"objdump -s -j .bss" results in a message that indicates objdump
couldn't find a .bss section when present. Fix that.
* objdump.c (dump_section): Don't return without calling
process_section_p.
gold version of commit e10a07b32d.
* options.h (DEFINE_enum): Add optional_arg__ param, adjust
all uses.
(General_options): Add --power10-stubs and --no-power10-stubs.
* options.cc (General_options::finalize): Handle --power10-stubs.
* powerpc.cc (set_power10_stubs): Don't set when --power10-stubs=no.
(power10_stubs_auto): New.
(struct Plt_stub_ent): Add toc_ and tocoff_. Don't use a bitfield
for indx_.
(struct Branch_stub_ent): Add toc_and tocoff_. Use bitfields for
iter_, notoc_ and save_res_.
(add_plt_call_entry): Set toc_. Adjust resizing conditions for
--power10-stubs=auto.
(add_long_branch_entry): Set toc_.
(add_eh_frame, define_stub_syms): No longer use const_iterators
for plt and long branch stub iteration.
(build_tls_opt_head, build_tls_opt_tail): Change parameters and
return value. Move tests for __tls_get_addr to callers.
(plt_call_size): Handle --power10-stubs=auto.
(branch_stub_size): Likewise.
(Stub_table::do_write): Likewise.
(relocate): Likewise.
I'm running into a build breaker:
...
src/gdb/ser-tcp.c:65:13: error: conflicting declaration ‘typedef int
socklen_t’
65 | typedef int socklen_t;
| ^~~~~~~~~
In file included from ../gnulib/import/unistd.h:40,
from
/home/vries/gdb_versions/devel/src/gdb/../gnulib/import/pathmax.h:42,
from
/home/vries/gdb_versions/devel/src/gdb/../gdbsupport/common-defs.h:120,
from src/gdb/defs.h:28,
from src/gdb/ser-tcp.c:20:
/usr/include/unistd.h:277:21: note: previous declaration as ‘typedef
__socklen_t socklen_t’
277 | typedef __socklen_t socklen_t;
| ^~~~~~~~~
...
after commit 05a6b8c28b "Don't unnecessarily redefine 'socklen_t' type in
MinGW builds".
The root cause is a typo in gdb/configure.ac, using sys/sockets.h where
sys/socket.h was meant:
...
AC_CHECK_HEADERS([sys/sockets.h])
...
Fix the typo.
Build and tested on x86_64-linux.
gdb/ChangeLog:
2020-07-27 Tom de Vries <tdevries@suse.de>
* configure.ac: Fix sys/sockets.h -> sys/socket.h typo.
* config.in: Regenerate.
* configure: Regenerate.
This commit fixes a compilation failure in a couple of libctf files
due to the use of EOVERFLOW and ENOTSUP, which are not defined
when compiling on MinGW.
libctf/ChangeLog:
PR binutils/25155:
* ctf-create.c (EOVERFLOW): If not defined by system header,
redirect to ERANGE as a poor man's substitute.
* ctf-subr.c (ENOTSUP): If not defined, use ENOSYS instead.
(cherry picked from commit 50500ecfef)
The original configure-time tests in gdb/ and gdbserver/ failed to
detect that 'socklen_t' is defined in MinGW headers because the test
program included only sys/socket.h, which is absent in MinGW system
headers. However on MS-Windows this data type is declared in another
header, ws2tcpip.h. The modified test programs try using ws2tcpip.h
if sys/socket.h is unavailable.
Thanks to Joel Brobecker who helped me regenerate the configure
scripts and the config.in files.
gdb/ChangeLog:
2020-07-26 Eli Zaretskii <eliz@gnu.org>
* configure.ac (AC_CHECK_HEADERS): Check for sys/socket.h and
ws2tcpip.h. When checking whether socklen_t type is defined, use
ws2tcpip.h if it is available and sys/socket.h isn't.
* configure: Regenerate.
* config.in: Regenerate.
gdbserver/ChangeLog:
2020-07-26 Eli Zaretskii <eliz@gnu.org>
* configure.ac (AC_CHECK_HEADERS): Add ws2tcpip.h.
When checking whether socklen_t type is defined, use ws2tcpip.h if
it is available and sys/socket.h isn't.
* configure: Regenerate.
* config.in: Regenerate.
The binutils testsuite supports involving LD in processing test cases
and with the MIPS target that has the same issues the LD testsuite does.
So to support LD in the MIPS part of the binutils testsuite similarly
to commit 86b24e15c4 ("MIPS/LD/testsuite: Correct comm-data.exp test
ABI/emul/endian arrangement") update the mips.exp test script to:
- correctly select emulations for targets using non-traditional MIPS
emulations,
- correctly select ABIs for targets that do not support all of them,
- use the default endianness selection where possible to benefit targets
that support only one,
- simplify test invocation by providing ABI-specific `run_dump_test'
wrappers, specifically `run_dump_test_o32', `run_dump_test_n32' and
`run_dump_test_n64', which remove the need to use conditionals across
the Expect script or to repeat ABI-specific GAS and LD flags with each
invocation,
borrowing changes from commit 78da84f994 ("MIPS/LD/testsuite: Correct
mips-elf.exp test ABI/emul/endian arrangement").
As a side effect this disables o32 ABI testing for targets that are not
supposed to support them and do not with LD, but still have such support
with BFD and GAS due to our inflexibility in configuration. Ultimately
we ought to support having o32 completely disabled.
binutils/
* testsuite/binutils-all/mips/mips.exp (run_dump_test_abi)
(run_dump_test_o32, run_dump_test_n32, run_dump_test_n64): New
procedures.
(has_newabi): Remove variable.
(has_abi, abi_asflags, abi_ldflags): New associative array
variables.
(irixemul): New variable.
Replace `run_dump_test' calls where applicable throughout with
`run_dump_test_o32', `run_dump_test_n32' and `run_dump_test_n64'
as appropriate. Use `noarch' for tests that require their own
architecture setting.
* testsuite/binutils-all/mips/mips-ase-1.d: Remove GAS flags.
* testsuite/binutils-all/mips/mips-ase-2.d: Likewise.
* testsuite/binutils-all/mips/mips-ase-3.d: Likewise.
* testsuite/binutils-all/mips/mips-note-2-n32.d: Likewise.
* testsuite/binutils-all/mips/mips-note-2-n64.d: Likewise.
* testsuite/binutils-all/mips/mips-note-2.d: Likewise.
* testsuite/binutils-all/mips/mips-note-2r-n32.d: Likewise.
* testsuite/binutils-all/mips/mips-note-2r-n64.d: Likewise.
* testsuite/binutils-all/mips/mips-note-2r.d: Likewise.
* testsuite/binutils-all/mips/mips-reginfo-n32.d: Likewise.
* testsuite/binutils-all/mips/mips-reginfo.d: Likewise.
* testsuite/binutils-all/mips/mips16-extend-noinsn.d: Likewise.
* testsuite/binutils-all/mips/mips16-pcrel.d: Likewise.
* testsuite/binutils-all/mips/mips16-alias.d: Remove `-32' from
GAS flags.
