the necessary
md_apply_fix and tc_gen_reloc support. So a safer default is to
disallow fx_subsy by default.
I've had a good look over target usage of fx_subsy, and think I've
caught all the cases where targets need TC_VALIDATE_FIX_SUB. Possible
failures would be limited to alpha, microblaze, ppc and s390 (the
targets that define UNDEFINED_DIFFERENCE_OK), or targets that generate
fixups with BFD_RELOC_GPREL32/16 and use a syntax explicitly showing
a difference expression.
* write.c (TC_VALIDATE_FIX_SUB): Default to 0.
* config/tc-hppa.h (TC_VALIDATE_FIX_SUB): Define.
* config/tc-microblaze.h (TC_VALIDATE_FIX_SUB): Define.
* config/tc-alpha.h (TC_VALIDATE_FIX_SUB): Define for ECOFF.
* config/tc-ppc.h (TC_VALIDATE_FIX_SUB): Don't define for ELF.
Do define for XCOFF.
DWARF sections have special names on AIX which need be handled
by objdump in order to correctly print them.
This patch also adds the correlation in bfd for future uses.
bfd/
* libxcoff.h (struct xcoff_dwsect_name): Add DWARF name.
* coff-rs6000.c (xcoff_dwsect_names): Update.
* coffcode.h (sec_to_styp_flags): Likewise.
(coff_new_section_hook): Likewise.
binutils/
* dwarf.h (struct dwarf_section): Add XCOFF name.
* dwarf.c (struct dwarf_section_display): Update.
* objdump.c (load_debug_section): Add XCOFF name handler.
(dump_dwarf_section): Likewise.
gas/
* config/tc-ppc.c (ppc_change_debug_section): Update to
match new name's field.
When running test-case gdb.base/gold-gdb-index.exp on openSUSE Tumbleweed,
I run into:
...
FAIL: gdb.base/gold-gdb-index.exp: maint info symtabs
...
This is due to a dummy .gdb_index:
...
Contents of the .gdb_index section:
Version 7
CU table:
TU table:
Address table:
Symbol table:
...
The dummy .gdb_index is ignored when loading the symbols, and instead partial
symbols are used. Consequently, we get the same result as if we'd removed
-Wl,--gdb-index from the compilation.
Presumably, gold fails to generate a proper .gdb_index because it lacks
DWARF5 support.
Anyway, without a proper .gdb_index we can't test the gdb behaviour we're
trying to excercise. Fix this by detecting whether we actually used a
.gdb_index for symbol loading.
Tested on x86_64-linux.
gdb/testsuite/ChangeLog:
2021-07-14 Tom de Vries <tdevries@suse.de>
* lib/gdb.exp (have_index): New proc.
* gdb.base/gold-gdb-index.exp: Use have_index.
When building gdb with --disable-tui, we run into:
...
(gdb) frame apply all -- -^M
Undefined command: "-". Try "help".^M
(gdb) ERROR: Undefined command "frame apply all -- -".
UNRESOLVED: gdb.base/options.exp: test-frame-apply: frame apply all -- -
...
Fix this by detecting whether tui is supported, and skipping the tui-related
tests otherwise. Same in some gdb.tui test-cases.
Tested on x86_64-linux.
gdb/testsuite/ChangeLog:
2021-07-13 Tom de Vries <tdevries@suse.de>
* gdb.base/options.exp: Skip tui-related tests when tui is not
supported.
* gdb.python/tui-window-disabled.exp: Same.
* gdb.python/tui-window.exp: Same.
While testing the NixOS[1] packaging for gdb-11.0.90.tar.xz, I got the
following error:
[...]
