A customer program had a DWARF CU that consisted of just a CU DIE,
without any children. In this situation, scan_unit_for_symbols will
try to read past the end of the current CU, and will take use the
first bytes of the next CU as an abbrev, printing an error message.
This patch fixes the bug by changing scan_unit_for_symbols to stop at
the end of the CU rather than the end of the .debug_info section.
bfd/ChangeLog
2019-08-15 Tom Tromey <tromey@adacore.com>
* dwarf2.c (scan_unit_for_symbols): Check for end of CU, not end
of section.
PR 24623
* dwarf2.c (stash_comp_unit): New function, extracted from..
(_bfd_dwarf2_find_nearest_line): ..here.
(find_abstract_instance): Parse comp units and decode line info
as needed.
This parameter might appear to be used to set up offset_size, but
since git commit 024b2372f5 offset_size is either set from the
debug_info data or is set to 4.
* dwarf2.c (_bfd_dwarf2_find_nearest_line): Remove addr_size parameter.
* libbfd-in.h (_bfd_dwarf2_find_nearest_line): Update prototype.
* coffgen.c (coff_find_nearest_line_with_names): Adjust
_bfd_dwarf2_find_nearest_line calls.
* elf.c (_bfd_elf_find_nearest_line, _bfd_elf_find_line): Likewise.
* elf32-arm.c (elf32_arm_find_nearest_line): Likewise.
* elf64-alpha.c (elf64_alpha_find_nearest_line): Likewise.
* elfnn-aarch64.c (elfNN_aarch64_find_nearest_line): Likewise.
* elfxx-mips.c (_bfd_mips_elf_find_nearest_line): Likewise.
* mach-o.c (bfd_mach_o_find_nearest_line): Likewise.
* libbfd.h: Regenerate.
This patch is a reimplementation of [1] which was submitted in 2015 by
Neil Schellenberger. Copyright issue was sorted out [2] last year.
It proposed a new section (.gnu.xhash) and related dynamic tag
(DT_GNU_XHASH). The new section would be virtually identical to the
existing .gnu.hash except for the translation table (xlat) which would
contain correct MIPS .dynsym indexes corresponding to the hashvals in
chains. This is because MIPS ABI imposes a different ordering on the
dynsyms than the one expected by the .gnu.hash section. Another addition
would be a leading word (ngnusyms) which would contain the number of
entries in the translation table.
In this patch, the new section name and dynamic tag are changed to
reflect the fact that the section should be treated as MIPS-specific
(.MIPS.xhash and DT_MIPS_XHASH).
This patch addresses the alignment issue as reported in [3], which is
caused by the leading word added to the .MIPS.xhash section. Leading word
is removed in this patch, and the number of entries in the translation
table is now calculated using DT_MIPS_SYMTABNO dynamic tag (this is
addressed by the corresponding glibc patch).
Suggestions on coding style in [4] were taken into account. Existing
GNU hash testcase was covered, and another one was added in the MIPS
part of the testsuite.
The other major change is reserving MIPS ABI version 5 for .MIPS.xhash,
marking the need of support for .MIPS.xhash in the dynamic linker (again,
addressed in the corresponding glibc patch). This is something which I
am not sure of, especially after reading [5]. I am confused on whether
this ABI version is reserved for IFUNC, or it can be used for this
purpose.
Already mentioned glibc patch is submitted at:
https://sourceware.org/ml/libc-alpha/2019-06/msg00456.html
[1] https://sourceware.org/ml/binutils/2015-10/msg00057.html
[2] https://sourceware.org/ml/binutils/2018-03/msg00025.html
[3] https://sourceware.org/ml/binutils/2016-01/msg00006.html
[4] https://sourceware.org/ml/binutils/2016-02/msg00097.html
[5] https://sourceware.org/ml/libc-alpha/2016-12/msg00853.html
ld * emulparams/elf32bmip.sh: Add .MIPS.xhash section.
* emulparams/elf32bmipn32-defs.sh: Add .MIPS.xhash section.
* emulparams/elf64bmip-defs.sh: Add .MIPS.xhash section.
* emultempl/mipself.em: Remove mips_after_parse function.
* testsuite/ld-elf/hash.d: Update comment.
* testsuite/ld-mips-elf/hash1.d: New test.
* testsuite/ld-mips-elf/hash1.s: Ditto.
* testsuite/ld-mips-elf/hash1a.d: Remove.
* testsuite/ld-mips-elf/hash1b.d: Ditto.
* testsuite/ld-mips-elf/hash1c.d: Ditto
* testsuite/ld-mips-elf/hash2.d: New test.
* testsuite/ld-mips-elf/mips-elf.exp: New tests.
