My previous nm patch handled all cases but one -- if the user set NM in
the environment to a path which contained an option, libtool's nm
detection tries to run nm against a copy of nm with the options in it:
e.g. if NM was set to "nm --blargle", and nm was found in /usr/bin, the
test would try to run "/usr/bin/nm --blargle /usr/bin/nm --blargle".
This is unlikely to be desirable: in this case we should run
"/usr/bin/nm --blargle /usr/bin/nm".
Furthermore, as part of this nm has to detect when the passed-in $NM
contains a path, and in that case avoid doing a path search itself.
This too was thrown off if an option contained something that looked
like a path, e.g. NM="nm -B../prev-gcc"; libtool then tries to run
"nm -B../prev-gcc nm" which rarely works well (and indeed it looks
to see whether that nm exists, finds it doesn't, and wrongly concludes
that nm -p or whatever does not work).
Fix all of these by clipping all options (defined as everything
including and after the first " -") before deciding whether nm
contains a path (but not using the clipped value for anything else),
and then removing all options from the path-modified nm before
looking to see whether that nm existed.
NM=my-nm now does a path search and runs e.g.
/usr/bin/my-nm -B /usr/bin/my-nm
NM=/usr/bin/my-nm now avoids a path search and runs e.g.
/usr/bin/my-nm -B /usr/bin/my-nm
NM="my-nm -p../wombat" now does a path search and runs e.g.
/usr/bin/my-nm -p../wombat -B /usr/bin/my-nm
NM="../prev-binutils/new-nm -B../prev-gcc" now avoids a path search:
../prev-binutils/my-nm -B../prev-gcc -B ../prev-binutils/my-nm
This seems to be all combinations, including those used by GCC bootstrap
(which, before this commit, fails to bootstrap when configured
--with-build-config=bootstrap-lto, because the lto plugin is now using
--export-symbols-regex, which requires libtool to find a working nm,
while also using -B../prev-gcc to point at the lto plugin associated
with the GCC just built.)
Regenerate all affected configure scripts.
* libtool.m4 (LT_PATH_NM): Handle user-specified NM with
options, including options containing paths.
Currently debuginfod progress update messages include the size of
each download:
Downloading 7.5 MB separate debug info for /lib/libxyz.so.0
This value originates from the Content-Length HTTP header of the
transfer. However this header is not guaranteed to be present for
each download. This can happen when debuginfod servers compress files
on-the-fly at the time of transfer. In this case gdb wrongly prints
"-0.00 MB" as the size.
This patch removes download sizes from progress messages when they are
not available. It also removes usage of the progress bar until
a more thorough reworking of progress updating is implemented. [1]
[1] https://sourceware.org/pipermail/gdb-patches/2022-February/185798.html
This amends e961c696dc ("x86: drop L1OM/K1OM support from ld"). Also
remove the marker that I mistakenly added in c085ab00c7 ("x86: drop
L1OM/K1OM support from gas").
This test was added without a corresponding fix, with some setup_kfails.
However, it results in UNRESOLVED results when GDB is built with ASan.
ERROR: GDB process no longer exists
GDB process exited with wait status 1946871 exp7 0 1
UNRESOLVED: gdb.python/pretty-print-call-by-hand.exp: frame print: backtrace test (PRMS gdb/28856)
Remove the test from the tree, I'll attach it to the Bugzilla bug
instead [1].
[1] https://sourceware.org/bugzilla/show_bug.cgi?id=28856
Change-Id: Id95d8949fb8742874bd12aeac758aa4d7564d678
I much appreciate Nick offering this role to me. Nevertheless there's
still a lot for me to learn here.
At this occasion also update my email address in the pre-existing, much
more narrow entry.
The gdb.mi/mi-multi-commands.exp test was added in commit:
commit d08cbc5d32
Date: Wed Dec 22 12:57:44 2021 +0000
gdb: unbuffer all input streams when not using readline
And then tweaked in commit:
commit 144459531d
Date: Mon Feb 7 20:35:58 2022 +0000
gdb/testsuite: relax pattern in new gdb.mi/mi-multi-commands.exp test
The second of these commits was intended to address periodic test
failures that I was seeing, and this change did fix some problems,
but, unfortunately, introduced other issues.
The problem is that the test relies on sending two commands to GDB in
a single write. As the characters that make these two commands arrive
they are echoed to GDB's console. However, there is a race between
how quickly the characters are echoed and how quickly GDB decides to
act on the incoming commands.
Usually, both commands are echoed in full before GDB acts on the first
command, but sometimes this is not the case, and GDB can execute the
first command before both commands are fully echoed to the console.
