This commit is the result of the following actions:
- Running gdb/copyright.py to update all of the copyright headers to
include 2024,
- Manually updating a few files the copyright.py script told me to
update, these files had copyright headers embedded within the
file,
- Regenerating gdbsupport/Makefile.in to refresh it's copyright
date,
- Using grep to find other files that still mentioned 2023. If
these files were updated last year from 2022 to 2023 then I've
updated them this year to 2024.
I'm sure I've probably missed some dates. Feel free to fix them up as
you spot them.
The verbose argument has always been an int treated as a bool, so
convert it to an explicit bool. Further, update the API docs to
match the reality that the verbose value is actually used by some
of the internal modules.
We have many uses of unistd.h that are unprotected by HAVE_UNISTD_H,
so this is more formalizing the reality that we require this header.
Since we switched to gnulib, it guarantees that a unistd.h exists
for us to include, so we're doubly OK.
Add explicit arch-specific modules.c rules to keep the build from
generating an incorrect common/modules.c. Otherwise the pattern
rules would cascade such that it'd look for $arch/modules.o which
turned into common/modules.c which triggered the gen rule.
My local testing of this code didn't catch this bug because of how
Automake manages .Po (dependency files) in incremental builds -- it
was adding extra rules that override the pattern rules which caused
the build to generate correct modules.c files. But when building
from a cold cache, the pattern rules would force common/modules.c to
be used leading to crashes at runtime.
This makes sure the arch-specific modules.c wildcard is matched and
not the common/%.c so that we compile it correctly. It also makes
sure each subdir has depdir logic enabled.
Now that we build these objects in the top dir & generate modules.c
there, we don't need to generate them all first -- we can let the
normal dependency graph take care of building things in parallel.
This simplifies the build logic and avoids an Automake bug where the
common_libcommon_a_OBJECTS variable isn't set in the arch libsim.a
DEPENDENCIES for targets that, alphabetically, come before "common".
We aren't affected by that bug with the current code, but as we move
things out of SIM_ALL_RECURSIVE_DEPS and rely on finer dependencies,
we will trip over it.
The objects are still compiled in the subdir, but the creation of the
archive itself is in the top-level. This is a required step before we
can move compilation itself up, and makes it easier to review.
The downside is that each object compile is a recursive make instead of
a single one. On my 4 core system, it adds ~100msec to the build per
port, so it's not great, but it shouldn't be a big deal. This will go
away of course once the top-level compiles objects.
Add rules for tracking generated subdir modules.c files. This doesn't
actually generate the file from the top-level, but allows us to add
rules that need to be ordered wrt it. Once those changes land, we can
rework this to actually generate from the top-level.
This currently builds off of the objects that go into the libsim.a as
we don't build those from the top-level either. Once we migrate that
up, we can switch this to the source files directly. It's a bit hacky
overall, but makes it easier to migrate things in smaller chunks, and
we aren't going to keep this logic long term.
Automake's automatic header deptracking has a bootstrap problem where
it can't detect generated headers when compiling. We've been handling
that by adding a custom SIM_ALL_RECURSIVE_DEPS variable, but that only
works when building objects recursively in subdirs. As we move those
out to the top-level, we don't have any recursive steps anymore. The
Automake approach is to declare those headers in BUILT_SOURCES.
This isn't completely foolproof as the Automake manual documents: it
only activates for `make all`, not `make foo.o`, but that shouldn't be
a huge limitation as it only affects the initial compile. After that,
rebuilds should work fine.
This commit is the result of running the gdb/copyright.py script,
which automated the update of the copyright year range for all
source files managed by the GDB project to be updated to include
year 2023.
All the runtimes were only initializing a single CPU. When SMP is
enabled, things quickly crash as none of the other CPU structs are
setup. Change the default from 0 to the compile time value.
There's no need for these settings to be in sim-main.h which is shared
with common/ sim code, so drop the d10v_sim.h include and move it to
the few files that actually need it.
Also rename the file to standardize it a bit better with other ports.
Not all arches include this in sim-main.h, and the ones that do don't
actually use bfd defines in the sim-main.h header. Prune it to make
sim-main.h simpler so we can kill it off entirely in the future.
We add the include to the files that utilize e.g. bfd_vma though.
We've been using SIM_ADDR which has always been 32-bit. This means
the upper 32-bit address range in 64-bit sims is inaccessible. Use
64-bit addresses all the time since we want the APIs to be stable
regardless of the active arch backend (which can be 32 or 64-bit).
The length is also 64-bit because it's completely feasible to have
a program that is larger than 4 GiB in size/image/runtime. Forcing
the caller to manually chunk those accesses up into 4 GiB at a time
doesn't seem useful to anyone.
