A couple of lines in the vax-elf.exp test script exceed 80 characters;
wrap them.
ld/
* testsuite/ld-vax-elf/vax-elf.exp: Wrap excessively long lines
throughout.
Required for the expected "CU:" to be emitted for long
source-paths. See binutils/dwarf.c:
if (do_wide || strlen (directory) < 76)
printf (_("CU: %s/%s:\n"), directory, file_table[0].name);
else
printf ("%s:\n", file_table[0].name);
Linkonce sections and comdat groups can be mixed only if comdat groups
have only a single member with matching symbol table entries. Xfail
ld/26936 test:
1. If comdat groups always have more than one member.
2. If symbol table entries in linkonce and comdat group don't match.
3. If the assembly source file is renamed.
PR ld/26936
* testsuite/ld-elf/pr26936.d: Xfail targets which don't support
mixing linkonce and comdat sections.
Section ordering is important for _bfd_elf_map_sections_to_segments
and assign_file_positions_for_load_sections, which are only prepared
to handle sections in increasing LMA order. When zero size sections
are involved it is possible to have multiple sections at the same LMA.
In that case the zero size sections must sort before any non-zero size
sections regardless of their types.
bfd/
PR 26907
* elf.c (elf_sort_sections): Don't sort zero size !load sections
after load sections.
ld/
* testsuite/ld-elf/pr26907.ld,
* testsuite/ld-elf/pr26907.s,
* testsuite/ld-elf/pr26907.d: New test.
The ".persistent" section is for data that should be initialized during
load, but not during application reset.
The ".noinit" section is for data that should not be initialized during
load or application reset.
Targets utilizing the elf.sc linker script template can define
HAVE_{NOINIT,PERSISTENT}=yes to include the .noinit or .persistent
output sections in the generated linker script.
Targets with existing support for .noinit did not handle unique
.noinit.* and .gnu.linkonce.n.* sections the .noinit output section,
this patch also fixes that.
bfd/ChangeLog:
* elf.c (special_sections_g): Add .gnu.linkonce.n and .gnu.linkonce.p.
(special_sections_n): Add .noinit.
(special_sections_p): Add .persistent.
binutils/ChangeLog:
* testsuite/lib/binutils-common.exp (supports_noinit_section): New.
(supports_persistent_section): New.
gas/ChangeLog:
* testsuite/gas/elf/elf.exp: Run new tests.
* testsuite/gas/elf/section25.d: New test.
* testsuite/gas/elf/section25.s: New test.
* testsuite/gas/elf/section26.d: New test.
* testsuite/gas/elf/section26.s: New test.
ld/ChangeLog:
* emulparams/armelf.sh (OTHER_SECTIONS): Remove .noinit section
definition.
Define HAVE_{NOINIT,PERSISTENT}=yes.
* scripttempl/avr.sc (.noinit): Add .noinit.* and .gnu.linkonce.n.*
input section wildcard patterns.
* scripttempl/elf.sc: Define .noinit and .persistent sections when
HAVE_NOINIT or HAVE_PERSISTENT are defined to "yes".
* scripttempl/elf32msp430.sc (.noinit): Add .noinit.* and
.gnu.linkonce.n.*. input section wildcard patterns.
(.persistent): Add .persistent.* and
.gnu.linkonce.p.*. input section wildcard patterns.
* scripttempl/elfarcv2.sc (.noinit): Add .noinit.* and
.gnu.linkonce.n.*. input section wildcard patterns.
* scripttempl/pru.sc: Likewise.
* testsuite/ld-elf/noinit-sections-1.d: New test.
* testsuite/ld-elf/noinit-sections-2.d: New test.
* testsuite/ld-elf/noinit-sections-2.l: New test.
* testsuite/ld-elf/noinit-sections.s: New test.
* testsuite/ld-elf/persistent-sections-1.d: New test.
* testsuite/ld-elf/persistent-sections-2.d: New test.
* testsuite/ld-elf/persistent-sections-2.l: New test.
* testsuite/ld-elf/persistent-sections.s: New test.
Many targets fail this test due to -z noseparate-code not being
supported, or _start not being the proper entry symbol, or "as -g"
something other than "generate debug".
PR 26936
* testsuite/ld-elf/pr26936.d: Pass --gen-debug to gas rather than -g.
Only run when -shared -z options are supported.
* testsuite/ld-elf/pr26936b.s: Define more entry symbols.
When mixing linkonce and comdat sections, we need to keep searching to
get the real kept section.
bfd/
PR ld/26936
* elflink.c (_bfd_elf_check_kept_section): Get the real kept
section.
ld/
PR ld/26936
* testsuite/ld-elf/pr26936.d: New file.
* testsuite/ld-elf/pr26936a.s: Likewise.
* testsuite/ld-elf/pr26936b.s: Likewise.
* testsuite/ld-elf/pr26936c.s: Likewise.
GOTPCRELX relocations can be transformed only when addend == -4. Add
tests for GOTPCRELX relocations with addend != -4.
PR gold/26939
* testsuite/ld-x86-64/pr26939-x32.d: New file.
* testsuite/ld-x86-64/pr26939.d: Likewise.
* testsuite/ld-x86-64/pr26939.s: Likewise.
* testsuite/ld-x86-64/x86-64.exp: Run PR gold/26939 tests.
This is to address the regressions addressed by Nic [1].
The regular expression pattern for the tls_ie-01 test was
too strict and raising false alarms. The new pattern only
looks for matches that should be there AND ignores the boiler
plates from the object dump.
[1] New failures for ARC targets in linker testsuite
https://sourceware.org/pipermail/binutils/2020-November/114177.html
ld/
* testsuite/ld-arc/tls_ie-01.d: Use a more general pattern.
