Add gas and opcodes support for two xBPF-exclusive ALU operations:
SDIV (signed division) and SMOD (signed modulo), and add tests for
them in gas.
cpu/
* bpf.cpu (insn-op-code-alu): Add SDIV and SMOD.
(define-alu-insn-bin, daib): Take ISAs as an argument.
(define-alu-instructions): Update calls to daib pmacro with
ISAs; add sdiv and smod.
gas/
* testsuite/gas/bpf/alu-xbpf.d: New file.
* testsuite/gas/bpf/alu-xbpf.s: Likewise.
* testsuite/gas/bpf/alu32-xbpf.d: Likewise.
* testsuite/gas/bpf/alu32-xbpf.d: Likewise.
* testuiste/gas/bpf/bpf.exp: Run new tests.
opcodes/
* bpf-desc.c: Regenerate.
* bpf-desc.h: Likewise.
* bpf-opc.c: Likewise.
* bpf-opc.h: Likewise.
* read.c (s_nop): New function. Handles the .nop directive.
(potable): Add entry for "nop".
(s_nops): Code tidy.
* read.h (s_nop): Add prototype.
* config/tc-bpf.h (md_single_noop_insn): Define.
* config/tc-mmix.h (md_single_noop_insn): Define.
* config/tc-or1k.h (md_single_noop_insn): Define.
* config/tc-s12z.c (md_assemble): Preserve the input line pointer,
rather than corrupting it.
* write.c (relax_segment): Update error message regarding
non-absolute values passed to .fill and .nops.
* NEWS: Mention the new directive.
* doc/as.texi: Document the new directive.
* doc/internals.texi: Document the new internal macros used to
implement the new directive.
* testsuite/gas/all/nop.s: New test.
* testsuite/gas/all/nop.d: New test control file.
* testsuite/gas/all/gas.exp: Run the new test.
* testsuite/gas/elf/dwarf-5-nop-for-line-table.s: New test.
* testsuite/gas/elf/dwarf-5-nop-for-line-table.d: New test
control file.
* testsuite/gas/elf/elf.exp: Run the new test.
* testsuite/gas/i386/space1.l: Adjust expected output.
When -g was used to generate DWARF gas would error out when a .debug_line
already exists. But when a .debug_info section already exists it would
simply skip generating one without warning or error. Do the same for
.debug_line. It is only an error when the user explicitly uses .loc
directives and also generates the .debug_line table itself.
The tests are unfortunately arch specific because the line table is only
generated when actual instructions have been emitted. Use i386 because
that is probably the most used architecture. Before this patch the new
dwarf-line-2 testcase would fail, with this patch it succeeds (and doesn't
try to add its own line table).
gas/ChangeLog:
* as.texi (-g): Explicitly mention when .debug_info and .debug_line
are generated for the DWARF format.
(Loc): Add that it is an error to both use a .loc directive and
generate a .debug_line yourself.
* dwarf2dbg.c (dwarf2_any_loc_directive_seen): New static variable.
(dwarf2_directive_loc): Set dwarf2_any_loc_directive_seen to TRUE.
(dwarf2_finish): Check dwarf2_any_loc_directive_seen before emitting
an error. Only create .debug_line if it is empty (or doesn't exist).
* testsuite/gas/i386/i386.exp: Add dwarf2-line-{1,2,3,4} when testing
an elf target.
* testsuite/gas/i386/dwarf2-line-{1,2,3,4}.{s,d,l}: New test files.
This patch adds support for the system registers introduced in Armv8-R
AArch64.
gas/ChangeLog:
2020-09-08 Alex Coplan <alex.coplan@arm.com>
* config/tc-aarch64.c (parse_sys_reg): Also pass sysreg name to
validation function.
(parse_sys_ins_reg): Likewise.
(print_operands): Pass CPU features to aarch64_print_operand().
* testsuite/gas/aarch64/v8-r-bad-sysregs.d: New test.
* testsuite/gas/aarch64/v8-r-bad-sysregs.l: Error output.
* testsuite/gas/aarch64/v8-r-bad-sysregs.s: Input.
* testsuite/gas/aarch64/v8-r-sysregs-need-arch.d: New test.
* testsuite/gas/aarch64/v8-r-sysregs-need-arch.l: Error output.
* testsuite/gas/aarch64/v8-r-sysregs.d: New test.