In this case, the output of the first command will be mixed in with
the echoing of the second command.
This mixing of the command echoing and the first command output is
what was causing failures in the original version of the test.
The second commit relaxed the expected output pattern a little, but
was still susceptible to failures, so this commit further relaxes the
pattern.
Now, we look for the first command output with no regard to what is
before, or after the command. Then we look for the first mi prompt to
indicate that the first command has completed.
I believe that this change should make the test more stable than it
was before.
libctf has always handled endianness differences by detecting
foreign-endian CTF dicts on the input and endian-flipping them: dicts
are always written in native endianness. This makes endian-awareness
very low overhead, but it means that the foreign-endian code paths
almost never get routinely tested, since "make check" usually reads in
dicts ld has just written out: only a few corrupted-CTF tests are
actually in fixed endianness, and even they only test the foreign-
endian code paths when you run make check on a big-endian machine.
(And the fix is surely not to add more .s-based tests like that, because
they are a nightmare to maintain compared to the C-code-based ones.)
To improve on this, add a new environment variable,
LIBCTF_WRITE_FOREIGN_ENDIAN, which causes libctf to unconditionally
endian-flip at ctf_write time, so the output is always in the wrong
endianness. This then tests the foreign-endian read paths properly
at open time.
Make this easier by restructuring the writeout code in ctf-serialize.c,
which duplicates the maybe-gzip-and-write-out code three times (once
for ctf_write_mem, with thresholding, and once each for
ctf_compress_write and ctf_write just so those can avoid thresholding
and/or compression). Instead, have the latter two call the former
with thresholds of 0 or (size_t) -1, respectively.
The endian-flipping code itself gains a bit of complexity, because
one single endian-flipper (flip_types) was assuming the input to be
in foreign-endian form and assuming it could pull things out of the
input once they had been flipped and make sense of them. At the
cost of a few lines of duplicated initializations, teach it to
read before flipping if we're flipping to foreign-endianness instead
of away from it.
libctf/
* ctf-impl.h (ctf_flip_header): No longer static.
(ctf_flip): Likewise.
* ctf-open.c (flip_header): Rename to...
(ctf_flip_header): ... this, now it is not private to one file.
(flip_ctf): Rename...
(ctf_flip): ... this too. Add FOREIGN_ENDIAN arg.
(flip_types): Likewise. Use it.
(ctf_bufopen_internal): Adjust calls.
* ctf-serialize.c (ctf_write_mem): Add flip_endian path via
a newly-allocated bounce buffer.
(ctf_compress_write): Move below ctf_write_mem and reimplement
in terms of it.
(ctf_write): Likewise.
(ctf_gzwrite): Note that this obscure writeout function does not
support endian-flipping.
The last section in a CTF dict is the string table, at an offset
represented by the cth_stroff header field. Its length is recorded in
the next field, cth_strlen, and the two added together are taken as the
size of the CTF dict. Upon opening a dict, we check that none of the
header offsets exceed this size, and we check when uncompressing a
compressed dict that the result of the uncompression is the same length:
but CTF dicts need not be compressed, and short ones are not.
Uncompressed dicts just use the ctf_size without checking it. This
field is thankfully almost unused: it is mostly used when reserializing
a dict, which can't be done to dicts read off disk since they're
read-only.
However, when opening an uncompressed foreign-endian dict we have to
copy it out of the mmaped region it is stored in so we can endian-
swap it, and we use ctf_size when doing that. When the cth_strlen is
corrupt, this can overrun.
Fix this by checking the ctf_size in all uncompressed cases, just as we
already do in the compressed case. Add a new test.
This came to light because various corrupted-CTF raw-asm tests had an
incorrect cth_strlen: fix all of them so they produce the expected
error again.
libctf/
PR libctf/28933
* ctf-open.c (ctf_bufopen_internal): Always check uncompressed
CTF dict sizes against the section size in case the cth_strlen is
corrupt.
ld/
PR libctf/28933
* testsuite/ld-ctf/diag-strlen-invalid.*: New test,
derived from diag-cttname-invalid.s.
* testsuite/ld-ctf/diag-cttname-invalid.s: Fix incorrect cth_strlen.
* testsuite/ld-ctf/diag-cttname-null.s: Likewise.
* testsuite/ld-ctf/diag-cuname.s: Likewise.
* testsuite/ld-ctf/diag-parlabel.s: Likewise.
* testsuite/ld-ctf/diag-parname.s: Likewise.
The CTF variable section is an optional (usually-not-present) section in
the CTF dict which contains name -> type mappings corresponding to data
symbols that are present in the linker input but not in the output
symbol table: the idea is that programs that use their own symbol-
resolution mechanisms can use this section to look up the types of
symbols they have found using their own mechanism.