CXX aarch32-tdep.o
CXX gdb.o
GEN init.c
/nix/store/26a78ync552m8j4sbjavhvkmnqir8c9y-bash-4.4-p23/bin/bash: ./make-init-c: /usr/bin/env: bad interpreter: No such file or directory
make[2]: *** [Makefile:1866: stamp-init] Error 126
make[2]: *** Waiting for unfinished jobs....
make[2]: Leaving directory '/build/gdb-11.0.90/gdb'
make[1]: *** [Makefile:9814: all-gdb] Error 2
make[1]: Leaving directory '/build/gdb-11.0.90'
make: *** [Makefile:903: all] Error 2
builder for '/nix/store/xs8my3rrc3l4kdlbpx0azh6q0v0jxphr-gdb-gdb-11.0.90.drv' failed with exit code 2
error: build of '/nix/store/xs8my3rrc3l4kdlbpx0azh6q0v0jxphr-gdb-gdb-11.0.90.drv' failed
In the nix build environment, /usr/bin/env is not present, only /bin/sh
is. This patch makes sure that gdb/make-init-c uses '/bin/sh' as
interpreter as this is the only one available on this platform.
I do not think this change will cause regressions on any other
configuration.
[1] https://nixos.org/
gdb/Changelog
* make-init-c: Use /bin/sh as shebang.
In particular, this supports register sets described by a regcache_map
which are fetched and stored with dedicated ptrace operations. These
functions are intended to be used in architecture-specific
fetch_registers and store_registers target methods.
Before PR gdb/28080 was fixed by the previous patch, GDB was crashing
like this:
(gdb) detach
Detaching from program: target:/any/program, process 3671843
Detaching from process 3671843
Ending remote debugging.
[Inferior 1 (process 3671843) detached]
In main
terminate called after throwing an instance of 'gdb_exception_error'
Aborted (core dumped)
Here's the exception above being thrown:
(top-gdb) bt
#0 throw_error (error=TARGET_CLOSE_ERROR, fmt=0x555556035588 "Remote connection closed") at src/gdbsupport/common-exceptions.cc:222
#1 0x0000555555bbaa46 in remote_target::readchar (this=0x555556a11040, timeout=10000) at src/gdb/remote.c:9440
#2 0x0000555555bbb9e5 in remote_target::getpkt_or_notif_sane_1 (this=0x555556a11040, buf=0x555556a11058, forever=0, expecting_notif=0, is_notif=0x0) at src/gdb/remote.c:9928
#3 0x0000555555bbbda9 in remote_target::getpkt_sane (this=0x555556a11040, buf=0x555556a11058, forever=0) at src/gdb/remote.c:10030
#4 0x0000555555bc0e75 in remote_target::remote_hostio_send_command (this=0x555556a11040, command_bytes=13, which_packet=14, remote_errno=0x7fffffffcfd0, attachment=0x0, attachment_len=0x0) at src/gdb/remote.c:12137
#5 0x0000555555bc1b6c in remote_target::remote_hostio_close (this=0x555556a11040, fd=8, remote_errno=0x7fffffffcfd0) at src/gdb/remote.c:12455
#6 0x0000555555bc1bb4 in remote_target::fileio_close (During symbol reading: .debug_line address at offset 0x64f417 is 0 [in module build/gdb/gdb]
this=0x555556a11040, fd=8, remote_errno=0x7fffffffcfd0) at src/gdb/remote.c:12462
#7 0x0000555555c9274c in target_fileio_close (fd=3, target_errno=0x7fffffffcfd0) at src/gdb/target.c:3365
#8 0x000055555595a19d in gdb_bfd_iovec_fileio_close (abfd=0x555556b9f8a0, stream=0x555556b11530) at src/gdb/gdb_bfd.c:439
#9 0x0000555555e09e3f in opncls_bclose (abfd=0x555556b9f8a0) at src/bfd/opncls.c:599
#10 0x0000555555e0a2c7 in bfd_close_all_done (abfd=0x555556b9f8a0) at src/bfd/opncls.c:847