* testsuite/gas/aarch64/v8-r-sysregs.s: Input for previous two tests.
include/ChangeLog:
2020-09-08 Alex Coplan <alex.coplan@arm.com>
* opcode/aarch64.h (aarch64_sys_ins_reg_supported_p): Also take
system register name in order to simplify validation for v8-R.
(aarch64_print_operand): Also take CPU feature set, as disassembly for
system registers now depends on arch variant.
opcodes/ChangeLog:
2020-09-08 Alex Coplan <alex.coplan@arm.com>
* aarch64-dis.c (print_operands): Pass CPU features to
aarch64_print_operand().
* aarch64-opc.c (aarch64_print_operand): Use CPU features to determine
preferred disassembly of system registers.
(SR_RNG): Refactor to use new SR_FEAT2 macro.
(SR_FEAT2): New.
(SR_V8_1_A): New.
(SR_V8_4_A): New.
(SR_V8_A): New.
(SR_V8_R): New.
(SR_EXPAND_ELx): New.
(SR_EXPAND_EL12): New.
(aarch64_sys_regs): Specify which registers are only on
A-profile, add R-profile system registers.
(ENC_BARLAR): New.
(PRBARn_ELx): New.
(PRLARn_ELx): New.
(aarch64_sys_ins_reg_supported_p): Reject EL3 registers for
Armv8-R AArch64.
* dwarf2dbg.c (add_line_strp): New function.
(out_dir_and_file_list): Take line_seg and sizeof_offset as
arguments, Use DW_FORM_line_strp for dir and file. Call
add_line_strp and set symbol offset for DWARF2_LINE_VERSION 5.
(out_debug_line): Call out_dir_and_file_list with line_seg and
sizeof_offset.
* gas/testsuite/gas/elf/dwarf-5-file0.d: Expect indirect line
strings.
When looking at the UB errors, I noticed that cbitb_test.d disassembly
wasn't reproducing the input assembly. That turned out to be an error
in make_argument case arg_cr. This fixes that and makes some general
tidies.
opcodes/
* cr16-dis.c: Formatting.
(parameter): Delete struct typedef. Use dwordU instead
throughout file.
(make_argument <arg_idxr>): Simplify detection of cbitb, sbitb
and tbitb.
(make_argument <arg_cr>): Extract 20-bit field not 16-bit.
gas/
* testsuite/gas/cr16/cbitb_test.d: Update expected output.
* testsuite/gas/cr16/cbitw_test.d: Likewise.
* testsuite/gas/cr16/sbitb_test.d: Likewise.
* testsuite/gas/cr16/sbitw_test.d: Likewise.
* testsuite/gas/cr16/storb_test.d: Likewise.
* testsuite/gas/cr16/storw_test.d: Likewise.
* testsuite/gas/cr16/tbitb_test.d: Likewise.
* testsuite/gas/cr16/tbitw_test.d: Likewise.
This patch adds support for xBPF, another ISA targetting the BPF
virtual architecture. For now, the primary difference between eBPF
and xBPF is that xBPF supports indirect calls through the
'call %reg' form of the call instruction.
bfd/
* archures.c (bfd_mach_xbpf): Define.
* bfd-in2.h: Regenerate.
* cpu-bpf.c (bfd_xbpf_arch) New.
(bfd_bpf_arch) Update next in list field to point to xbpf arch.
cpu/
* bpf.cpu (arch bpf): Add xbpf mach and isas.
(define-xbpf-isa) New pmacro.
(all-isas) Add xbpfle,xbpfbe.
(endian-isas): New pmacro.
(mach xbpf): New.
(model xbpf-def): Likewise.
(h-gpr): Add xbpf mach.
(f-dstle, f-srcle, dstle, srcle): Add xbpfle isa.
(f-dstbe, f-srcbe, dstbe, srcbe): Add xbpfbe isa.
(define-alu-insn-un): Use new endian-isas pmacro.
(define-alu-insn-bin, define-alu-insn-mov): Likewise.
(define-endian-insn, define-lddw): Likewise.
(dlind, dxli, dxsi, dsti): Likewise.
(define-cond-jump-insn, define-call-insn): Likewise.
(define-atomic-insns): Likewise.
gas/
* config/tc-bpf.c: Add option -mxbpf to select xbpf isa.
