Commit Graph

80469 Commits

Author SHA1 Message Date
Andreas Arnez
a069a2bdab AARCH64: Replace regset_alloc() invocations by static regset structures.
After removal of the regset_alloc invocations, the tdep fields
'gregset' and 'fpregset' become obsolete and are thus removed.
2014-05-21 17:49:16 +02:00
Andreas Arnez
09424cff8c Remove 'arch' field from regset structure.
Removes the 'arch' field from the regset structure, since it
represents the only "dynamic" data in a regset.  It was referenced in
some regset supply- and collect routines, to get access to the gdbarch
associated with the regset.  Naturally, the affected routines always
have access to the regcache to be supplied to or collected from.  Thus
the gdbarch associated with that regcache can be used instead.
2014-05-21 17:49:15 +02:00
Andreas Arnez
3ca7dae4dd Constify regset structures. 2014-05-21 17:49:15 +02:00
Mark Wielaard
36d46afba6 gdb/testsuite: Handle underlying type in gdb.cp/var-tag.exp.
* gdb.cp/var-tag.exp (do_global_tests): Handle underlying type.
2014-05-21 16:59:55 +02:00
Jan Kratochvil
5876f5032f Fix TLS access for -static -pthread
I have posted:
	TLS variables access for -static -lpthread executables
	https://sourceware.org/ml/libc-help/2014-03/msg00024.html
and the GDB patch below has been confirmed as OK for current glibcs.

Further work should be done for newer glibcs:
	Improve TLS variables glibc compatibility
	https://sourceware.org/bugzilla/show_bug.cgi?id=16954

Still the patch below implements the feature in a fully functional way backward
compatible with current glibcs, it depends on the following glibc source line:
	csu/libc-tls.c
	main_map->l_tls_modid = 1;

gdb/
2014-05-21  Jan Kratochvil  <jan.kratochvil@redhat.com>

	Fix TLS access for -static -pthread.
	* linux-thread-db.c (struct thread_db_info): Add td_thr_tlsbase_p.
	(try_thread_db_load_1): Initialize it.
	(thread_db_get_thread_local_address): Call it if LM is zero.
	* target.c (target_translate_tls_address): Remove LM_ADDR zero check.
	* target.h (struct target_ops) (to_get_thread_local_address): Add
	load_module_addr comment.

gdb/gdbserver/
2014-05-21  Jan Kratochvil  <jan.kratochvil@redhat.com>

	Fix TLS access for -static -pthread.
	* gdbserver/thread-db.c (struct thread_db): Add td_thr_tlsbase_p.
	(thread_db_get_tls_address): Call it if LOAD_MODULE is zero.
	(thread_db_load_search, try_thread_db_load_1): Initialize it.

gdb/testsuite/
2014-05-21  Jan Kratochvil  <jan.kratochvil@redhat.com>

	Fix TLS access for -static -pthread.
	* gdb.threads/staticthreads.c <HAVE_TLS> (tlsvar): New.
	<HAVE_TLS> (thread_function, main): Initialize it.
	* gdb.threads/staticthreads.exp: Try gdb_compile_pthreads for $have_tls.
	Add clean_restart.
	<$have_tls != "">: Check TLSVAR.

Message-ID: <20140410115204.GB16411@host2.jankratochvil.net>
2014-05-21 16:25:53 +02:00
Pedro Alves
0256a6ac4b Make the dcache (code/stack cache) handle line reading errors better
The dcache (code/stack cache) is supposed to be transparent, but it's
actually not in one case.  dcache tries to read chunks (cache lines)
at a time off of the target.  This may end up trying to read
unaccessible or unavailable memory.  Currently the caller gets an xfer
error in this case.  But if the specific bits of memory the caller
actually wanted are available and accessible, then the caller should
get the memory it wanted, not an error.

gdb/
2014-05-21  Pedro Alves  <palves@redhat.com>

	* dcache.c (dcache_read_memory_partial): If reading the cache line
	fails, fallback to reading just the memory the caller wanted.

gdb/testsuite/
2014-05-21  Pedro Alves  <palves@redhat.com>

	* gdb.base/dcache-line-read-error.c: New.
	* gdb.base/dcache-line-read-error.exp: New.
2014-05-21 13:58:16 +01:00
Alan Modra
a6e3e144a3 daily update 2014-05-21 09:31:09 +09:30
mfortune
9096206c9a Add ChangeLog from previous MIPS .module commit 2014-05-20 23:51:06 +01:00
mfortune
919731affb Add MIPS .module directive
gas/

	* config/tc-mips.c (file_mips_opts_checked): New static global.
	(s_module): New static function.
	(file_ase): Remove.
	(mips_pseudo_table): Add .module handler.
	(mips_set_ase): Add opts argument and use instead of mips_opts.
 	(md_assemble): Use file_mips_check_options.
	(md_parse_option): Update to use file_mips_opts instead of mips_opts.
	(mips_set_architecture): Delete function.  Moved to...
	(mips_after_parse_args): Here.  All logic now applies to
	file_mips_opts first and then copies the final state to mips_opts.
	Move error checking and defaults inference to mips_check_options and
	file_mips_check_options.
	(mips_check_options): New static function.  Common option checking for
	command line, .module and .set.  Use .module values in error messages
	instead of refering to command line options.
	(file_mips_check_options): New static function.  A wrapper for
	mips_check_options with file_mips_opts.  Updates BFD arch based on
	final options.
	(s_mipsset): Split into s_mipsset and parse_code_option.  Settings
	supported by both .set and .module are moved to parse_code_option.
	Warnings and errors are kept in s_mipsset because when
	parse_code_option is used with s_module the warnings are deferred
	until code is generated.  Any setting supporting 'default' value is
	kept in s_mipsset as it is not applicable to s_module. Inferred
	settings are also kept in s_mipsset as s_module does not infer any
	settings.  Use mips_check_options.
	(parse_code_option): New static function derived from s_mipsset.
	(s_module): New static function that implements .module.  Allows file
	level settings to be changed until code is generated.
	(s_cpload, s_cpsetup, s_cplocal): Use file_mips_check_options.
	(s_cprestore, s_cpreturn, s_cpadd, mips_address_bytes): Likewise.
	(mips_elf_final_processing): Update file_ase to file_mips_opts.ase.
	(md_mips_end): Use file_mips_check_options.
	* doc/c-mips.texi: Document .module.

gas/testsuite

	* gas/mips/mips.exp: Add new tests.  Use 64-bit ABI for relax-bc1any.
	Fix micromips arch definition to use mips64r2 consistently.
	* gas/mips/module-defer-warn1.s: New.
	* gas/mips/module-defer-warn1.d: New.
	* gas/mips/module-defer-warn2.s: New.
	* gas/mips/module-defer-warn2.l: New.
	* gas/mips/module-override.d: New.
	* gas/mips/module-override.s: New.
	* gas/mips/mips-gp32-fp64.l: Update expected output.
	* gas/mips/mips-gp64-fp32-pic.l: Update expected output.
	* gas/mips/mips-gp64-fp32.l: Update expected output.
2014-05-20 23:46:43 +01:00
mfortune
153ff4340d Remove newly introduced whitespace from warnings.
* messages.c (as_warn_internal): Remove extra whitespace from
	warning messages.
2014-05-20 23:40:49 +01:00
mfortune
82bda27b2f Mark MSA as requiring FP64
gas/
	* config/tc-mips.c (FP64_ASES): Add ASE_MSA.
	(mips_after_parse_args): Do not select ASE_MSA without -mfp64.

gas/testsuite/

	* gas/mips/micromips@msa-branch.d: Rework expected output for fp64.
	* gas/mips/msa-branch.d: Likewise.
2014-05-20 23:05:03 +01:00
Hans-Peter Nilsson
865d0aef3a ld: Add missing eelf32mbel_linux.c to ALL_EMULATION_SOURCES.
ld:
	* Makefile.am (ALL_EMULATION_SOURCES): Add missing eelf32mbel_linux.c.
	* Makefile.in: Regenerate.
2014-05-20 23:13:08 +02:00
Doug Evans
227533ac01 Fix gdb.multi/base.exp failures.
UNRESOLVED: gdb.multi/base.exp: remove-inferiors 2-3
UNRESOLVED: gdb.multi/base.exp: check remove-inferiors

gdb is crashing because it's accessing/freeing already freed memory.

