Update
commit 68c4956b14
Author: H.J. Lu <hjl.tools@gmail.com>
Date: Tue Apr 26 09:08:54 2022 -0700
x86: Properly handle function pointer reference
to properly handle IFUNC function pointer reference. Since IFUNC symbol
value is only known at run-time, set pointer_equality_needed for IFUNC
function pointer reference in PDE so that it will be resolved to its PLT
entry directly.
bfd/
PR ld/29216
* elf32-i386.c (elf_i386_scan_relocs): Set pointer_equality_needed
for IFUNC function pointer reference in PDE.
* elf64-x86-64.c (elf_x86_64_scan_relocs): Likewise.
ld/
PR ld/29216
* testsuite/ld-ifunc/ifunc.exp: Run PR ld/29216 test.
* testsuite/ld-ifunc/pr29216.c: New file.
git commit 202be274a4 also missed adjusting a few testsuite files.
This fixes
i686-vxworks +FAIL: VxWorks shared library test 1
i686-vxworks +FAIL: VxWorks executable test 1 (dynamic)
git commit 202be274a4 went a little wild in removing trailing spaces
in gas/testsuite/gas/i386/{secidx.d,secrel.d}, causing
x86_64-w64-mingw32 +FAIL: i386 secrel reloc
x86_64-w64-mingw32 +FAIL: i386 secidx reloc
I could have just replaced the trailing space, but let's fix the
objdump output instead. Touches lots of testsuite files.
While working on another patch[1] I had need to touch this code in
i386-dis.c:
ins->obufp = ins->mnemonicendp;
for (i = strlen (ins->obuf) + prefix_length; i < 6; i++)
oappend (ins, " ");
oappend (ins, " ");
(*ins->info->fprintf_styled_func)
(ins->info->stream, dis_style_mnemonic, "%s", ins->obuf);
What this code does is add whitespace after the instruction mnemonic
and before the instruction operands.
The problem I ran into when working on this code can be seen by
assembling this input file:
.text
nop
retq
Now, when I disassemble, here's the output. I've replaced trailing
whitespace with '_' so that the issue is clearer:
Disassembly of section .text:
0000000000000000 <.text>:
0: 90 nop
1: c3 retq___
Notice that there's no trailing whitespace after 'nop', but there are
three spaces after 'retq'!
What happens is that instruction mnemonics are emitted into a buffer
instr_info::obuf, then instr_info::mnemonicendp is setup to point to
the '\0' character at the end of the mnemonic.
When we emit the whitespace, this is then added starting at the
mnemonicendp position. Lets consider 'retq', first the buffer is
setup like this:
'r' 'e' 't' 'q' '\0'
Then we add whitespace characters at the '\0', converting the buffer
to this:
'r' 'e' 't' 'q' ' ' ' ' ' ' '\0'
However, 'nop' is actually an alias for 'xchg %rax,%rax', so,
initially, the buffer is setup like this:
'x' 'c' 'h' 'g' '\0'
Then in NOP_Fixup we spot that we have an instruction that is an alias
for 'nop', and adjust the buffer to this:
'n' 'o' 'p' '\0' '\0'
The second '\0' is left over from the original buffer contents.
However, when we rewrite the buffer, we don't afjust mnemonicendp,
which still points at the second '\0' character.
Now, when we insert whitespace we get:
'n' 'o' 'p' '\0' ' ' ' ' ' ' ' ' '\0'
Notice the whitespace is inserted after the first '\0', so, when we
print the buffer, the whitespace is not printed.
The fix for this is pretty easy, I can change NOP_Fixup to adjust
mnemonicendp, but now a bunch of tests start failing, we now produce
whitespace after the 'nop', which the tests don't expect.
So, I could update the tests to expect the whitespace....
...except I'm not a fan of trailing whitespace, so I'd really rather
not.
Turns out, I can pretty easily update the whitespace emitting code to
spot instructions that have zero operands and just not emit any
whitespace in this case. So this is what I've done.
I've left in the fix for NOP_Fixup, I think updating mnemonicendp is
probably a good thing, though this is not really required any more.
I've then updated all the tests that I saw failing to adjust the
expected patterns to account for the change in whitespace.