* testsuite/gas/bpf/indcall-1.d: New file.
* testsuite/gas/bpf/indcall-1.s: Likewise.
* testsuite/gas/bpf/indcall-bad-1.l: Likewise.
* testsuite/gas/bpf/indcall-bad-1.s: Likewise.
* testsuite/gas/bpf/bpf.exp: Run new tests.
opcodes/
* bpf-desc.c: Regenerate.
* bpf-desc.h: Likewise.
* bpf-opc.c: Likewise.
* bpf-opc.h: Likewise.
* disassemble.c (disassemble_init_for_target): Set bits for xBPF
ISA when appropriate.
A number of the tic54x tests were failing, and I thought it worth
investigating since the target makes use of a lot of hash tables, and
we've just changed gas hash tables. It turns out none of the gas
failures were due to hashing.
* config/tc-tic54x.c (stag_add_field_symbols): Don't free "name"
in case where it isn't copied.
* config/tc-tic54x.h (LOCAL_LABELS_FB): Undef.
* testsuite/gas/tic54x/field.d: Dump section contents and symbols
rather than disassembling.
* testsuite/gas/tic54x/set.d: Adjust for newer disassembly.
gas/
* config/tc-csky.c (csky_insn_info): Add member last_isize.
(md_assemble): Assign value to csky_insn.last_isize.
* testsuite/gas/csky/enhance_dsp.d: Test bloop's two operands form.
* testsuite/gas/csky/enhance_dsp.s: Likewise.
opcodes/
* csky-opc.h (csky_v2_opcodes): Add two operands form for bloop.
These shouldn't be optional. The record form of vector instructions
set CR6, giving an expectation that omitting BF should be the same as
specifying CR6.
opcodes/
* ppc-opc.c (powerpc_opcodes): Replace OBF with BF for vcmpsq,
vcmpuq and xvtlsbb.
gas/
* testsuite/gas/ppc/int128.s: Correct vcmpuq.
* testsuite/gas/ppc/int128.d: Update.
* testsuite/gas/ppc/xvtlsbb.d: Update.
The xvcvbf16sp mnemonic has been renamed to xvcvbf16spn, to be consistent
with the other non-signaling conversion instructions which all end with "n".
opcodes/
* ppc-opc.c (powerpc_opcodes) <xvcvbf16sp>: Rename from this...
<xvcvbf16spn>: ...to this.
gas/
* testsuite/gas/ppc/vsx4.s: Update test to use new mnemonic.
* testsuite/gas/ppc/vsx4.d: Likewise.
This patch fixes an internal error in GAS when defining a section using
a symbol that has already been named but not defined. For a minimal
reproducer, try the following input:
a=b
.sect a
The problem is that obj_elf_change_section() happily reuses the symbol
"a" created by equals() without clearing the sy_value field: prior to
this patch, it just set bsym. This caused a problem when attempting to
resolve the section symbol, since resolve_symbol_value() ended up
resolving the symbol as if it were the original symbol created by
equals(), which ends up leaving the section symbol in the undefined
section instead of in section a, hence the call to abort() in
S_SET_SEGMENT().
gas/ChangeLog:
* config/obj-elf.c (obj_elf_change_section): When repurposing an
existing symbol, ensure that we set sy_value as per other (fresh)
section symbols.
* testsuite/gas/elf/elf.exp: Add new test.
* testsuite/gas/elf/section-symbol-redef.d: New test.
* testsuite/gas/elf/section-symbol-redef.s: Input for test.
* config/tc-arm.c (do_neon_cvt_1): Parse vcvtne as vcvt-ne for
NS_FD shape when MVE is present
* testsuite/gas/arm/mve-vcvtne-it-bad.d: New test.
* testsuite/gas/arm/mve-vcvtne-it-bad.l: New test.
* testsuite/gas/arm/mve-vcvtne-it-bad.s: New test.
* testsuite/gas/arm/mve-vcvtne-it.d: New test.
* testsuite/gas/arm/mve-vcvtne-it.s: New test.
This patch adds support for the system registers introduced in the
Armv8-A MPAM extension.
See https://developer.arm.com/documentation/ddi0598/latest for the
Arm ARM supplement documenting this extension.
gas/ChangeLog:
* testsuite/gas/aarch64/mpam-bad.d: New test.