#11 0x0000555555e0a27a in bfd_close (abfd=0x555556b9f8a0) at src/bfd/opncls.c:814
#12 0x000055555595a9d3 in gdb_bfd_close_or_warn (abfd=0x555556b9f8a0) at src/gdb/gdb_bfd.c:626
#13 0x000055555595ad29 in gdb_bfd_unref (abfd=0x555556b9f8a0) at src/gdb/gdb_bfd.c:715
#14 0x0000555555ae4730 in objfile::~objfile (this=0x555556515540, __in_chrg=<optimized out>) at src/gdb/objfiles.c:573
#15 0x0000555555ae955a in std::_Sp_counted_ptr<objfile*, (__gnu_cxx::_Lock_policy)2>::_M_dispose (this=0x555556c20db0) at /usr/include/c++/9/bits/shared_ptr_base.h:377
#16 0x000055555572b7c8 in std::_Sp_counted_base<(__gnu_cxx::_Lock_policy)2>::_M_release (this=0x555556c20db0) at /usr/include/c++/9/bits/shared_ptr_base.h:155
#17 0x00005555557263c3 in std::__shared_count<(__gnu_cxx::_Lock_policy)2>::~__shared_count (this=0x555556bf0588, __in_chrg=<optimized out>) at /usr/include/c++/9/bits/shared_ptr_base.h:730
#18 0x0000555555ae745e in std::__shared_ptr<objfile, (__gnu_cxx::_Lock_policy)2>::~__shared_ptr (this=0x555556bf0580, __in_chrg=<optimized out>) at /usr/include/c++/9/bits/shared_ptr_base.h:1169
#19 0x0000555555ae747e in std::shared_ptr<objfile>::~shared_ptr (this=0x555556bf0580, __in_chrg=<optimized out>) at /usr/include/c++/9/bits/shared_ptr.h:103
#20 0x0000555555b1c1dc in __gnu_cxx::new_allocator<std::_List_node<std::shared_ptr<objfile> > >::destroy<std::shared_ptr<objfile> > (this=0x5555564cdd60, __p=0x555556bf0580) at /usr/include/c++/9/ext/new_allocator.h:153
#21 0x0000555555b1bb1d in std::allocator_traits<std::allocator<std::_List_node<std::shared_ptr<objfile> > > >::destroy<std::shared_ptr<objfile> > (__a=..., __p=0x555556bf0580) at /usr/include/c++/9/bits/alloc_traits.h:497
#22 0x0000555555b1b73e in std::__cxx11::list<std::shared_ptr<objfile>, std::allocator<std::shared_ptr<objfile> > >::_M_erase (this=0x5555564cdd60, __position=std::shared_ptr<objfile> (expired, weak count 1) = {get() = 0x555556515540}) at /usr/include/c++/9/bits/stl_list.h:1921
#23 0x0000555555b1afeb in std::__cxx11::list<std::shared_ptr<objfile>, std::allocator<std::shared_ptr<objfile> > >::erase (this=0x5555564cdd60, __position=std::shared_ptr<objfile> (expired, weak count 1) = {get() = 0x555556515540}) at /usr/include/c++/9/bits/list.tcc:158
#24 0x0000555555b19576 in program_space::remove_objfile (this=0x5555564cdd20, objfile=0x555556515540) at src/gdb/progspace.c:210
#25 0x0000555555ae4502 in objfile::unlink (this=0x555556515540) at src/gdb/objfiles.c:487
#26 0x0000555555ae5a12 in objfile_purge_solibs () at src/gdb/objfiles.c:875
#27 0x0000555555c09686 in no_shared_libraries (ignored=0x0, from_tty=1) at src/gdb/solib.c:1236
#28 0x00005555559e3f5f in detach_command (args=0x0, from_tty=1) at src/gdb/infcmd.c:2769
Note frame #14:
#14 0x0000555555ae4730 in objfile::~objfile (this=0x555556515540, __in_chrg=<optimized out>) at src/gdb/objfiles.c:573
That's a dtor, thus noexcept. That's the reason for the
std::terminate.
The previous patch fixed things such that the exception above isn't
thrown anymore. However, it's possible that e.g., the remote
connection drops just while a user types "nosharedlibrary", or some
other reason that leads to objfile::~objfile, and then we end up the
same std::terminate problem.