==16368== Invalid read of size 4
==16368==    at 0x660A9D: find_pc_section (binutils-gdb/gdb/objfiles.c:1349)
==16368==    by 0x663ECB: lookup_minimal_symbol_by_pc_section (binutils-gdb/gdb/minsyms.c:734)
==16368==    by 0x5D987A: find_pc_sect_symtab (binutils-gdb/gdb/symtab.c:2153)
==16368==    by 0x5D4D77: blockvector_for_pc_sect (binutils-gdb/gdb/block.c:168)
==16368==    by 0x5D4F59: block_for_pc_sect (binutils-gdb/gdb/block.c:246)
==16368==    by 0x5D4F9B: block_for_pc (binutils-gdb/gdb/block.c:258)
==16368==    by 0x734C5D: inline_frame_sniffer (binutils-gdb/gdb/inline-frame.c:218)
==16368==    by 0x732104: frame_unwind_try_unwinder (binutils-gdb/gdb/frame-unwind.c:108)
==16368==    by 0x73223F: frame_unwind_find_by_frame (binutils-gdb/gdb/frame-unwind.c:159)
==16368==    by 0x72D5AA: compute_frame_id (binutils-gdb/gdb/frame.c:453)
==16368==    by 0x7300EC: get_prev_frame_if_no_cycle (binutils-gdb/gdb/frame.c:1758)
==16368==    by 0x73079A: get_prev_frame_always (binutils-gdb/gdb/frame.c:1931)
==16368==  Address 0x5b13500 is 16 bytes inside a block of size 24 free'd
==16368==    at 0x403072E: free (valgrind/coregrind/m_replacemalloc/vg_replace_malloc.c:445)
==16368==    by 0x762134: xfree (binutils-gdb/gdb/common/common-utils.c:108)
==16368==    by 0x65DACF: objfiles_pspace_data_cleanup (binutils-gdb/gdb/objfiles.c:91)
==16368==    by 0x75E546: program_spaceregistry_callback_adaptor (binutils-gdb/gdb/progspace.c:45)
==16368==    by 0x7644F6: registry_clear_data (binutils-gdb/gdb/registry.c:82)
==16368==    by 0x7645AB: registry_container_free_data (binutils-gdb/gdb/registry.c:95)
==16368==    by 0x75E5B4: program_space_free_data (binutils-gdb/gdb/progspace.c:45)
==16368==    by 0x75E9BA: release_program_space (binutils-gdb/gdb/progspace.c:167)
==16368==    by 0x75EB9B: prune_program_spaces (binutils-gdb/gdb/progspace.c:269)
==16368==    by 0x75303D: remove_inferior_command (binutils-gdb/gdb/inferior.c:792)
==16368==    by 0x50B5FD: do_cfunc (binutils-gdb/gdb/cli/cli-decode.c:107)
==16368==    by 0x50E6F2: cmd_func (binutils-gdb/gdb/cli/cli-decode.c:1886)

The problem originates from the get_current_arch call in
py-progspace.c:py_free_pspace.  The inferior associated with the
pspace is gone, and the current inferior is a different one and is running.
Therefore get_current_arch tries to read the current frame which
causes reads of data in the current program space which we've just deleted.

	* python/py-progspace.c (py_free_pspace): Call target_gdbarch
	instead of get_current_arch.
2014-05-20 13:06:26 -07:00
Mike Stump
39128ec026 * messages.c (as_warn_internal): Ensure we don't interleave output
within a single line when make -j is used.
	(as_bad_internal): Likewise.
2014-05-20 12:45:30 -07:00
DJ Delorie
bceec4b911 * elf32-msp430.c (msp430_elf_relax_adjust_locals): Avoid overflow. 2014-05-20 15:42:23 -04:00
Pedro Alves
936d299246 Make compare-sections work against all targets; add compare-sections [-r] tests.
This does two things:

1. Adds a test.

Recently compare-sections got a new "-r" switch, but given no test
existed for compare-sections, the patch was allowed in with no
testsuite addition.  This now adds a test for both compare-sections
and compare-sections -r.

2. Makes the compare-sections command work against all targets.

Currently, compare-sections only works with remote targets, and only
those that support the qCRC packet.  The patch makes it so that if the
target doesn't support accelerating memory verification, then GDB
falls back to comparing memory itself.  This is of course slower, but
it's better than nothing, IMO.  While testing against extended-remote
GDBserver I noticed that we send the qCRC request to the target if
we're connected, but not yet running a program.  That can't work of
course -- the patch fixes that.  This all also goes in the direction
of bridging the local/remote parity gap.

I didn't decouple 1. from 2., because that would mean that the test
would need to handle the case of the target not supporting the
command.

Tested on x86_64 Fedora 17, native, remote GDBserver, and
extended-remote GDBserver.  I also hack-disabled qCRC support to make
sure the fallback paths in remote.c work.

gdb/doc/
2014-05-20  Pedro Alves  <palves@redhat.com>

	* gdb.texinfo (Memory) <compare-sections>: Generalize comments to
	not be remote specific.  Add cross reference to the qCRC packet.
	(Separate Debug Files): Update cross reference to the qCRC packet.
	(General Query Packets) <qCRC packet>: Add anchor.

gdb/
2014-05-20  Pedro Alves  <palves@redhat.com>

	* NEWS: Mention that compare-sections now works with all targets.

	* remote.c (PACKET_qCRC): New enum value.
	(remote_verify_memory): Don't send qCRC if the target has no
	execution.  Use packet_support/packet_ok.  If the target doesn't
	support the qCRC packet, fallback to a deep memory copy.
	(compare_sections_command): Say "target image" instead of "remote
	executable".
	(_initialize_remote): Add PACKET_qCRC to the list of config
	packets that have no associated command.  Extend comment.
	* target.c (simple_verify_memory, default_verify_memory): New
	function.
	* target.h (struct target_ops) <to_verify_memory>: Default to
	default_verify_memory.
	(simple_verify_memory): New declaration.
	* target-delegates.c: Regenerate.

gdb/testsuite/
2014-05-20  Pedro Alves  <palves@redhat.com>

	* gdb.base/compare-sections.c: New file.
	* gdb.base/compare-sections.exp: New file.
2014-05-20 19:11:39 +01:00
Richard Sandiford
9440a90459 gas/
* config/obj-elf.h (obj_elf_seen_attribute): Declare.
	* config/obj-elf.c (recorded_attribute_info): New structure.
	(recorded_attributes): New variable.
	(record_attribute, obj_elf_seen_attribute): New functions.
	(obj_elf_vendor_attribute): Record which attributes have been seen.
2014-05-20 19:02:41 +01:00
Pedro Alves
802e8e6d84 [GDBserver] Make Zx/zx packet handling idempotent.
This patch fixes hardware breakpoint regressions exposed by my fix for
"PR breakpoints/7143 - Watchpoint does not trigger when first set", at
https://sourceware.org/ml/gdb-patches/2014-03/msg00167.html