Because these removed symbols (mostly static variables, functions, etc)
all have names that are unlikely to appear in the ELF symtab and because
very few programs have their own symbol-resolution mechanisms, a special
linker flag (--ctf-variables) is needed to emit this section.
Historically, we emitted only removed data symbols into the variable
section. This seemed to make sense at the time, but in hindsight it
really doesn't: functions are symbols too, and a C program can look them
up just like any other type. So extend the variable section so that it
contains all static function symbols too (if it is emitted at all), with
types of kind CTF_K_FUNCTION.
This is a little fiddly. We relied on compiler assistance for data
symbols: the compiler simply emits all data symbols twice, once into the
symtypetab as an indexed symbol and once into the variable section.
Rather than wait for a suitably adjusted compiler that does the same for
function symbols, we can pluck unreported function symbols out of the
symtab and add them to the variable section ourselves. While we're at
it, we do the same with data symbols: this is redundant right now
because the compiler does it, but it costs very little time and lets the
compiler drop this kludge and save a little space in .o files.
include/
* ctf.h: Mention the new things we can see in the variable
section.
ld/
* testsuite/ld-ctf/data-func-conflicted-vars.d: New test.
libctf/
* ctf-link.c (ctf_link_deduplicating_variables): Duplicate
symbols into the variable section too.
* ctf-serialize.c (symtypetab_delete_nonstatic_vars): Rename
to...
(symtypetab_delete_nonstatics): ... this. Check the funchash
when pruning redundant variables.
(ctf_symtypetab_sect_sizes): Adjust accordingly.
* NEWS: Describe this change.
The test for -gctf support in the compiler is used to determine when to
run the ld-ctf tests and most of those in libctf. Unfortunately,
because it uses check_compiler_available and compile_one_cc, it will
fail whenever the compiler emits anything on stderr, even if it
actually does support CTF perfectly well.
So, instead, ask the compiler to emit assembler output and grep it for
references to ".ctf": this is highly unlikely to be present if the
compiler does not support CTF. (This will need adjusting when CTF grows
support for non-ELF platforms that don't dot-prepend their section
names, but right now the linker doesn't link CTF on any such platforms
in any case.)
With this in place we can do things like run all the libctf tests under
leak sanitizers etc even if those spray warnings on simple CTF
compilations, rather than being blocked from doing so just when we would
most like to.
ld/
* testsuite/lib/ld-lib.exp (check_ctf_available): detect CTF
even if a CTF-capable compiler emits warnings.
New in this version:
- Rebase on master, fix a few more issues that appeared.
python-internal.h contains a number of macros that helped make the code
work with both Python 2 and 3. Remove them and adjust the code to use
the Python 3 functions.
Change-Id: I99a3d80067fb2d65de4f69f6473ba6ffd16efb2d
New in this version:
- Add a PY_MAJOR_VERSION check in configure.ac / AC_TRY_LIBPYTHON. If
the user passes --with-python=python2, this will cause a configure
failure saying that GDB only supports Python 3.
Support for Python 2 is a maintenance burden for any patches touching
Python support. Among others, the differences between Python 2 and 3
string and integer types are subtle. It requires a lot of effort and
thinking to get something that behaves correctly on both. And that's if
the author and reviewer of the patch even remember to test with Python
2.
See this thread for an example:
https://sourceware.org/pipermail/gdb-patches/2021-December/184260.html
So, remove Python 2 support. Update the documentation to state that GDB
can be built against Python 3 (as opposed to Python 2 or 3).
Update all the spots that use:
- sys.version_info
- IS_PY3K
- PY_MAJOR_VERSION
- gdb_py_is_py3k
... to only keep the Python 3 portions and drop the use of some
now-removed compatibility macros.
I did not update the configure script more than just removing the
explicit references to Python 2. We could maybe do more there, like
check the Python version and reject it if that version is not
supported. Otherwise (with this patch), things will only fail at
compile time, so it won't really be clear to the user that they are
trying to use an unsupported Python version. But I'm a bit lost in the
configure code that checks for Python, so I kept that for later.
Change-Id: I75b0f79c148afbe3c07ac664cfa9cade052c0c62
To prevent fatal or even internal errors, add a simple check to
i386_validate_fix(), rejecting relocations when their target symbol is
an equate of a register (or resolved to reg_section for any other
reason).
Allow transitive (or recursive) equates to work in addition to direct
ones. The only requirements are that
- the equate being straight of a register, i.e. no expressions involved
(albeit I'm afraid something like "%eax + 0" will be viewed as %eax),
- at the point of use there's no forward ref left which cannot be
resolved, yet.