[1] https://sourceware.org/pipermail/binutils/2022-April/120610.html
ld:
configure.tgt (cris-*-*, crisv32-*-* sans *-aout and *-linux): Unless
specified through the --enable-* -option, default to
--no-warn-rwx-segment.
Change-Id: I846bcd3e6762da807b17215a9fe337461ea0d710
In the now-historical CRIS glibc port, the default stack permission
was no-exec as in "#define DEFAULT_STACK_PERMS (PF_R|PF_W)", and the
gcc port only emits the executable-stack marker when needed; when
emitting code needing it. In other words, the binutils setting
mismatches. It doesn't matter much, except being confusing and
defaulting to "off" is more sane.
ld:
* testsuite/ld-elf/elf.exp (target_defaults_to_execstack): Switch to 0
for cris*-*-*.
bfd:
* elf32-cris.c (elf_backend_default_execstack): Define to 0.
Change-Id: I52f37598f119b19111c7a6546c00a627fca0f396
Copy initialisation over from the elf.em before_parse. Commit
ba951afb99 2022-05-03 changed behaviour on arm and score regarding
exec stack. This patch restores the previous behaviour.
* emultempl/aarch64elf.em (before_parse): Init separate_code,
warn_execstack, no_warn_rwx_segments and default_execstack.
* emultempl/armelf.em (before_parse): Likewise.
* emultempl/scoreelf.em (before_parse): Likewise.
* testsuite/ld-elf/elf.exp (target_defaults_to_execstack): Return
true for arm and nacl.
Generate a .note.package FDO package metadata ELF note, following
the spec: https://systemd.io/ELF_PACKAGE_METADATA/
If the jansson library is available at build time (and it is explicitly
enabled), link ld to it, and use it to validate that the input is
correct JSON, to avoid writing garbage to the file. The
configure option --enable-jansson has to be used to explicitly enable
it (error out when not found). This allows bootstrappers (or others who
are not interested) to seamlessly skip it without issues.
Make ld and bfd values consistent by swapping values 0 and 2 in
link_info.warn_execstack. This has the benefit of making the value an
"extended" boolean, with 0 meaning no warning, 1 meaning warn, other
values a conditional warning.
Yes, this patch introduces fails on arm/aarch64. Not a problem with
this patch but an arm/aarch64 before_parse problem.
bfd/
* elflink.c (bfd_elf_size_dynamic_sections): Adjust
warn_execstack test.
include/
* bfdlink.h (warn_execstack): Swap 0 and 2 meaning.
ld/
* configure.ac (DEFAULT_LD_WARN_EXECSTACK): Use values of 0,
1, 2 consistent with link_info.warn_execstack.
* ld.texi: Typo fixes.
* lexsup.c (parse_args): Adjust setting of link_info.warn_execstack.
(elf_static_list_options): Adjust help message conditions.
* configure: Regenerate.
PR 29006
* pe-dll.c (dll_name): Delete, replacing with..
(dll_filename): ..this, moved earlier in file.
(generate_edata): Delete parameters. Don't set up dll_name here..
(pe_process_import_defs): ..instead set up dll_filename and
dll_symname here before returning.
(dll_symname_len): Delete write-only variable.
(pe_dll_generate_implib): Don't set up dll_symname here.
Fix it some more.
bfd/
* elfnn-loongarch.c: Remove commented out elf_backend_* defines.
ld/
* testsuite/ld-elf/elf.exp (target_defaults_to_execstack): Match
arm*. Delete loongarch.
When an IR symbol SYM is referenced in IR via __real_SYM, its resolution
should be LDPR_PREVAILING_DEF, not PREVAILING_DEF_IRONLY, since LTO
doesn't know that __real_SYM should be resolved by SYM.
bfd/
PR ld/29086
* linker.c (bfd_wrapped_link_hash_lookup): Mark SYM is referenced
via __real_SYM.
include/
PR ld/29086
* bfdlink.h (bfd_link_hash_entry): Add ref_real.
ld/
PR ld/29086
* plugin.c (get_symbols): Resolve SYM definition to
LDPR_PREVAILING_DEF for __real_SYM reference.