Also notice that frames #9-#11 are BFD frames:
#9 0x0000555555e09e3f in opncls_bclose (abfd=0x555556bc27e0) at src/bfd/opncls.c:599
#10 0x0000555555e0a2c7 in bfd_close_all_done (abfd=0x555556bc27e0) at src/bfd/opncls.c:847
#11 0x0000555555e0a27a in bfd_close (abfd=0x555556bc27e0) at src/bfd/opncls.c:814
BFD is written in C and thus throwing exceptions over such frames may
either not clean up properly, or, may abort if bfd is not compiled
with -fasynchronous-unwind-tables (x86-64 defaults that on, but not
all GCC ports do).
Thus frame #8 seems like a good place to swallow exceptions. More so
since in this spot we already ignore target_fileio_close return
errors. That's what this commit does. Without the previous fix, we'd
see:
(gdb) detach
Detaching from program: target:/any/program, process 2197701
Ending remote debugging.
[Inferior 1 (process 2197701) detached]
warning: cannot close "target:/lib64/ld-linux-x86-64.so.2": Remote connection closed
Note it prints a warning, which would still be a regression compared
to GDB 10, if it weren't for the previous fix.
gdb/ChangeLog:
yyyy-mm-dd Pedro Alves <pedro@palves.net>
PR gdb/28080
* gdb_bfd.c (gdb_bfd_close_warning): New.
(gdb_bfd_iovec_fileio_close): Wrap target_fileio_close in
try/catch and print warning on exception.
(gdb_bfd_close_or_warn): Use gdb_bfd_close_warning.
Change-Id: Ic7a26ddba0a4444e3377b0e7c1c89934a84545d7
Commit 408f66864a ("detach in all-stop
with threads running") regressed "detach" with "target remote":
(gdb) detach
Detaching from program: target:/any/program, process 3671843
Detaching from process 3671843
Ending remote debugging.
[Inferior 1 (process 3671843) detached]
In main
terminate called after throwing an instance of 'gdb_exception_error'
Aborted (core dumped)
Here's the exception above being thrown:
(top-gdb) bt
#0 throw_error (error=TARGET_CLOSE_ERROR, fmt=0x555556035588 "Remote connection closed") at src/gdbsupport/common-exceptions.cc:222
#1 0x0000555555bbaa46 in remote_target::readchar (this=0x555556a11040, timeout=10000) at src/gdb/remote.c:9440
#2 0x0000555555bbb9e5 in remote_target::getpkt_or_notif_sane_1 (this=0x555556a11040, buf=0x555556a11058, forever=0, expecting_notif=0, is_notif=0x0) at src/gdb/remote.c:9928
#3 0x0000555555bbbda9 in remote_target::getpkt_sane (this=0x555556a11040, buf=0x555556a11058, forever=0) at src/gdb/remote.c:10030
#4 0x0000555555bc0e75 in remote_target::remote_hostio_send_command (this=0x555556a11040, command_bytes=13, which_packet=14, remote_errno=0x7fffffffcfd0, attachment=0x0, attachment_len=0x0) at src/gdb/remote.c:12137
#5 0x0000555555bc1b6c in remote_target::remote_hostio_close (this=0x555556a11040, fd=8, remote_errno=0x7fffffffcfd0) at src/gdb/remote.c:12455
#6 0x0000555555bc1bb4 in remote_target::fileio_close (During symbol reading: .debug_line address at offset 0x64f417 is 0 [in module build/gdb/gdb]
this=0x555556a11040, fd=8, remote_errno=0x7fffffffcfd0) at src/gdb/remote.c:12462
#7 0x0000555555c9274c in target_fileio_close (fd=3, target_errno=0x7fffffffcfd0) at src/gdb/target.c:3365
#8 0x000055555595a19d in gdb_bfd_iovec_fileio_close (abfd=0x555556b9f8a0, stream=0x555556b11530) at src/gdb/gdb_bfd.c:439