* testsuite/gas/aarch64/mpam-bad.l: Error output.
* testsuite/gas/aarch64/mpam-bad.s: Input.
* testsuite/gas/aarch64/mpam.d: New test.
* testsuite/gas/aarch64/mpam.s: Input.
opcodes/ChangeLog:
* aarch64-opc.c (aarch64_sys_regs): Add MPAM registers.
This patch fixes an assertion failure on long system register operands
in the AArch64 backend. See the new testcase for an input which
reproduces the issue.
gas/ChangeLog:
* config/tc-aarch64.c (parse_sys_reg): Don't assert when parsing
a long system register.
(parse_sys_ins_reg): Likewise.
(sysreg_hash_insert): New.
(md_begin): Use sysreg_hash_insert() to ensure all system
registers are no longer than the maximum length at startup.
* testsuite/gas/aarch64/invalid-sysreg-assert.d: New test.
* testsuite/gas/aarch64/invalid-sysreg-assert.l: Error output.
* testsuite/gas/aarch64/invalid-sysreg-assert.s: Input.
include/ChangeLog:
* opcode/aarch64.h (AARCH64_MAX_SYSREG_NAME_LEN): New.
Prior to this commit, on an input such as "88888888888:", GAS hits a
signed integer overflow and likely an assertion failure. I see:
$ echo "88888888888:" | bin/aarch64-none-elf-as
{standard input}: Assembler messages:
{standard input}:1: Internal error in fb_label_name at ../gas/symbols.c:2049.
Please report this bug.
To fix this issue, I've taken two steps:
1. Change the type used for processing local labels in
read_a_source_file() from int to long, to allow representing more
local labels, and also since all uses of this variable (temp) are
actually of type long.
2. Detect if we would overflow and bail out with an error message
instead of actually overflowing and hitting the assertion in
fb_label_name().
gas/ChangeLog:
2020-08-06 Alex Coplan <alex.coplan@arm.com>
* read.c (read_a_source_file): Use long for local labels, detect
overflow and raise an error for overly-long labels.
* testsuite/gas/all/gas.exp: Add local-label-overflow test.
* testsuite/gas/all/local-label-overflow.d: New test.
* testsuite/gas/all/local-label-overflow.l: Error output.
* testsuite/gas/all/local-label-overflow.s: Input.
Problem found by Tadashi G. Takaoka.
2020-08-04 Christian Groessler <chris@groessler.org>
Tadashi G. Takaoka <tadashi.g.takaoka@gmail.com>
* z8kgen.c (opt): Fix "sout imm16,rs" and "soutb imm16,rbs"
opcodes (special "out" to absolute address).
* z8k-opc.h: Regenerate.
2020-08-04 Christian Groessler <chris@groessler.org>
* gas/testsuite/gas/z8k/inout.d: Adapt to correct encoding of
"sout/soutb #imm,reg"
DWARF5 CU headers have a new unit type field and move the abbrev offset
to the end of the header.
gas/ChangeLog:
* dwarf2dbg.c (out_debug_info): Emit unit type and abbrev offset
for DWARF5.
* gas/testsuite/gas/elf/dwarf-4-cu.d: New file.
* gas/testsuite/gas/elf/dwarf-4-cu.s: Likewise.
* gas/testsuite/gas/elf/dwarf-5-cu.d: Likewise.
* gas/testsuite/gas/elf/dwarf-5-cu.s: Likewise.
* testsuite/gas/elf/elf.exp: Run dwarf-4-cu and dwarf-5-cu.
Make the MIPS/IRIX naming of local section symbols consistent between
files produced by generic ELF code and ELF linker code, complementing
commit 174fd7f955 ("New bfd elf hook: force naming of local section
symbols"), <https://sourceware.org/ml/binutils/2004-02/msg00072.html>.
Local section symbols have no names in the standard ELF gABI, however
the lack of a name causes problems with IRIX's MIPSpro linker. To work
around the issue we give them names, however we do that in generic ELF
code only, based on what the `elf_backend_name_local_section_symbols'
hook returns if present. That makes objects created by GAS or `objdump'
work correctly, however not ones created by `ld -r'. That would not
normally cause issues with IRIX systems using GAS and `objdump' only
with the MIPSpro linker, however if GNU LD was used for whatever reason
in producing objects later fed to IRIX's MIPSpro linker, then things
would break.