I get the feedback recently that enable linker relaxations may fail to
build some program. Consider the following case,
.text
foo:
addi a0, a0, %pcrel_lo(.L2)
call foo
.L1: auipc a1, %pcrel_hi(data_g)
addi a1, a1, %pcrel_lo(.L1)
lui a2, %hi(data_g)
addi a2, a2, %lo(data_g)
lui a3, %tprel_hi(data_t)
add a3, a3, tp, %tprel_add(data_t)
addi a3, a3, %tprel_lo(data_t)
.L2: auipc a0, %pcrel_hi(data_g)
.data
.word 0x0
.global data_g
data_g: .word 0x1
.section .tbss
data_t: .word 0x0
The current ld reports `dangerous relocation error` when doing the
pcgp relaxation,
test.o: in function `foo':
(.text+0x0): dangerous relocation: %pcrel_lo missing matching %pcrel_hi
The .L2 auipc should not be removed since it is behind the corresponding
addi, so we record the information in the pcgp_relocs table to avoid
removing the auipc later. But current ld still remove it since we do not
update the pcgp_relocs table while doing other relaxations. I have two
solutions to fix the problem,
1. Update the pcgp_relocs table once we actually delete the code.
2. Add new relax pass to do the pcgp relaxations
At first I tried to do the first solution, and we need to update at
least three information - hi_sec_off of riscv_pcgp_lo_reloc, hi_sec_off
and hi_addr (symbol value) of riscv_pcgp_hi_reloc. Update the hi_sec_off
is simple, but it is more complicate to update the symbol value, since we
almost have to do parts the same works of _bfd_riscv_relax_call again in
the riscv_relax_delete_bytes to get the correct symbol value.
Compared with the first solution, the second one is more intuitive and
simple. We add a new relax pass to do the pcgp relaxations later, so
we will get all the information correctly in the _bfd_riscv_relax_call,
including the symbol value, without changing so much code. I do not see
any penalty by adding a new relax pass for now, so it should be fine
to delay the pcgp relaxations.
Besides, I have pass all riscv-gnu-toolchain regressions for this patch.
bfd/
* elfnn-riscv.c (_bfd_riscv_relax_section): Add a new relax pass
to do the pcgp relaxation later, after the lui and call relaxations,
but before the delete and alignment relaxations.
ld/
* emultempl/riscvelf.em (riscv_elf_before_allocation): Change
link_info.relax_pass from 3 to 4.
* testsuite/ld-riscv-elf/pcgp-relax.d: New testcase.
* testsuite/ld-riscv-elf/pcgp-relax.s: Likewise.
* testsuite/ld-riscv-elf/ld-riscv-elf.exp: Updated.
Some type kinds in CTF (functions, arrays, pointers, slices, and
cvr-quals) are intrinsically nameless: the ctt_name field in the CTF
is always zero, and the libctf API provides no way to set a name.
But the compiler can and does sometimes set names for some of these
kinds: in particular, the name it sets on CTF_K_FUNCTION types is the
means it uses to force the name of the function into the string table
so that it can point at it from the function info section.
So null out the name at hashing time so that the deduplicator can
correctly detect that e.g. function types identical but for name should
be considered truly identical, since they will not have a name when the
deduplicator re-emits them into the output.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* testsuite/ld-ctf/data-func-conflicted.d: Shrink the expected
size of the type section now that function types are being
deduplicated properly.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-dedup.c (ctf_dedup_rhash_type): Null out the names of nameless
type kinds, just in case the input has named them.
The flags word is nonzero now (so all the tests have been adjusted to
not depend on its content): some of them have data objects and functions
in the data object and function info sections now, rather than in the
variable section or recorded nowhere. There is a new test for
parent/child relationships and index section emission.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* testsuite/ld-ctf/array.d: Adjust for nonzero flags word and
public symbols in the data section rather than variables: use
sysv hash style to keep test results the same on non-GNU targets.
* testsuite/ld-ctf/diag-cttname-null.d: Likewise.
* testsuite/ld-ctf/diag-cuname.d: Likewise.
* testsuite/ld-ctf/diag-parlabel.d: Likewise.
* testsuite/ld-ctf/slice.d: Likewise.
* testsuite/ld-ctf/function.d: Likewise, but in the function section.
* testsuite/ld-ctf/conflicting-cycle-1.B-1.d: Adjust for nonzero
flags word.
* testsuite/ld-ctf/conflicting-cycle-1.B-2.d: Likewise.
* testsuite/ld-ctf/conflicting-cycle-1.parent.d: Likewise.
* testsuite/ld-ctf/conflicting-cycle-2.A-1.d: Likewise.
* testsuite/ld-ctf/conflicting-cycle-2.A-2.d: Likewise.
* testsuite/ld-ctf/conflicting-cycle-2.parent.d: Likewise.
* testsuite/ld-ctf/conflicting-cycle-3.C-1.d: Likewise.
* testsuite/ld-ctf/conflicting-cycle-3.C-2.d: Likewise.
* testsuite/ld-ctf/conflicting-cycle-3.parent.d: Likewise.
* testsuite/ld-ctf/cross-tu-noncyclic.d: Likewise.
* testsuite/ld-ctf/cycle-1.d: Likewise.
* testsuite/ld-ctf/cycle-2.A.d: Likewise.
* testsuite/ld-ctf/cycle-2.B.d: Likewise.
* testsuite/ld-ctf/cycle-2.C.d: Likewise.
* testsuite/ld-ctf/diag-wrong-magic-number-mixed.d: Likewise.
* testsuite/ld-ctf/super-sub-cycles.d: Likewise.