#9 0x0000555555e09e3f in opncls_bclose (abfd=0x555556b9f8a0) at src/bfd/opncls.c:599
#10 0x0000555555e0a2c7 in bfd_close_all_done (abfd=0x555556b9f8a0) at src/bfd/opncls.c:847
#11 0x0000555555e0a27a in bfd_close (abfd=0x555556b9f8a0) at src/bfd/opncls.c:814
#12 0x000055555595a9d3 in gdb_bfd_close_or_warn (abfd=0x555556b9f8a0) at src/gdb/gdb_bfd.c:626
#13 0x000055555595ad29 in gdb_bfd_unref (abfd=0x555556b9f8a0) at src/gdb/gdb_bfd.c:715
#14 0x0000555555ae4730 in objfile::~objfile (this=0x555556515540, __in_chrg=<optimized out>) at src/gdb/objfiles.c:573
#15 0x0000555555ae955a in std::_Sp_counted_ptr<objfile*, (__gnu_cxx::_Lock_policy)2>::_M_dispose (this=0x555556c20db0) at /usr/include/c++/9/bits/shared_ptr_base.h:377
#16 0x000055555572b7c8 in std::_Sp_counted_base<(__gnu_cxx::_Lock_policy)2>::_M_release (this=0x555556c20db0) at /usr/include/c++/9/bits/shared_ptr_base.h:155
#17 0x00005555557263c3 in std::__shared_count<(__gnu_cxx::_Lock_policy)2>::~__shared_count (this=0x555556bf0588, __in_chrg=<optimized out>) at /usr/include/c++/9/bits/shared_ptr_base.h:730
#18 0x0000555555ae745e in std::__shared_ptr<objfile, (__gnu_cxx::_Lock_policy)2>::~__shared_ptr (this=0x555556bf0580, __in_chrg=<optimized out>) at /usr/include/c++/9/bits/shared_ptr_base.h:1169
#19 0x0000555555ae747e in std::shared_ptr<objfile>::~shared_ptr (this=0x555556bf0580, __in_chrg=<optimized out>) at /usr/include/c++/9/bits/shared_ptr.h:103
#20 0x0000555555b1c1dc in __gnu_cxx::new_allocator<std::_List_node<std::shared_ptr<objfile> > >::destroy<std::shared_ptr<objfile> > (this=0x5555564cdd60, __p=0x555556bf0580) at /usr/include/c++/9/ext/new_allocator.h:153
#21 0x0000555555b1bb1d in std::allocator_traits<std::allocator<std::_List_node<std::shared_ptr<objfile> > > >::destroy<std::shared_ptr<objfile> > (__a=..., __p=0x555556bf0580) at /usr/include/c++/9/bits/alloc_traits.h:497
#22 0x0000555555b1b73e in std::__cxx11::list<std::shared_ptr<objfile>, std::allocator<std::shared_ptr<objfile> > >::_M_erase (this=0x5555564cdd60, __position=std::shared_ptr<objfile> (expired, weak count 1) = {get() = 0x555556515540}) at /usr/include/c++/9/bits/stl_list.h:1921
#23 0x0000555555b1afeb in std::__cxx11::list<std::shared_ptr<objfile>, std::allocator<std::shared_ptr<objfile> > >::erase (this=0x5555564cdd60, __position=std::shared_ptr<objfile> (expired, weak count 1) = {get() = 0x555556515540}) at /usr/include/c++/9/bits/list.tcc:158
#24 0x0000555555b19576 in program_space::remove_objfile (this=0x5555564cdd20, objfile=0x555556515540) at src/gdb/progspace.c:210
#25 0x0000555555ae4502 in objfile::unlink (this=0x555556515540) at src/gdb/objfiles.c:487
#26 0x0000555555ae5a12 in objfile_purge_solibs () at src/gdb/objfiles.c:875
#27 0x0000555555c09686 in no_shared_libraries (ignored=0x0, from_tty=1) at src/gdb/solib.c:1236
#28 0x00005555559e3f5f in detach_command (args=0x0, from_tty=1) at src/gdb/infcmd.c:2769
So frame #28 already detached the remote process, and then we're
purging the shared libraries. GDB had opened remote shared libraries
via the target: sysroot, so it tries closing them. GDBserver is
tearing down already, so remote communication breaks down and we close
the remote target and throw TARGET_CLOSE_ERROR.