Bug: https://sourceware.org/PR7504
Currently all ports have to declare sim_cpu themselves in their
sim-main.h and then embed the common sim_cpu_base in it. This
dynamic makes it impossible to share common object code among
multiple ports because the core data structure is always different.
Let's invert this relationship: common code declares sim_cpu, and
the port uses the new arch_data field for its per-cpu state.
This is the first in a series of changes: it adds a define to select
between the old & new layouts, then converts all the ports that don't
need custom state over to the new layout. This includes mn10300 that,
while it defines custom fields in its cpu struct, never uses them.
These headers define the register numbers for each port to implement
the sim_fetch_register & sim_store_register interfaces. While gdb
uses these, the APIs are part of the sim, not gdb. Move the headers
out of the gdb/ include namespace and into sim/ instead.
Automake will run each subdir individually before moving on to the next
one. This means that the linking phase, a single threaded process, will
not run in parallel with anything else. When we have to link ~32 ports,
that's 32 link steps that don't take advantage of parallel systems. On
my really old 4-core system, this cuts a multi-target build from ~60 sec
to ~30 sec. We eventually want to move all compile+link steps to this
common dir anyways, so might as well move linking now for a nice speedup.
We use noinst_PROGRAMS instead of bin_PROGRAMS because we're taking care
of the install ourselves rather than letting automake process it.
These manual settings were necessary when we weren't doing automatic
header dependency tracking. That was changed a while ago, and we use
automake now to do it all for us. As a result, many of these vars
aren't even referenced anymore.
Further, some of the source file generation (e.g. .c files, or igen,
or cgen outputs) were moved to the common automake build, and it takes
care of dependency tracking for us with the object files.
When reading/writing arbitrary data to the system's memory, the unsigned
char pointer type doesn't make that much sense. Switch it to void so we
align a bit with standard C library read/write functions, and to avoid
having to sprinkle casts everywhere.
When reading/writing arbitrary data to the system's memory, the unsigned
char pointer type doesn't make that much sense. Switch it to void so we
align a bit with standard C library read/write functions, and to avoid
having to sprinkle casts everywhere.
Like commit b82817674f, this replaces BFD_VMA_FMT "x" in sim/ with
PRIx64 and casts to promote bfd_vma to uint64_t. The one file using
BFD_VMA_FMT in gdb/ instead now uses hex_string, and a typo in the
warning message is fixed.
This old port setup its own uintXX types, but since we require C11
now, we can assume the standard uintXX_t types exist and use them.
Also migrate off the sim-specific unsignedXX types.
This commit brings all the changes made by running gdb/copyright.py
as per GDB's Start of New Year Procedure.
For the avoidance of doubt, all changes in this commits were
performed by the script.
The ## marker tells automake to not include the comment in its
generated output, so use that in most places where the comment
only makes sense in the inputs.
Use the new target-newlib-syscall module. This is needed to merge all
the architectures into a single build, and d10v has a custom syscall
table for its newlib/libgloss port.
This allows cleaning up the syscall ifdef logic. We know these will
always exist now.
We use the program argv to both find the program to run (argv[0]) and
to hold the arguments to the program. Most of the time this is fine,
but if we want to let programs specify argv[0] independently (which is
possible in standard *NIX programs), this double duty doesn't work.
So let's split the path to the program to run out into a separate
field by itself. This simplifies the various sim_open funcs too.
By itself, this code is more of a logical cleanup than something that
is super useful. But it will open up customization of argv[0] in a
follow up commit. Split the changes to make it easier to review.
Now that ChangeLog entries are no longer used for sim patches,
this commit renames all relevant sim ChangeLog to ChangeLog-2021,
similar to what we would do in the context of the "Start of New
Year" procedure.
The purpose of this change is to avoid people merging ChangeLog
entries by mistake when applying existing commits that they are
currently working on.
Also throw in a .gitignore entry to keep people from adding new
ChangeLog files anywhere in the sim tree.
These ports only use the pieces that have been unified, so we can
merge them into the common configure script and get rid of their
unique one entirely.
We still compile & link separate run programs, and have dedicated
subdir Makefiles, but the configure script portion is merged.
The sim-hardware configure option allows builders to select a set of
device models to enable. But this seems like unnecessary overkill:
the existence of individual device models doesn't affect performance
at all as they are only enabled at runtime if the config uses them,
and individually these are all <5KB a piece. Stripping off a total
of ~50KB from a ~1MB binary doesn't seem useful, and it's extremely
unlikely anyone will ever bother.
So let's simplify the configure/make logic by turning sim-hardware
into a boolean option like many of the other sim options. Any ports
that have unique device models will declare them in their Makefile
instead of at configure time. This will allow us to (eventually)
unify the setting into the common dir.
Move these options up to the common dir so we only test & export
them once across all ports. This takes a page from the cgen maint
logic to make $(MAINT) work for non-automake Makefiles which will
allow us to merge it together.