* testsuite/ld-ctf/data-func-1.c: New test.
* testsuite/ld-ctf/data-func-2.c: Likewise.
* testsuite/ld-ctf/data-func-conflicted.d: Likewise.
binutils/ChangeLog:
* testsuite/binutils-all/readelf-maskos-1a.d: Fix test for unrecognized
bit set in SHF_MASKOS range.
* testsuite/binutils-all/readelf-maskos-1b.d: Likewise.
* testsuite/binutils-all/readelf-maskos-unknown.s: New test.
ld/ChangeLog:
* testsuite/ld-elf/retain3.s: Move symbolic reference into writeable
.data section from read-only .text section.
* testsuite/ld-elf/retain5.d: Don't pass --print-gc-sections for test
that doesn't require it.
* testsuite/ld-elf/retain6a.d: Adjust test.
* testsuite/ld-elf/retain6main.s: Move symbolic reference into writeable
.data section from read-only .text section.
The SHF_GNU_RETAIN section flag is an extension to the GNU ELF OSABI.
It is defined as follows:
=========================================================
Section Attribute Flags
+-------------------------------------+
| Name | Value |
+-------------------------------------+
| SHF_GNU_RETAIN | 0x200000 (1 << 21) |
+-------------------------------------+
SHF_GNU_RETAIN
The link editor should not garbage collect the section.
=========================================================
The .section directive accepts the "R" flag, which indicates
SHF_GNU_RETAIN should be applied to the section.
There is not a direct mapping of SHF_GNU_RETAIN to the BFD
section flag SEC_KEEP. Keeping these flags distinct allows
SHF_GNU_RETAIN sections to be explicitly removed by placing them in
/DISCARD/.
bfd/ChangeLog:
* elf-bfd.h (enum elf_gnu_osabi): Add elf_gnu_osabi_retain.
(struct elf_obj_tdata): Increase has_gnu_osabi to 4 bits.
* elf.c (_bfd_elf_make_section_from_shdr): Set elf_gnu_osabi_retain
for SHF_GNU_RETAIN.
(_bfd_elf_final_write_processing): Report if SHF_GNU_RETAIN is
not supported by the OSABI.
Adjust error messages.
* elflink.c (elf_link_input_bfd): Copy enabled has_gnu_osabi bits from
input BFD to output BFD.
(bfd_elf_gc_sections): gc_mark the section if SHF_GNU_RETAIN is set.
binutils/ChangeLog:
* NEWS: Announce SHF_GNU_RETAIN support.
* readelf.c (get_elf_section_flags): Handle SHF_GNU_RETAIN.
Recognize SHF_GNU_RETAIN and SHF_GNU_MBIND only for supported OSABIs.
* testsuite/binutils-all/readelf.exp: Run new tests.
Don't run run_dump_test when there isn't an assembler available.
* testsuite/lib/binutils-common.exp (supports_gnu_osabi): Adjust
comment.
* testsuite/binutils-all/readelf-maskos-1a.d: New test.
* testsuite/binutils-all/readelf-maskos-1b.d: New test.
* testsuite/binutils-all/readelf-maskos.s: New test.
* testsuite/binutils-all/retain1.s: New test.
* testsuite/binutils-all/retain1a.d: New test.
* testsuite/binutils-all/retain1b.d: New test.
gas/ChangeLog:
* NEWS: Announce SHF_GNU_RETAIN support.
* config/obj-elf.c (obj_elf_change_section): Merge SHF_GNU_RETAIN bit
between section declarations.
(obj_elf_parse_section_letters): Handle 'R' flag.
Handle numeric flag values within the SHF_MASKOS range.
(obj_elf_section): Validate SHF_GNU_RETAIN usage.
* doc/as.texi: Document 'R' flag to .section directive.
* testsuite/gas/elf/elf.exp: Run new tests.
* testsuite/gas/elf/section10.d: Unset SHF_GNU_RETAIN bit.
* testsuite/gas/elf/section10.s: Likewise.
* testsuite/gas/elf/section22.d: New test.
* testsuite/gas/elf/section22.s: New test.
* testsuite/gas/elf/section23.s: New test.
* testsuite/gas/elf/section23a.d: New test.
* testsuite/gas/elf/section23b.d: New test.
* testsuite/gas/elf/section23b.err: New test.
* testsuite/gas/elf/section24.l: New test.
* testsuite/gas/elf/section24.s: New test.
* testsuite/gas/elf/section24a.d: New test.
* testsuite/gas/elf/section24b.d: New test.
include/ChangeLog:
* elf/common.h (SHF_GNU_RETAIN): Define.
ld/ChangeLog:
* NEWS: Announce support for SHF_GNU_RETAIN.
* ld.texi (garbage collection): Document SHF_GNU_RETAIN.
(Output Section Discarding): Likewise.
* testsuite/ld-elf/elf.exp: Run new tests.
* testsuite/ld-elf/retain1.s: New test.
* testsuite/ld-elf/retain1a.d: New test.
* testsuite/ld-elf/retain1b.d: New test.
* testsuite/ld-elf/retain2.d: New test.
* testsuite/ld-elf/retain2.ld: New test.
* testsuite/ld-elf/retain2.map: New test.
* testsuite/ld-elf/retain3.d: New test.
* testsuite/ld-elf/retain3.s: New test.
* testsuite/ld-elf/retain4.d: New test.
* testsuite/ld-elf/retain4.s: New test.
* testsuite/ld-elf/retain5.d: New test.
* testsuite/ld-elf/retain5.map: New test.
* testsuite/ld-elf/retain5lib.s: New test.
* testsuite/ld-elf/retain5main.s: New test.