Modify ELF linker code accordingly then, using the same hook. Adjust
the `ld-elf/64ksec-r' test accordingly so that it also accepts a section
symbol with a name.
Also modify the hook itself so that only actual ET_REL objects have
names assigned to local section symbols. Other kinds of ELF files are
not ever supposed to be relocated with the MIPSpro linker, so we can
afford producing more standard output.
Add suitable GAS, LD and `objcopy' test cases to the relevant testsuites
to keep these tools consistently verified. This change also fixes:
FAIL: objcopy executable (pr25662)
across MIPS targets using the IRIX compatibility mode.
bfd/
* elflink.c (bfd_elf_final_link): Give local symbols a name if
so requested.
* elfxx-mips.c (_bfd_mips_elf_name_local_section_symbols): Only
return TRUE if making ET_REL output.
binutils/
* testsuite/binutils-all/mips/global-local-symtab-sort-o32.d:
New test.
* testsuite/binutils-all/mips/global-local-symtab-sort-o32t.d:
New test.
* testsuite/binutils-all/mips/global-local-symtab-sort-n32.d:
New test.
* testsuite/binutils-all/mips/global-local-symtab-sort-n32t.d:
New test.
* testsuite/binutils-all/mips/global-local-symtab-sort-n64.d:
New test.
* testsuite/binutils-all/mips/global-local-symtab-sort-n64t.d:
New test.
* testsuite/binutils-all/mips/global-local-symtab-final-o32.d:
New test.
* testsuite/binutils-all/mips/global-local-symtab-final-n32.d:
New test.
* testsuite/binutils-all/mips/global-local-symtab-final-n64.d:
New test.
* testsuite/binutils-all/mips/mips.exp: Run the new tests.
gas/
* testsuite/gas/mips/global-local-symtab-sort-o32.d: New test.
* testsuite/gas/mips/global-local-symtab-sort-o32t.d: New test.
* testsuite/gas/mips/global-local-symtab-sort-n32.d: New test.
* testsuite/gas/mips/global-local-symtab-sort-n32t.d: New test.
* testsuite/gas/mips/global-local-symtab-sort-n64.d: New test.
* testsuite/gas/mips/global-local-symtab-sort-n64t.d: New test.
* testsuite/gas/mips/mips.exp: Run the new tests.
ld/
* testsuite/ld-elf/sec64k.exp: Also accept a section symbol with
a name.
* testsuite/ld-mips-elf/global-local-symtab-sort-o32.d: New
test.
* testsuite/ld-mips-elf/global-local-symtab-sort-o32t.d: New
test.
* testsuite/ld-mips-elf/global-local-symtab-sort-n32.d: New
test.
* testsuite/ld-mips-elf/global-local-symtab-sort-n32t.d: New
test.
* testsuite/ld-mips-elf/global-local-symtab-sort-n64.d: New
test.
* testsuite/ld-mips-elf/global-local-symtab-sort-n64t.d: New
test.
* testsuite/ld-mips-elf/global-local-symtab-final-o32.d: New
test.
* testsuite/ld-mips-elf/global-local-symtab-final-n32.d: New
test.
* testsuite/ld-mips-elf/global-local-symtab-final-n64.d: New
test.
* testsuite/ld-mips-elf/mips-elf.exp: Run the new tests.
Correct ELF linker code so as to set the `sh_info' value of the static
symbol table section according to the section symbols vs other symbols
split where required by the selection of the IRIX compatibility mode for
MIPS target. Add a `elf_backend_elfsym_local_is_section' hook for that
purpose, returning TRUE if it is only STB_LOCAL/STT_SECTION symbols that
are to be considered local for the purpose of this split rather than all
STB_LOCAL symbols.
We do it already in generic ELF code, and have done it since 1993, with
the `elf_backend_sym_is_global' hook, affecting GAS and `objcopy', so
these tools produce correct ELF output in the IRIX compatibility mode,
however if such output is fed as input to `ld -r', then the linker's
output is no longer valid for that mode. The relevant changes to
generic ELF code are:
commit 062189c6ea
Author: Ian Lance Taylor <ian@airs.com>
Date: Thu Nov 18 17:12:47 1993 +0000
and:
commit 6e07e54f1b
Author: Ian Lance Taylor <ian@airs.com>
Date: Thu Jan 6 20:01:42 1994 +0000
(split across two GIT commits likely due to repository conversion
peculiarities).