* testsuite/binutils-all/mips/mips16-extend-insn.d: Likewise.
* testsuite/binutils-all/mips/mips16-noalias.d: Likewise.
* testsuite/binutils-all/mips/mips16-undecoded.d: Likewise.
* testsuite/binutils-all/mips/mips16e2-extend-insn.d: Likewise.
* testsuite/binutils-all/mips/mips16e2-undecoded.d: Likewise.
* testsuite/binutils-all/mips/mixed-micromips.d: Likewise.
* testsuite/binutils-all/mips/mixed-mips16.d: Likewise.
After dereferencing a pointer (in value_ind) or following a
reference (in coerce_ref) we call readjust_indirect_value_type to
"fixup" the type of the resulting value object.
This fixup handles cases relating to the type of the resulting object
being different (a sub-class) of the original pointers target type.
If we encounter a pointer to a dynamic type then after dereferencing a
pointer (in value_ind) the type of the object created will have had
its dynamic type resolved. However, in readjust_indirect_value_type,
we use the target type of the original pointer to "fixup" the type of
the resulting value. In this case, the target type will be a dynamic
type, so the resulting value object, once again has a dynamic type.
This then triggers an assertion later within GDB.
The solution I propose here is that we call resolve_dynamic_type on
the pointer's target type (within readjust_indirect_value_type) so
that the resulting value is not converted back to a dynamic type.
The test case is based on the original test in the bug report.
gdb/ChangeLog:
PR fortran/23051
PR fortran/26139
* valops.c (value_ind): Pass address to
readjust_indirect_value_type.
* value.c (readjust_indirect_value_type): Make parameter
non-const, and add extra address parameter. Resolve original type
before using it.
* value.h (readjust_indirect_value_type): Update function
signature and comment.
gdb/testsuite/ChangeLog:
PR fortran/23051
PR fortran/26139
* gdb.fortran/class-allocatable-array.exp: New file.
* gdb.fortran/class-allocatable-array.f90: New file.
* gdb.fortran/pointer-to-pointer.exp: New file.
* gdb.fortran/pointer-to-pointer.f90: New file.
The DWARF standard states for the line register in the line number information
state machine the following:
...
An unsigned integer indicating a source line number. Lines are numbered
beginning at 1. The compiler may emit the value 0 in cases where an
instruction cannot be attributed to any source line.
...
So, it's possible to have a zero line number in the DWARF line table.
This is currently not handled by GDB. The zero value is read in as any other
line number, but internally the zero value has a special meaning:
end-of-sequence, so the line table entry ends up having a different
interpretation than intended in some situations.
I've created a test-case where various aspects are tested, which has these 4
interesting tests.
1. Next-step through a zero-line instruction, is_stmt == 1
gdb.dwarf2/dw2-line-number-zero.exp: bar1, 2nd next
2. Next-step through a zero-line instruction, is_stmt == 0
gdb.dwarf2/dw2-line-number-zero.exp: bar2, 2nd next
3. Show source location at zero-line instruction, is_stmt == 1
gdb.dwarf2/dw2-line-number-zero.exp: continue to breakpoint: bar1_label_3
4. Show source location at zero-line instruction, is_stmt == 0
gdb.dwarf2/dw2-line-number-zero.exp: continue to breakpoint: bar2_label_3
And we have the following results:
8.3.1, 9.2:
...
FAIL: gdb.dwarf2/dw2-line-number-zero.exp: bar1, 2nd next
PASS: gdb.dwarf2/dw2-line-number-zero.exp: bar2, 2nd next
PASS: gdb.dwarf2/dw2-line-number-zero.exp: continue to breakpoint: bar1_label_3
FAIL: gdb.dwarf2/dw2-line-number-zero.exp: continue to breakpoint: bar2_label_3
...
commit 8c95582da8 "gdb: Add support for tracking the DWARF line table is-stmt
field":
...
PASS: gdb.dwarf2/dw2-line-number-zero.exp: bar1, 2nd next
PASS: gdb.dwarf2/dw2-line-number-zero.exp: bar2, 2nd next
FAIL: gdb.dwarf2/dw2-line-number-zero.exp: continue to breakpoint: bar1_label_3
FAIL: gdb.dwarf2/dw2-line-number-zero.exp: continue to breakpoint: bar2_label_3
...
commit d8cc8af6a1 "[gdb/symtab] Fix line-table end-of-sequence sorting",
master:
FAIL: gdb.dwarf2/dw2-line-number-zero.exp: bar1, 2nd next
FAIL: gdb.dwarf2/dw2-line-number-zero.exp: bar2, 2nd next
PASS: gdb.dwarf2/dw2-line-number-zero.exp: continue to breakpoint: bar1_label_3
PASS: gdb.dwarf2/dw2-line-number-zero.exp: continue to breakpoint: bar2_label_3
...
The regression in test 2 at commit d8cc8af6a1 was filed as PR symtab/26243,
where clang emits zero line numbers.
The way to fix all tests is to make sure line number zero internally doesn't
clash with special meaning values, and by handling it appropriately
everywhere. That however looks too intrusive for the GDB 10 release.
Instead, we decide to ensure defined behaviour for line number zero by
ignoring it. This gives us back the test results from before commit
d8cc8af6a1, fixing PR26243.
We mark the FAILs for tests 3 and 4 as KFAILs. Test 4 was already failing for
the 9.2 release, and we consider the regression of test 3 from gdb 9.2 to gdb
10 the cost for having defined behaviour.
Build and reg-tested on x86_64-linux.
gdb/ChangeLog:
2020-07-25 Tom de Vries <tdevries@suse.de>
PR symtab/26243
* dwarf2/read.c (lnp_state_machine::record_line): Ignore zero line
entries.
gdb/testsuite/ChangeLog:
2020-07-25 Tom de Vries <tdevries@suse.de>
PR symtab/26243
* gdb.dwarf2/dw2-line-number-zero.c: New test.
* gdb.dwarf2/dw2-line-number-zero.exp: New file.
With gcc-7, I run into:
...
gcc -c -I./ -gnata -Isrc/gdb/testsuite/gdb.ada/mi_prot -g -lm -I- \
src/gdb/testsuite/gdb.ada/mi_prot/prot.adb^M
prot.adb:21:04: info: "Obj_Type" is frozen here, aspects evaluated at this \
point^M
prot.adb:23:09: visibility of aspect for "Obj_Type" changes after freeze \
point^M
gnatmake: "src/gdb/testsuite/gdb.ada/mi_prot/prot.adb" compilation error^M
compiler exited with status 1
...
FAIL: gdb.ada/mi_prot.exp: compilation prot.adb
...
Fix this by requiring gnatmake-8 for this test-case.
Tested on x86_64-linux, with gnatmake-7, gnatmake-8 and gnatmake-11.
gdb/testsuite/ChangeLog:
2020-07-24 Tom de Vries <tdevries@suse.de>
PR testsuite/26293
* gdb.ada/mi_prot.exp: Require gnatmake-8.