* testsuite/ld-elf/retain6a.d: New test.
* testsuite/ld-elf/retain6b.d: New test.
* testsuite/ld-elf/retain6lib.s: New test.
* testsuite/ld-elf/retain6main.s: New test.
The purpose of the test is to look for entries of "foo" and
"bar" in the ".got". The old "objdump -s ..." has been replaced
with "objdump -D ..." to inspect the final executable. A sample
output looks like:
------------------------8<------------------------
$ arc-elf32-objdump -D -j .got tls_ie-01
tls_ie-01: file format elf32-littlearc
Disassembly of section .got:
00002110 <_GLOBAL_OFFSET_TABLE_>:
...
211c: 08 00 00 00 .word 0x00000008
2120: 0c 00 00 00 .word 0x0000000c
------------------------>8------------------------
ld/
* testsuite/ld-arc/tls_ie-01.d: Update the dump command.
bfdlink.h has
/* Symbol will be converted from absolute to section-relative. Set for
symbols defined by a script from "dot" (also SEGMENT_START or ORIGIN)
outside of an output section statement. */
unsigned int rel_from_abs : 1;
linker.c has
.{* Return TRUE if the symbol described by a linker hash entry H
. is going to be absolute. Linker-script defined symbols can be
. converted from absolute to section-relative ones late in the
. link. Use this macro to correctly determine whether the symbol
. will actually end up absolute in output. *}
.#define bfd_is_abs_symbol(H) \
. (((H)->type == bfd_link_hash_defined \
. || (H)->type == bfd_link_hash_defweak) \
. && bfd_is_abs_section ((H)->u.def.section) \
. && !(H)->rel_from_abs)
.
Set rel_from_abs to 1 for __ehdr_start which will be converted from
absolute to section-relative in assign_file_positions_for_load_sections.
PR ld/26869
* ldelf.c (ldelf_before_allocation): Set rel_from_abs to 1 for
__ehdr_start.
* testsuite/ld-i386/i386.exp: Run pr26869.
* testsuite/ld-i386/pr26869.d: New file.
* testsuite/ld-i386/pr26869.s: Likewise.
* lexsup.c (parse_args): Add more checks of the mapfile. If it is
a directory use the basename of the output file as the file
component. If the % character is present, replace it with the
full output filepath.
* testsuite/ld-scripts/map-address.exp: Add test of %
functionality.
* ld.texi: Document the new behaviour.
This patch reverts most of git commit 1e3b96fd6c, so IR symbols are
again not marked def_regular or ref_regular. That should be enough to
stop IR symbols from becoming dynamic. To mark as-needed shared
libraries referenced by IR symbols, use the referencing BFD rather
than the ref flags.
bfd/
PR 15146
PR 26314
PR 26530
PR 26806
* elflink.c (elf_link_add_object_symbols): Don't set def/ref flags
for plugin syms. Do allow plugin syms to mark as-needed libs.
ld/
PR 26806
* testsuite/ld-plugin/lto-19.h,
* testsuite/ld-plugin/lto-19a.c,
* testsuite/ld-plugin/lto-19b.c,
* testsuite/ld-plugin/lto-19c.c: New test.
* testsuite/ld-plugin/pr26806.c,
* testsuite/ld-plugin/pr26806.d: New test.
* testsuite/ld-plugin/lto.exp: Run them.
Make plug_opt available to all linker tests. Skip bootstrap tests when
linker is compiled with -fprofile-generate=.
* testsuite/ld-plugin/lto.exp (plug_opt): Moved to ...
* testsuite/config/default.exp (plug_opt): Here. New.
* testsuite/ld-bootstrap/bootstrap.exp: Skip when linker is
compiled with -fprofile-generate=.
alpha-dec-vms always loads a number of libraries, -limagelib,
-lstarlet, and -lsys$public_vectors. When running the ld testsuite
without a full cross-build environment, those libraries are missing
and cause fails. This patch provides dummies, and tidies default.exp
a little.
* testsuite/config/default.exp: Provide dummy libraries for
alpha-dec-vms.
(compiler_supports): New proc. Use it for compiler tests.
* testsuite/lib/ld-lib.exp (default_ld_assemble): Don't die if
subdir not set.
(run_ld_link_tests): Pass LDFLAGS to ld.
* testsuite/ld-checks/checks.exp (section_check): Likewise.
* testsuite/ld-scripts/assert.exp: Likewise.
* testsuite/ld-scripts/extern.exp: Likewise.
* testsuite/ld-scripts/log2.exp: Likewise.
* testsuite/ld-scripts/map-address.exp: Likewise.
* testsuite/ld-scripts/script.exp: Likewise.
* testsuite/ld-scripts/sizeof.exp: Likewise.
I wanted to write a linker script like this:
PROVIDE(mem_origin = 0x1000);
PROVIDE(mem_length = 0x1000);
MEMORY
{
REGION : ORIGIN = mem_origin, LENGTH = mem_length
}
....
Then when I link using this script I can optionally supply:
--defsym=mem_origin=..... --defsym=mem_length=....
to override the defaults.
And though passing `--defsym' does work, if I remove the use of
`--defsym' and just rely on the defaults I get an error:
ld-new: invalid origin for memory region REGION
Interestingly, if I make the above error non-fatal and dump a linker
map file I see that (a) REGION has origin 0x0, and length 0xffff...,
and (b) the symbol from the PROVIDE is provided.
An examination of ldlang.c:lang_process shows us what the issue is,
the origin and length of all memory regions are set as a result of a
single call to lang_do_memory_regions, this call is done after calling
open_input_bfds.