The `elf_backend_sym_is_global' hook however operates on BFD rather than
ELF symbols, making it unsuitable for the ELF linker as the linker does
not convert any symbol tables processed into the BFD format. Converting
the hook to operate on ELF symbols would in principle be possible, but
it would still require a considerable rewrite of `bfd_elf_final_link' to
adapt to the interface.
Therefore, especially given that no new use for the IRIX compatibility
mode is expected, minimize changes made to the ELF linker code and just
add an entirely new hook, and wire it in the o32 and n32 MIPS backends
accordingly; the n64 backend never uses the IRIX compatibility mode.
Since we have no coverage here at all add suitable GAS, LD and `objcopy'
test cases to the relevant testsuites to keep these tools consistently
verified.
bfd/
* elf-bfd.h (elf_backend_data): Add
`elf_backend_elfsym_local_is_section' member.
* elfxx-target.h (elf_backend_elfsym_local_is_section): New
macro.
(elfNN_bed): Add `elf_backend_elfsym_local_is_section' member.
* elflink.c (bfd_elf_final_link): Use it to determine whether
set the `.symtab' section's `sh_info' value to the index of the
first non-local or non-section symbol.
* elf32-mips.c (mips_elf32_elfsym_local_is_section): New
function.
(elf_backend_elfsym_local_is_section): New macro.
* elfn32-mips.c (mips_elf_n32_elfsym_local_is_section): New
function.
(elf_backend_elfsym_local_is_section): New macro.
binutils/
* testsuite/binutils-all/mips/global-local-symtab-o32.d: New
test.
* testsuite/binutils-all/mips/global-local-symtab-o32t.d: New
test.
* testsuite/binutils-all/mips/global-local-symtab-n32.d: New
test.
* testsuite/binutils-all/mips/global-local-symtab-n32t.d: New
test.
* testsuite/binutils-all/mips/global-local-symtab-n64.d: New
test.
* testsuite/binutils-all/mips/mips.exp: Run the new tests.
gas/
* testsuite/gas/mips/global-local-symtab-o32.d: New test.
* testsuite/gas/mips/global-local-symtab-o32t.d: New test.
* testsuite/gas/mips/global-local-symtab-n32.d: New test.
* testsuite/gas/mips/global-local-symtab-n32t.d: New test.
* testsuite/gas/mips/global-local-symtab-n64.d: New test.
* testsuite/gas/mips/global-local-symtab.s: New test source.
* testsuite/gas/mips/mips.exp: Run the new tests.
ld/
* testsuite/ld-mips-elf/global-local-symtab-o32.d: New test.
* testsuite/ld-mips-elf/global-local-symtab-o32t.d: New test.
* testsuite/ld-mips-elf/global-local-symtab-n32.d: New test.
* testsuite/ld-mips-elf/global-local-symtab-n32t.d: New test.
* testsuite/ld-mips-elf/global-local-symtab-n64.d: New test.
* testsuite/ld-mips-elf/global-local-symtab.ld: New test linker
script.
* testsuite/ld-mips-elf/mips-elf.exp: Run the new tests.
Since (%bp)/(%ebp)/(%rbp) are encoded as 0(%bp)/0(%ebp)/0(%rbp), use
disp32/disp16 on 0(%bp)/0(%ebp)/0(%rbp) for {disp32}.
Note: Since there is no disp32 on 0(%bp), use disp16 instead.
PR gas/26305
* config/tc-i386.c (build_modrm_byte): Use disp32/disp16 on
(%bp)/(%ebp)/(%rbp) for {disp32}.
* doc/c-i386.texi: Update {disp32} documentation.
* testsuite/gas/i386/pseudos.s: Add (%bp)/(%ebp) tests.
* testsuite/gas/i386/x86-64-pseudos.s: Add (%ebp)/(%rbp) tests.
* testsuite/gas/i386/pseudos.d: Updated.
* testsuite/gas/i386/x86-64-pseudos.d: Likewise.
Define a helper variable for IRIX/non-IRIX test selection and use it
with the PR 14798 test case.
gas/
* testsuite/gas/mips/mips.exp: Use a helper variable for
IRIX/non-IRIX test selection.