The testsuite caught them on Linux/x86_64, at least.  gdb.sum:

gdb.sum:

 FAIL: gdb.base/hbreak2.exp: next over recursive call
 FAIL: gdb.base/hbreak2.exp: backtrace from factorial(5.1)
 FAIL: gdb.base/hbreak2.exp: continue until exit at recursive next test

gdb.log:

 (gdb) next

 Program received signal SIGTRAP, Trace/breakpoint trap.
 factorial (value=4) at ../../../src/gdb/testsuite/gdb.base/break.c:113
 113       if (value > 1) {  /* set breakpoint 7 here */
 (gdb) FAIL: gdb.base/hbreak2.exp: next over recursive call

Actually, that patch just exposed a latent issue to "breakpoints
always-inserted off" mode, not really caused it.  After that patch,
GDB no longer removes breakpoints at each internal event, thus making
some scenarios behave like breakpoint always-inserted on.  The bug is
easy to trigger with always-inserted on.

The issue is that since the target-side breakpoint conditions support,
if the stub/server supports evaluating breakpoint conditions on the
target side, then GDB is sending duplicate Zx packets to the target
without removing them before, and GDBserver is not really expecting
that for Z packets other than Z0/z0.  E.g., with "set breakpoint
always-inserted on" and "set debug remote 1":

 (gdb) b main
 Sending packet: $m410943,1#ff...Packet received: 48
 Breakpoint 4 at 0x410943: file ../../../src/gdb/gdbserver/server.c, line 3028.
 Sending packet: $Z0,410943,1#48...Packet received: OK
                 ^^^^^^^^^^^^
 (gdb) b main
 Note: breakpoint 4 also set at pc 0x410943.
 Sending packet: $m410943,1#ff...Packet received: 48
 Breakpoint 5 at 0x410943: file ../../../src/gdb/gdbserver/server.c, line 3028.
 Sending packet: $Z0,410943,1#48...Packet received: OK
                 ^^^^^^^^^^^^
 (gdb) b main
 Note: breakpoints 4 and 5 also set at pc 0x410943.
 Sending packet: $m410943,1#ff...Packet received: 48
 Breakpoint 6 at 0x410943: file ../../../src/gdb/gdbserver/server.c, line 3028.
 Sending packet: $Z0,410943,1#48...Packet received: OK
                 ^^^^^^^^^^^^
 (gdb) del
 Delete all breakpoints? (y or n) y
 Sending packet: $Z0,410943,1#48...Packet received: OK
 Sending packet: $Z0,410943,1#48...Packet received: OK
 Sending packet: $z0,410943,1#68...Packet received: OK

And for Z1, similarly:

 (gdb) hbreak main
 Sending packet: $m410943,1#ff...Packet received: 48
 Hardware assisted breakpoint 4 at 0x410943: file ../../../src/gdb/gdbserver/server.c, line 3028.
 Sending packet: $Z1,410943,1#49...Packet received: OK
                 ^^^^^^^^^^^^
 Packet Z1 (hardware-breakpoint) is supported
 (gdb) hbreak main
 Note: breakpoint 4 also set at pc 0x410943.
 Sending packet: $m410943,1#ff...Packet received: 48
 Hardware assisted breakpoint 5 at 0x410943: file ../../../src/gdb/gdbserver/server.c, line 3028.
 Sending packet: $Z1,410943,1#49...Packet received: OK
                 ^^^^^^^^^^^^
 (gdb) hbreak main
 Note: breakpoints 4 and 5 also set at pc 0x410943.
 Sending packet: $m410943,1#ff...Packet received: 48
 Hardware assisted breakpoint 6 at 0x410943: file ../../../src/gdb/gdbserver/server.c, line 3028.
 Sending packet: $Z1,410943,1#49...Packet received: OK
                 ^^^^^^^^^^^^
 (gdb) del
 Delete all breakpoints? (y or n) y
 Sending packet: $Z1,410943,1#49...Packet received: OK
                 ^^^^^^^^^^^^
 Sending packet: $Z1,410943,1#49...Packet received: OK
                 ^^^^^^^^^^^^
 Sending packet: $z1,410943,1#69...Packet received: OK
                 ^^^^^^^^^^^^

So GDB sent a bunch of Z1 packets, and then when finally removing the
breakpoint, only one z1 packet was sent.  On the GDBserver side (with
monitor set debug-hw-points 1), in the Z1 case, we see:

 $ ./gdbserver :9999 ./gdbserver
 Process ./gdbserver created; pid = 8629
 Listening on port 9999
 Remote debugging from host 127.0.0.1
 insert_watchpoint (addr=410943, len=1, type=instruction-execute):
	 CONTROL (DR7): 00000101          STATUS (DR6): 00000000
	 DR0: addr=0x410943, ref.count=1  DR1: addr=0x0, ref.count=0
	 DR2: addr=0x0, ref.count=0  DR3: addr=0x0, ref.count=0
 insert_watchpoint (addr=410943, len=1, type=instruction-execute):
	 CONTROL (DR7): 00000101          STATUS (DR6): 00000000
	 DR0: addr=0x410943, ref.count=2  DR1: addr=0x0, ref.count=0
	 DR2: addr=0x0, ref.count=0  DR3: addr=0x0, ref.count=0
 insert_watchpoint (addr=410943, len=1, type=instruction-execute):
	 CONTROL (DR7): 00000101          STATUS (DR6): 00000000
	 DR0: addr=0x410943, ref.count=3  DR1: addr=0x0, ref.count=0
	 DR2: addr=0x0, ref.count=0  DR3: addr=0x0, ref.count=0
 insert_watchpoint (addr=410943, len=1, type=instruction-execute):
	 CONTROL (DR7): 00000101          STATUS (DR6): 00000000
	 DR0: addr=0x410943, ref.count=4  DR1: addr=0x0, ref.count=0
	 DR2: addr=0x0, ref.count=0  DR3: addr=0x0, ref.count=0
 insert_watchpoint (addr=410943, len=1, type=instruction-execute):
	 CONTROL (DR7): 00000101          STATUS (DR6): 00000000
	 DR0: addr=0x410943, ref.count=5  DR1: addr=0x0, ref.count=0
	 DR2: addr=0x0, ref.count=0  DR3: addr=0x0, ref.count=0
 remove_watchpoint (addr=410943, len=1, type=instruction-execute):
	 CONTROL (DR7): 00000101          STATUS (DR6): 00000000
	 DR0: addr=0x410943, ref.count=4  DR1: addr=0x0, ref.count=0
	 DR2: addr=0x0, ref.count=0  DR3: addr=0x0, ref.count=0

That's one insert_watchpoint call for each Z1 packet, and then one
remove_watchpoint call for the z1 packet.  Notice how ref.count
increased for each insert_watchpoint call, and then in the end, after
GDB told GDBserver to forget about the hardware breakpoint, GDBserver
ends with the the first debug register still with ref.count=4!  IOW,
the hardware breakpoint is left armed on the target, while on the GDB
end it's gone.  If the program happens to execute 0x410943 afterwards,
then the CPU traps, GDBserver reports the trap to GDB, and GDB not
having a breakpoint set at that address anymore, reports to the user a
spurious SIGTRAP.

This is exactly what is happening in the hbreak2.exp test, though in
that case, it's a shared library event that triggers a
breakpoint_re_set, when breakpoints are still inserted (because
nowadays GDB doesn't remove breakpoints while handling internal
events), and that recreates breakpoint locations, which likewise
forces breakpoint reinsertion and Zx packet resends...