Fix a regression from commit a87e1817a4 ("Have the linker fail if any
attempt to link in an executable is made.") and do not reject ET_EXEC
input supplied with the `--just-symbols' option. Such use is legitimate
as the file requested is not actually linked and only the symbols are
extracted. Furthermore it is often the most useful application, as
already observed in our documentation for the option, where it allows
"to refer symbolically to absolute locations of memory defined in other
programs."
Provide a set of tests for the use of ET_EXEC with `--just-symbols'.
These are excluded however for SH/PE targets because they complain if a
section's VMA is 0:
ld: zero vma section reloc detected: `.text' #0 f=32795
ld: zero vma section reloc detected: `.data' #1 f=291
and for x86_64/PE targets because they seem to hardwire the VMA:
100000000 12000000 01000000 00000000 00000000 ................
ld/
PR ld/26288
* ldelf.c (ldelf_after_open): Do not reject ET_EXEC input
supplied with `--just-symbols'.
* testsuite/ld-misc/just-symbols.exp: New test script.
* testsuite/ld-misc/just-symbols-1.dd: New test dump.
* testsuite/ld-misc/just-symbols.ld: New test linker script.
* testsuite/ld-misc/just-symbols-0.s: New test source.
* testsuite/ld-misc/just-symbols-1.s: New test source.
Revert commit a3fc941881 ("Stop the linker from accepting executable
ELF files as inputs to other links."), which has been made obsolete by
commit a87e1817a4 ("Have the linker fail if any attempt to link in an
executable is made."). An earlier check triggers added with the latter
commit making the piece of code removed dead.
ld/
PR ld/26288
Revert:
PR 26047
* ldelf.c (ldelf_after_open): Fail if attempting to link one
executable into another.
This fixes yet another bug exposed by ASAN + multi-target.exp
Running an Asan-enabled GDB against gdb.multi/multi-target.exp exposed
yet another latent GDB bug. See here for the full log:
https://sourceware.org/pipermail/gdb-patches/2020-July/170761.html
As Simon described, the problem is:
- We create a new frame_info object in restore_selected_frame (by
calling find_relative_frame)
- The frame is allocated on the frame_cache_obstack
- In frame_unwind_try_unwinder, we try to find an unwinder for that
frame
- While trying unwinders, memory read fails because the remote target
closes, because of "monitor exit"
- That calls reinit_frame_cache (as shown above), which resets
frame_cache_obstack
- When handling the exception in frame_unwind_try_unwinder, we try to
set some things on the frame_info object (like *this_cache, which
in fact tries to write into frame_info::prologue_cache), but the
frame_info object is no more, it went away with the obstack.
Fix this by maintaining a frame cache generation counter. Then in
exception handling code paths, don't touch frame objects if the
generation is not the same as it was on entry.
This commit generalizes the gdb.server/server-kill.exp testcase and
reuses it to test the scenario in question. The new tests fail
without the GDB fix.
gdb/ChangeLog:
* frame-unwind.c (frame_unwind_try_unwinder): On exception, don't
touch THIS_CACHE/THIS_FRAME if the frame cache was cleared
meanwhile.
* frame.c (frame_cache_generation, get_frame_cache_generation):
New.
(reinit_frame_cache): Increment FRAME_CACHE_GENERATION.
(get_prev_frame_if_no_cycle): On exception, don't touch
PREV_FRAME/THIS_FRAME if the frame cache was cleared meanwhile.
* frame.h (get_frame_cache_generation): Declare.
gdb/testsuite/ChangeLog:
* gdb.server/server-kill.exp (prepare): New, factored out from the
top level.
(kill_server): New.
(test_tstatus, test_unwind_nosyms, test_unwind_syms): New.
(top level) : Call test_tstatus, test_unwind_nosyms, test_unwind_syms.
When compiling with CFLAGS/CXXFLAGS="-O0 -g -Wall" and using g++ 11.0.0, we
run into:
...
src/gdb/tui/tui-winsource.c: In function \
'void tui_update_all_breakpoint_info(breakpoint*)':
src/gdb/tui/tui-winsource.c:427:58: warning: '<unknown>' may be used \
uninitialized [-Wmaybe-uninitialized]
427 | for (tui_source_window_base *win : tui_source_windows ())
| ^
In file included from src/gdb/tui/tui-winsource.c:38:
src/gdb/tui/tui-winsource.h:236:30: note: by argument 1 of type \
'const tui_source_windows*' to 'tui_source_window_iterator \
tui_source_windows::begin() const' declared here
236 | tui_source_window_iterator begin () const
| ^~~~~
src/gdb/tui/tui-winsource.c:427:58: note: '<anonymous>' declared here
427 | for (tui_source_window_base *win : tui_source_windows ())
| ^
...
The warning doesn't make sense for an empty struct, PR gcc/96295 has been
filed about that.
For now, work around the warning by defining a default constructor.
Build on x86_64-linux.
gdb/ChangeLog:
2020-07-23 Tom de Vries <tdevries@suse.de>
PR tui/26282
* tui/tui-winsource.h (struct tui_source_windows::tui_source_windows):
New default constructor.
After the introduction of support for non-statement addresses in the
line table, the output for 'disassemble /m' can be broken in some
cases.
With the /m format disassembly GDB associates a set of addresses with
each line, these addresses are then sorted and printed for each line.
When the non-statement support was added GDB was incorrectly told to
ignore non-statement instructions, and not add these to the result
table. This means that these instructions are completely missing from
the output.
This commit removes the code that caused non-statement lines to be
ignored.
A result of this change is that GDB will now potentially include new
line numbers in the 'disassemble /m' output, lines that previously
were only in the line table as non-statement lines will now appear in
the disassembly output. This feels like an improvement though.
gdb/ChangeLog:
* disasm.c (do_mixed_source_and_assembly_deprecated): Don't
exclude non-statement entries.
gdb/testsuite/ChangeLog:
* gdb.dwarf2/dw2-disasm-over-non-stmt.exp: New file.
In commit 24ac169ac5, this patch:
2020-02-21 Shahab Vahedi <shahab@synopsys.com>
* lib/gdb.exp (gdb_wrapper_init): Reset
"gdb_wrapper_initialized" to 0 if "wrapper_file" does
not exist.
attempted to fix problems finding the gdb test wrapper gdb_tg.o in
some tests that cd to some non-default directory by rebuilding also
the test wrapper in that directory. This had the side-effect of
leaving these .o files in various places in the GDB source directory
tree.
Furthermore, while the tests that cd to some non-default directory
cannot run on remote host, the code that was added to probe for the
presence of the wrapper file was also specific to host == build.
This patch reverts the problematic parts of that commit and replaces
it with forcing use of an absolute (rather than relative) pathname to
the .o file for linking when host == build.
While debugging this patch, I also observed that use of the construct
"[info exists gdb_wrapper_file]" was not reliable for detecting when
that variable had been initialized by gdb_wrapper_init. I rewrote
that so that the variable is always initialized and has a value of an
empty string when no wrapper file is needed.
2020-07-22 Sandra Loosemore <sandra@codesourcery.com>
gdb/testsuite/
* lib/gdb.exp (gdb_wrapper_file, gdb_wrapper_flags):
Initialize to empty string at top level.