During the open_input_bfds call provide statements can be converted to
provided statements if we know that the assigned symbol is needed, but
for symbols that are only used in the memory regions we are unaware
that we need these symbols.
What I propose in this patch is to make two calls to
lang_do_memory_regions, in the first call we process the expressions
for the origin and length fields of each region, however, errors,
especially undefined symbols, will be ignored. The origin and length
values are not updated. However, by evaluating the expressions any
symbols we need will be added to the symbol table.
Now when we call open_input_bfds, when we process the provide
statements, we will see that the assigned symbol is needed add its new
value to the symbol table.
Finally we reach the original call to lang_do_memory_regions, in
this (now second) call we again process the expressions, and this time
update the origin and length values. Any errors encountered now are
reported to the user.
ld/ChangeLog:
* ldlang.c (lang_process): Add extra call to
lang_do_memory_regions, and pass parameter.
(lang_do_memory_regions): Add parameter, only define origin and
length when requested. Reindent.
* testsuite/ld-scripts/provide-10.d: New file.
* testsuite/ld-scripts/provide-10.map: New file.
* testsuite/ld-scripts/provide-11.d: New file.
* testsuite/ld-scripts/provide-11.map: New file.
* testsuite/ld-scripts/provide-12.d: New file.
* testsuite/ld-scripts/provide-12.map: New file.
* testsuite/ld-scripts/provide-9.d: New file.
* testsuite/ld-scripts/provide-9.map: New file.
* testsuite/ld-scripts/provide-9.t: New file.
For the ifunc symbol, which is referenced by GOT rather than PLT relocs,
we should add the dynamic reloc (usually IRELATIVE) into the .rel.iplt
when generating the static executable. But if we use riscv_elf_append_rela
to add the dynamic relocs into .rela.iplt, this may cause the overwrite
problem.
The reason is that we don't handle the `reloc_index` of .rela.iplt, but
the riscv_elf_append_rela adds the relocs to the place that are calculated
from the reloc_index (in seqential). Therefore, we may overwrite the
dynamic relocs when the `reloc_index` of .rela.iplt isn't handled correctly.
One solution is that we can add these dynamic relocs (GOT ifunc) from
the last of .rela.iplt section. But I'm not sure if it is the best way.
bfd/
* elfnn-riscv.c (riscv_elf_link_hash_table): Add last_iplt_index.
(riscv_elf_size_dynamic_sections): Initialize the last_iplt_index.
(riscv_elf_relocate_section): Use riscv_elf_append_rela.
(riscv_elf_finish_dynamic_symbol): If the use_elf_append_rela is
false, then we should add the dynamic relocs from the last of
the .rela.iplt, and don't use the riscv_elf_append_rela to add.
ld/
* testsuite/ld-riscv-elf/ifunc-plt-got-overwrite.s: New testcase.
* testsuite/ld-riscv-elf/ifunc-plt-got-overwrite.d: Likewise.
* testsuite/ld-riscv-elf/ifunc-plt-got-overwrite-exe.rd: Likewise.
* testsuite/ld-riscv-elf/ifunc-plt-got-overwrite-pic.rd: Likewise.
* testsuite/ld-riscv-elf/ifunc-plt-got-overwrite-pie.rd: Likewise.
* testsuite/ld-riscv-elf/ld-riscv-elf.exp: Updated.
Generally, glibc dynamic linker should have two ways to deal with ifunc
- one is to handle the IRELATIVE relocations for the non-preemtive ifunc
symbols, the other is to handle the R_RISCV_32/64 and R_RISCV_JUMP_SLOT
relocations with the STT_IFUNC preemtive symbols. No matter which method
is used, both of them should get the resolved ifunc symbols at runtime.
Therefore, linker needs to generate the correct dynamic relocations for
ifunc to make sure the the dynamic linker works well. For now, there are
thirteen relocations are supported for ifunc in GNU ld,
* R_RISCV_CALL and R_RISCV_CALL_PLT:
The RISC-V compiler won't generate R_RISCV_JAL directly to jump to an
ifunc. Besides, we disable the relaxations for the relocation referenced
to ifunc, so just handling the R_RISCV_CALL and R_RISCV_CALL_PLT should be
enough. Linker should generate a .plt entry and a .got.plt entry for it,
and also needs to insert a dynamic IRELATIVE in the .got.plt enrty, or
insert a R_RISCV_JUMP_SLOT when generating shared library.
* R_RISCV_PCREL_HI20 and R_RISCV_PCREL_LO12_I/S:
LA/LLA pattern with local fPIC ifunc symbol, or any non-PIC ifunc symbol.
The PC-relative relocation. The current linker will deal with them in
the same way as R_RISCV_CALL_PLT.
* R_RISCV_GOT_HI20 and R_RISCV_PCREL_LO12_I/S:
LA pattern with global PIC ifunc symbol. Linker should insert a dynamic
IRELATIVE in the .got entry, or insert a R_RISCV_32/64 when generating
shared library.
* R_RISCV_32 and R_RISCV_64:
Store the ifunc symbol into the data section. Linker should insert a
dynamic IRELATIVE in the data section, or insert a R_RISCV_32/64 when
generating shared library.
* R_RISCV_HI20 and R_RISCV_LO12_I/S:
The LUI + ADDI/LW/SW patterns. The absolute access relocation. The
medlow model without the -fPIC compiler option should generate them.
The ld ifunc testsuites "Build pr23169a" and "Build pr23169d" need the
relocations, they are in the ld/testsuite/ld-ifunc/, and need compiler
support.
However, we also made some optimizations with reference to x86,
* If GOT and PLT relocations refer to the same ifunc symbol when generating
pie, then they can actually share a .got entry without creating two entries
to store the same value and relocation.