That is a lot of bogus Zx duplication that should possibly be
addressed on the GDB side.  GDB resends Zx packets because the way to
change the target-side condition, is to resend the breakpoint to the
server with the new condition.  (That's an option in the packet: e.g.,
"Z1,410943,1;X3,220027" for "hbreak main if 0".  The packets in the
examples above are shorter because the breakpoints don't have
conditions attached).  GDB doesn't remove the breakpoint first before
reinserting it because that'd be bad for non-stop, as it'd open a
window where the inferior could miss the breakpoint.  The conditions
actually haven't changed between the resends, but GDB isn't smart
enough to realize that.

(TBC, if the target doesn't support target-side conditions, then GDB
doesn't trigger these resends (init_bp_location calls
mark_breakpoint_location_modified, and that does nothing if condition
evaluation is on the host side.  The resends are caused by the
'loc->condition_changed = condition_modified.'  line.)

But, even if GDB was made smarter, GDBserver should really still
handle the resends anyway.  So target-side conditions also aren't
really to blame.  The documentation of the Z/z packets says:

 "To avoid potential problems with duplicate packets, the operations
 should be implemented in an idempotent way."

As such, we may want to fix GDB, but we should definitely fix
GDBserver.  The fix is a prerequisite for target-side conditions on
hardware breakpoints anyway (and while at it, on watchpoints too).

GDBserver indeed already treats duplicate Z0 packets in an idempotent
way.  mem-break.c has the concept of high-level and low-level
breakpoints, somewhat similar to GDB's split of breakpoints vs
breakpoint locations, and keeps track of multiple breakpoints
referencing the same address/location, for the case of an internal
GDBserver breakpoint or a tracepoint being set at the same address as
a GDB breakpoint.  But, it only allows GDB to ever contribute one
reference to a software breakpoint location.  IOW, if gdbserver sees a
Z0 packet for the same address where it already had a GDB breakpoint
set, then GDBserver won't create another high-level GDB breakpoint.

However, mem-break.c only tracks GDB Z0 breakpoints.  The same logic
should apply to all kinds of Zx packets.  Currently, gdbserver passes
down each duplicate Zx (other than Z0) request directly to the
target->insert_point routine.  The x86 watchpoint support itself
refcounts watchpoint / hw breakpoint requests, to handle overlapping
watchpoints, and save debug registers.  But that code doesn't (and
really shouldn't) handle the duplicate requests, assuming that for
each insert there will be a corresponding remove.

So the fix is to generalize mem-break.c to track all kinds of Zx
breakpoints, and filter out duplicates.  As mentioned, this ends up
adding support for target-side conditions on hardware breakpoints and
watchpoints too (though GDB itself doesn't support the latter yet).

Probably the least obvious change in the patch is that it kind of
turns the breakpoint insert/remove APIs inside out.  Before, the
target methods were only called for GDB breakpoints.  The internal
breakpoint set/delete methods inserted memory breakpoints directly
bypassing the insert/remove target methods.  That's not good when the
target should use a debug API to set software breakpoints, instead of
relying on GDBserver patching memory with breakpoint instructions, as
is the case of NTO.

Now removal/insertion of all kinds of breakpoints/watchpoints, either
internal, or from GDB, always go through the target methods.  The
insert_point/remove_point methods no longer get passed a Z packet
type, but an internal/raw breakpoint type.  They're also passed a
pointer to the raw breakpoint itself (note that's still opaque outside
mem-break.c), so that insert_memory_breakpoint /
remove_memory_breakpoint have access to the breakpoint's shadow
buffer.  I first tried passing down a new structure based on GDB's
"struct bp_target_info" (actually with that name exactly), but then
decided against it as unnecessary complication.

As software/memory breakpoints work by poking at memory, when setting
a GDB Z0 breakpoint (but not internal breakpoints, as those can assume
the conditions are already right), we need to tell the target to
prepare to access memory (which on Linux means stop threads).  If that
operation fails, we need to return error to GDB.  Seeing an error, if
this is the first breakpoint of that type that GDB tries to insert,
GDB would then assume the breakpoint type is supported, but it may
actually not be.  So we need to check whether the type is supported at
all before preparing to access memory.  And to solve that, the patch
adds a new target->supports_z_point_type method that is called before
actually trying to insert the breakpoint.

Other than that, hopefully the change is more or less obvious.

New test added that exercises the hbreak2.exp regression in a more
direct way, without relying on a breakpoint re-set happening before
main is reached.

Tested by building GDBserver for:

 aarch64-linux-gnu
 arm-linux-gnueabihf
 i686-pc-linux-gnu
 i686-w64-mingw32
 m68k-linux-gnu
 mips-linux-gnu
 mips-uclinux
 nios2-linux-gnu
 powerpc-linux-gnu
 sh-linux-gnu
 tilegx-unknown-linux-gnu
 x86_64-redhat-linux
 x86_64-w64-mingw32

And also regression tested on x86_64 Fedora 20.