(gdb_wrapper_init): Revert check for file existence on build.
Build the wrapper in its default place, not a build-specific
location. When host == build, make the pathname absolute.
(gdb_compile): Delete leftover declaration of
gdb_wrapper_initialized. Check gdb_wrapper_file being an empty
string instead of uninitialized.
This test case was inspired by Pedro's demonstration of a problem
with my v2 patches. It can be found here:
https://sourceware.org/pipermail/gdb-patches/2020-May/168826.html
In a nutshell, my earlier patches could not handle the case in
which a read-only mapping created with mmap() was created at
an address used by other file-backed read-only memory in use by
the process.
This problem has been fixed (for Linux, anyway) by the commit "Use
NT_FILE note section for reading core target memory".
When I run this test without any of my recent corefile patches,
I see these failures:
FAIL: gdb.base/corefile2.exp: kernel core: print/x mbuf_ro[0]@4
FAIL: gdb.base/corefile2.exp: kernel core: print/x mbuf_ro[pagesize-4]@4
FAIL: gdb.base/corefile2.exp: kernel core: print/x mbuf_ro[-3]@6
FAIL: gdb.base/corefile2.exp: kernel core: print/x mbuf_rw[pagesize-3]@6
FAIL: gdb.base/corefile2.exp: kernel core: print/x mbuf_ro[pagesize-3]@6
FAIL: gdb.base/corefile2.exp: maint print core-file-backed-mappings
FAIL: gdb.base/corefile2.exp: gcore core: print/x mbuf_ro[-3]@6
The ones involving mbuf_ro will almost certainly fail when run on
non-Linux systems; I've used setup_xfail on those tests to prevent
them from outright FAILing when not run on Linux. For a time, I
had considered skipping these tests altogether when not run on
Linux, but I changed my mind due to this failure...
FAIL: gdb.base/corefile2.exp: print/x mbuf_rw[pagesize-3]@6
I think it *should* pass without my recent corefile patches. The fact
that it doesn't is likely due to a bug in GDB. The following
interaction with GDB demonstrates the problem:
(gdb) print/x mbuf_rw[pagesize-3]@6
$1 = {0x0, 0x0, 0x0, 0x0, 0x0, 0x0}
(gdb) print/x mbuf_rw[pagesize]@3
$2 = {0x6b, 0x6b, 0x6b}
The last three values in display of $1 should be the same as those
shown by $2. Like this...
(gdb) print/x mbuf_rw[pagesize-3]@6
$1 = {0x0, 0x0, 0x0, 0x6b, 0x6b, 0x6b}
(gdb) print/x mbuf_rw[pagesize]@3
$2 = {0x6b, 0x6b, 0x6b}
That latter output was obtained with the use of all of my current
corefile patches. I see no failures on Linux when running this test
with my current set of corefile patches. I tested 3 architectures:
x86_64, s390x, and aarch64.
I also tested on FreeBSD 12.1-RELEASE. I see the following results
both with and without the current set of core file patches:
# of expected passes 26
# of expected failures 8
Of particular interest is that I did *not* see the problematic mbuf_rw
failure noted earlier (both with and without the core file patches).
I still don't have an explanation for why this failure occurred on
Linux. Prior to running the tests, I had hypothesized that I'd see
this failure on FreeBSD too, but testing shows that this is not the
case.
Also of importance is that we see no FAILs with this test on FreeBSD
which indicates that I XFAILed the correct tests.
This version runs the interesting tests twice, once with a kernel
created core file and another time with a gcore created core file.
It also does a very minimal test of the new command "maint print
core-file-backed-mappings".
gdb/testsuite/ChangeLog:
* gdb.base/corefile2.exp: New file.
* gdb.base/coremaker2.exp: New file.
I wrote a read_core_file_mappings method for FreeBSD and then registered
this gdbarch method. I saw some strange behavior while testing it and
wanted a way to make sure that mappings were being correctly loaded
into corelow.c, so I wrote the new command which is the topic of this
commit. I think it might be occasionally useful for debugging strange
corefile behavior.
With regard to FreeBSD, my work isn't ready yet. Unlike Linux,
FreeBSD puts all mappings into its core file note. And, unlike Linux,
it doesn't dump load segments which occupy no space in the file. So
my (perhaps naive) implementation of a FreeBSD read_core_file_mappings
didn't work all that well: I saw more failures in the corefile2.exp
tests than without it. I think it should be possible to make FreeBSD
work as well as Linux, but it will require doing something with all of
the mappings, not just the file based mappings that I was considering.
In the v4 series, Pedro asked the following:
I don't understand what this command provides that "info proc
mappings" doesn't? Can you give an example of when you'd use this
command over "info proc mappings" ?
On Linux, "info proc mappings" and "maint print core-file-backed-mappings"
will produce similar, possibly identical, output. This need not be
the case for other OSes. E.g. on FreeBSD, had I finished the
implementation, the output from these commands would have been very
different. The FreeBSD "info proc mappings" command would show
additional (non-file-backed) mappings in addition to at least one
additional field (memory permissions) for each mapping.
As noted earlier, I was seeing some unexpected behavior while working
on the FreeBSD implementation and wanted to be certain that the
mappings were being correctly loaded by corelow.c. "info proc
mappings" prints the core file mappings, but doesn't tell us anything
about whether they've been loaded by corelow.c This new maintenance
command directly interrogates the data structures and prints the
values found there.
gdb/ChangeLog:
* corelow.c (gdbcmd.h): Include.
(core_target::info_proc_mappings): New method.
(get_current_core_target): New function.
(maintenance_print_core_file_backed_mappings): New function.
(_initialize_corelow): Add core-file-backed-mappings to
"maint print" commands.
This commit makes adjustments to coredump-filter.exp to account
for the fact that NT_FILE file-backed mappings are now available
when a core file is loaded. Thus, a test which was expected
to PASS when a memory region was determined to be unavailable
(due to no file-backed mappings being available) will now FAIL
due to those mappings being available from having loaded the
NT_FILE note.
I had originally marked the test as XFAIL, but Mihails Strasuns
suggested a much better approach:
1) First test that it still works if file is accessible in the
filesystem.
2) Temporarily move / rename the file and test that disassembly
doesn't work anymore.
That's what this commit implements.
gdb/testsuite/ChangeLog:
* gdb.base/coredump-filter.exp: Add second
non-Private-Shared-Anon-File test.
(test_disasm): Rename binfile for test which is expected
to fail.
When making a core file with the GDB's gcore command on Linux,
the same criteria used for determining which mappings should be
dumped were also being used for determining which entries should
be placed in the NT_FILE note. This is wrong; we want to place
all file-backed mappings in this note.
The predicate function, dump_mapping_p, was used to determine whether
or not to dump a mapping from within linux_find_memory_regions_full.
This commit leaves this predicate in place, but adds a new parameter,
should_dump_mapping_p, to linux_find_memory_regions_full. It then
calls should_dump_mapping_p instead of dump_mapping_p. dump_mapping_p
is passed to linux_find_memory_regions_full at one call site; at the
other call site, dump_note_entry_p is passed instead.
gdb/ChangeLog:
* linux-tdep.c (dump_note_entry_p): New function.