* testsuite/ld-plugin/lto.exp: Run PR ld/29086 test.
* testsuite/ld-plugin/pr29086.c: New file.
As already done for PowerPC64, fix dynamic relocs for absolute symbols.
The patch also tidies the dynamic reloc handling code in check_relocs,
removing leftover comments and code from when check_relocs was called
as each object file was read in.
bfd/
* elf32-ppc.c (ppc_elf_check_relocs): Set isym and ifunc earlier.
Rearrange tests for dynamic relocs, handling absolute symbols.
(allocate_dynrelocs): Don't allocate dynamic relocs for locally
defined absolute symbols.
(ppc_elf_size_dynamic_sections): Similarly.
(ppc_elf_relocate_section): Similarly.
ld/
* testsuite/ld-powerpc/abs32-pie.d,
* testsuite/ld-powerpc/abs32-pie.r,
* testsuite/ld-powerpc/abs32-reloc.s,
* testsuite/ld-powerpc/abs32-shared.d,
* testsuite/ld-powerpc/abs32-shared.r,
* testsuite/ld-powerpc/abs32-static.d,
* testsuite/ld-powerpc/abs32-static.r: New tests.
* testsuite/ld-powerpc/powerpc.exp: Run them.
Update
commit ebb191adac
Author: H.J. Lu <hjl.tools@gmail.com>
Date: Wed Feb 9 15:51:22 2022 -0800
x86: Disallow invalid relocation against protected symbol
to allow function pointer reference and make sure that PLT entry isn't
used for function reference due to function pointer reference.
bfd/
PR ld/29087
* elf32-i386.c (elf_i386_scan_relocs): Don't set
pointer_equality_needed nor check non-canonical reference for
function pointer reference.
* elf64-x86-64.c (elf_x86_64_scan_relocs): Likewise.
ld/
PR ld/29087
* testsuite/ld-x86-64/x86-64.exp: Run PR ld/29087 tests.
* testsuite/ld-x86-64/protected-func-3.c: New file.
When two types conflict and they are not types which can have forwards
(say, two arrays of different sizes with the same name in two different
TUs) the CTF deduplicator uses a popularity contest to decide what to
do: the type cited by the most other types ends up put into the shared
dict, while the others are relegated to per-CU child dicts.
This works well as long as one type *is* most popular -- but what if
there is a tie? If several types have the same popularity count,
we end up picking the first we run across and promoting it, and
unfortunately since we are working over a dynhash in essentially
arbitrary order, this means we promote a random one. So multiple
runs of ld with the same inputs can produce different outputs!
All the outputs are valid, but this is still undesirable.
Adjust things to use the same strategy used to sort types on the output:
when there is a tie, always put the type that appears in a CU that
appeared earlier on the link line (and if there is somehow still a tie,
which should be impossible, pick the type with the lowest type ID).
Add a testcase -- and since this emerged when trying out extern arrays,
check that those work as well (this requires a newer GCC, but since all
GCCs that can emit CTF at all are unreleased this is probably OK as
well).
Fix up one testcase that has slight type ordering changes as a result
of this change.
libctf/ChangeLog:
* ctf-dedup.c (ctf_dedup_detect_name_ambiguity): Use
cd_output_first_gid to break ties.
ld/ChangeLog:
* testsuite/ld-ctf/array-conflicted-ordering.d: New test, using...
* testsuite/ld-ctf/array-char-conflicting-1.c: ... this...
* testsuite/ld-ctf/array-char-conflicting-2.c: ... and this.
* testsuite/ld-ctf/array-extern.d: New test, using...
* testsuite/ld-ctf/array-extern.c: ... this.
* testsuite/ld-ctf/conflicting-typedefs.d: Adjust for ordering
changes.
Revert commit 65daf5bed6 testsuite changes in ld-plugin/. -z isn't
supported for non-ELF targets, and isn't needed since we now prune the
exec stack warning (commit 333cd559ba).