gdb/gdbserver/
2014-05-20  Pedro Alves  <palves@redhat.com>

	* linux-aarch64-low.c (aarch64_insert_point)
	(aarch64_remove_point): No longer check whether the type is
	supported here.  Adjust to new interface.
	(the_low_target): Install aarch64_supports_z_point_type as
	supports_z_point_type method.
	* linux-arm-low.c (raw_bkpt_type_to_arm_hwbp_type): New function.
	(arm_linux_hw_point_initialize): Take an enum raw_bkpt_type
	instead of a Z packet char.  Adjust.
	(arm_supports_z_point_type): New function.
	(arm_insert_point, arm_remove_point): Adjust to new interface.
	(the_low_target): Install arm_supports_z_point_type.
	* linux-crisv32-low.c (cris_supports_z_point_type): New function.
	(cris_insert_point, cris_remove_point): Adjust to new interface.
	Don't check whether the type is supported here.
	(the_low_target): Install cris_supports_z_point_type.
	* linux-low.c (linux_supports_z_point_type): New function.
	(linux_insert_point, linux_remove_point): Adjust to new interface.
	* linux-low.h (struct linux_target_ops) <insert_point,
	remove_point>: Take an enum raw_bkpt_type instead of a char.  Add
	raw_breakpoint pointer parameter.
	<supports_z_point_type>: New method.
	* linux-mips-low.c (mips_supports_z_point_type): New function.
	(mips_insert_point, mips_remove_point): Adjust to new interface.
	Use mips_supports_z_point_type.
	(the_low_target): Install mips_supports_z_point_type.
	* linux-ppc-low.c (the_low_target): Install NULL as
	supports_z_point_type method.
	* linux-s390-low.c (the_low_target): Install NULL as
	supports_z_point_type method.
	* linux-sparc-low.c (the_low_target): Install NULL as
	supports_z_point_type method.
	* linux-x86-low.c (x86_supports_z_point_type): New function.
	(x86_insert_point): Adjust to new insert_point interface.  Use
	insert_memory_breakpoint.  Adjust to new
	i386_low_insert_watchpoint interface.
	(x86_remove_point): Adjust to remove_point interface.  Use
	remove_memory_breakpoint.  Adjust to new
	i386_low_remove_watchpoint interface.
	(the_low_target): Install x86_supports_z_point_type.
	* lynx-low.c (lynx_target_ops): Install NULL as
	supports_z_point_type callback.
	* nto-low.c (nto_supports_z_point_type): New.
	(nto_insert_point, nto_remove_point): Adjust to new interface.
	(nto_target_ops): Install nto_supports_z_point_type.
	* mem-break.c: Adjust intro comment.
	(struct raw_breakpoint) <raw_type, size>: New fields.
	<inserted>: Update comment.
	<shlib_disabled>: Delete field.
	(enum bkpt_type) <gdb_breakpoint>: Delete value.
	<gdb_breakpoint_Z0, gdb_breakpoint_Z1, gdb_breakpoint_Z2,
	gdb_breakpoint_Z3, gdb_breakpoint_Z4>: New values.
	(raw_bkpt_type_to_target_hw_bp_type): New function.
	(find_enabled_raw_code_breakpoint_at): New function.
	(find_raw_breakpoint_at): New type and size parameters.  Use them.
	(insert_memory_breakpoint): New function, based off
	set_raw_breakpoint_at.
	(remove_memory_breakpoint): New function.
	(set_raw_breakpoint_at): Reimplement.
	(set_breakpoint): New, based on set_breakpoint_at.
	(set_breakpoint_at): Reimplement.
	(delete_raw_breakpoint): Go through the_target->remove_point
	instead of assuming memory breakpoints.
	(find_gdb_breakpoint_at): Delete.
	(Z_packet_to_bkpt_type, Z_packet_to_raw_bkpt_type): New functions.
	(find_gdb_breakpoint): New function.
	(set_gdb_breakpoint_at): Delete.
	(z_type_supported): New function.
	(set_gdb_breakpoint_1): New function, loosely based off
	set_gdb_breakpoint_at.
	(check_gdb_bp_preconditions, set_gdb_breakpoint): New functions.
	(delete_gdb_breakpoint_at): Delete.
	(delete_gdb_breakpoint_1): New function, loosely based off
	delete_gdb_breakpoint_at.
	(delete_gdb_breakpoint): New function.
	(clear_gdb_breakpoint_conditions): Rename to ...
	(clear_breakpoint_conditions): ... this.  Don't handle a NULL
	breakpoint.
	(add_condition_to_breakpoint): Make static.
	(add_breakpoint_condition): Take a struct breakpoint pointer
	instead of an address.  Adjust.
	(gdb_condition_true_at_breakpoint): Rename to ...
	(gdb_condition_true_at_breakpoint_z_type): ... this, and add
	z_type parameter.
	(gdb_condition_true_at_breakpoint): Reimplement.
	(add_breakpoint_commands): Take a struct breakpoint pointer
	instead of an address.  Adjust.
	(gdb_no_commands_at_breakpoint): Rename to ...
	(gdb_no_commands_at_breakpoint_z_type): ... this.  Add z_type
	parameter.  Return true if no breakpoint was found.  Change debug
	output.
	(gdb_no_commands_at_breakpoint): Reimplement.
	(run_breakpoint_commands): Rename to ...
	(run_breakpoint_commands_z_type): ... this.  Add z_type parameter,
	and change return type to boolean.
	(run_breakpoint_commands): New function.
	(gdb_breakpoint_here): Also check for Z1 breakpoints.
	(uninsert_raw_breakpoint): Don't try to reinsert a disabled
	breakpoint.  Go through the_target->remove_point instead of
	assuming memory breakpoint.
	(uninsert_breakpoints_at, uninsert_all_breakpoints): Uninsert
	software and hardware breakpoints.
	(reinsert_raw_breakpoint): Go through the_target->insert_point
	instead of assuming memory breakpoint.
	(reinsert_breakpoints_at, reinsert_all_breakpoints): Reinsert
	software and hardware breakpoints.
	(check_breakpoints, breakpoint_here, breakpoint_inserted_here):
	Check both software and hardware breakpoints.
	(validate_inserted_breakpoint): Assert the breakpoint is a
	software breakpoint.  Set the inserted flag to -1 instead of
	setting shlib_disabled.
	(delete_disabled_breakpoints): Adjust.
	(validate_breakpoints): Only validate software breakpoints.
	Adjust to inserted flag change.
	(check_mem_read, check_mem_write): Skip breakpoint types other
	than software breakpoints.  Adjust to inserted flag change.
	* mem-break.h (enum raw_bkpt_type): New enum.
	(raw_breakpoint, struct process_info): Forward declare.
	(Z_packet_to_target_hw_bp_type): Delete declaration.
	(raw_bkpt_type_to_target_hw_bp_type, Z_packet_to_raw_bkpt_type)
	(set_gdb_breakpoint, delete_gdb_breakpoint)
	(clear_breakpoint_conditions): New declarations.
	(set_gdb_breakpoint_at, clear_gdb_breakpoint_conditions): Delete.
	(breakpoint_inserted_here): Update comment.
	(add_breakpoint_condition, add_breakpoint_commands): Replace
	address parameter with a breakpoint pointer parameter.
	(gdb_breakpoint_here): Update comment.
	(delete_gdb_breakpoint_at): Delete.
	(insert_memory_breakpoint, remove_memory_breakpoint): Declare.
	* server.c (process_point_options): Take a struct breakpoint
	pointer instead of an address.  Adjust.
	(process_serial_event) <Z/z packets>: Use set_gdb_breakpoint and
	delete_gdb_breakpoint.
	* spu-low.c (spu_target_ops): Install NULL as
	supports_z_point_type method.
	* target.h: Include mem-break.h.
	(struct target_ops) <prepare_to_access_memory>: Update comment.
	<supports_z_point_type>: New field.
	<insert_point, remove_point>: Take an enum raw_bkpt_type argument
	instead of a char.  Also take a raw breakpoint pointer.
	* win32-arm-low.c (the_low_target): Install NULL as
	supports_z_point_type.
	* win32-i386-low.c (i386_supports_z_point_type): New function.
	(i386_insert_point, i386_remove_point): Adjust to new interface.
	(the_low_target): Install i386_supports_z_point_type.
	* win32-low.c (win32_supports_z_point_type): New function.
	(win32_insert_point, win32_remove_point): Adjust to new interface.
	(win32_target_ops): Install win32_supports_z_point_type.
	* win32-low.h (struct win32_target_ops):
	<supports_z_point_type>: New method.
	<insert_point, remove_point>: Take an enum raw_bkpt_type argument
	instead of a char.  Also take a raw breakpoint pointer.

gdb/testsuite/
2014-05-20  Pedro Alves  <palves@redhat.com>

	* gdb.base/break-idempotent.c: New file.
	* gdb.base/break-idempotent.exp: New file.
2014-05-20 18:42:30 +01:00
Pedro Alves
932539e3ab [GDBserver] Move Z packet defines and type convertion routines to shared code.
The Aarch64, MIPS and x86 Linux backends all have Z packet number
defines and corresponding protocol number to internal type convertion
routines.  Factor them all out to gdbserver's core code, so we only
have one shared copy.