* testsuite/ld-mips-elf/start.s: New test.
bfd * elf-bfd.h (struct elf_backend_data): New members.
* elflink.c (_bfd_elf_link_create_dynamic_sections): Create
.gnu.hash section if necessary.
(struct collect_gnu_hash_codes): New member.
(elf_gnu_hash_process_symidx): New function name.
(elf_renumber_gnu_hash_syms): Ignore local and undefined
symbols. Record xlat location for every symbol which should have
a .MIPS.xhash entry.
(bfd_elf_size_dynamic_sections): Add DT_GNU_HASH dynamic tag to
dynamic section if necessary.
(GNU_HASH_SECTION_NAME): New define.
(bfd_elf_size_dynsym_hash_dynstr): Get .MIPS.xhash section.
Update the section size info.
* elfxx-mips.c (struct mips_elf_hash_sort_data): New members.
(struct mips_elf_link_hash_entry): New member.
(mips_elf_link_hash_newfunc): Initialize .MIPS.xhash translation
table location.
(mips_elf_sort_hash_table): Initialize the pointer to the
.MIPS.xhash section.
(mips_elf_sort_hash_table_f): Populate the .MIPS.xhash
translation table entry with the symbol dynindx.
(_bfd_mips_elf_section_from_shdr): Add SHT_MIPS_XHASH.
(_bfd_mips_elf_fake_sections): Initialize .MIPS.xhash section
info.
(_bfd_mips_elf_create_dynamic_sections): Create .MIPS.xhash
section.
(_bfd_mips_elf_size_dynamic_sections): Add DT_MIPS_XHASH tag to
dynamic section.
(_bfd_mips_elf_finish_synamic_sections): Add DT_MIPS_XHASH.
(_bfd_mips_elf_final_write_processing): Set .MIPS.xhash section
sh_link info.
(_bfd_mips_elf_get_target_dtag): Get DT_MIPS_XHASH tag.
(MIPS_LIBC_ABI_XHASH): New ABI version enum value.
(_bfd_mips_post_process_headers): Mark the ABI version as
MIPS_LIBC_ABI_XHASH if there exists a .MIPS.xhash section,
but not a .hash section.
(_bfd_mips_elf_record_xhash_symbol): New function. Record a
position in the translation table, associated with the hash
entry.
* elfxx-mips.h (literal_reloc_p): Define
elf_backend_record_xhash_symbol backend hook.
* elfxx-target.h: Initialize elf_backend_record_xhash_symbol
backend hook.
include * elf/mips.h (SHT_GNU_XHASH): New define.
(DT_GNU_XHASH): New define.
binutils * readelf.c (get_mips_dynamic_type): Return MIPS_XHASH dynamic type.
(get_mips_section_type_name): Return MI{S_XHASH name string.
(dynamic_section_mips_val): Initialize the .MIPS.xhash dynamic
info.
(process_symbol_table): Initialize the .MIPS.xhash section
pointer. Adjust the readelf output to support the new section.
(process_object): Set the .MIPS.xhash dynamic info to zero.
This patch changes the eBPF linker to provide a relocate_section
function instead of relying on using special functions in relocation
howtos.
Tested in x86_64 host.
No regressions.
bfd/ChangeLog:
2019-08-07 Jose E. Marchesi <jose.marchesi@oracle.com>
* elf64-bpf.c (bpf_elf_relocate_section): New function.
(bpf_elf_insn_disp_reloc): Delete function.
(elf_backend_relocate_section): Define.
bfd/ChangeLog
Ilia Diachkov <ilia.diachkov@optimitech.com>
* elfnn-riscv.c (_bfd_riscv_relax_lui): Set lui relax safety area to
two pages in relro presence.
check_loop_aligned is used during link time relaxation to only allow
transformations that don't violate loop body alignment requirements.
Assembler can relax loops that have too long body by adding instructions
between the loop instruction and the loop body. check_loop_aligned must
check alignment of the first instruction of the actual loop body.
Detect loop / rsr.lend / wsr.lbeg sequence used in assembly time
relaxation and adjust alignment check when it's detected.
bfd/
2019-08-01 Max Filippov <jcmvbkbc@gmail.com>
* elf32-xtensa.c (insn_num_slots, get_rsr_lend_opcode)
(get_wsr_lbeg_opcode): New functions.
(check_loop_aligned): Detect relaxed loops and adjust loop_len
and insn_len for the first actual instruction of the loop.