(linux_dump_mapping_p_ftype): New typedef.
(linux_find_memory_regions_full): Add new parameter,
should_dump_mapping_p.
(linux_find_memory_regions): Adjust call to
linux_find_memory_regions_full.
(linux_make_mappings_core_file_notes): Use dump_note_entry_p in
call to linux_find_memory_regions_full.
This test passes when run using a GDB with my corefile patches. When
run against a GDB without my patches, I see the following failures,
the first of which is due to the test added by this commit:
FAIL: gdb.base/corefile.exp: accessing read-only mmapped data in core file (mapping address not found in core file)
FAIL: gdb.base/corefile.exp: accessing anonymous, unwritten-to mmap data
gdb/testsuite/ChangeLog:
* gdb.base/corefile.exp: Add test "accessing read-only mmapped
data in core file".
* gdb.base/coremaker.c (buf2ro): New global.
(mmapdata): Add a read-only mmap mapping.
In his reviews of my v1 and v2 corefile related patches, Pedro
identified two cases which weren't handled by those patches.
In https://sourceware.org/pipermail/gdb-patches/2020-May/168826.html,
Pedro showed that debugging a core file in which mmap() is used to
create a new mapping over an existing file-backed mapping will
produce incorrect results. I.e, for his example, GDB would
show:
(gdb) disassemble main
Dump of assembler code for function main:
0x00000000004004e6 <+0>: push %rbp
0x00000000004004e7 <+1>: mov %rsp,%rbp
=> 0x00000000004004ea <+4>: callq 0x4003f0 <abort@plt>
End of assembler dump.
This sort of looks like it might be correct, but is not due to the
fact that mmap(...MAP_FIXED...) was used to create a mapping (of all
zeros) on top of the .text section. So, the correct result should be:
(gdb) disassemble main
Dump of assembler code for function main:
0x00000000004004e6 <+0>: add %al,(%rax)
0x00000000004004e8 <+2>: add %al,(%rax)
=> 0x00000000004004ea <+4>: add %al,(%rax)
0x00000000004004ec <+6>: add %al,(%rax)
0x00000000004004ee <+8>: add %al,(%rax)
End of assembler dump.
The other case that Pedro found involved an attempted examination of a
particular section in the test case from gdb.base/corefile.exp. On
Fedora 27 or 28, the following behavior may be observed:
(gdb) info proc mappings
Mapped address spaces:
Start Addr End Addr Size Offset objfile
...
0x7ffff7839000 0x7ffff7a38000 0x1ff000 0x1b5000 /usr/lib64/libc-2.27.so
...
(gdb) x/4x 0x7ffff7839000
0x7ffff7839000: Cannot access memory at address 0x7ffff7839000
FYI, this section appears to be unrelocated vtable data. See
https://sourceware.org/pipermail/gdb-patches/2020-May/168331.html for
a detailed analysis.
The important thing here is that GDB should be able to access this
address since it should be backed by the shared library. I.e. it
should do this:
(gdb) x/4x 0x7ffff7839000
0x7ffff7839000: 0x0007ddf0 0x00000000 0x0007dba0 0x00000000
Both of these cases are fixed with this commit.
In a nutshell, this commit opens a "binary" target BFD for each of the
files that are mentioned in an NT_FILE / .note.linuxcore.file note
section. It then uses these mappings instead of the file stratum
mappings that GDB has used in the past.
If this note section doesn't exist or is mangled for some reason, then
GDB will use the file stratum as before. Should this happen, then
we can expect both of the above problems to again be present.
See the code comments in the commit for other details.
gdb/ChangeLog:
* corelow.c (solist.h, unordered_map): Include.
(class core_target): Add field m_core_file_mappings and
method build_file_mappings.
(core_target::core_target): Call build_file_mappings.
(core_target::~core_target): Free memory associated with
m_core_file_mappings.
(core_target::build_file_mappings): New method.
(core_target::xfer_partial): Use m_core_file_mappings
for memory transfers.
* linux-tdep.c (linux_read_core_file_mappings): New
function.
(linux_core_info_proc_mappings): Rewrite to use
linux_read_core_file_mappings.
(linux_init_abi): Register linux_read_core_file_mappings.
The new gdbarch method, read_core_file_mappings, will be used for
reading file-backed mappings from a core file. It'll be used
for two purposes: 1) to construct a table of file-backed mappings
in corelow.c, and 2) for display of core file mappings.
For Linux, I tried a different approach in which knowledge of the note
format was placed directly in corelow.c. This seemed okay at first;
it was only one note format and the note format was fairly simple.
After looking at FreeBSD's note/mapping reading code, I concluded
that it's best to leave architecture specific details for decoding
the note in (architecture specific) tdep files.
With regard to display of core file mappings, I experimented with
placing the mappings display code in corelow.c. It has access to the
file-backed mappings which were read in when the core file was loaded.
And, better, still common code could be used for all architectures.
But, again, the FreeBSD mapping code convinced me that this was not
the best approach since it has even more mapping info than Linux.
Display code which would work well for Linux will leave out mappings
as well as protection info for mappings.
So, for these reasons, I'm introducing a new gdbarch method for
reading core file mappings.
gdb/ChangeLog:
* arch-utils.c (default_read_core_file_mappings): New function.
* arch-utils.c (default_read_core_file_mappings): Declare.
* gdbarch.sh (read_core_file_mappings): New gdbarch method.
* gdbarch.h, gdbarch.c: Regenerate.
I have a patch for GDB which opens and reads from BFDs using the
"binary" target. However, for it to work, we need to be able to get a
section's contents based from the file position of that section.
At the moment, reading a section's contents will always read from the
start of the file regardless of where that section is located. While
this was fine for the original use of the "binary" target, it won't
work for my use case. This change shouldn't impact any existing
callers due to the fact that the single .data section is initialized
with a filepos of 0.
bfd/ChangeLog:
* binary.c (binary_get_section_contents): Seek using offset
from section's file position.
Consider the following program:
- - - mkmmapcore.c - - -
static char *buf;
int
main (int argc, char **argv)
{
buf = mmap (NULL, 8192, PROT_READ | PROT_WRITE,
MAP_ANONYMOUS | MAP_PRIVATE, -1, 0);
abort ();
}
- - - end mkmmapcore.c - - -
Compile it like this:
gcc -g -o mkmmapcore mkmmapcore.c
Now let's run it from GDB. I've already placed a breakpoint on the
line with the abort() call and have run to that breakpoint.
Breakpoint 1, main (argc=1, argv=0x7fffffffd678) at mkmmapcore.c:11
11 abort ();
(gdb) x/x buf
0x7ffff7fcb000: 0x00000000
Note that we can examine the memory allocated via the call to mmap().
Now let's try debugging a core file created by running this program.
Depending on your system, in order to make a core file, you may have to
run the following as root (or using sudo):
echo core > /proc/sys/kernel/core_pattern
It may also be necessary to do:
ulimit -c unlimited
I'm using Fedora 31. YMMV if you're using one of the BSDs or some other
(non-Linux) system.