* If GOT, PLT and DATA relocations refer to the same ifunc symbol when
generating position dependency executable, then linker will fill the address
of .plt entry into the corresponding .got entry and data section, without
insert any dynamic relocations for the GOT and DATA relocations.
For the ifunc testcases, there are three types of them,
1. ifunc-reloc-*: Only check the single type of relocation refers to
ifunc symbol.
* ifunc-reloc-call: R_RISCV_CALL and R_RISCV_CALL_PLT.
* ifunc-reloc-data: R_RISCV_32 and R_RISCV_64.
* ifunc-reloc-got: R_RISCV_GOT_HI20 and R_RISCV_PCREL_LO_I/S.
* ifunc-reloc-pcrel: R_RISCV_PCREL_HI20 and R_RISCV_PCREL_LO_I/S.
2. ifunc-[nonplt|plt]-*: If we don't have PLT relocs, then don't need to
create the PLT and it's .plt entries.
* ifunc-nonplt: Combine R_RISCV_GOT_HI20 and R_RISCV_32/64.
* ifunc-plt: Combine all ifunc relocations.
3. ifunc-seperate-*: If we link the ifunc caller and resolver into the
same module (link the objects), then the results are the same as the
ifunc-reloc-* and ifunc-[noplt|plt]-* testcases. Consider the cases that
the ifunc callers and resolver are in the different modules, that is, we
compile the ifunc resolver to the shared library first, and then link it
with the ifunc callers. The output of ifunc callers should be the same as
the normal STT_FUNC cases, and the shared ifunc resolver should define the
symbols as STT_IFUNC.
The R_RISCV_PCREL_HI20 reloc is special. It should be linked and resolved
locally, so if the ifunc resolver is defined in other modules (other shared
libraries), then the R_RISCV_PCREL_HI20 is unresolvable, and linker should
issue an unresolvable reloc error.
bfd/
* elfnn-riscv.c: Include "objalloc.h" since we need objalloc_alloc.
(riscv_elf_link_hash_table): Add loc_hash_table and loc_hash_memory
for local STT_GNU_IFUNC symbols.
(riscv_elf_got_plt_val): Removed.
(riscv_elf_local_htab_hash, riscv_elf_local_htab_eq): New functions.
Use to compare local hash entries.
(riscv_elf_get_local_sym_hash): New function. Find a hash entry for
local symbol, and create a new one if needed.
(riscv_elf_link_hash_table_free): New function. Destroy an riscv
elf linker hash table.
(riscv_elf_link_hash_table_create): Create hash table for local ifunc.
(riscv_elf_check_relocs): Create a fake global symbol to track the
local ifunc symbol. Add support to check and handle the relocations
reference to ifunc symbols.
(allocate_dynrelocs): Let allocate_ifunc_dynrelocs and
allocate_local_ifunc_dynrelocs to handle the ifunc symbols if they
are defined and referenced in a non-shared object.
(allocate_ifunc_dynrelocs): New function. Allocate space in .plt,
.got and associated reloc sections for ifunc dynamic relocs.
(allocate_local_ifunc_dynrelocs): Likewise, but for local ifunc
dynamic relocs.
(riscv_elf_relocate_section): Add support to handle the relocation
referenced to ifunc symbols.
(riscv_elf_size_dynamic_sections): Updated.
(riscv_elf_adjust_dynamic_symbol): Updated.
(riscv_elf_finish_dynamic_symbol): Finish up the ifunc handling,
including fill the PLT and GOT entries for ifunc symbols.
(riscv_elf_finish_local_dynamic_symbol): New function. Called by
riscv_elf_finish_dynamic_symbol to handle the local ifunc symbols.
(_bfd_riscv_relax_section): Don't do the relaxation for ifunc.
* elfxx-riscv.c: Add R_RISCV_IRELATIVE.
* configure.ac: Link elf-ifunc.lo to use the generic ifunc support.
* configure: Regenerated.
include/
* elf/riscv.h: Add R_RISCV_IRELATIVE to 58.
ld/
* emulparams/elf32lriscv-defs.sh: Add IREL_IN_PLT.
* testsuite/ld-ifunc/ifunc.exp: Enable ifunc tests for RISC-V.
* testsuite/ld-riscv-elf/ld-riscv-elf.exp (run_dump_test_ifunc):
New dump test for ifunc. There are two arguments, 'target` and
`output`. The `target` is rv32 or rv64, and the `output` is used
to choose which output you want to test (exe, pie or .so).
* testsuite/ld-riscv-elf/ifunc-reloc-call-01.s: New testcase.
* testsuite/ld-riscv-elf/ifunc-reloc-call-01.d: Likewise.
* testsuite/ld-riscv-elf/ifunc-reloc-call-01-exe.rd: Likewise.
* testsuite/ld-riscv-elf/ifunc-reloc-call-01-pic.rd: Likewise.
* testsuite/ld-riscv-elf/ifunc-reloc-call-01-pie.rd: Likewise.
* testsuite/ld-riscv-elf/ifunc-reloc-call-02.s: Likewise.
* testsuite/ld-riscv-elf/ifunc-reloc-call-02.d: Likewise.
* testsuite/ld-riscv-elf/ifunc-reloc-call-02-exe.rd: Likewise.
* testsuite/ld-riscv-elf/ifunc-reloc-call-02-pic.rd: Likewise.
* testsuite/ld-riscv-elf/ifunc-reloc-call-02-pie.rd: Likewise.
* testsuite/ld-riscv-elf/ifunc-reloc-data.s: Likewise.
* testsuite/ld-riscv-elf/ifunc-reloc-data.d: Likewise.