Note frame #14:
#14 0x0000555555ae4730 in objfile::~objfile (this=0x555556515540, __in_chrg=<optimized out>) at src/gdb/objfiles.c:573
That's a dtor, thus noexcept. That's the reason for the
std::terminate.
Stepping back a bit, why do we still have open remote files if we've
managed to detach already, and, we're debugging with "target remote"?
The reason is that commit 408f66864a
makes detach_command hold a reference to the target, so the remote
target won't be finally closed until frame #28 returns. It's closing
the target that invalidates target file I/O handles.
This commit fixes the issue by not relying on target_close to
invalidate the target file I/O handles, instead invalidate them
immediately in remote_unpush_target. So when GDB purges the solibs,
and we end up in target_fileio_close (frame #7 above), there's nothing
to do, and we don't try to talk with the remote target anymore.
The regression isn't seen when testing with
--target_board=native-gdbserver, because that does "set sysroot" to
disable the "target:" sysroot, for test run speed reasons. So this
commit adds a testcase that explicitly tests detach with "set sysroot
target:".
gdb/ChangeLog:
yyyy-mm-dd Pedro Alves <pedro@palves.net>
PR gdb/28080
* remote.c (remote_unpush_target): Invalidate file I/O target
handles.
* target.c (fileio_handles_invalidate_target): Make extern.
* target.h (fileio_handles_invalidate_target): Declare.
gdb/testsuite/ChangeLog:
yyyy-mm-dd Pedro Alves <pedro@palves.net>
PR gdb/28080
* gdb.base/detach-sysroot-target.exp: New.
* gdb.base/detach-sysroot-target.c: New.
Reported-By: Jonah Graham <jonah@kichwacoders.com>
Change-Id: I851234910172f42a1b30e731161376c344d2727d
When running test-case gdb.threads/check-libthread-db.exp on openSUSE
Tumbleweed with glibc 2.33, I get:
...
(gdb) maint check libthread-db^M
Running libthread_db integrity checks:^M
Got thread 0x7ffff7c79b80 => 9354 => 0x7ffff7c79b80; errno = 0 ... OK^M
libthread_db integrity checks passed.^M
(gdb) FAIL: gdb.threads/check-libthread-db.exp: user-initiated check: \
libpthread.so not initialized (pattern 2)
...
The test-case expects instead:
...
Got thread 0x0 => 9354 => 0x0 ... OK^M
...
which is what I get on openSUSE Leap 15.2 with glibc 2.26, and what is
described in the test-case like this:
...
# libthread_db should fake a single thread with th_unique == NULL.
...
Using a breakpoint on check_thread_db_callback we can compare the two
scenarios, and find that in the latter case we hit this code in glibc function
iterate_thread_list in nptl_db/td_ta_thr_iter.c:
...
if (next == 0 && fake_empty)
{
/* __pthread_initialize_minimal has not run. There is just the main
thread to return. We cannot rely on its thread register. They
sometimes contain garbage that would confuse us, left by the
kernel at exec. So if it looks like initialization is incomplete,
we only fake a special descriptor for the initial thread. */
td_thrhandle_t th = { ta, 0 };
return callback (&th, cbdata_p) != 0 ? TD_DBERR : TD_OK;
}
...
while in the former case we don't because this preceding statement doesn't
result in next == 0:
...
err = DB_GET_FIELD (next, ta, head, list_t, next, 0);
...
Note that the comment mentions __pthread_initialize_minimal, but in both cases
it has already run before we hit the callback, so it's possible the comment is
no longer accurate.
The change in behaviour bisect to glibc commit 1daccf403b "nptl: Move stack
list variables into _rtld_global", which moves the initialization of stack
list variables such as __stack_user to an earlier moment, which explains well
enough the observed difference.
Fix this by updating the regexp patterns to agree with what libthread-db is
telling us.
Tested on x86_64-linux, both with glibc 2.33 and 2.26.
gdb/testsuite/ChangeLog:
2021-07-07 Tom de Vries <tdevries@suse.de>
PR testsuite/27690
* gdb.threads/check-libthread-db.exp: Update patterns for glibc 2.33.