This fixes two cases where elf_link_add_object_symbols returns an
error, setting the catch-all bfd_error_bad_value without explaining
the error. The second one is an internal error that can only be
caused by a target elf_add_symbol_hook, so make that one abort. The
first one is my PR24339 fix. PR24339 is another of those fuzzing bugs
and the fix I made catches the problem when loading symbols, rather
than when symbols are used in relocs. While ld is correct to reject
the object file as not complying with the ELF standard, let's be a
little more forgiving for dynamic objects.
PR 24857
PR 24339
* elflink.c (elf_link_add_object_symbols): Report an informative
error on finding local symbols with index equal or greater than
symbol table sh_info. Correct comment. Allow such symbols in
dynamic objects. Abort on NULL section for symbol.
This field effectively became usused a long time ago, perhaps as early
as 1994.
* elf-bfd.h (struct output_elf_obj_tdata): Delete "linker" field.
(elf_linker): Don't define.
* elflink.c (bfd_elf_final_link): Don't set elf_linker.
Add linker relaxation. The first relaxation added is converting
GOTPC32 to PCREL relocations. This relaxation doesn't change the size of
the binary.
bfd/
xxxx-xx-xx Claudiu Zissulescu <claziss@synopsys.com>
* elf32-arc.c (bfd_get_32_me): New function.
(bfd_put_32_me): Likewise.
(arc_elf_relax_section): Likewise.
(bfd_elf32_bfd_relax_section): Define.
ld/testsuite/
xxxx-xx-xx Claudiu Zissulescu <claziss@synopsys.com>
* ld-arc/relax-local-pic.d: New test.
* ld-arc/relax-local-pic.s: New file.
I missed some early exits from final_write_processing that mean
_bfd_elf_final_write_processing could be missed.
* elf-vxworks.c (elf_vxworks_final_write_processing): Don't return
early.
* elf32-arc.c (arc_elf_final_write_processing): Likewise.
* elf32-xtensa.c (elf_xtensa_final_write_processing): Likewise.
When SHF_GNU_MBIND was added in the SHF_LOOS to SHF_HIOS range, it
should have required ELFOSABI_GNU since these flags are already in use
by other OSes. HPUX SHF_HP_TLS in fact has the same value. That
means no place in binutils should test SHF_GNU_MBIND without first
checking OSABI, and SHF_GNU_MBIND should not be set without also
setting OSABI. At least, that's the ideal, but the patch accepts
SHF_GNU_MBIND on ELFOSABI_NONE object files since gas didn't always
set OSABI. However, to reinforce the fact that SHF_GNU_MBIND isn't
proper without a non-zero OSABI, readelf will display the flag as
LOOS+0 if OSABI isn't set.
The clash with SHF_HP_TLS means that hppa64-linux either has that flag
on .tbss sections or supports GNU_MBIND, not both. (hppa64-linux
users, if there are any, may have noticed that GNU ld since 2017
mysteriously aligned their .tbss sections to a 4k boundary. That was
one consequence of SHF_HP_TLS being blindly interpreted as
SHF_GNU_MBIND.) Since it seems that binutils, gdb, gcc, glibc, and
the linux kernel don't care about SHF_HP_TLS I took that flag out of
.tbss for hppa64-linux.
bfd/
* elf-bfd.h (enum elf_gnu_osabi): Add elf_gnu_osabi_mbind.
* elf.c (_bfd_elf_make_section_from_shdr): Set elf_gnu_osabi_mbind.
(get_program_header_size): Formatting. Only test SH_GNU_MBIND
when elf_gnu_osabi_mbind is set.
(_bfd_elf_map_sections_to_segments): Likewise.
(_bfd_elf_init_private_section_data): Likewise.
(_bfd_elf_final_write_processing): Update comment.
* elf64-hppa.c (elf64_hppa_special_sections): Move .tbss entry.
(elf_backend_special_sections): Define without .tbss for linux.
binutils/
* readelf.c (get_parisc_segment_type): Split off hpux entries..
(get_ia64_segment_type): ..and these..
(get_hpux_segment_type): ..to here.
(get_segment_type): Condition GNU_MBIND on osabi. Use
get_hpux_segment_type.
(get_symbol_binding): Do not print UNIQUE for ELFOSABI_NONE.
(get_symbol_type): Do not print IFUNC for ELFOSABI_NONE.
gas/
* config/obj-elf.c (obj_elf_change_section): Don't emit a fatal
error for non-SHF_ALLOC SHF_GNU_MBIND here.
(obj_elf_parse_section_letters): Return SHF_GNU_MBIND in new
gnu_attr param.
(obj_elf_section): Adjust obj_elf_parse_section_letters call.
Formatting. Set SHF_GNU_MBIND and elf_osabi from gnu_attr.
Emit normal error for non-SHF_ALLOC SHF_GNU_MBIND and wrong osabi.