* testsuite/ld-riscv-elf/ifunc-reloc-data-exe.rd: Likewise.
* testsuite/ld-riscv-elf/ifunc-reloc-data-pic.rd: Likewise.
* testsuite/ld-riscv-elf/ifunc-reloc-data-pie.rd: Likewise.
* testsuite/ld-riscv-elf/ifunc-reloc-got.s: Likewise.
* testsuite/ld-riscv-elf/ifunc-reloc-got.d: Likewise.
* testsuite/ld-riscv-elf/ifunc-reloc-got-exe.rd: Likewise.
* testsuite/ld-riscv-elf/ifunc-reloc-got-pic.rd: Likewise.
* testsuite/ld-riscv-elf/ifunc-reloc-got-pie.rd: Likewise.
* testsuite/ld-riscv-elf/ifunc-reloc-pcrel.s: Likewise.
* testsuite/ld-riscv-elf/ifunc-reloc-pcrel.d: Likewise.
* testsuite/ld-riscv-elf/ifunc-reloc-pcrel-exe.rd: Likewise.
* testsuite/ld-riscv-elf/ifunc-reloc-pcrel-pic.rd: Likewise.
* testsuite/ld-riscv-elf/ifunc-reloc-pcrel-pie.rd: Likewise.
* testsuite/ld-riscv-elf/ifunc-nonplt.s: Likewise.
* testsuite/ld-riscv-elf/ifunc-nonplt.d: Likewise.
* testsuite/ld-riscv-elf/ifunc-nonplt-exe.rd: Likewise.
* testsuite/ld-riscv-elf/ifunc-nonplt-pic.rd: Likewise.
* testsuite/ld-riscv-elf/ifunc-nonplt-pie.rd: Likewise.
* testsuite/ld-riscv-elf/ifunc-plt-01.s: Likewise.
* testsuite/ld-riscv-elf/ifunc-plt-01.d: Likewise.
* testsuite/ld-riscv-elf/ifunc-plt-01-exe.rd: Likewise.
* testsuite/ld-riscv-elf/ifunc-plt-01-pic.rd: Likewise.
* testsuite/ld-riscv-elf/ifunc-plt-01-pie.rd: Likewise.
* testsuite/ld-riscv-elf/ifunc-plt-02.s: Likewise.
* testsuite/ld-riscv-elf/ifunc-plt-02.d: Likewise.
* testsuite/ld-riscv-elf/ifunc-plt-02-exe.rd: Likewise.
* testsuite/ld-riscv-elf/ifunc-plt-02-pic.rd: Likewise.
* testsuite/ld-riscv-elf/ifunc-plt-02-pie.rd: Likewise.
* testsuite/ld-riscv-elf/ifunc-seperate-resolver.s: Likewise.
* testsuite/ld-riscv-elf/ifunc-seperate-caller.s: Likewise.
* testsuite/ld-riscv-elf/ifunc-seperate-exe.d: Likewise.
* testsuite/ld-riscv-elf/ifunc-seperate-pic.d: Likewise.
* testsuite/ld-riscv-elf/ifunc-seperate-pie.d: Likewise.
* testsuite/ld-riscv-elf/ifunc-seperate-caller-pcrel.s: Likewise.
* testsuite/ld-riscv-elf/ifunc-seperate-pcrel-pic.d: Likewise.
* testsuite/ld-riscv-elf/ifunc-seperate-pcrel-pie.d: Likewise.
Update property tests for glibc compiled by Fedora binary annotation
plugin for GCC, which may insert additonal GNU properties:
x86 ISA needed: SSE, SSE2
* testsuite/ld-i386/property-3.r: Updated for Fedora binary
annotation plugin for GCC.
* testsuite/ld-i386/property-4.r: Likewise.
* testsuite/ld-i386/property-5.r: Likewise.
* testsuite/ld-x86-64/property-3.r: Likewise.
* testsuite/ld-x86-64/property-4.r: Likewise.
* testsuite/ld-x86-64/property-5.r: Likewise.
PR 26681
bfd * elflink.c (bfd_elf_gc_sections): Do not arbitrarily keep note
sections which are linked to another section.
ld * testsuite/ld-elf/pr26681.s: New test.
* testsuite/ld-elf/pr26681.d: New test driver.
* testsuite/ld-elf/pr26681.l: New test output.
The save of r2 in __glink_PLTresolve is the culprit. Remove it,
unless we know we need it for --plt-localentry. --plt-localentry
should not be used with power10 pc-relative code that makes tail
calls.
The patch also removes use of r2 as a scratch reg in the ELFv2
__glink_PLTresolve. Using r2 isn't a problem, this is just reducing
the number of scratch regs.
bfd/
* elf64-ppc.c (GLINK_PLTRESOLVE_SIZE): Depend on has_plt_localentry0.
(LD_R0_0R11, ADD_R11_R0_R11): Define.
(ppc64_elf_tls_setup): Disable params->plt_localentry0 when power10
code detected.
(ppc64_elf_size_stubs): Update __glink_PLTresolve eh_frame.
(ppc64_elf_build_stubs): Move r2 save to start of __glink_PLTresolve,
and only emit for has_plt_localentry0. Don't use r2 in the stub.
ld/
* testsuite/ld-powerpc/elfv2so.d,
* testsuite/ld-powerpc/notoc2.d,
* testsuite/ld-powerpc/tlsdesc.wf,
* testsuite/ld-powerpc/tlsdesc2.d,
* testsuite/ld-powerpc/tlsdesc2.wf,
* testsuite/ld-powerpc/tlsopt5.d,
* testsuite/ld-powerpc/tlsopt5.wf,
* testsuite/ld-powerpc/tlsopt6.d,
* testsuite/ld-powerpc/tlsopt6.wf: Update __glink_PLTresolve.