Tested on x86_64 Fedora 20, and also cross built for aarch64-linux-gnu
and mips-linux-gnu.

gdb/gdbserver/
2014-05-20  Pedro Alves  <palves@redhat.com>

	* mem-break.h: Include break-common.h.
	(Z_PACKET_SW_BP, Z_PACKET_HW_BP, Z_PACKET_WRITE_WP)
	(Z_PACKET_READ_WP, Z_PACKET_ACCESS_WP): New defines.
	(Z_packet_to_target_hw_bp_type): New declaration.
	* mem-break.c (Z_packet_to_target_hw_bp_type): New function.
	* i386-low.c (Z_PACKET_HW_BP, Z_PACKET_WRITE_WP, Z_PACKET_READ_WP)
	(Z_PACKET_ACCESS_WP): Delete macros.
	(Z_packet_to_hw_type): Delete function.
	* i386-low.h: Don't include break-common.h here.
	(Z_packet_to_hw_type): Delete declaration.
	* linux-x86-low.c (x86_insert_point, x86_insert_point): Call
	Z_packet_to_target_hw_bp_type instead of Z_packet_to_hw_type.
	* win32-i386-low.c (i386_insert_point, i386_remove_point): Call
	Z_packet_to_target_hw_bp_type instead of Z_packet_to_hw_type.
	* linux-aarch64-low.c: Don't include break-common.h here.
	(Z_PACKET_SW_BP, Z_PACKET_HW_BP, Z_PACKET_WRITE_WP)
	(Z_PACKET_READ_WP, Z_PACKET_ACCESS_WP): Delete macros.
	(Z_packet_to_target_hw_bp_type): Delete function.
	* linux-mips-low.c (rsp_bp_type_to_target_hw_bp_type): Delete
	function.
	(mips_insert_point, mips_remove_point): Use
	Z_packet_to_target_hw_bp_type.
2014-05-20 18:41:41 +01:00
Pedro Alves
4ff0d3d82d [GDBserver][AArch64] Make watchpoint support use target_hw_bp_type.
This makes linux-aarch64-low.c use target_hw_bp_type, like gdb's
aarch64-linux-nat.c.  The original motivation is decoupling
insert_point/remove_point from Z packet numbers, but I think making
the files a little bit more similar is a good thing on its own right.
Ideally we'd merge these files even...  The
aarch64_point_encode_ctrl_reg change is taken straight from GDB's
copy.

I confirmed with a cross compiler that this builds, but it's otherwise
untested.

gdb/gdbserver/
2014-05-20  Pedro Alves  <palves@redhat.com>

	* linux-aarch64-low.c: Include break-common.h.
	(enum target_point_type): Delete.
	(Z_packet_to_point_type): Rename to ...
	(Z_packet_to_target_hw_bp_type): ... this, and return a
	target_hw_bp_type instead.
	(aarch64_show_debug_reg_state): Take an enum target_hw_bp_type
	instead of an enum target_point_type.
	(aarch64_point_encode_ctrl_reg): Likewise.  Compute type mask from
	breakpoint type.
	(aarch64_dr_state_insert_one_point)
	(aarch64_dr_state_remove_one_point, aarch64_handle_breakpoint)
	(aarch64_handle_aligned_watchpoint)
	(aarch64_handle_unaligned_watchpoint, aarch64_handle_watchpoint):
	Take an enum target_hw_bp_type instead of an enum
	target_point_type.
	(aarch64_supports_z_point_type): New function.
	(aarch64_insert_point, aarch64_remove_point): Use it.  Adjust to
	use Z_packet_to_target_hw_bp_type.
2014-05-20 18:24:27 +01:00
Joel Brobecker
786dc51990 Do not build gdbserver with -Werror by default if development=false
On GDB release branches, we change $development in gdb/development.sh
to false, in order to build the GDB release without -Werror by default,
thus avoiding harmless compiler warnings from breaking the build of
someone who's only interested in building GDB rather than working
on it.

This patch implements the same strategy for gdbserver, using the exact
same method.

gdb/gdbserver/ChangeLog:

        * configure.ac: Only use -Werror by default when DEVELOPMENT
        is true.
        * configure: Regenerate.

Tested on x86_64-linux, by rebuilding GDBserver first with development
set to true, and then doing it again with development set to false.
Werror was used in the first case, but not in the second.
2014-05-20 06:25:10 -07:00
Markus Metzger
e59fa00fa0 btrace: no replay without history
When using a reverse execution command without execution history, GDB
might end up in a state where replaying has been started but remains
at the current instruction.  This state is illegal.

Do not step if there is no execution history to avoid this.

2014-05-20  Markus Metzger  <markus.t.metzger@intel.com>

	* record-btrace.c (record_btrace_step_thread): Check for empty history.

testsuite/
	* gdb.btrace/nohist.exp: New.
2014-05-20 14:18:10 +02:00
Nick Clifton
00b32ff21f Fix MSP430 assembler to support #hi(<symbol>).
* config/tc-msp430.c (CHECK_RELOC_MSP430): Add OP parameter.
	Generate BFD_RELOC_MSP430_ABS_HI16 if vshift is 1.
	(msp430_srcoperand): Store vshift value in operand.

	* msp430.h (struct msp430_operand_s): Add vshift field.

	* gas/elf/struct.d: Expect extra output from some toolchains.
	* gas/symver/symver0.d: Likewise.
	* gas/symver/symver1.d: Likewise.
2014-05-20 10:28:42 +01:00
Will Newton
273dc27930 ld/aarch64: xfail non-PIC shared object tests on aarch64
aarch64 does not support building non-PIC shared objects, so mark
tests for these as xfail.

ld/testsuite/ChangeLog:

2014-05-20  Will Newton  <will.newton@linaro.org>

	* ld-shared/shared.exp: Mark non-PIC shared object tests
	as xfail on aarch64.
2014-05-20 09:47:29 +01:00
Yao Qi
8b696e3155 Set timeout for gdb.reverse/*.exp test cases
Hi,
This patch is to add a new board setting gdb_reverse_timeout, which is
used to set timeout for all gdb.reverse test cases, which are usually
very slow and cause some TIMEOUT failures, for example, on some arm
boards.  We have some alternatives to this approach, but I am not
satisfied with them:

 - Increase the timeout value.  This is the global change, and it may
   cause some delay where actual failures happen.
 - Set timeout by gdb_reverse_timeout in every gdb.reverse/*.exp.
   Then, we have to touch every file under gdb.reverse.

In this patch, we choose a central place to set timeout for all tests
in gdb.reverse, which is convenient.

gdb/testsuite:

2014-05-20  Yao Qi  <yao@codesourcery.com>

	* lib/gdb.exp (gdb_init): Set timeout if test file is under
	gdb.reverse directory and gdb_reverse_timeout exists in board
	setting.
	* README: Document gdb_reverse_timeout.
2014-05-20 14:02:02 +08:00
Yao Qi
73c9764f95 gdb_init argument ARGS is a string rather than a list
The argument ARGS of gdb_init is passed from dejagnu is a string, the
test file name.  In dejagnu/runtest.exp:

proc runtest { test_file_name } {
....
....
        if [info exists tool] {
            if { [info procs "${tool}_init"] != "" } {
                ${tool}_init $test_file_name;
            }
        }
....
}

but inn default_gdb_init (callee of gdb_init), we have

    set gdb_test_file_name [file rootname [file tail [lindex $args 0]]]

In tcl, all actual arguments are combined to a list and assigned to
args.  This code here isn't wrong, but unnecessary, because its caller
(proc runtest) only passes one string to it, and IMO, we don't need
such tricky tcl "args".

I doubt that "[lindex $args 0]" is to be backward compatible with old
dejagnu, but dejagnu-1.4 release started to pass $test_file_name to
${too}_init, as I showed above.  dejagnu-1.4 was released in 2001, and
it should be old enough.  I also tried to check whether gdb testusite
works with dejagnu-1.3 or not, but failed to build dejagnu-1.3 on my
machine.  Supposing GDB testsuite requires at least dejagnu-1.4, this
change should be safe.