This is what things look like when we debug the core file:
[kev@f31-1 tmp]$ gdb -q ./mkmmapcore core.304767
Reading symbols from ./mkmmapcore...
[New LWP 304767]
Core was generated by `/tmp/mkmmapcore'.
Program terminated with signal SIGABRT, Aborted.
#0 __GI_raise (sig=sig@entry=6) at ../sysdeps/unix/sysv/linux/raise.c:50
50 return ret;
(gdb) x/x buf
0x7ffff7fcb000: Cannot access memory at address 0x7ffff7fcb000
Note that we can no longer access the memory region allocated by mmap().
Back in 2007, a hack for GDB was added to _bfd_elf_make_section_from_phdr()
in bfd/elf.c:
/* Hack for gdb. Segments that have not been modified do
not have their contents written to a core file, on the
assumption that a debugger can find the contents in the
executable. We flag this case by setting the fake
section size to zero. Note that "real" bss sections will
always have their contents dumped to the core file. */
if (bfd_get_format (abfd) == bfd_core)
newsect->size = 0;
You can find the entire patch plus links to other discussion starting
here:
https://sourceware.org/ml/binutils/2007-08/msg00047.html
This hack sets the size of certain BFD sections to 0, which
effectively causes GDB to ignore them. I think it's likely that the
bug described above existed even before this hack was added, but I
have no easy way to test this now.
The output from objdump -h shows the result of this hack:
25 load13 00000000 00007ffff7fcb000 0000000000000000 00013000 2**12
ALLOC
(The first field, after load13, shows the size of 0.)
Once the hack is removed, the output from objdump -h shows the correct
size:
25 load13 00002000 00007ffff7fcb000 0000000000000000 00013000 2**12
ALLOC
(This is a digression, but I think it's good that objdump will now show
the correct size.)
If we remove the hack from bfd/elf.c, but do nothing to GDB, we'll
see the following regression:
FAIL: gdb.base/corefile.exp: print coremaker_ro
The reason for this is that all sections which have the BFD flag
SEC_ALLOC set, but for which SEC_HAS_CONTENTS is not set no longer
have zero size. Some of these sections have data that can (and should)
be read from the executable. (Sections for which SEC_HAS_CONTENTS
is set should be read from the core file; sections which do not have
this flag set need to either be read from the executable or, failing
that, from the core file using whatever BFD decides is the best value
to present to the user - it uses zeros.)
At present, due to the way that the target strata are traversed when
attempting to access memory, the non-SEC_HAS_CONTENTS sections will be
read as zeroes from the process_stratum (which in this case is the
core file stratum) without first checking the file stratum, which is
where the data might actually be found.
What we should be doing is this:
- Attempt to access core file data for SEC_HAS_CONTENTS sections.
- Attempt to access executable file data if the above fails.
- Attempt to access core file data for non SEC_HAS_CONTENTS sections, if
both of the above fail.
This corresponds to the analysis of Daniel Jacobowitz back in 2007
when the hack was added to BFD:
https://sourceware.org/legacy-ml/binutils/2007-08/msg00045.html
The difference, observed by Pedro in his review of my v1 patches, is
that I'm using "the section flags as proxy for the p_filesz/p_memsz
checks."
gdb/ChangeLog:
PR corefiles/25631
* corelow.c (core_target:xfer_partial): Revise
TARGET_OBJECT_MEMORY case to consider non-SEC_HAS_CONTENTS
case after first checking the stratum beneath the core
target.
(has_all_memory): Return true.
* target.c (raw_memory_xfer_partial): Revise comment
regarding use of has_all_memory.
This patch is motivated by the need to be able to select sections
that section_table_xfer_memory_partial should consider for memory
transfers. I'll use this facility in the next patch in this series.
section_table_xfer_memory_partial() can currently be passed a section
name which may be used to make name-based selections. This is similar
to what I want to do, except that I want to be able to consider
section flags instead of the name.
I'm replacing the section name parameter with a predicate that,
when passed a pointer to a target_section struct, will return
true if that section should be further considered, or false which
indicates that it shouldn't.
I've converted the one existing use where a non-NULL section
name is passed to section_table_xfer_memory_partial(). Instead
of passing the section name, it now looks like this:
auto match_cb = [=] (const struct target_section *s)
{
return (strcmp (section_name, s->the_bfd_section->name) == 0);
};
return section_table_xfer_memory_partial (readbuf, writebuf,
memaddr, len, xfered_len,
table->sections,
table->sections_end,
match_cb);
The other callers all passed NULL; they've been simplified somewhat
in that they no longer need to pass NULL.
gdb/ChangeLog:
* exec.h (section_table_xfer_memory): Revise declaration,
replacing section name parameter with an optional callback
predicate.
* exec.c (section_table_xfer_memory): Likewise.
* bfd-target.c, exec.c, target.c, corelow.c: Adjust all callers
of section_table_xfer_memory.
In his review of my BZ 25631 patch series, Pedro was unable to
reproduce the regression which should occur after patch #1, "Remove
hack for GDB which sets the section size to 0", is applied.
Pedro was using an ld version older than 2.30. Version 2.30
introduced the linker option -z separate-code. Here's what the man
page has to say about it:
Create separate code "PT_LOAD" segment header in the object. This
specifies a memory segment that should contain only instructions
and must be in wholly disjoint pages from any other data.
In ld version 2.31, use of separate-code became the default for
Linux/x86. So, really, 2.31 or later is required in order to see the
regression that occurs in recent Linux distributions when only the
bfd hack removal patch is applied.
For the test case in question, use of the separate-code linker option
means that the global variable "coremaker_ro" ends up in a separate
load segment (though potentially with other read-only data). The
upshot of this is that when only patch #1 is applied, GDB won't be
able to correctly access coremaker_ro. The reason for this is due
to the fact that this section will now have a non-zero size, but
will not have contents from the core file to find this data.
So GDB will ask BFD for the contents and BFD will respond with
zeroes for anything from those sections. GDB should instead be
looking in the executable for this data. Failing that, it can
then ask BFD for a reasonable value. This is what a later patch
in this series does.
When using ld versions earlier than 2.31 (or 2.30 w/ the
-z separate-code option explicitly provided to the linker), there is
the possibility that coremaker_ro ends up being placed near other data
which is recorded in the core file. That means that the correct value
will end up in the core file, simply because it resides on a page that
the kernel chooses to put in the core file. This is why Pedro wasn't
able to reproduce the regression that should occur after fixing the
BFD hack.
This patch places a big chunk of memory, two pages worth on x86, in
front of "coremaker_ro" to attempt to force it onto another page
without requiring use of that new-fangled linker switch.
Speaking of which, I considered changing the test to use
-z separate-code, but this won't work because it didn't
exist prior to version 2.30. The linker would probably complain
of an unrecognized switch. Also, it likely won't be available in
other linkers not based on current binutils. I.e. it probably won't
work in FreeBSD, NetBSD, etc.