PR gas/28977
Perhaps right from its introduction in 4d1bb7955a it was wrong for
i386_parse_name() to call parse_register(). This being a hook from the
expression parser, it shouldn't be resolving e.g. equated symbols.
That's relevant only for all other callers of parse_register().
To compensate, in Intel syntax mode check_register() needs calling;
perhaps not doing so was an oversight right when the function was
introduced. This is necessary in particular to force EVEX encoding when
VRex registers are used (but of course also to reject bad uses of
registers, i.e. fully matching what parse_register() needs it for).
First of all when a table entry has a NULL filename, the two inner if()s
are better done the other way around: The 2nd doesn't depend on what the
first does. This then renders redundant half of the conditions of the
other if() and clarifies that subsequently only entry 0 is dealt with
(indicating that part of the comment was wrong). Finally for there to be
a usable name in slot 1, files_in_use needs to be larger than 1 and slot
1's (rather than slot 0's) name needs to be non-NULL.
Commit 3417bfca67 ("GAS: DWARF-5: Ensure that the 0'th entry in the
directory table contains the current... ") added a "dwarf_level < 5"
check to out_dir_and_file_list(). This rendered dead that branch of the
construct, due to the enclosing if()'s "DWARF2_LINE_VERSION >= 5".
Delete that code as well as the corresponding part of the comment.
While there also drop a redundant "dirs != NULL": "dirs" will always be
non-NULL when dirs_in_use is not zero.
Tying the bumping of the logical line number to reading from the
original source file looks wrong: Upon finishing of the processing of an
sb the original values will be restored anyway. Yet without bumping the
line counter uses of .line inside e.g. an .irp construct won't have the
intended effect: Such uses may be necessary to ensure proper debug info
is emitted in particular when switching sections inside the .irp body,
as dwarf2_gen_line_info() would bail without doing anything when it
finds the line number unchanged from what it saw last.
At least x86-64's x32 sub-mode and RISC-V's 32-bit mode calculate
addends as 64-bit values, but store them in signed 32-bit fields when
generating the file without encountering any earlier error. When the
relocated field is a 64-bit one, the value resulting after processing
the relocation record when linking (or the latest when loading) may
thus be wrong due to the truncation.
With the code change in place, one x32 testcase actually triggers the
new diagnostic. That one case of too large a (negative) addend is being
adjusted alongside the addition of a new testcase to actually trigger
the new error. (Note that due to internal BFD behavior the relocation in
.data doesn't get processed anymore after the errors in .text.)
Note that in principle it is possible to express 64-bit relocations in
ELF32, but this would require .rel relocations, i.e. with the addend
stored in the 64-bit field being relocated. But I guess it would be a
lot of effort for little gain to actually support this.
Macro arguments may be separated by commas or just whitespace. Macro
arguments may also be quoted (where one level of quotes is removed in
the course of determining the values for the respective formal
parameters). Furthermore this quote removal knows _two_ somewhat odd
escaping mechanisms: One, apparently in existence forever, is that a
pair of quotes counts as the escaping of a quote, with the pair being
transformed to a single quote in the course of quote removal. The other
(introduced by c06ae4f232) looks more usual on the surface in that it
deals with \" sequences, but it _retains_ the escaping \. Hence only the
former mechanism is suitable when the value to be used by the macro body
is to contain a quote. Yet this results in ambiguity of what "a""b" is
intended to mean; elsewhere (e.g. for .ascii) it represents two
successive string literals. However, in any event is the above different
from "a" "b": I don't think this can be viewed the same as "a""b" when
processing macro arguments.
Change the scrubber to retain such whitespace, by making the processing
of strings more similar to that of symbols. And indeed this appears to
make sense when taking into account that for quite a while gas has been
supporting quoted symbol names.
Taking a more general view, however, the change doesn't go quite far
enough. There are further cases where significant whitespace is removed
by the scrubber. The new testcase enumerates a few in its ".if 0"
section. I'm afraid the only way that I see to deal with this would be
to significantly simplify the scrubber, such that it wouldn't do much
more than collapse sequences of unquoted whitespace into a single blank.
To be honest problems in this area aren't really surprising when seeing
that there's hardly any checking of .macro use throughout the testsuite
(and in particular in the [relatively] generic tests under all/).