PR 29072
PR 29072
bfd * elflink.c (bfd_elf_size_dynamic_sections): Display a note to the
user that the current ehaviour of creating an executable stack
because of a missing .note.GNU-stack section is deprecated and
will be changed in a future release.
binutils* testsuite/lib/binutils-common.exp (prune_warnings_extra): Filter
out notes about the executable stacjk behaviour beign deprecated.
ld * testsuite/ld-elf/pr29072.b.warn: Update to include the note
about the linker's behaviour being depreccated.
bfd/ChangeLog:
* coff-rs6000.c (xcoff_reloc_type_noop): Add info argument.
(xcoff_reloc_type_fail): Likewise.
(xcoff_reloc_type_pos): Likewise.
(xcoff_reloc_type_neg): Likewise.
(xcoff_reloc_type_rel): Likewise.
(xcoff_reloc_type_toc): Likewise.
(xcoff_reloc_type_ba): Likewise.
(xcoff_reloc_type_crel): Likewise.
(xcoff_reloc_type_tls): Likewise.
(xcoff_reloc_type_br): Add stub handler.
(xcoff_ppc_relocate_section): Add info to
xcoff_calculate_relocation.
(xcoff_stub_indirect_call_code): New constant.
(xcoff_stub_shared_call_code): Likewise.
(bfd_xcoff_backend_data): Add stub code fields.
(bfd_pmac_xcoff_backend_data): Likewise.
* coff64-rs6000.c (xcoff64_reloc_type_br): Add stub handler.
(xcoff64_ppc_relocate_section): Add info to
xcoff64_calculate_relocation.
(xcoff64_stub_indirect_call_code): New constant.
(xcoff64_stub_shared_call_code): Likewise.
(bfd_xcoff_backend_data): Add stub code fields.
(bfd_xcoff_aix5_backend_data): Likewise.
* libxcoff.h (struct xcoff_backend_data_rec): Add stub fields.
(bfd_xcoff_stub_indirect_call_code): New define.
(bfd_xcoff_stub_indirect_call_size): New define.
(bfd_xcoff_stub_shared_call_code): New define.
(bfd_xcoff_stub_shared_call_size): New define.
(xcoff_reloc_function): Add info argument.
(enum xcoff_stub_type): New enum.
(struct xcoff_stub_hash_entry): New structure.
* xcofflink.c (struct xcoff_link_hash_table): Add stub hash
table and params fields.
(xcoff_stub_hash_entry): New define.
(xcoff_stub_hash_lookup): New define.
(stub_hash_newfunc): New function.
(_bfd_xcoff_bfd_link_hash_table_free): Free the new stub hash
table.
(_bfd_xcoff_bfd_link_hash_table_create): Create the new stub
hash table.
(xcoff_link_add_symbols): Save rawsize for XTY_SD.
(bfd_xcoff_link_init): New function.
(xcoff_stub_csect_name): New function.
(xcoff_stub_get_csect_in_range): New function.
(xcoff_stub_name): New function.
(bfd_xcoff_get_stub_entry): New function.
(bfd_xcoff_type_of_stub): New function.
(xcoff_add_stub): New function.
(xcoff_build_one_stub): New function.
(bfd_xcoff_size_stubs): New function.
(bfd_xcoff_build_stubs): New function.
(xcoff_stub_create_relocations): New function.
(xcoff_link_input_bfd): Adapt relocations to stub.
(xcoff_write_global_symbol): Adapt to new TOC entries generated
for stubs.
(_bfd_xcoff_bfd_final_link): Handle stub file.
* xcofflink.h (struct bfd_xcoff_link_params): New structure.
ld/ChangeLog:
* emultempl/aix.em (params): New variable.
(stub_file): New variable.
(xcoff_add_stub_section): New function.
(xcoff_layout_sections_again): New function
(hook_in_stub): New function.
(_after_allocation): Add stub creation.
(_create_output_section_statements): Allocate stub file and
pass params to backend.
bfd/ChangeLog:
* coff-rs6000.c (_bfd_xcoff_put_ldsymbol_name): Write len in
ldinfo->strings instead of directly in the output_bfd.
* coff64-rs6000.c (_bfd_xcoff64_put_ldsymbol_name): Likewise.
* xcofflink.c (struct xcoff_link_hash_table): Remove ldrel_count
field. Add ldinfo field.