To make this more concrete, this is what *should* happen when
attempting to access coremaker_ro when only patch #1 is applied:
Core was generated by `/mesquite2/sourceware-git/f28-coresegs/bld/gdb/testsuite/outputs/gdb.base/coref'.
Program terminated with signal SIGABRT, Aborted.
#0 0x00007f68205deefb in raise () from /lib64/libc.so.6
(gdb) p coremaker_ro
$1 = 0
Note that this result is wrong; 201 should have been printed instead.
But that's the point of the rest of the patch series.
However, without this commit, or when using an old Linux distro with
a pre-2.31 ld, this is what you might see instead:
Core was generated by `/mesquite2/sourceware-git/f28-coresegs/bld/gdb/testsuite/outputs/gdb.base/coref'.
Program terminated with signal SIGABRT, Aborted.
#0 0x00007f63dd658efb in raise () from /lib64/libc.so.6
(gdb) p coremaker_ro
$1 = 201
I.e. it prints the right answer, which sort of makes it seem like the
rest of the series isn't required.
Now, back to the patch itself... what should be the size of the memory
chunk placed before coremaker_ro?
It needs to be at least as big as the page size (PAGE_SIZE) from
the kernel. For x86 and several other architectures this value is
4096. I used MAPSIZE which is defined to be 8192 in coremaker.c.
So it's twice as big as what's currently needed for most Linux
architectures. The constant PAGE_SIZE is available from <sys/user.h>,
but this isn't portable either. In the end, it seemed simpler to
just pick a value and hope that it's big enough. (Running a separate
program which finds the page size via sysconf(_SC_PAGESIZE) and then
passes it to the compilation via a -D switch seemed like overkill
for a case which is rendered moot by recent linker versions.)
Further information can be found here:
https://sourceware.org/pipermail/gdb-patches/2020-May/168168.htmlhttps://sourceware.org/pipermail/gdb-patches/2020-May/168170.html
Thanks to H.J. Lu for telling me about the '-z separate-code' linker
switch.
gdb/testsuite/ChangeLog:
* gdb.base/coremaker.c (filler_ro): New global constant.
This commit removes a hack for GDB which was introduced in 2007.
See:
https://sourceware.org/ml/binutils/2007-08/msg00044.html
That hack mostly allowed GDB's handling of core files to continue to
work without any changes to GDB.
The problem with setting the section size to zero is that GDB won't
know how big that section is/was. Often, this doesn't matter because
the data in question are found in the exec file. But it can happen
that the section describes memory that had been allocated, but never
written to. In this instance, the contents of that memory region are
not written to the core file. Also, since the region in question was
dynamically allocated, it won't appear in the exec file. We don't
want these regions to appear as inaccessible to GDB (since they *were*
accessible when the process was live), so it's important that GDB know
the size of the region.
I've made changes to GDB which correctly handles this case. When
attempting to access memory, GDB will first consider core file data
for which both SEC_ALLOC and SEC_HAS_CONTENTS is set. Next, if that
fails, GDB will attempt to find the data in the exec file. Finally,
if that also fails, GDB will attempt to access memory in the sections
which are flagged as SEC_ALLOC, but not SEC_HAS_CONTENTS.
bfd/ChangeLog:
* elf.c (_bfd_elf_make_section_from_phdr): Remove hack for GDB.
-stack-list-arguments will crash when stopped in an Ada procedure that
has an argument with a certain name ("_objectO" -- which can only be
generated by the compiler). The bug occurs because lookup_symbol will
fail in this case.
This patch changes -stack-list-arguments to mirror what is done with
arguments elsewhere. (As an aside, I don't understand why this lookup
is even needed, but I assume it is some stabs thing?)
In the longer term I think it would be good to share this code between
MI and the CLI. However, due to the upcoming release, I preferred a
more local fix.
gdb/ChangeLog
2020-07-22 Tom Tromey <tromey@adacore.com>
* mi/mi-cmd-stack.c (list_args_or_locals): Use
lookup_symbol_search_name.
gdb/testsuite/ChangeLog
2020-07-22 Tom Tromey <tromey@adacore.com>
* gdb.ada/mi_prot.exp: New file.
* gdb.ada/mi_prot/pkg.adb: New file.
* gdb.ada/mi_prot/pkg.ads: New file.
* gdb.ada/mi_prot/prot.adb: New file.
Systems like mingw64 have pointers that can only be represented by 'long
long'. Consistently cast integers stored in pointers through uintptr_t
to cater for this.
libctf/
* ctf-create.c (ctf_dtd_insert): Add uintptr_t casts.
(ctf_dtd_delete): Likewise.
(ctf_dtd_lookup): Likewise.
(ctf_rollback): Likewise.
* ctf-hash.c (ctf_hash_lookup_type): Likewise.
* ctf-types.c (ctf_lookup_by_rawhash): Likewise.
The recent commit "libctf, binutils: support CTF archives like objdump"
broke opening of CTF archives on big-endian platforms.
This didn't affect anyone much before now because the linker never
emitted CTF archives because it wasn't detecting ambiguous types
properly: now it does, and this bug becomes obvious.
Fix trivial.
libctf/
* ctf-archive.c (ctf_arc_bufopen): Endian-swap the archive magic
number if needed.
Right now, the linker is not emitting CTF sections on (at least some)
non-ELF platforms, because work similar to that done for ELF needs to be
done to each platform in turn to emit linker-generated sections whose
contents are programmatically derived. (Or something better needs to be
done.)
So, for now, the CTF tests will fail on non-ELF for lack of a .ctf
section in the output: so skip the CTF tests there temporarily.
(This is not the same as the permanent skip of the diags tests, which is
done because the input for those is assembler that depends on the ELF
syntax of pseudos like .section: this is only a temporary skip, until
the linker grows support for CTF on more targets.)
ld/
* testsuite/ld-ctf/ctf.exp: Skip on non-ELF for now.
The trick we use to prevent ld doing as it does for almost all other
sections and copying the input CTF section into the output has recently
broken, causing output to be produced with a valid CTF section followed
by massive numbers of CTF sections, one per .ctf in the input (minus
one, for the one that was filled out by ctf_link). Their size is being
forcibly set to zero, but they're still present, wasting space and
looking ridiculous.
This is not right:
ld/ld-new :
section size addr
.interp 28 4194984
[...]
.bss 21840 6788544
.comment 92 0
.ctf 87242 0
.ctf 0 0
.ctf 0 0
[snip 131 more empty sections]
.gnu.build.attributes 7704 6818576
.debug_aranges 6592 0
.debug_info 4488859 0
.debug_abbrev 150099 0
.debug_line 796759 0
.debug_str 237926 0
.debug_loc 2247302 0
.debug_ranges 237920 0
Total 10865285
The fix is to exclude these unwanted input sections from being present
in the output. We tried this before and it broke things, because if you
exclude all the .ctf sections there isn't going to be one in the output
so there is nowhere to put the deduplicated CTF. The solution to that is
really simple: set SEC_EXCLUDE on *all but one* CTF section. We don't
care which one (they're all the same once their size has been zeroed),
so just pick the first we see.
ld/
* ldlang.c (ldlang_open_ctf): Set SEC_EXCLUDE on all but the
first input .ctf section.