If /proc/sys/kernel/yama/ptrace_scope is 1, when execute the following
command without superuser:
make check-gdb TESTS="gdb.base/jit-elf.exp"
we can see the following messages in gdb/testsuite/gdb.log:
(gdb) attach 1650108
Attaching to program: /home/yangtiezhu/build/gdb/testsuite/outputs/gdb.base/jit-elf/jit-elf-main, process 1650108
ptrace: Operation not permitted.
(gdb) FAIL: gdb.base/jit-elf.exp: attach: one_jit_test-2: break here 1: attach
use gdb_attach to fix the above issue, at the same time, the clean_reattach
proc should return a value to indicate whether it worked, and the callers
should return early as well on failure.
Signed-off-by: Tiezhu Yang <yangtiezhu@loongson.cn>
If /proc/sys/kernel/yama/ptrace_scope is 1, when execute the following
command without superuser:
make check-gdb TESTS="gdb.base/attach-pie-noexec.exp"
we can see the following messages in gdb/testsuite/gdb.log:
(gdb) attach 6500
Attaching to process 6500
ptrace: Operation not permitted.
(gdb) PASS: gdb.base/attach-pie-noexec.exp: attach
It is obviously wrong, the expected result should be UNSUPPORTED in such
a case.
With this patch, we can see "Operation not permitted" in the log info,
and then we can do the following processes to test:
(1) set ptrace_scope as 0
$ echo 0 | sudo tee /proc/sys/kernel/yama/ptrace_scope
$ make check-gdb TESTS="gdb.base/attach-pie-noexec.exp"
(2) use sudo
$ sudo make check-gdb TESTS="gdb.base/attach-pie-noexec.exp"
Signed-off-by: Tiezhu Yang <yangtiezhu@loongson.cn>
This commit adds new gdb_attach to centralize the failure checking of
"attach" command. Return 0 if attach failed, otherwise return 1.
Signed-off-by: Tiezhu Yang <yangtiezhu@loongson.cn>
As Pedro Alves said, caching procs should not issue pass/fail [1],
this commit removes attach test from can_spawn_for_attach, at the
same time, use "verbose -log" instead of "unsupported" to get a
trace about why a test run doesn't support spawning for attach.
[1] https://sourceware.org/pipermail/gdb-patches/2022-March/186311.html
Signed-off-by: Tiezhu Yang <yangtiezhu@loongson.cn>
This shares aarch64-nat.c and nat/aarch64-hw-point.c with the Linux
native target. Since FreeBSD writes all of the debug registers in one
ptrace op, use an unordered_set<> to track the "dirty" state for
threads rather than bitmasks of modified registers.
This method can be overridden by architecture-specific targets to
perform additional work when a thread is deleted.
Note that this method is only invoked on systems supporting LWP
events, but the pending use case (aarch64 debug registers) is not
supported on older kernels that do not support LWP events.
This class includes platform-independent target methods for hardware
breakpoints and watchpoints using routines from
nat/aarch64-hw-point.c.
stopped_data_address is not platform-independent since the FAR
register holding the address for a breakpoint hit must be fetched in a
platform-specific manner. However, aarch64_stopped_data_address is
provided as a helper routine which performs platform-independent
validation given the value of the FAR register.
For tracking the per-process debug register mirror state, use an
unordered_map indexed by pid as recently adopted in x86-nat.c rather
than a manual linked-list.
Move non-Linux-specific support for hardware break/watchpoints from
nat/aarch64-linux-hw-point.c to nat/aarch64-hw-point.c. Changes
beyond a simple split of the code are:
- aarch64_linux_region_ok_for_watchpoint and
aarch64_linux_any_set_debug_regs_state renamed to drop linux_ as
they are not platform specific.
- Platforms must implement the aarch64_notify_debug_reg_change
function which is invoked from the platform-independent code when a
debug register changes for a given debug register state. This does
not use the indirection of a 'low' structure as is done for x86.
- The handling for kernel_supports_any_contiguous_range is not
pristine. For non-Linux it is simply defined to true. Some uses of
this could perhaps be implemented as new 'low' routines for the
various places that check it instead?
- Pass down ptid into aarch64_handle_breakpoint and
aarch64_handle_watchpoint rather than using current_lwp_ptid which
is only defined on Linux. In addition, pass the ptid on to
aarch64_notify_debug_reg_change instead of the unused state
argument.
This class implements debug register support common between the i386
and amd64 native targets.
While here, remove #ifdef's for HAVE_PT_GETDBREGS in FreeBSD-specific
code. The ptrace request has been present on FreeBSD x86
architectures since 4.0 (released in March 2000). The last FreeBSD
release without this support is 3.5 released in June 2000.
I found a couple of spots that declare a symtab_and_line but don't
actually use it. I think this probably isn't detected as unused
because it has a constructor.