This patch is update default_gdb_init to treat ARGS as a string instead
of a list.  Then, 'args' sounds like a list, and this patch also renames
it by 'test_file_name', to align with dejagnu.

gdb/testsuite:

2014-05-20  Yao Qi  <yao@codesourcery.com>

	* lib/gdb.exp (default_gdb_init): Rename argument 'args' by
	'test_file_name'.  Treat args as a string instead of a list.
	(gdb_init): Rename argument 'args' by 'test_file_name'.
2014-05-20 14:01:51 +08:00
Hui Zhu
f2205de008 Fix issue #15778: GDB Aarch64 signal frame unwinder issue
The root cause of this issue is unwinder of "#3  <signal handler called>"
doesn't supply right values of registers.
When GDB want to get the previous frame of "#3  <signal handler called>",
it will call cache init function of unwinder "aarch64_linux_sigframe_init".
The address or the value of the registers is get from this function.
So the bug is inside thie function.

I check the asm code of "#3  <signal handler called>":
(gdb) frame 3
(gdb) p $pc
$1 = (void (*)()) 0x7f931fa4d0
(gdb) disassemble $pc, +10
Dump of assembler code from 0x7f931fa4d0 to 0x7f931fa4da:
=> 0x0000007f931fa4d0:	mov	x8, #0x8b                  	// #139
   0x0000007f931fa4d4:	svc	#0x0
   0x0000007f931fa4d8:	nop

This is the syscall sys_rt_sigreturn, Linux kernel function "restore_sigframe"
will set the frame:
	for (i = 0; i < 31; i++)
		__get_user_error(regs->regs[i], &sf->uc.uc_mcontext.regs[i],
				 err);
	__get_user_error(regs->sp, &sf->uc.uc_mcontext.sp, err);
	__get_user_error(regs->pc, &sf->uc.uc_mcontext.pc, err);
The struct of uc_mcontext is:
struct sigcontext {
	__u64 fault_address;
	/* AArch64 registers */
	__u64 regs[31];
	__u64 sp;
	__u64 pc;
	__u64 pstate;
	/* 4K reserved for FP/SIMD state and future expansion */
	__u8 __reserved[4096] __attribute__((__aligned__(16)));
};

But in GDB function "aarch64_linux_sigframe_init", the code the get address
of registers is:
  for (i = 0; i < 31; i++)
    {
      trad_frame_set_reg_addr (this_cache,
			       AARCH64_X0_REGNUM + i,
			       sigcontext_addr + AARCH64_SIGCONTEXT_XO_OFFSET
			       + i * AARCH64_SIGCONTEXT_REG_SIZE);
    }

  trad_frame_set_reg_addr (this_cache, AARCH64_FP_REGNUM, fp);
  trad_frame_set_reg_addr (this_cache, AARCH64_LR_REGNUM, fp + 8);
  trad_frame_set_reg_addr (this_cache, AARCH64_PC_REGNUM, fp + 8);

The code that get pc and sp is not right, so I change the code according
to Linux kernel code:
  trad_frame_set_reg_addr (this_cache, AARCH64_SP_REGNUM,
			   sigcontext_addr + AARCH64_SIGCONTEXT_XO_OFFSET
			     + 31 * AARCH64_SIGCONTEXT_REG_SIZE);
  trad_frame_set_reg_addr (this_cache, AARCH64_PC_REGNUM,
			   sigcontext_addr + AARCH64_SIGCONTEXT_XO_OFFSET
			     + 32 * AARCH64_SIGCONTEXT_REG_SIZE);

The issue was fixed by this change, and I did the regression test.  It
also fixed a lot of other XFAIL and FAIL.

2014-05-20  Hui Zhu  <hui@codesourcery.com>
	    Yao Qi  <yao@codesourcery.com>

	PR backtrace/16558
	* aarch64-linux-tdep.c (aarch64_linux_sigframe_init): Update comments
	and change address of sp and pc.
2014-05-20 13:19:06 +08:00
Alan Modra
cdf2a8b762 Remove unnecessary header from m68k-dis.c
* m68k-dis.c: Don't include setjmp.h.
2014-05-20 13:15:18 +09:30
Alan Modra
93d1b056cb Rewrite ppc32 backend .sdata and .sdata2 handling
1) _SDA_BASE_ and _SDA2_BASE_ and defined automatically, in a similar
   manner to the way _GLOBAL_OFFSET_TABLE_ is handled.  It's a little
   more complicated to remove the symbols because _SDA_BASE_ needs to
   be there if either .sdata or .sbss is present, and similarly for
   _SDA2_BASE.
2) The linker created .sdata and .sdata2 sections used for
   R_PPC_EMB_SDAI16 and R_PPC_EMB_SDA2I16 pointers are created early.
   Nowadays we strip unneeded sections from the output, so it isn't
   necessary to delay creating the sections.
3) The output section for targets of various SDA relocs is now checked
   as per the ABI(s).  We previously allowed .sdata.foo and similar,
   most likely because at some stage we were checking input sections.

Also, the patch fixes a long-standing bug in size_input_sections
that affects the values of symbols defined in stripped input
sections.

	PR 16952
bfd/
	* elf32-ppc.c (ppc_elf_create_linker_section): Move earlier.
	Remove redundant setting of htab->elf.dynobj.  Don't align.
	Define .sdata symbols using _bfd_elf_define_linkage_sym.
	(ppc_elf_create_glink): Call ppc_elf_create_linker_section.
	(create_sdata_sym): Delete.
	(elf_allocate_pointer_linker_section): Rename from
	elf_create_pointer_linker_section.  Align section.
	(ppc_elf_check_relocs): Don't call ppc_elf_creat_linker_section
	directly here, or create_sdata_sym.  Set ref_regular on _SDA_BASE_
	and _SDA2_BASE_.
	(ppc_elf_size_dynamic_sections): Remove ATTRIBUTE_UNUSED on param.
	Remove unnecessary tests on _SDA_BASE_ sym.
	(maybe_strip_sdasym, ppc_elf_maybe_strip_sdata_syms): New functions.
	(ppc_elf_relocate_section): Tighten SDA reloc symbol section checks.
	* elf32-ppc.h (ppc_elf_set_sdata_syms): Delete.
	(ppc_elf_maybe_strip_sdata_syms): Declare.
ld/
	* emulparams/elf32ppccommon.sh (_SDA_BASE_, _SDA2_BASE_): Delete.
	* emultempl/ppc32elf.em (ppc_before_allocation): Call
	ppc_elf_maybe_strip_sdata_syms.
	* ldlang.c (size_input_section): Correct output_offset value
	for excluded input sections.
2014-05-20 13:13:23 +09:30
Alan Modra
ab2f2ff937 daily update 2014-05-20 09:30:38 +09:30
Doug Evans
7305118224 build_type_unit_groups and moved closer to only caller and renamed
* dwarf2read.c (build_type_psymtabs_1): Renamed from
	build_type_unit_groups and moved closer to only caller.  Remove
	arguments.  All references updated.  Remove outdated .gdb_index
	comment.
	(struct tu_abbrev_offset, sort_tu_by_abbrev_offset): Move with
	build_type_psymtabs_1.
2014-05-19 16:06:59 -07:00
Tom Tromey
c4e54771f8 fix two latent type errors
I'm checking this in as obvious.

I was looking at instances of "alloc.*sizeof" and noticed a couple
where the types in question are incorrect.

In gdbtypes, the code allocates sizeof(int) to represent a struct rank.
In mi-cmds, the code uses "struct mi_cmd **" -- one "*" too many.

In both cases the problems are latent because in practice the sizes
are the same as the sizes of the correct types.  Still, it's better to
be correct.

I think gdb would be improved by a wholesale change from explicit
sizeofs to using the libiberty.h allocation macros.  In most cases
they are both shorter and have better type safety.  However, the
resulting patch is rather large.