This reverts commit 04c662e2b6.
In my underlying suggestion I neglected the fact that in those
cases (,%eiz,1) is the only visible indication that 32-bit
addressing is in effect.
This reverts commit 19449d7c67, addressing
the issue that was run into back then: There was no relationship to i686-*
and/or cross builds on 64-bit hosts. The sole problem was the use of / as
as comment character in certain ELF targets. Instead of division, use a
comparison operation.
At the same time also revert the ELF related part of 99c2d522f7 ("x86:
Update assembler tests for non-ELF targets") by replacing the construct
that's problematic for non-ELF, and by adding the "#pass" patterns to
the expected output files to cover for the tail padding generated into
COFF output.
PR gas/4572
When / is a comment character, its use as binary "divide" operator needs
escaping by a backslash. Besides the scrubber needing to support this
(addressed in an earlier change), there are also a few provisions needed
in target specific operator handling.
As the spec calls for % and * to also be escaped because of being
"overloaded", also recognize these, despite the overloading there not
really preventing their use as operators in most (%) or all (*) cases,
given the way how the rest of the assembler works.
To bring source and testsuite in line, also drop the TE_I386AIX part of
the respective conditional, as i?86-*-aix* support had been removed a
while ago.
Various provisions exist for insns to be placed in the absolute section,
yet actually trying to do so didn't work. While data emission (of non-
zero values) is not allowed by generic code, I think this functionality
is useful for the programmer to be able to determine the size of insns.
Therefore, rather than turning the silnet failure into a verbose one,
make things mostly work; the one class of insns not supported (yet) are
branches (JMP and Jcc) with dynamically determined displacement widths.
In this one case, an error now gets reported instead of silently
ignoring the code.
Also avoid recording ISA / feature usage for insns emitted to the
absolute section.
Change
67 48 8b 1c 25 ef cd ab 89 mov 0x89abcdef(,%eiz,1),%rbx
to
67 48 8b 1c 25 ef cd ab 89 mov 0x89abcdef,%rbx
in AT&T syntax and
67 48 8b 1c 25 ef cd ab 89 mov rbx,QWORD PTR [eiz*1+0x89abcdef]
to
67 48 8b 1c 25 ef cd ab 89 mov rbx,QWORD PTR ds:0x89abcdef
in Intel syntax.
gas/
PR gas/26237
* testsuite/gas/i386/evex-no-scale-64.d: Updated.
* testsuite/gas/i386/addr32.d: Likewise.
* testsuite/gas/i386/x86-64-addr32-intel.d: Likewise.
* testsuite/gas/i386/x86-64-addr32.d: Likewise.
opcodes/
PR gas/26237
* i386-dis.c (OP_E_memory): Don't display eiz with no scale
without base nor index registers.
The value chosen for the 16-/32-bit immediate cases didn't work well
with the subsequent insn's REX prefix - we ought to pick a value the
upper two bytes of which evaluate to a 2-byte insn. Bump the values
accordingly, allowing the subsequent insn to actually have the intended
REX.W.
"Unambiguous" is is in particular taking as reference the assembler,
which also accepts certain insns - despite them allowing for varying
operand size, and hence in principle being ambiguous - without any
suffix. For example, from the very beginning of the life of x86-64 I had
trouble understanding why a plain and simple RET had to be printed as
RETQ. In case someone really used the 16-bit form, RETW disambiguates
the two quite fine.
Since the addr32 (0x67) prefix zero-extends the lower 32 bits address to
64 bits, change disassembler to zero-extend the lower 32 bits displacement
to 64 bits when there is no base nor index registers.
gas/
PR gas/26237
* testsuite/gas/i386/addr32.s: Add tests for 32-bit wrapped around
address.
* testsuite/gas/i386/x86-64-addr32.s: Likewise.
* testsuite/gas/i386/addr32.d: Updated.
* testsuite/gas/i386/x86-64-addr32-intel.d: Likewise.
* testsuite/gas/i386/x86-64-addr32.d: Likewise.
* testsuite/gas/i386/ilp32/x86-64-addr32-intel.d: Likewise.
* testsuite/gas/i386/ilp32/x86-64-addr32.d: Likewise.
opcodes/
PR gas/26237
* i386-dis.c (OP_E_memory): Without base nor index registers,
32-bit displacement to 64 bits.