(xcoff_mark_symbol): Adjust to new ldinfo field.
(xcoff_mark): Likewise.
(bfd_xcoff_link_count_reloc): Likewise.
(xcoff_build_loader_section): Split into two functions: one that
build the loader section (this function) and one that only size
it...
(xcoff_size_loader_section): ... (this function).
(bfd_xcoff_size_dynamic_sections): Adapt to new ldinfo field.
Move the part where the dynamic sections are build to ...
(bfd_xcoff_build_dynamic_sections): ... this function.
* xcofflink.h: Add bfd_xcoff_build_dynamic_sections prototype.
include/ChangeLog:
* coff/xcoff.h (struct xcoff_loader_info): Add ldrel_count and
libpath fields.
ld/ChangeLog:
* emultempl/aix.em (_after_allocation): New function.
bfd * coff-i386.c (in_reloc_p): Add R_SECTION.
(howto_table): Add R_SECTION.
(coff_pe_i386_relocation_section): Add support for R_SECTION.
(coff_i386_reloc_type_lookup): Add support for
BFD_RELOC_16_SECCIDX.
* coff-x86_64.c (in_reloc_p): Add R_SECTION.
(howto_table): Add R_SECTION.
(coff_pe_amd64_relocation_section): Add support for R_SECTION.
(coff_amd64_reloc_type_lookup): Add support for
BFD_RELOC_16_SECCIDX.
* reloc.c: Add BFD_RELOC_16_SECIDX.
* bfd-in2.h: Regenerate.
* libbfd.h: Regenerate.
gas * config/tc-i386.c (pe_directive_secidx): New function.
(md_pseudo_table): Add support for secidx.
(x86_cons_fix_new): Likewise.
(tc_gen_reloc): Likewise.
* expr.c (op_rank): Add O_secidx.
* expr.h (operatorT): Likewise.
* symbols.c (resolve_symbol_value): Add support for O_secidx.
* testsuite/gas/i386/secidx.s: New test source file.
* testsuite/gas/i386/secidx.d: New test driver file.
* testsuite/gas/i386/i386.exp: Run new test.
include * coff/i386.h: Define R_SECTION.
* coff/x86_64.h: Likewise.
ld * testsuite/ld-pe/secidx1.s: New test source file.
* testsuite/ld-pe/secidx2.s: New test source file.
* testsuite/ld-pe/secidx.d: New test driver file.
* testsuite/ld-pe/secidx_64.d: New test driver file.
* testsuite/ld-pe/pe.exp: Add new tests.
My previous nm patch handled all cases but one -- if the user set NM in
the environment to a path which contained an option, libtool's nm
detection tries to run nm against a copy of nm with the options in it:
e.g. if NM was set to "nm --blargle", and nm was found in /usr/bin, the
test would try to run "/usr/bin/nm --blargle /usr/bin/nm --blargle".
This is unlikely to be desirable: in this case we should run
"/usr/bin/nm --blargle /usr/bin/nm".
Furthermore, as part of this nm has to detect when the passed-in $NM
contains a path, and in that case avoid doing a path search itself.
This too was thrown off if an option contained something that looked
like a path, e.g. NM="nm -B../prev-gcc"; libtool then tries to run
"nm -B../prev-gcc nm" which rarely works well (and indeed it looks
to see whether that nm exists, finds it doesn't, and wrongly concludes
that nm -p or whatever does not work).
Fix all of these by clipping all options (defined as everything
including and after the first " -") before deciding whether nm
contains a path (but not using the clipped value for anything else),
and then removing all options from the path-modified nm before
looking to see whether that nm existed.
NM=my-nm now does a path search and runs e.g.
/usr/bin/my-nm -B /usr/bin/my-nm
NM=/usr/bin/my-nm now avoids a path search and runs e.g.
/usr/bin/my-nm -B /usr/bin/my-nm
NM="my-nm -p../wombat" now does a path search and runs e.g.