Built and regtested on x86-64 Fedora 20.

2014-05-19  Tom Tromey  <tromey@redhat.com>

	* gdbtypes.c (rank_function): Use XNEWVEC.
	* mi/mi-cmds.c (build_table): Use XCNEWVEC.
2014-05-19 14:17:16 -06:00
Doug Evans
8832e7e38e Remove all_type_unit_groups, unused.
* dwarf2read.c (struct dwarf2_per_objfile): Delete unused members
	n_type_unit_groups, all_type_unit_groups.  All uses removed.
	(get_type_unit_group, build_type_unit_groups): Delete forward decls.
	(dw2_get_cutu): Renamed from dw2_get_cu.  All callers updated.
	(dw2_get_cu): Renamed from dw2_get_primary_cu.  All callers updated.
	(add_type_unit_group_to_table): Delete.
2014-05-19 12:52:08 -07:00
Jan Kratochvil
9e0aa64f55 Fix gdbserver qGetTLSAddr for x86_64 -m32
gdbserver makes libthread_db to access uninitialized memory.  Surprisingly it
does not harm normally, even -fsanitize=address works with current gdbserver.
I have found just valgrind detects it as a very first warning for gdbserver:

Syscall param ptrace(addr) contains uninitialised byte(s)
   at 0x3721EECEBE: ptrace (ptrace.c:45)
   by 0x436EE5: ps_get_thread_area (linux-x86-low.c:252)
   by 0x5559D02: __td_ta_lookup_th_unique (td_ta_map_lwp2thr.c:157)
   by 0x5559EC3: td_ta_map_lwp2thr (td_ta_map_lwp2thr.c:207)
   by 0x43F87D: find_one_thread (thread-db.c:281)
   by 0x440038: thread_db_get_tls_address (thread-db.c:505)
   by 0x40F6D0: handle_query (server.c:2004)
   by 0x4124CF: process_serial_event (server.c:3445)
   by 0x4136B6: handle_serial_event (server.c:3889)
   by 0x419571: handle_file_event (event-loop.c:434)
   by 0x418D38: process_event (event-loop.c:189)
   by 0x419AB7: start_event_loop (event-loop.c:552)

Reproducible with:
cd gdb/testsuite
g++ -o gdb.threads/tls gdb.threads/tls{,2}.c -m32 -pthread
../gdbserver/gdbserver :1234 gdb.threads/tls
../gdb -batch gdb.threads/tls -ex 'target remote :1234' -ex 'b spin' -ex c -ex 'p a_thread_local'

It is more easily reproducible even without valgrind using s/0x00/0xff/ in the
attached patch.  It will then turn the output of reproducer above:
$1 = 0
->
Cannot find thread-local storage for Thread 29044, executable file .../gdb/testsuite/gdb.threads/tls:
Remote target failed to process qGetTLSAddr request

gdb/gdbserver/
2014-05-19  Jan Kratochvil  <jan.kratochvil@redhat.com>

	Fix gdbserver qGetTLSAddr for x86_64 -m32.
	* linux-x86-low.c (X86_64_USER_REGS): New.
	(x86_fill_gregset): Call memset for BUF first in x86_64 -m32 case.

Message-ID: <20140410114901.GA16411@host2.jankratochvil.net>
2014-05-19 20:20:27 +02:00
Doug Evans
cd8ae15e25 * eval.c (evaluate_subexp_standard): Add some comments. 2014-05-19 10:51:08 -07:00
Jan Kratochvil
f1f4348a6e [testsuite patch] Test power{5,6,7} disassembly
Power5, Power6 and Power7 disassembly testing.

gdb/testsuite/
2014-05-19  Jan Kratochvil  <jan.kratochvil@redhat.com>

	* gdb.arch/powerpc-power.exp: New file.
	* gdb.arch/powerpc-power.s: New file.

Message-ID: <20140514205425.GA15398@host2.jankratochvil.net>
2014-05-19 15:39:24 +02:00
Nick Clifton
296a868924 Extend the fix already created for PR 16858 so that it works with x86 PE targets as well.
PR gas/16858
	* config/tc-i386.c (md_apply_fix): Improve the detection of code
	symbols for 32-bit PE targets.
2014-05-19 14:29:31 +01:00
Andreas Tobler
fb2c6e43b8 Don't link FreeBSD tests with -ldl.
* ld-elf/shared.exp: Introduce the extralibs variable to control
    the libraries to be linked. Don't link -ldl on *-*-freebsd*.

    * ld-bootstrap/bootstrap.exp: Do not add -ldl to the extralibs on
    *-*-freebsd*.
2014-05-19 08:49:55 +02:00
Alan Modra
f0d7b6ded5 daily update 2014-05-19 09:30:38 +09:30
Richard Sandiford
fd5c94abf6 gas/
* config/tc-mips.c (md_obj_begin): Delete.
	(md_obj_end): Fold into...
	(md_mips_end): ...here.  Move to end of file.
2014-05-18 20:28:04 +01:00
Alan Modra
d7e4851a0c daily update 2014-05-18 09:30:41 +09:30
Doug Evans
08f4850b5d * progspace.c (remove_program_space): Delete, unused.
* progspace.h (remove_program_space): Ditto.
2014-05-17 12:18:26 -07:00
Doug Evans
bed8455c71 * inferior.c (prune_inferiors): Fix comment.
(remove_inferior_command): Call prune_program_spaces.
2014-05-17 11:59:34 -07:00
Nick Clifton
77f730a2f5 Prevent the V850 assembler from generating an internal error if it is asked to
handle a ctoff() pseudo-op when running in RH850 ABI mode.

	PR gas/16946
	* config/tc-v850.c (handle_ctoff): Generate an error if called
	when using the RH850 ABI.
2014-05-17 17:48:44 +01:00
Ryan Mansfield
a7c7b2ba6c * config.bfd: Move QNX target_cflags from arm-*-netbsd* to arm-*-nto*. 2014-05-17 17:48:44 +01:00
Doug Evans
b3ce5e5f18 Copy over changes from guile.texi.
* python.texi (Basic Python) <gdb.execute>: Add text.
	(Basic Python) <gdb.post_event>: Remove "main" from "main GDB thread".
	(Values From Inferior) <Python string>: Add text.
	(Values From Inferior) <Value.string>: Clarify string length handling.
	(Pretty Printing API): Add cindex.
	(Types In Python) <TYPE_CODE_*>: Use vtable instead of table.
	Remove unnecessary index of gdb.TYPE_CODE_*.  Replace @findex with
	@vindex.
	(Commands In Python) <COMPLETE_*>: Similarly.
	(Symbols In Python) <SYMBOL_*>: Similarly.
	(Breakpoints In Python) <WP_*>: Similarly.
	(Breakpoints In Python) <BP_*>: Similarly.
2014-05-17 09:13:00 -07:00
David Taylor
8dfcab11cd Improve docs of qfThreadInfo packet.
gdb/doc/gdb.texinfo (General Query Packets): Add a note about thread IDs
mentioned in the qfThreadInfo reply.
2014-05-17 10:29:57 +03:00
Alan Modra
ff46be9062 daily update 2014-05-17 09:30:39 +09:30
Doug Evans
d7761c2cba * gdb.base/completion.exp: Check that all expected files exist
before doing file completion.
2014-05-16 12:46:24 -07:00
Doug Evans
0dbe70ceba * gdb.base/Makefile.in (EXECUTABLES): Add completion. 2014-05-16 12:34:05 -07:00