(obj_elf_type): Set elf_osabi for ifunc.
* testsuite/gas/elf/section12a.d: xfail msp430 and hpux.
* testsuite/gas/elf/section12b.d: Likewise.
* testsuite/gas/elf/section13.d: Likewise.
* testsuite/gas/elf/section13.l: Adjust expected error.
ld/
* emultempl/elf32.em (gld${EMULATION_NAME}_place_orphan): Condition
SHF_GNU_MBIND on osabi. Set output elf_gnu_osabi_mbind.
This patch supports using pcrel instructions in TLS code sequences. A
number of new relocations are needed, gas operand modifiers to
generate those relocations, and new TLS optimisation. For
optimisation it turns out that the new pcrel GD and LD sequences can
be distinguished from the non-pcrel GD and LD sequences by there being
different relocations on the new sequence. The final "add ra,rb,13"
on IE sequences similarly needs a new relocation, or as I chose, a
modification of R_PPC64_TLS. On pcrel IE code, the R_PPC64_TLS points
one byte into the "add" instruction rather than being on the
instruction boundary.
GD:
pla 3,z@got@tlsgd@pcrel # R_PPC64_GOT_TLSGD34
bl __tls_get_addr@notoc(z@tlsgd) # R_PPC64_TLSGD and R_PPC64_REL24_NOTOC
edited to IE
pld 3,z@got@tprel@pcrel
add 3,3,13
edited to LE
paddi 3,13,z@tprel
nop
LD:
pla 3,z@got@tlsld@pcrel # R_PPC64_GOT_TLSLD34
bl __tls_get_addr@notoc(z@tlsld) # R_PPC64_TLSLD and R_PPC64_REL24_NOTOC
..
paddi 9,3,z2@dtprel
pld 10,z3@got@dtprel@pcrel
add 10,10,3
edited to LE
paddi 3,13,0x1000
nop
IE:
pld 9,z@got@tprel@pcrel # R_PPC64_GOT_TPREL34
add 3,9,z@tls@pcrel # R_PPC64_TLS at insn+1
ldx 4,9,z@tls@pcrel
lwax 5,9,z@tls@pcrel
stdx 5,9,z@tls@pcrel
edited to LE
paddi 9,13,z@tprel
nop
ld 4,0(9)
lwa 5,0(9)
std 5,0(9)
LE:
paddi 10,13,z@tprel
include/
* elf/ppc64.h (R_PPC64_TPREL34, R_PPC64_DTPREL34),
(R_PPC64_GOT_TLSGD34, R_PPC64_GOT_TLSLD34),
(R_PPC64_GOT_TPREL34, R_PPC64_GOT_DTPREL34): Define.
(IS_PPC64_TLS_RELOC): Include new tls relocs.
bfd/
* reloc.c (BFD_RELOC_PPC64_TPREL34, BFD_RELOC_PPC64_DTPREL34),
(BFD_RELOC_PPC64_GOT_TLSGD34, BFD_RELOC_PPC64_GOT_TLSLD34),
(BFD_RELOC_PPC64_GOT_TPREL34, BFD_RELOC_PPC64_GOT_DTPREL34),
(BFD_RELOC_PPC64_TLS_PCREL): New pcrel tls relocs.
* elf64-ppc.c (ppc64_elf_howto_raw): Add howtos for pcrel tls relocs.
(ppc64_elf_reloc_type_lookup): Translate pcrel tls relocs.
(must_be_dyn_reloc, dec_dynrel_count): Add R_PPC64_TPREL64.
(ppc64_elf_check_relocs): Support pcrel tls relocs.
(ppc64_elf_tls_optimize, ppc64_elf_relocate_section): Likewise.
* bfd-in2.h: Regenerate.
* libbfd.h: Regenerate.
gas/
* config/tc-ppc.c (ppc_elf_suffix): Map "tls@pcrel", "got@tlsgd@pcrel",
"got@tlsld@pcrel", "got@tprel@pcrel", and "got@dtprel@pcrel".
(fixup_size, md_assemble): Handle pcrel tls relocs.
(ppc_force_relocation, ppc_fix_adjustable): Likewise.
(md_apply_fix, tc_gen_reloc): Likewise.
ld/
* testsuite/ld-powerpc/tlsgd.d,
* testsuite/ld-powerpc/tlsgd.s,
* testsuite/ld-powerpc/tlsie.d,
* testsuite/ld-powerpc/tlsie.s,
* testsuite/ld-powerpc/tlsld.d,
* testsuite/ld-powerpc/tlsld.s: New tests.
* testsuite/ld-powerpc/powerpc.exp: Run them.