/usr/bin/my-nm -p../wombat -B /usr/bin/my-nm
NM="../prev-binutils/new-nm -B../prev-gcc" now avoids a path search:
../prev-binutils/my-nm -B../prev-gcc -B ../prev-binutils/my-nm
This seems to be all combinations, including those used by GCC bootstrap
(which, before this commit, fails to bootstrap when configured
--with-build-config=bootstrap-lto, because the lto plugin is now using
--export-symbols-regex, which requires libtool to find a working nm,
while also using -B../prev-gcc to point at the lto plugin associated
with the GCC just built.)
Regenerate all affected configure scripts.
* libtool.m4 (LT_PATH_NM): Handle user-specified NM with
options, including options containing paths.
This amends e961c696dc ("x86: drop L1OM/K1OM support from ld"). Also
remove the marker that I mistakenly added in c085ab00c7 ("x86: drop
L1OM/K1OM support from gas").
The last section in a CTF dict is the string table, at an offset
represented by the cth_stroff header field. Its length is recorded in
the next field, cth_strlen, and the two added together are taken as the
size of the CTF dict. Upon opening a dict, we check that none of the
header offsets exceed this size, and we check when uncompressing a
compressed dict that the result of the uncompression is the same length:
but CTF dicts need not be compressed, and short ones are not.
Uncompressed dicts just use the ctf_size without checking it. This
field is thankfully almost unused: it is mostly used when reserializing
a dict, which can't be done to dicts read off disk since they're
read-only.
However, when opening an uncompressed foreign-endian dict we have to
copy it out of the mmaped region it is stored in so we can endian-
swap it, and we use ctf_size when doing that. When the cth_strlen is
corrupt, this can overrun.
Fix this by checking the ctf_size in all uncompressed cases, just as we
already do in the compressed case. Add a new test.
This came to light because various corrupted-CTF raw-asm tests had an
incorrect cth_strlen: fix all of them so they produce the expected
error again.
libctf/
PR libctf/28933
* ctf-open.c (ctf_bufopen_internal): Always check uncompressed
CTF dict sizes against the section size in case the cth_strlen is
corrupt.
ld/
PR libctf/28933
* testsuite/ld-ctf/diag-strlen-invalid.*: New test,
derived from diag-cttname-invalid.s.
* testsuite/ld-ctf/diag-cttname-invalid.s: Fix incorrect cth_strlen.
* testsuite/ld-ctf/diag-cttname-null.s: Likewise.
* testsuite/ld-ctf/diag-cuname.s: Likewise.
* testsuite/ld-ctf/diag-parlabel.s: Likewise.
* testsuite/ld-ctf/diag-parname.s: Likewise.
The CTF variable section is an optional (usually-not-present) section in
the CTF dict which contains name -> type mappings corresponding to data
symbols that are present in the linker input but not in the output
symbol table: the idea is that programs that use their own symbol-
resolution mechanisms can use this section to look up the types of
symbols they have found using their own mechanism.
Because these removed symbols (mostly static variables, functions, etc)
all have names that are unlikely to appear in the ELF symtab and because
very few programs have their own symbol-resolution mechanisms, a special
linker flag (--ctf-variables) is needed to emit this section.
Historically, we emitted only removed data symbols into the variable
section. This seemed to make sense at the time, but in hindsight it
really doesn't: functions are symbols too, and a C program can look them
up just like any other type. So extend the variable section so that it
contains all static function symbols too (if it is emitted at all), with
types of kind CTF_K_FUNCTION.
This is a little fiddly. We relied on compiler assistance for data
symbols: the compiler simply emits all data symbols twice, once into the
symtypetab as an indexed symbol and once into the variable section.
Rather than wait for a suitably adjusted compiler that does the same for
function symbols, we can pluck unreported function symbols out of the
symtab and add them to the variable section ourselves. While we're at
it, we do the same with data symbols: this is redundant right now
because the compiler does it, but it costs very little time and lets the
compiler drop this kludge and save a little space in .o files.
include/
* ctf.h: Mention the new things we can see in the variable
section.
ld/
* testsuite/ld-ctf/data-func-conflicted-vars.d: New test.
libctf/
* ctf-link.c (ctf_link_deduplicating_variables): Duplicate
symbols into the variable section too.
* ctf-serialize.c (symtypetab_delete_nonstatic_vars): Rename
to...