The CTF testsuite runs GCC to generate CTF that it knows matches the
input .c files before doing a run_dump_test over it. So we need a GCC
capable of doing that, and we need to always avoid running those tests
if libctf was disabled because the linker will never be capable of it.
ld/
* configure.ac (enable_libctf): Substitute it.
* Makefile.am (enablings.exp): New.
(EXTRA_DEJAGNU_SITE_CONFIG): Add it.
(DISTCLEANFILES): Likewise.
* Makefile.in: Regenerate.
* configure: Likewise.
* testsuite/lib/ld-lib.exp (compile_one_cc): New.
(check_ctf_available): Likewise.
(skip_ctf_tests): Likewise.
* testsuite/ld-ctf/ctf.exp: Call skip_ctf_tests.
Uses the new cc option to run_dump_test to compile most tests from C
code, ensuring that the types in the C code accurately describe what the
.d file is testing.
(Some tests, mostly those testing malformed CTF, run directly from .s,
or include both .s and .c.)
ld/
* testsuite/ld-ctf/ctf.exp: New file.
* testsuite/ld-ctf/A-2.c: New file.
* testsuite/ld-ctf/A.c: New file.
* testsuite/ld-ctf/B-2.c: New file.
* testsuite/ld-ctf/B.c: New file.
* testsuite/ld-ctf/C-2.c: New file.
* testsuite/ld-ctf/C.c: New file.
* testsuite/ld-ctf/array-char.c: New file.
* testsuite/ld-ctf/array-int.c: New file.
* testsuite/ld-ctf/array.d: New file.
* testsuite/ld-ctf/child-float.c: New file.
* testsuite/ld-ctf/child-int.c: New file.
* testsuite/ld-ctf/conflicting-cycle-1.B-1.d: New file.
* testsuite/ld-ctf/conflicting-cycle-1.B-2.d: New file.
* testsuite/ld-ctf/conflicting-cycle-1.parent.d: New file.
* testsuite/ld-ctf/conflicting-cycle-2.A-1.d: New file.
* testsuite/ld-ctf/conflicting-cycle-2.A-2.d: New file.
* testsuite/ld-ctf/conflicting-cycle-2.parent.d: New file.
* testsuite/ld-ctf/conflicting-cycle-3.C-1.d: New file.
* testsuite/ld-ctf/conflicting-cycle-3.C-2.d: New file.
* testsuite/ld-ctf/conflicting-cycle-3.parent.d: New file.
* testsuite/ld-ctf/conflicting-enums.d: New file.
* testsuite/ld-ctf/conflicting-typedefs.d: New file.
* testsuite/ld-ctf/cross-tu-1.c: New file.
* testsuite/ld-ctf/cross-tu-2.c: New file.
* testsuite/ld-ctf/cross-tu-conflicting-2.c: New file.
* testsuite/ld-ctf/cross-tu-cyclic-1.c: New file.
* testsuite/ld-ctf/cross-tu-cyclic-2.c: New file.
* testsuite/ld-ctf/cross-tu-cyclic-3.c: New file.
* testsuite/ld-ctf/cross-tu-cyclic-4.c: New file.
* testsuite/ld-ctf/cross-tu-cyclic-conflicting.d: New file.
* testsuite/ld-ctf/cross-tu-cyclic-nonconflicting.d: New file.
* testsuite/ld-ctf/cross-tu-into-cycle.d: New file.
* testsuite/ld-ctf/cross-tu-noncyclic.d: New file.
* testsuite/ld-ctf/cycle-1.c: New file.
* testsuite/ld-ctf/cycle-1.d: New file.
* testsuite/ld-ctf/cycle-2.A.d: New file.
* testsuite/ld-ctf/cycle-2.B.d: New file.
* testsuite/ld-ctf/cycle-2.C.d: New file.
* testsuite/ld-ctf/diag-ctf-version-0.d: New file.
* testsuite/ld-ctf/diag-ctf-version-0.s: New file.
* testsuite/ld-ctf/diag-ctf-version-2-unsupported-feature.d: New file.
* testsuite/ld-ctf/diag-ctf-version-2-unsupported-feature.s: New file.
* testsuite/ld-ctf/diag-ctf-version-f.d: New file.
* testsuite/ld-ctf/diag-ctf-version-f.s: New file.
* testsuite/ld-ctf/diag-cttname-invalid.d: New file.
* testsuite/ld-ctf/diag-cttname-invalid.s: New file.
* testsuite/ld-ctf/diag-cttname-null.d: New file.
* testsuite/ld-ctf/diag-cttname-null.s: New file.
* testsuite/ld-ctf/diag-cuname.d: New file.
* testsuite/ld-ctf/diag-cuname.s: New file.
* testsuite/ld-ctf/diag-decompression-failure.d: New file.
* testsuite/ld-ctf/diag-decompression-failure.s: New file.
* testsuite/ld-ctf/diag-parlabel.d: New file.
* testsuite/ld-ctf/diag-parlabel.s: New file.
* testsuite/ld-ctf/diag-parname.d: New file.
* testsuite/ld-ctf/diag-parname.s: New file.
* testsuite/ld-ctf/diag-unsupported-flag.d: New file.
* testsuite/ld-ctf/diag-unsupported-flag.s: New file.
* testsuite/ld-ctf/diag-wrong-magic-number-mixed.d: New file.
* testsuite/ld-ctf/diag-wrong-magic-number.d: New file.
* testsuite/ld-ctf/diag-wrong-magic-number.s: New file.
* testsuite/ld-ctf/enum-2.c: New file.
* testsuite/ld-ctf/enum.c: New file.
* testsuite/ld-ctf/function.c: New file.
* testsuite/ld-ctf/function.d: New file.
* testsuite/ld-ctf/slice.c: New file.
* testsuite/ld-ctf/slice.d: New file.
* testsuite/ld-ctf/super-sub-cycles.c: New file.
* testsuite/ld-ctf/super-sub-cycles.d: New file.
* testsuite/ld-ctf/typedef-int.c: New file.
* testsuite/ld-ctf/typedef-long.c: New file.
* testsuite/ld-ctf/union-1.c: New file.
The CTF assembler emitted by GCC has architecture-dependent pseudos in
it, and is (obviously) tightly tied to a particular set of C source
files with specific types in them. The CTF tests do run_dump_test on
some candidate input, link it using the run_dump_test ld machinery, and
compare objdump --ctf output. To avoid skew, we'd like to be able
to easily regenerate the .s being scanned so that the .c doesn't get
out of sync with it, but since GCC emits arch-dependent pseudos, we
are forced to hand-hack the output every time (quite severely on some
arches, like x86-32 and -64, where every single pseudo used is not only
arch-dependent but undocumented).
To avoid this, teach run_dump_test how to optionally compile things
given new, optional additional flags passed in in the cc option.
Only sources with the .c suffix are compiled, so there is no effect on
any existing tests. The .s files go into the tmpdir, from which
existing run_dump_test code picks them up as usual.
binutils/
* testsuite/lib/binutils-common.exp (run_dump_test): Add 'cc'
option.