Not sure why there wasn't a NULL check in the ld/22269 patch
(e01c16a8) at the time, as there was one for the corresponding patch
to elf32-m68k.c (5056ba1d).
Incidentally, I had missed that in 2017, as a prerequisite for the
ld/22269 series, the check_relocs function finally were made "safe"!
(I.e. the number of references and symbol types are final, garbage
collection done, so port-specific accounting can be made sanely.)
Committed.
bfd:
PR ld/26589
* elf32-cris.c (cris_elf_check_relocs): Add missing NULL check
on argument before calling UNDEFWEAK_NO_DYNAMIC_RELOC.
ld:
PR ld/26589
* testsuite/ld-elf/pr26589.d, testsuite/ld-elf/locref3.s: New test.
The symbol string table in the .symtab section is optional and cosmetic.
The contents of the .symtab section have no impact on run-time execution.
The symbol names in the symbol string table help distinguish addresses at
different locations. Add a linker option, -z unique-symbol, to avoid
duplicated local symbol names in the symbol string table.
This feature was well received by the livepatch maintainers. It not only
solves the duplicated local symbol name problem, but also would allow
livepatch to more precisely locate duplicate symbols in general for
patching.
bfd/
PR ld/26391
* elflink.c (elf_final_link_info): Add local_hash_table.
(local_hash_entry): New.
(local_hash_newfunc): Likewise.
(elf_link_output_symstrtab): Append ".COUNT" to duplicated local
symbols.
(bfd_elf_final_link): Initialize and free local_hash_table for
"-z unique-symbol".
include/
PR ld/26391
* bfdlink.h (bfd_link_info): Add unique_symbol.
ld/
PR ld/26391
* NEWS: Mention "-z unique-symbol".
* emultempl/elf.em (gld${EMULATION_NAME}_handle_option): Handle
"-z unique-symbol" and "-z nounique-symbol".
* ld.texi: Document "-z unique-symbol" and "-z nounique-symbol".
* lexsup.c (elf_static_list_options): Add "-z unique-symbol" and
"-z nounique-symbol".
* testsuite/ld-elf/elf.exp: Add PR ld/26391 tests.
* testsuite/ld-elf/pr26391.nd: New file.
* testsuite/ld-elf/pr26391.out: Likewise.
* testsuite/ld-elf/pr26391a.c: Likewise.
* testsuite/ld-elf/pr26391b.c: Likewise.
* testsuite/ld-elf/pr26391c.c: Likewise.
* testsuite/ld-elf/pr26391d.c: Likewise.
The fix in 7e05773767 introduced a PLT
for conditional jumps when the target symbol is undefined. This is
incorrect because conditional branch relocations are not allowed to
clobber IP0/IP1 and hence, should not result in a dynamic relocation.
Revert that change and in its place, issue an error when the target
symbol is undefined.
bfd/
2020-09-10 Siddhesh Poyarekar <siddesh.poyarekar@arm.com>
* elfnn-aarch64.c (elfNN_aarch64_final_link_relocate): Revert
changes in 7e05773767. Set
error for undefined symbol in BFD_RELOC_AARCH64_BRANCH19 and
BFD_RELOC_AARCH64_TSTBR14 relocations.
ld/
2020-09-10 Siddhesh Poyarekar <siddesh.poyarekar@arm.com>
* testsuite/ld-aarch64/emit-relocs-560.d: Expect error instead
of valid output.
Prior to
commit 1e3b96fd6c
Author: Alan Modra <amodra@gmail.com>
Date: Fri Sep 4 13:54:21 2020 +0930
Allow plugin syms to mark as-needed shared libs needed
when removing unused IR symbol references, ld didn't add unnecessary
DT_NEEDED libraries which may lead to undefined symbol reference in a
--as-needed library when the symbol is defined in a prior --as-needed
library and there is no reference in relocatable inputs. This behavior
is desirable since it ensures that both lazy and non-lazy bindings work
the same way. The problem is with --as-needed libraries, which happens
with and without LTO. Now, the linker may add many unnecessary DT_NEEDED
libraries for IR inputs.
PR ld/26590
* testsuite/ld-elf/pr26590.err: New file.
* testsuite/ld-elf/pr26590a.c: Likewise.
* testsuite/ld-elf/pr26590b.c: Likewise.
* testsuite/ld-elf/pr26590c.c: Likewise.
* testsuite/ld-elf/pr26590d.c: Likewise.
* testsuite/ld-elf/shared.exp: Run ld/26590 tests.
Some MIPS targets, for reasons I didn't analyse, use the larger common
symbol in a shared lib rather than a smaller common in an executable.
That doesn't seem unreasonable, so allow that to pass for pr26580-2.
bfin-elf complains about not supporting copy relocs, but it's quite
silly to want a copy reloc for common symbols, so leave the fail
there. mn10300-elf and score-elf both fail the test with "PHDR
segment not covered by LOAD segment". Other tests fail similarly so
one more doesn't hurt. The failure is a consequence of supporting
dynamic objects but setting EMBEDDED in ld scripts.
PR 26580
* testsuite/ld-elf/pr26580-2.sd: Accept undefined symbol.
Extend the test a little to archives, not that we expect this to
fail. Nor has the lto-18 test ever failed without -flto.
* testsuite/ld-plugin/lto-18b.c (select): Remove.
* testsuite/ld-plugin/lto-18c.c (select): Remove.
* testsuite/ld-plugin/lto.exp: Build archives for lto-18 too,
and run static versions of the test.