(symtypetab_delete_nonstatics): ... this. Check the funchash
when pruning redundant variables.
(ctf_symtypetab_sect_sizes): Adjust accordingly.
* NEWS: Describe this change.
The test for -gctf support in the compiler is used to determine when to
run the ld-ctf tests and most of those in libctf. Unfortunately,
because it uses check_compiler_available and compile_one_cc, it will
fail whenever the compiler emits anything on stderr, even if it
actually does support CTF perfectly well.
So, instead, ask the compiler to emit assembler output and grep it for
references to ".ctf": this is highly unlikely to be present if the
compiler does not support CTF. (This will need adjusting when CTF grows
support for non-ELF platforms that don't dot-prepend their section
names, but right now the linker doesn't link CTF on any such platforms
in any case.)
With this in place we can do things like run all the libctf tests under
leak sanitizers etc even if those spray warnings on simple CTF
compilations, rather than being blocked from doing so just when we would
most like to.
ld/
* testsuite/lib/ld-lib.exp (check_ctf_available): detect CTF
even if a CTF-capable compiler emits warnings.
ld/testsuite/ld-loongarch-elf
* ld-loongarch-elf.exp: Test LoongArch32 and LoongArch64 testcases respectively.
* jmp_op.d: Fix bug in test LoongArch32.
* disas-jirl-32.d: New test case for LoongArch32.
* disas-jirl-32.s: New test case for LoongArch32.
* disas-jirl.d: Skip test case LoongArch32.
* macro_op_32.d: New test case for LoongArch32.
* macro_op_32.s: New test case for LoongArch32.
* macro_op.d: Skip test case LoongArch32.
The extended instructions implemented in powerpc_macros aren't used by
the disassembler. That means instructions like "sldi r3,r3,2" appear
in disassembly as "rldicr r3,r3,2,61", which is annoying since many
other extended instructions are shown.
Note that some of the instructions moved out of the macro table to the
opcode table won't appear in disassembly, because they are aliases
rather than a subset of the underlying raw instruction. If enabled,
rotrdi, extrdi, extldi, clrlsldi, and insrdi would replace all
occurrences of rotldi, rldicl, rldicr, rldic and rldimi. (Or many
occurrences in the case of clrlsldi if n <= b was added to the extract
functions.)
The patch also fixes a small bug in opcode sanity checking.
include/
* opcode/ppc.h (PPC_OPSHIFT_SH6): Define.
opcodes/
* ppc-opc.c (insert_erdn, extract_erdn, insert_eldn, extract_eldn),
(insert_crdn, extract_crdn, insert_rrdn, extract_rrdn),
(insert_sldn, extract_sldn, insert_srdn, extract_srdn),
(insert_erdb, extract_erdb, insert_csldn, extract_csldb),
(insert_irdb, extract_irdn): New functions.
(ELDn, ERDn, ERDn, RRDn, SRDn, ERDb, CSLDn, CSLDb, IRDn, IRDb):
Define and add associated powerpc_operands entries.
(powerpc_opcodes): Add "rotrdi", "srdi", "extrdi", "clrrdi",
"sldi", "extldi", "clrlsldi", "insrdi" and corresponding record
(ie. dot suffix) forms.
(powerpc_macros): Delete same from here.
gas/
* config/tc-ppc.c (insn_validate): Don't modify value passed
to operand->insert for PPC_OPERAND_PLUS1 when calculating mask.
Handle PPC_OPSHIFT_SH6.
* testsuite/gas/ppc/prefix-reloc.d: Update.
* testsuite/gas/ppc/simpshft.d: Update.
ld/
* testsuite/ld-powerpc/elfv2so.d: Update.
* testsuite/ld-powerpc/notoc.d: Update.
* testsuite/ld-powerpc/notoc3.d: Update.
* testsuite/ld-powerpc/tlsdesc2.d: Update.
* testsuite/ld-powerpc/tlsget.d: Update.
* testsuite/ld-powerpc/tlsget2.d: Update.
* testsuite/ld-powerpc/tlsopt5.d: Update.
* testsuite/ld-powerpc/tlsopt6.d: Update.